
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RELAM: LEARNING ANTICIPATION MODEL FOR RE-
WARDING VISUAL ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Reward design remains a critical bottleneck in visual reinforcement learning (RL)
for robotic manipulation. In simulated environments, rewards are conventionally
designed based on the distance to a target position. However, such precise posi-
tional information is often unavailable in real-world visual settings due to sensory
and perceptual limitations. In this study, we propose a method that implicitly
infers spatial distances through keypoints extracted from images. Building on
this, we introduce Reward Learning with Anticipation Model (ReLAM), a novel
framework that automatically generates dense, structured rewards from action-free
video demonstrations. ReLAM first learns an anticipation model that serves as a
planner and proposes intermediate keypoint-based subgoals on the optimal path
to the final goal, creating a structured learning curriculum directly aligned with
the task’s geometric objectives. Based on the anticipated subgoals, a continuous
reward signal is provided to train a low-level, goal-conditioned policy under the hi-
erarchical reinforcement learning (HRL) framework with provable sub-optimality
bound. Extensive experiments on complex, long-horizon manipulation tasks show
that ReLAM significantly accelerates learning and achieves superior performance
compared to state-of-the-art methods.

1 INTRODUCTION

Reward design stands as one of the most fundamental challenges in reinforcement learning (RL),
particularly in the domain of vision-based robotic manipulation (Tian et al., 2023; Lu et al., 2025;
Escontrela et al., 2023; Huang et al., 2024; Pang et al., 2025). In simulated environments, a common
and often effective approach is to engineer dense reward signals based on precise geometric informa-
tion, such as the Euclidean distance between a robot’s end-effector and a target position. However,
this paradigm faces a critical limitation in real-world applications: exact state information is typi-
cally unavailable due to sensory noise, occlusions, and perceptual ambiguities. Consequently, agents
must rely on high-dimensional visual observations, making hand-engineered reward design not only
labor-intensive but also notoriously challenging. This reward specification bottleneck severely im-
pedes the scalability and adoption of RL in practical robotic settings.

Some prior works overcome this limitation by adopting Learning from Observation (LfO) ap-
proaches. A common practice is to employ adversarial frameworks (Ho & Ermon, 2016; Torabi
et al., 2018; Kostrikov et al., 2019), where a discriminator that does not take action as input is
trained and subsequently used as a reward function. However, when dealing with high-dimensional
visual inputs, such methods suffer from significant challenges in terms of training difficulty and
stability. In recent years, several works (Tian et al., 2023; Sontakke et al., 2023; Ma et al., 2023;
Escontrela et al., 2023; Huang et al., 2024) have instead attempted to design visual rewards based
on heuristic strategies. These approaches either yield sparse rewards or lack an explicit structured
learning process, making them inefficient for long-horizon tasks with extended periods of partial
observability or complex dynamics. Thus, there still remains a need for a framework that can auto-
matically synthesize informative, dense reward signals from readily available video demonstrations,
while guiding the agent through a structured and geometrically grounded learning curriculum.

In this work, we introduce Reward Learning with Anticipation Model (ReLAM), a novel framework
that automatically generates dense and structured rewards from action-free video demonstrations.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Video Demo

Keypoint SubgoalsAnticipation Model

RewardTraining

Robot Policy

Action

Figure 1: An illustration of ReLAM for gen-
erating the keypoint subgoals with anticipa-
tion model and calculating rewards for a goal-
conditioned policy.

ReLAM is built on the recent insight that ob-
ject keypoints can serve as a powerful interme-
diate representation for capturing task geometry
and progression (Wen et al., 2024). ReLAM be-
gins by extracting task-relevant keypoints from
video demonstrations: we first use the Segment
Anything Model (SAM) (Zhang et al., 2024) to
isolate objects of interest, then apply a tracking
model (Karaev et al., 2024b) to follow pixel-level
features across frames. A sparse set of repre-
sentative points is selected and propagated con-
sistently, forming a trajectory of keypoints that
encode object motion. From these, we identify
keyframes that signify critical stages of the task,
and define the keypoint configurations in those
frames as subgoals. Using this curated dataset, ReLAM learns an anticipation model capable of
predicting a sequence of intermediate keypoint-based subgoals that lead to the final goal. This
model acts as a high-level planner, constructing a structured curriculum aligned with the geometric
requirements of the task. The anticipated subgoals then enable the computation of a continuous re-
ward signal based on keypoint distance, which is used to train a low-level, goal-conditioned policy
under the hierarchical RL (HRL) framework with provable sub-optimality bound.

Our contributions are as follows: First, we make a novel derivation from the established point-to-
point movement principle (Wen et al., 2024) specifically for reward design: we demonstrate that
the distances between learned keypoints provide a meaningful reward signal. Second, we intro-
duce ReLAM, a novel framework that uniquely combines this keypoint-based reward with an an-
ticipative generative model to automatically construct a structured learning curriculum from mere
video demonstrations, entirely without action labels. Third, our method bridges the gap between
high-level planning and low-level control within an HRL framework, where the anticipation model
proposes geometrically meaningful subgoals and the dense, keypoint-derived reward signal reliably
guides policy optimization with provable sub-optimality bound. Finally, through extensive empir-
ical validation, we demonstrate that this approach not only significantly accelerates learning but
also achieves new state-of-the-art performance on long-horizon tasks, thereby offering a robust and
practical pathway toward scalable visual reinforcement learning for robotics.

2 RELATED WORK

2.1 ROBOTIC MANIPULATION WITH VISUAL INPUT

Robotic Manipulation with visual input has long been a prominent research topic. Traditional
approaches rely on supervised learning for behavior cloning, and this paradigm has continued to
evolve, giving rise to methods such as Diffusion Policy (Chi et al., 2023; Ze et al., 2024) and VLA-
based methods (Kim et al., 2024; Black et al., 2024). However, these approaches require large
amounts of data and tend to suffer from substantial compounding errors in long-horizon tasks. In
light of these issues, many studies have adopted reinforcement learning to train control policies
based on visual input. For example, VPG (Zeng et al., 2018) and QT-Opt (Kalashnikov et al., 2018)
apply the vision-based reinforcement learning framework to learn a grasping policy. Recent works
(Ren et al., 2025; Lu et al., 2025) have employed RL to diffusion policy or VLA model, demonstrat-
ing promising performance in robotic manipulation tasks. Although these image-based reinforce-
ment learning methods show considerable promise, they share a common challenge: the difficulty
of reward design. Recently, ATM (Wen et al., 2024) abstracted images into a set of representative
keypoints as task representations and employed behavior cloning to train policies, demonstrating
strong generalization capability. Motivated by their method, we propose a keypoint-based reward
learning approach, which provides an effective solution to the challenge of reward design for robotic
manipulation.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 REWARD LEARNING FROM VIDEOS

A common source of reward functions in visual reinforcement learning is the extraction of signals
from videos, particularly from expert video demonstrations. Some adversarial imitation learning
approaches (Li et al., 2017; Torabi et al., 2018; Rafailov et al., 2021; Kostrikov et al., 2019) employ
the output of a discriminator as the reward function; however, such methods often exhibit instabil-
ity when handling high-dimensional inputs. Benefiting from recent advances in foundation models,
a number of works (Tian et al., 2023; Ma et al., 2023; Sontakke et al., 2023) instead use the dis-
tance between observations and target images/videos in the representation space as rewards. Since
generated targets from generative models typically contain considerable noise and blurriness, these
approaches usually require pre-given target images, which limits their applicability to open-ended
tasks. To address the issue of inaccurate generation, some methods (Escontrela et al., 2023; Huang
et al., 2024) indirectly leverage the model’s confidence in its generated outputs as a reward signal.
Such methods rely entirely on generative models and lack a substantive understanding of the spa-
tial and temporal structures of the task. As a result, they continue to exhibit constraints in unseen
areas. In contrast, ReLAM effectively extracts structural information across different dimensions of
the task from video demonstrations, simplifying the task into point-to-point movements and thereby
yielding more generalizable rewards.

2.3 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical reinforcement learning (HRL) aims to improve scalability and efficiency in long-
horizon tasks by introducing temporal abstractions. Early frameworks such as Options (Sutton et al.,
1999) and MAXQ (Dietterich, 2000) formalize sub-task structures through temporally extended ac-
tions and value function decomposition. More recent works focus on goal-conditioned hierarchies
and often employ a high-level policy, which can be either a neural network (Nachum et al., 2018;
Chane-Sane et al., 2021) or even some foundation models (Pang et al., 2023), to generate subgoals
and a low-level policy to execute. It is argued that the high-level policy, which can be called as an
anticipation model (Yu, 2025), should identify a waypoint that lies on an optimal shortest path to the
final goal to find a global optimal policy. In this work, we will leverage the geometric priors inher-
ent in robotic manipulation tasks to learn an anticipation model capable of continuously generating
subgoals and train policy under the HRL framework.

3 METHOD

This section presents the method ReLAM which automatically provides reward by learning from
video demonstrations D = {Vi = (Ii1, I

i
2, · · · , IiTi

)}i=1,··· ,N . We divide our approach into two
stages. The first stage is to learn an anticipation model which takes in the current task state and
desired final goal as input to produce a relatively easy-to-reach intermediate keypoint-based sub-
goal. At the second stage, with the assistance of the anticipation model, a dense reward function is
designed to train a low-level, goal-conditioned policy. We will elaborate on these two stages below.

3.1 ANTICIPATION MODEL LEARNING WITH KEYPOINTS

This part introduces how we learn an anticipation model from video demonstrations. Instead of
training the anticipation model to generate images, we simplify it into a keypoint generation model
like ATM (Wen et al., 2024). A good selection of keypoints can be a highly abstract and effective
representation of the task, and will reduce the difficulty of generating subgoals simultaneously. In
the following section, the learning procedure of keypoint-based anticipation model will be presented
by answering three questions: (1) How to select the representative keypoints? (2) How to determine
an appropiate subgoal for anticipation model to generate? (3) How to train the anticipation model?

3.1.1 SUBGOAL DATASET GENERATION

Keypoint Selection For the first question, i.e., to select the representative keypoint in one image,
it is important to first pick out the key objects. ATM (Wen et al., 2024) samples pixels averagely
in one image, which might make too many points chosen, leaving these points unrepesentative. In
ReLAM, we propose a new sampling strategy to elect the representative keypoints. First, for each

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Video 
demonstrations

Subgoal
dataset

generation

Train

(B)

Anticipation
model

Policy
learning

Subgoal dataset
(with initial frame)

Guide

Segment
Anything

Model

Prompt: 
“robot arm”

Prompt: 
“button”

Moving 
range too 

small!

Moving 
range is 
enough.

Point 
Destination

Point 
Destination

FPS
algorithm

Initial frame

Segmented components Filtered pixels

Selected
keypoint

(A.1)

Policy

Anticipation
model

State

State

Subgoal,
reward

Action

(C)

Selected keyframes Subgoals

(A.2) (A.3)

Video

Select by angle

Figure 2: Overall training framework ReLAM method. (A) ReLAM first picks out representative
keypoints in the initial frame of the video and then selects keyframes throught the video, turning the
position of keypoints in these frames into subgoals. (B) Training the anticipation model based on
the generated subgoal dataset. (C) Training policy with point-based reward with subgoals generated
from anticipation model.

video demonstration, we extract its first frame and apply a grounded SAM model (Zhang et al.,
2024) to obtain task-relevant segmentations. Next, for the pixels corresponding to each key object
in the image, we employ a track model (Karaev et al., 2024a) to follow their motion trajectories
throughout the entire video demonstration. Specifically, each trajectory records the two-dimensional
coordinates of the pixel within the image coordinate system across all frames of the demonstration.
Among all pixels corresponding to key objects in the image, we identify those that are truly relevant
to the task by applying a predefined threshold to remove pixels whose motion range across the video
is negligible. After filtering out pixels with small displacements, we further select the final keypoints
using Farthest Point Sampling (FPS) (Eldar et al., 1997). The entire procedure for keypoint selection
can be summarized by the following formulation:

P = FPS

(
{p = (x, y) ∈ SAM(I0) : max

0≤t,t′≤T
(xt − xt′)

2 + (yt − yt′)
2 ≥ Θ}

)
(1)

For the equation above, I0 represents the initial frame of the video, SAM denotes the segmentation
model that picks out the task-relevant pixels, (xt, yt) means to which position the point (x, y) in
Io will move at time t in the video, Θ is a predefined threshold and FPS denotes the Farthest
Point Sampling technique. In most robotic manipulation tasks, these points serve as a high-level
abstraction of the task state. By tracking the motion of these keypoints, one can infer the location
and posture of the robotic arm, as well as whether it has performed the intended action on the object.

Keyframe Selection Filtering task-relevant keypoints in the image simplifies and condenses the
spatial structure of the task. For a video sequence, however, the temporal dimension is equally
important, as it reveals the underlying logic and patterns of the robot arm’s motion, which can
assist to determine which subgoal for the anticipation model to generate. Suppose a robotic arm is
instructed to press a button with a wall obstructing between, directly using the final goal position of
the arm as guidance, i.e. where the button places, might mislead the robot to collide with the wall.
In such cases, the task is usually decomposed into two steps: first, moving around the wall, and
second, pressing the button. Each step is relatively simple for the robotic arm, whereas executing
them simultaneously as a single step would be considerably more challenging. To formalize this
decomposition, we first introduce the following definition: a robot arm motion is said to be a linear
motion, if the arm is able to move from the starting point to the target point along a straight line.
Based on this concept, we posit that a robotic manipulation task can be decomposed into multiple
segments, each representing a linear motion. Under this assumption, the frames situated between
consecutive linear motions can be identified as keyframes. Extracting these keyframes enables us

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

to characterize the intrinsic motion regularities of the task. Combining these keyframes with the
keypoints elected with Eq (1), the position of keypoints in these images become a perfect subgoal
for the anticipation model to generate, which marks the optimal path to the final goal.

In ReLAM, keyframes are picked out from the video demonstration every certain interval. Specifi-
cally, we predefine a minimum step size m and a maximum step size M . We then track the move-
ments of the keypoints and, within the step range [m,M ], identify the timestep at which the change
of keypoint motion is most pronounced. Specifically, since we assume that keyframes lie at the tran-
sition between two linear motions, we determine them based on the angle between the displacement
vector of the current timestep and that of the previous timestep: if the frame lies within a linear
motion, the angle is nearly zero; whereas at the boundary between two consecutive linear motions,
the angle becomes significantly larger, in which case the frame is regarded as a keyframe. This
keyframe selection process can be formalized as follows:

tj = arg min
t∈[tj−1+m, tj−1+M ]

K∑
k=1

⟨pkt − pkt−1, p
k
t+1 − pkt ⟩

∥pkt − pkt−1∥∥pkt+1 − pkt ∥
(2)

where tj is the timestep for j-th keyframe, pkt denotes the coordinate of the k-th keypoint at timestep
t and ⟨·, ·⟩ is the inner product operation. For each video demo, we take the keypoints extracted from
the initial frame using Eq. (1) and track their coordinates across the video keyframes obtained via
Eq. (2). In this way, we construct the keypoint dataset below, with pki being the position of k-th
keypoint at keyframe j for demo i, and xk

i,j , y
k
i,j being its corresponding coordinate.

K =

N⋃
i=1

Ki =

N⋃
i=1

{pki,j = (xk
i,j , y

k
i,j)}

3.1.2 ANTICIPATION MODEL LEARNING

history
coordinates

Initial
Frame 𝐼!

DINOv2

⋯

N × Casual Transformer Block

Predicted
future

coordinates

Task Indication 
Frame 𝐼"#$%

Figure 3: The structure of the anticipa-
tion model for subgoal generation.

The dataset K can be regarded as a collection of subgoal
sequences composed of keypoint coordinates. Therefore,
we employ an autoregressive model as the anticipation
model to generate these subgoals sequentially. The antic-
ipation model takes the initial visual observation I0 of the
task as input and performs two steps: (1) it identifies the
keypoints within I0 and records their coordinates P0; (2)
based on I0 and P0, it autoregressively predicts the co-
ordinates of these keypoints in the subsequent keyframes.
Note that ReLAM can be extended to multi-task scenarios
by adding a task indication frame Itask to the anticipation
model’s input. This frame serves solely to identify the
current task and remains constant across all states within
a task and can be predefined.

For image inputs, previous research (Zhou et al., 2024)
have shown that directly leveraging representations from
pretrained vision models often endows the model with
stronger spatial understanding, thereby enhancing its gen-
eralization capability. Motivated by this observation, we
also adopt a frozen DINOv2 (Oquab et al., 2023) model to extract image embeddings. The visual
input for anticipation model here is two RGB images of size 256× 256, one being initial frame and
one being Itask. After being processed by the DINOv2 model, each image is divided into 16 × 16
patch embeddings. These patch embeddings are then concatenated with the tokens formed by the
coordinates of keypoints from historical keyframes and fed into the model. The coordinates of the
keypoints are first normalized and then mapped through a Multilayer Perceptron (MLP) into the
embedding dimension. In the case of the first step, where no historical keypoints exist, we instead
use a fixed special token to indicate that the model should predict the keypoint positions based on
the given images. After being fed into the model, the image and point embeddings will pass through
12 layers of causal transformer blocks. Subsequently, the tokens corresponding to the points are
processed by a MLP to predict the point coordinates in a residual form. These predicted coordi-
nates are then compared with the ground-truth coordinates using Mean Squared Error loss under a

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

teacher-forcing scheme to train the anticipation model. The structure of the anticipation model is
displayed in Fig. 3.

3.2 POLICY LEARNING WITH POINT-BASED REWARD

We train our policy under the hierarchical reinforcement learning framework. At the beginning of
each episode, the initial image is fed into the anticipation model trained in the previous section. The
model first predicts the keypoints’ location P0, and then autoregressively generates a sequence of
subgoals (i.e., keypoint) P1, · · · , Pk. Our objective is to design a reward function that encourages P0

to sequentially move towards P1, · · · , Pk, thereby enabling the robot arm to successfully complete
the task. Based on the assumption that motion between keyframes is linear, the transitions from Pj

to Pj+1 correspond to approximately a straight path. Therefore, the reward can be directly defined
using the Euclidean distance in the pixel coordinate system. Formally, we define the movement of a
subgoal from Pj−1 to Pj as the j-th stage. For this stage, the distance between the current position
of the keypoint and the subgoal Pj can be expressed as:

l =
1

K

K∑
k=1

∥pk − pkj ∥2 (3)

where pk denotes the current position of the k-th keypoint, pkj represents its target position at stage j.
Next, a monotonic function is employed to transform the distance into dense reward rdense. We find
that a piecewise linear function performs best and the results can be seen in Fig. 6(b). We assume
that when the distance between a keypoint and the subgoal is smaller than a predefined threshold
θs, the robot is considered to have successfully achieved the subgoal of stage s. At this point,
the process transitions to stage s + 1, with the subgoal updated to the (s + 1)-th target position.
Upon completing each subgoal, the robot receives an additional stage-success reward, and upon
accomplishing the entire task, it is granted a final success reward. Consequently, the overall reward
can be expressed as follows:

r = rdense + rsuccess + I(ls ≤ θs) (4)

We find that when trained with this kind of reward, the policy is able to find a near-shortest path to
complete the task. We provide a brief mathematical proof to show this near-optimality in Appx. E.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our proposed method in robotic ma-
nipulation tasks. We first introduce the experiment setup.

4.1 EXPERIMENT SETUP

Evaluation environments. We conduct experiments on two robotics manipulation environments:
Meta-World (Yu et al., 2019) and ManiSkill (Gu et al., 2023), as shown in Fig. 7. (1) Meta-World:
This environment requires the agent to control a Sawyer robotics arm with 7 degrees of freedom
(DoF) and a parallel finger gripper. Meta-World offers a suite of 50 distinct manipulation tasks,
covering a wide array of scenarios, such as interactions with drawers, buttons, doors and balls. For
our experiments, we assess the performance of our methods on a subset of tasks: drawer opening,
door opening and button pressing. (2) ManiSkill: ManiSkill is a powerful unified framework for
robot simulation and training powered by SAPIEN. Here we focus on table-top manipulation tasks,
which involve a Panda robotic arm by Franka Emika with 7 DoF and a parallel finger gripper. These
tasks are primarily focused on block manipulation tasks, which are designed to test the robot’s
foundational skills, such as reaching a goal point. We mainly use Drawer Open, Door Open and
Button Press Wall from Meta-World, and Push Cube, Pick Cube from ManiSkill for evaluation. The
observations on all tasks are images with 256× 256 pixels, which are captured by the fixed-position
third-person camera. We run online RL for Meta-World and offline RL for ManiSkill environments.

Dataset for training. Video demonstration dataset contains 100 trajectories collected by motion
planning for each task in both Meta-World and ManiSkill. This video dataset is action-free and used
to generate keypoint subgoal dataset for the training of anticipation model. Besides the video demo

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Steps 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

ReLAM
DR
DACfO
IS
Orcale

(a) Drawer Open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Steps 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

ReLAM
DR
DACfO
IS
Orcale

(b) Door Open

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Number of Steps 1e6

0

20

40

60

80

Su
cc

es
s R

at
e 

(%
)

ReLAM
DR
DACfO
IS
Orcale

(c) Button Press Wall

Figure 4: Performance of different methods on Meta-World tasks. The x-axis denotes the number of
interaction steps with the environment, and the y-axis denotes the average success rate, by evaluation
for 30 episodes. The error bars stand for the half standard deviation over five seeds.

dataset, we also have an offline control dataset which contains action for offline reinforcement
learning setting with 200 trajectories gathered for each task. Among these trajectories, 100 of them
are expert demonstrations and another 100 are obtained by adding random noise to expert action.

Implementation details. For online RL with Meta-World, We build upon the well-established
open-source reinforcement learning library Stable Baselines3 (Raffin et al., 2021), utilizing its PPO
implementation. In some tasks, we slightly adjust the camera viewpoints to prevent severe occlusion
of task-relevant objects. For offline RL setting on ManiSkill, we utilize OfflineRL-kit (Sun, 2023), a
well-verified offline RL codebase. Specifically, we use Implicit Q-Learning (Kostrikov et al., 2022),
an offline reinforcement learning algorithm that avoids explicit policy constraints by learning value
functions implicitly and extracting a policy through advantage-weighted regression.

4.2 MAIN RESULTS

Baselines for comparison We choose the following representative approaches which learn a reward
from videos for comparison. (1) DACfO is an adversarial imitation learning method which combines
the idea of DAC (Kostrikov et al., 2019) and GAIfO (Torabi et al., 2018), where we modify the
discriminator’s input like GAIfO to consist of the current observation o and the next observation o′,
enabling it to handle action-free demonstration datasets. For offline data, we first run DACfO online
and save the last 10 checkpoints of the discriminator. Then we use them to label the offline dataset
with ensemble technique. (2) Diffusion Reward (DR) (Chi et al., 2023) trains a diffusion model
with the video demo data and learn policy by computing the conditional entropy of the diffusion
model as reward. (3) Image Subgoal (IS) integrates our method with the idea of VP2 (Tian et al.,
2023) by employing a flow matching model to autoregressively generate subgoals from the initial
image, and then uses the cosine similarity between the current visual observation and the target
image in the representation space of DINOv2 (Oquab et al., 2023) as the reward to train a goal-
conditioned policy with image subgoal. (4) Orcale replaces the generated image subgoals in IS
baseline with the ground-truth ones for each episode, with all other components unchanged.

Results for Meta-World. Fig. 4(a), 4(b), 4(c) shows the success rate of different reward learn-
ing methods for online reinforcement learning results in Metaworld environments. In general, our
proposed method ReLAM outperforms the baselines for all three environments. It can be observed
that on these tasks, ReLAM rapidly achieves very high success rate. In contrast, other baseline
methods either fail to reach such high success rates or require significantly more interaction steps.
We evaluate for five fixed seeds (0 − 4), and it is worth noting that for some seeds, the Diffusion
Reward approach completely fails to learn. This occurs because their method relies on an auxiliary
RND reward to encourage exploration, which does not necessarily provide a correct exploration
signal and instead results in highly stochastic exploration. Under such circumstances, certain seeds
may never encounter the correct trajectory, ultimately preventing successful learning. In contrast,
our method incorporates both the current and target coordinates of keypoints as part of the policy
input, inherently providing the policy with implicit guidance. Moreover, the distance-based reward
enables the policy to gradually recognize that approaching the target yields higher returns, thereby
steering exploration toward meaningful regions of the state space and allowing the agent to acquire
the task more efficiently. For DACfO, the curve exhibits substantial fluctuations, indicating that
the training process is indeed unstable. For Orcale, since it leverages ground-truth subgoal images,
we can see that learning proceeds relatively quickly and ultimately achieves a high success rate.
In contrast, when we replace the subgoals with results generated by the flow matching model, the
performance, as shown by IS, drops significantly. The generated images often contain noise and

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 20000 40000 60000 80000 100000
Number of Updates

0

20

40

60

80

Su
cc

es
s R

at
e 

(%
)

ReLAM
DR
DACfO
IS
Orcale

(a) Pick Cube

0 10000 20000 30000 40000 50000 60000
Number of Updates

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

ReLAM
DR
DACfO
IS
Orcale

(b) Push Cube (c) Projection of rewards

Figure 5: (a), (b): Performance of different methods on ManiSkill tasks. The x-axis denotes the
number of update, and the y-axis denotes the average success rate, by evaluation for 30 episodes.
The error bars stand for the half standard deviation over five seeds. (c): t-SNE projections of the
rewards generated by different methods.

local blurriness, making it difficult to establish a consistent similarity threshold in the representation
space. For example, while a threshold of 0.95 may be appropriate for the first generated result, the
second might require 0.9, and this threshold can vary further depending on the initial state of the
task. Due to this inconsistency, the IS method achieves very low success rates, with only a small
fraction of well-generated cases for the policy to learn.

Results for ManiSkill. Fig. 5(a), 5(b) displays the success rate of different approaches for offline
reinforcement learning results in ManiSkill environments. On Pick Cube and Push Cube tasks, our
method surpasses all baseline approaches except Orcale which cheats with the ground-truth image
subgoal. It can be observed that ReLAM achieves performance comparable to Orcale, whereas IS
shows a clear performance drop compared to Orcale. This indicates that even without access to
privileged information, by leveraging abstract keypoints as targets, ReLAM not only reduces the
generation difficulty for the anticipation model but also effectively captures structural information of
the task to guide the policy. The reason why IS achieves much higher success rates than Meta-World
is that: (1) The offline control dataset contains expert action label, reducing the need for exploration;
(2) The sequence of subgoals for ManiSkill is shorter, leading to less compounding error of the
generation results anticipation model. The performance of Diffusion Reward and DACfO is also
quite similar, as both methods share essentially the same underlying principle: rewards are higher
near the expert distribution and lower when further away from it. Since a large portion of the offline
decision-making data is near-expert, the rewards assigned by both methods are generally high, which
explains why they ultimately achieve comparable results. However, their performances still fall short
of ReLAM . We think this is because our approach can recognize and reward trajectories that deviate
slightly from the expert distribution yet still move effectively toward the goal. This is enabled by our
distance-based reward design, which provides the policy with a strong guidance signal and fosters
a deeper understanding of the task’s spatiotemporal structure. In contrast, Diffusion Reward may
assign lower returns to such trajectories due to its higher entropy, leading to less efficient learning.

We make a visualization of the rewards for different methods in Fig. 5(c), which verifies our analysis
above. We sample 20 trajectory segments for Pick Cube task and label them with four types of
rewards: environment rewards, ReLAM, DR, and DACfO. We then projected the labeled trajectories
into a two-dimensional space using t-SNE, where each trajectory corresponds to a single point.
Since ReLAM assigns rewards based on keypoint distances and the environment reward is based
on distances in the world coordinate system, these two rewards are relatively close. Moreover, as
mentioned above, both Diffusion Reward and DACfO assign higher rewards to regions closer to the
expert distribution, which explains why their projections are not far away from each other.

4.3 ABLATION STUDY

Effect of the point number. We study whether the number of points selected for the task will affect
the performance of the policy. We sample 4, 8 and 12 points for Drawer Open task and the result is
shown in Fig. 6(a). The best performance is achieved when sampling four keypoints, followed by
eight keypoints, while twelve keypoints yield the weakest results. This outcome can be explained
by the truth that for Drawer Open task, sampling four keypoints—three on the robotic arm and one
on the drawer—is sufficient to provide an adequate representation of the task state, thereby enabling
rapid policy learning. In contrast, with eight or twelve keypoints, the prediction difficulty for the
anticipation model increases. Moreover, requiring the policy to simultaneously drive all keypoints

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Steps 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

4 Points
8 Points
12 Points

(a) Ablation on point number

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Steps 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

ReLAM
Linear
Exponential
Logistic

(b) Ablation on reward function

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of Steps 1e6

0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

ReLAM
Ground Truth

(c) Generation vs. ground-truth

Figure 6: Ablation study of ReLAM on Drawer Open task.

toward their respective targets imposes stricter constraints on its actions, effectively forcing the
behavior to closely mimic the demonstrations. In this regard, four points can provide a sufficiently
broad criterion while allowing more flexible exploration.

Effect of the reward function. We evaluate the impact of different type of reward functions con-
ditioned on the keypoint distance have on the performance of reinforcement learning. We introduce
three kinds of reward functions and compare them to the separate linear function used in ReLAM: (1)
pure linear function; (2) exponential function; (3) logistic function. All these functions are designed
to have the same range when the point distance is between [0, 30]. The performance is displayed in
Fig. 6(b). We found that the piecewise linear function took the lead and linear function achieved
relatively good performance, while the exponential and logarithmic functions performed worse. We
think this is because the slopes of the latter two functions vary continuously, making it difficult for
the policy to adapt; while the slope of the linear function remains constant, resulting in insufficient
encouragement for the policy as it approaches the target. The piecewise linear function, however,
strikes a balance between the two: it provides sufficient incentives for the policy to reach the goal
while maintaining a certain degree of stability.

Generated subgoal versus ground-truth subgoal. To evaluate the accuracy of the anticipation
model in generating subgoals, we compare its predictions with the ground-truth subgoals. Specifi-
cally, at each environment initialization, we provide the subsequent sequence of ground-truth key-
point subgoals and train a goal-conditioned RL policy based on these targets like ReLAM. Fig. 6(c)
presents a comparison between the performance of policies trained with AR-generated subgoals and
those trained with ground-truth subgoals. The performance gap between the two is relatively small,
indicating that the anticipation model produces sufficiently accurate subgoals. In contrast, when
the subgoals are represented as images rather than points, the performance of Image Subgoal drops
significantly compared to the Orcale baseline. This result further confirms that point-based represen-
tations substantially reduce the difficulty of the generation problem, thereby enabling point-based
rewards to effectively guide the policy toward task completion.

5 CONCLUSION

This study explores the reward design problem for robotic manipulation. We propose a novel ap-
proach, ReLAM, which first learns an anticipation model that serves as a planner and proposes
intermediate keypoint-based subgoals and then train a goal-conditioned policy with the distance of
keypoints as reward signal. We conduct extensive experiments and demonstrate that ReLAM is ca-
pable of being applied to a variety of robotic platforms, enabling a robust and practical pathway
towards scalable RL for robotic manipulation. Despite the promising results, there are still limita-
tions. One limitation of our work is reliance on the viewpoint. Our anticipation model is trained with
video demos from a single camera with the assistance of a track model. If the viewpoint undergoes
a dramatic change, the model will struggle to generate the desired target. Moreover, significant oc-
clusions can prevent the track model from accurately following the keypoints. A potential solution
is to use observation from multi views and merge them into the point cloud, which is more robust to
viewpoint disturbance and occlusion. Besides, the experiment scale is limited, in terms of the dataset
scale and model size. In future works, we hope to scale up the framework to solve more challenging
tasks. For instance, employing a pre-trained VLM as the anticipation model such as Qwen-VL-2.5
(Bai et al., 2025), and training with more data like Open X-Embodiment (Collaboration, 2023). We
believe these interesting directions are worth further exploration for developing smarter and more
robust robots with the support of more general-purpose reward and reinforcement learning.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

In the development and evaluation of ReLAM for robotic manipulation, we have carefully consid-
ered the ethical implications of this research, particularly as they pertain to the use of robotic ma-
nipulation tasks and artificial intelligence. The proposed involves the use of some free open-source
vision foundation models, along with the collection and use of data in simulators. ReLAM is de-
signed to respect privacy and ensure the security of these models and data. The datasets used do not
contain any personal or sensitive information, and all data collection processes comply with relevant
legal standards and best practices in research ethics. The potential for bias and discrimination has
been addressed by ensuring that the anticipation model does not inadvertently generate any biased
results of the environment. This is particularly important in maintaining fairness and avoiding any
form of discrimination that could arise from biased training data. The research has been conducted
with a commitment to research integrity, including thorough documentation and adherence to IRB
guidelines where applicable. We recognize that the insights and methods presented in this paper
must be applied responsibly, avoiding any potentially harmful applications. The technology devel-
oped is intended for beneficial purposes and should not be used in ways that could cause harm or
diminish the safety of individuals. The experiment results are reported with the most transparency
and accuracy, reflecting our commitment to advancing knowledge in the field of robotic manipula-
tion while upholding the highest ethical standards.

REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from our
submission as follows.

1. Training Algorithm. We provide our approach in Sec. 3.
2. Experimental Details. We list the detailed experiment settings in Sec. 4.1, Appx. A and

hyperparameters in Appx. C.
3. Derivation Details. We provide the missing proofs in Appx. E.

REFERENCES

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint, abs/2502.13923, 2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-
language-action flow model for general robot control. arXiv preprint, abs/2410.24164, 2024.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning
with imagined subgoals. In Marina Meila and Tong Zhang (eds.), ICML, 2021.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shuran
Song. Diffusion policy: Visuomotor policy learning via action diffusion. In Kostas E. Bekris,
Kris Hauser, Sylvia L. Herbert, and Jingjin Yu (eds.), RSS, 2023.

Open X-Embodiment Collaboration. Open X-Embodiment: Robotic learning datasets and RT-X
models, 2023.

Thomas G. Dietterich. Hierarchical reinforcement learning with the MAXQ value function decom-
position. Journal of Artificial Intelligence Research, 13:227–303, 2000.

Yuval Eldar, Michael Lindenbaum, Moshe Porat, and Yehoshua Y. Zeevi. The farthest point strategy
for progressive image sampling. IEEE Trans. Image Process., 1997.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Alejandro Escontrela, Ademi Adeniji, Wilson Yan, Ajay Jain, Xue Bin Peng, Ken Goldberg, Young-
woon Lee, Danijar Hafner, and Pieter Abbeel. Video prediction models as rewards for reinforce-
ment learning. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
Sergey Levine (eds.), NeurIPS, 2023.

Jiayuan Gu, Fanbo Xiang, Xuanlin Li, Zhan Ling, Xiqiang Liu, Tongzhou Mu, Yihe Tang, Stone
Tao, Xinyue Wei, Yunchao Yao, Xiaodi Yuan, Pengwei Xie, Zhiao Huang, Rui Chen, and Hao
Su. Maniskill2: A unified benchmark for generalizable manipulation skills. In ICLR, 2023.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Daniel D. Lee,
Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Garnett (eds.), NeurIPS,
2016.

Tao Huang, Guangqi Jiang, Yanjie Ze, and Huazhe Xu. Diffusion reward: Learning rewards via
conditional video diffusion. In Ales Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky,
Torsten Sattler, and Gül Varol (eds.), ECCV, 2024.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. arXiv preprint,
abs/1806.10293, 2018.

Nikita Karaev, Iurii Makarov, Jianyuan Wang, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker3: Simpler and better point tracking by pseudo-labelling real videos. arXiv
preprint, abs/2410.11831, 2024a.

Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia Neverova, Andrea Vedaldi, and Christian
Rupprecht. Cotracker: It is better to track together. In Ales Leonardis, Elisa Ricci, Stefan Roth,
Olga Russakovsky, Torsten Sattler, and Gül Varol (eds.), ECCV, 2024b.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Paul Foster, Pannag R. Sanketi, Quan Vuong, Thomas Kollar, Benjamin
Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
An open-source vision-language-action model. In Pulkit Agrawal, Oliver Kroemer, and Wolfram
Burgard (eds.), CoRL, 2024.

Ilya Kostrikov, Kumar Krishna Agrawal, Debidatta Dwibedi, Sergey Levine, and Jonathan Tomp-
son. Discriminator-actor-critic: Addressing sample inefficiency and reward bias in adversarial
imitation learning. In ICLR, 2019.

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. In ICLR, 2022.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail: Interpretable imitation learning from visual
demonstrations. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob
Fergus, S. V. N. Vishwanathan, and Roman Garnett (eds.), NeurIPS, 2017.

Guanxing Lu, Wenkai Guo, Chubin Zhang, Yuheng Zhou, Haonan Jiang, Zifeng Gao, Yansong Tang,
and Zi-wei Wang. VLA-RL: towards masterful and general robotic manipulation with scalable
reinforcement learning. arXiv preprint, abs/2505.18719, 2025.

Fan-Ming Luo, Xingchen Cao, and Yang Yu. Transferable reward learning by dynamics-agnostic
discriminator ensemble. arXiv preprint, abs/2206.00238, 2022.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. VIP: towards universal visual reward and representation via value-implicit pre-training.
In ICLR, 2023.

Ofir Nachum, Shixiang Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical reinforce-
ment learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò
Cesa-Bianchi, and Roman Garnett (eds.), NeurIPS, 2018.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy V. Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran,
Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra,
Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal, Patrick
Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without
supervision. arXiv preprint, abs/2304.07193, 2023.

Jing-Cheng Pang, Xinyu Yang, Si-Hang Yang, Xiong-Hui Chen, and Yang Yu. Natural language
instruction-following with task-related language development and translation. In Alice Oh, Tris-
tan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), NeurIPS,
2023.

Jing-Cheng Pang, Nan Tang, Kaiyuan Li, Yuting Tang, Xin-Qiang Cai, Zhen-Yu Zhang, Gang Niu,
Masashi Sugiyama, and Yang Yu. Learning view-invariant world models for visual robotic ma-
nipulation. In ICLR, 2025.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Visual adversarial imita-
tion learning using variational models. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), NeurIPS, 2021.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 2021.

Allen Z. Ren, Justin Lidard, Lars Lien Ankile, Anthony Simeonov, Pulkit Agrawal, Anirudha Ma-
jumdar, Benjamin Burchfiel, Hongkai Dai, and Max Simchowitz. Diffusion policy policy opti-
mization. In ICLR, 2025.

Sumedh Sontakke, Jesse Zhang, Sébastien M. R. Arnold, Karl Pertsch, Erdem Biyik, Dorsa Sadigh,
Chelsea Finn, and Laurent Itti. Roboclip: One demonstration is enough to learn robot policies.
In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), NeurIPS, 2023.

Yihao Sun. Offlinerl-kit: An elegant pytorch offline reinforcement learning library, 2023.

Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, (1-2):181–211, 1999.

Stephen Tian, Chelsea Finn, and Jiajun Wu. A control-centric benchmark for video prediction. In
ICLR, 2023.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint, abs/1807.06158, 2018.

Chuan Wen, Xingyu Lin, John Ian Reyes So, Kai Chen, Qi Dou, Yang Gao, and Pieter Abbeel.
Any-point trajectory modeling for policy learning. In Dana Kulic, Gentiane Venture, Kostas E.
Bekris, and Enrique Coronado (eds.), RSS, 2024.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.), CoRL, 2019.

Yang Yu. Reinforcement learning with anticipation: A hierarchical approach for long-horizon tasks.
arXiv preprint, abs/2509.05545, 2025.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations. In Dana Kulic,
Gentiane Venture, Kostas E. Bekris, and Enrique Coronado (eds.), RSS, 2024.

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas A.
Funkhouser. Learning synergies between pushing and grasping with self-supervised deep re-
inforcement learning. In IROS, 2018.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yuxuan Zhang, Tianheng Cheng, Rui Hu, Lei Liu, Heng Liu, Longjin Ran, Xiaoxin Chen, Wenyu
Liu, and Xinggang Wang. EVF-SAM: early vision-language fusion for text-prompted segment
anything model. arXiv preprint, abs/2406.20076, 2024.

Gaoyue Zhou, Hengkai Pan, Yann LeCun, and Lerrel Pinto. DINO-WM: world models on pre-
trained visual features enable zero-shot planning. arXiv preprint, abs/2411.04983, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix
ACKNOWLEDGMENT FOR LLM USAGE

We acknowledge that the Large Language Model was employed solely for polishing the language
of certain paragraphs in this manuscript. The model was not used for any other part of the work.
All scientific contributions, including conceptualization, method, experimentation and analysis, are
entirely the work of the authors.

A MORE IMPLEMENTATION DETAILS & EXPERIMENT SETUP

A.1 MORE DETAILS FOR LEARNING ANTICIPATION MODEL

After obtaining the segmentation of task-relevant objects in the keypoint selection stage, we perform
an additional filtering step: a point is retained only if it, along with all the pixels within an L × L
square centered on it, lies inside the segmentation. This is because the SAM model sometimes in-
cludes extra pixels from the background or other irrelevant objects, which usually appear as isolated
rather than contiguous regions. The above operation effectively filters out such points.

As for the track model, It is important to note that it is capable of following points that initially
appear within the image boundaries but later move outside the frame. In other words, assuming the
image size is H×W , the coordinates of a point (xt, yt) may take values such as xt < 0 or yt > W .
This property further ensures the model’s robustness in tracking keypoints and extends its effective
tracking range.

A.2 MORE DETAILS FOR POLICY LEARNING

As we say, various monotonic functions can be used to form a keypoint distance-based reward,
such as exponential, logarithmic, or linear functions. But We find that a piecewise linear function
performs best. We provide its specific form below:

rdense = ks · (l − ls) + bs, ls ≤ l ≤ ls+1,

ks =
bs+1 − bs
ls+1 − ls

.
(5)

We ensure that ks > ks+1, meaning that as the keypoint approaches the target position, the slope
of the reward function gradually increases. This gives continuous and stable encouragement to the
policy to reach the desired subgoal. During inference, we do as the training stage: first generate the
subgoal sequences with anticiaption model, then instruct the policy to complete them one by one.

A.3 MORE DETAILS FOR PPO

We make some modifications based on the source code of PPO in Stable Baselines3. To make
the collecting process compatible with hierarchical reinforcement learning framework, we set
terminal = True once a subgoal is achieved or a whole episode ends. This operation segments
the whole trajctory by subgoal, which makes GAE computation done separately for each low-level
policy. Besides, we add reward scaling technique to make learning faster and more stable. For policy
and critic network, the input consists of the current RGB observation I , the current coordinate of
the keypoints p, and the target coordiante of the keypoints p′ predicted by anticipation model. For
image I , we utilize a three-layer CNN network as encoder. For the points p and p′, we flatten and
feed them into a MLP to get point representation. The image and point features are concatenated
together and sent into another MLP to get the final output.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 MORE DETAILS FOR OFFLINE RL

For offline RL with ReLAM , we first generate the desired subgoals using anticipation model for
each trajectory. Then a similar way to online RL is employed to label the reward with distance like
Eq. 4, and we will proceed to the next subgoal if the distance is within the threshold. For IS and
Orcale baseline, we assign rewards in the same way to ReLAM. For DACfO, we first run online
DAC in the task environment and save the last 10 checkpoints of the discriminator. After online
training, rewards are given by the average of the output from these 10 discriminators, which is found
to be more generalizable than using only one discrimator (Luo et al., 2022).

A.5 EXPERIMENT ENVIRONMENTS

We provide a visualization of the experiment environments in Fig. 7.

(A) Meta-world (B) ManiSkill

Figure 7: A visualization of the environments in our experiments. (A) In Meta-world, the agent
controls a Sawyer robot to manipulate various objects such as window, drawer and door. (B) In the
ManiSkill environment, the agent controls a Franka robot with 7-DoF.

Algorithm 1 Reward Learning with Anticipation Model (ReLAM)
Required: an action-free video demo dataset D, a text-grounded SAM model EVF-SAM, an off-
the-shelf track model Cotracker
Output: the optimized robotic control policy π.

1: Initialize the anticipation model Gϕ, policy πΦ, where the subscript denotes their parameters.
2: // Generate keypoint subgoal dataset K
3: for each trajectory in D do
4: Pick out the keypoint in the initial frame with Eq. (1).
5: Select the key frames using Eq. (2).
6: Generate the subgoal data with the coordinate of keypoints in key frames.
7: end for
8: // Training anticipation model
9: while training not converge do

10: Sample keypoint subgoal data from K.
11: Update ϕ by predicting the keypoint sequences with teacher-forcing.
12: end while
13: // Training policy
14: while policy training not converge do
15: Collect trajectories (ot, at, ot+1, gt) by rolling out πΦ.
16: Compute reward for each transition using Eq. (4)
17: Update πΦ using collected trajectories with PPO.
18: end while
19: return the optimized policy π.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B ALGORITHM DESCRIPTION

The practical implementation of ReLAM method for online reinforcement learning is presented in
the form of pseudo-code in Algorithm 1.

C HYPER PARAMETERS

Table 1: Core Hyper-parameters for Learning Anticipation Model

Hyper-parameters Value
Embedding dimension 512
Layer Num. 12
Dropout rate 0.1
Head Num. 8
Keypoint Num. 4
Batch size 8
Learning rate 3× 10−5

Table 2: Core Hyper-parameters for PPO

Hyper-parameters Value

Learning rate 3× 10−4

Batch size 64
Number of epochs 10
Gamma 0.99
GAE lambda 0.95
Number of Steps 2000
Clip range 0.2
Entropy coefficient 0.0
Value function coefficient 0.5
Max gradient norm 0.5
CNN channels [16, 32, 64]
CNN kernal sizes [8, 8, 8]
CNN strides [4, 4, 4]
Mlp hidden dims [512, 256]

Table 3: Core Hyper-parameters for IQL

Hyper-parameters Value

Learning rate 3× 10−4

Batch size 64
Step per epoch 2000
Number of epochs 50
Gamma 0.99
Tau 0.005
Expectile 0.7
Temperature 3.0
CNN channels [16, 32, 64]
CNN kernal sizes [8, 8, 8]
CNN strides [4, 4, 4]
Mlp hidden dims [256, 256]

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D PROMPT USED IN SAM

The prompts used in SAM model are listed below:

• Button Press Wall:
– robot arm
– button

• Door Open:

– robot arm
– door

• Drawer Open:

– robot arm
– green drawer

• Push Cube:

– robot arm
– blue cube

• Pick Cube:

– robot arm
– red cube

E MATHEMATICAL ANALYSIS

We provide a brief mathematical analysis on the effectiveness of ReLAM below. We start by pro-
viding an assumption about the learning environment.

Assumption 1. We assume the learning environment, which takes the coordinate of keypoints in the
image as state space, satisfies the following conditions:

(1) The state space S is continuous.

(2) The state space S has a Euclidean distance metric d(·, ·).

(3) The environment’s transition function P is deterministic.

This assumption usually holds in the point space. Apart from this assumption, we impose an addi-
tional one that restricts the point’s stepwise movement range.

Assumption 2. For each timestep, the robot takes action a, and the point s transits to s′, which
satisfies the following condition:

(1) s′ is reachable.

(2) There exists a fixed constant M , s.t. d(s, s′) ≤ M .

(3) ∀ŝ ∈ B(s,M), if ŝ is reachable, there exists a unique action â, s.t. P (s, â) = ŝ. For
simplicity, we denote P−1(s, ŝ) = â as the inverse dynamics model.

Assumption 2 can hold for robotic manipulation environments, especially when the action mode is
set to be delta position of the end effector. Next, we will give a definition which describes the linear
motion of robotic manipulation.

Definition 1 (Linear Reachability). We say s′ is linearly reachable from s, if: ∃ϵ > 0,∀ŝ ∈ S, if
∃t ∈ [0, 1], d(ŝ, t · s+ (1− t) · s′) < ϵ, then ŝ is reachable.

And we define two kinds of reward:

Definition 2 (Reward definition). Suppose the final goal is g, the we define two reward:

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

(1) Time reward:

rt(s, g) =

{
−1, if g is not reached,
0, if g is reached

(2) Distance reward:

rd(s, g) =

{
f(d(s, g)), if g is not reached,
0, if g is reached

where f is a monotonically decreasing function that is always negative.

With these definitions, we can obtain the following lemma:
Lemma 1. Suppose we have a task starting from s0, and the terminal point state is g. The environ-
ment satisfies assumption 1, 2. If g is linearly reachable from s0, then the optimal policy rd is also
optimal for rt.

Proof. Based on assumption 2 and linear reachability, it is easy to find that one of the optimal policy
for time reward rt is:

π∗
rt(a|s) =

{
P−1(s, s+ M ·(g−s)

d(s,g) ), if d(s, g) > M,

P−1(s, g), if d(s, g) ≤ M
(6)

For the distance reward rd, when starting from s0, suppose the episode ends at time T , then the total
return G is computed as:

G =

T∑
t=0

rtd(st, g)

≤
T∑

t=0

f(d(st, g))

=

⌈d(s,g)/M⌉∑
t=0

f(d(st, g)) +

T∑
t=⌈d(s,g)/M⌉+1

f(d(st, g))

≤
⌈d(s,g)/M⌉∑

t=0

f(d(st, g)) +

T∑
t=⌈d(s,g)/M⌉+1

0

≤
⌈d(s,g)/M⌉∑

t=0

f(d(ŝt, g))

(7)

where ŝt = s0 + t · M ·(g−s0)
d(s0,g)

lines in the straight line between s0 and g. Eq. (7) shows that the
optimal policy for distance reward rd is the same as Eq. (6).

Obviously, the policy in Eq. (7) always takes the action to reach the farthest reachable point in the
straight line between the current state and the desired goal if it is linearly reachable. Therefore, it de-
fines a shortest path from the start point to the goal point. Next, we will introduce some propositions
about the anticipation model and pixel tracking in robotic manipulation.
Definition 3. We say (g0, g1, · · · , gk) is a path for the start point state s0 and the goal point state
g, if g0 = s0, gk = g and ∀0 ≤ i ≤ k − 1, gi+1 is linearly reachable from gi. A path is said to be
the shortest if (g0, · · · , gk) = argmin

∑k−1
i=0 d(gi, gi+1) among all paths for the task.

Assumption 3. The learning task has a shortest path (g0, g1, · · · , gk). And the anticipation model
can predict a path (ĝ0, · · · , ĝk) satisfying:

∀0 ≤ i ≤ k, d(ĝi, gi) < ϵA (8)

With the assumption above, we get k subtasks where for each subtask i, the low-level policy
πReLAM
i is trained with distance reward using PPO. By denoting the expected return of πReLAM

i

under a reward r in subtask i as V̂ πReLAM
i

i,r , we can obtain the following theorem:

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Theorem 1 (sub-optimality bound for ReLAM). If for all 0 ≤ i ≤ k − 1, the low-level policy
πReLAM
i trained with reward rReLAM satisfys:

|V
π∗
i,rReLAM

i,rt
− V

πReLAM
i

i,rt
| < ϵπ (9)

which means that the expected time used for πReLAM
i and π∗

i,rReLAM to complete the subtask i is
almost the same. Then ReLAM will train a policy πReLAM , whose sub-optimality is bounded by:

V ∗
rt − V πReLAM

rt ≤ k · (ϵπ +
2ϵA
M

) (10)

Proof. For all 0 ≤ i ≤ k − 1, we have:

V πReLAM

i,rt = V πReLAM

i,rt − V
π∗
i,rReLAM

i,rt
+ V

π∗
i,rReLAM

i,rt

≥ −ϵπ + V
π∗
i,rReLAM

i,rt

= −ϵπ + V ∗
i,rt

= −ϵπ +
d(ĝi, ĝi+1)

M

≥ −ϵπ +
d(gi, gi+1)− 2ϵA

M

(11)

The first inequality can be deduced by lemma 1 and the fact that V
π∗
i,rReLAM

i,rt
= V

πrt∗
i,rt

= V ∗
i,rt

. The
penultimate line is from the definition of time reward, the max-step-size assumption 2 and the fact
that ĝi+1 is linearly reachable from ĝi. The last inequality comes from assumption 3 and the triangle
inequality. By summing from i = 0 to k − 1, we have:

V πReLAM

rt =

k−1∑
i=0

V πReLAM

i,rt

≥
k−1∑
i=0

[
−ϵπ +

d(gi, gi+1)− 2ϵA
M

]

=

∑k−1
i=0 d(gi, gi+1)

M
− k · (ϵπ +

2ϵA
M

)

= V ∗
rt − k · (ϵπ +

2ϵA
M

)

(12)

The last equality is because (g0, g1, · · · , gk) is the shortest path. And finally we can get Eq. (10),
which completes the proof.

Theorem 1 shows that the learnt policy πReLAM will find an almost shortest path, validating the
soundness of our approach.

F MORE EXPERIMENT RESULTS

We provide the mean success rate of the last evaluation for each methods on training tasks in Tab. 4.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Diffusion Reward DACfo IS Oracle ReLAM

Meta-World Environments

Drawer Open 80.0 71.3 4.0 93.3 100.0
Door Open 100.0 70.0 24.7 100.0 100.0
Button Press Wall 60.0 47.8 12.7 76.7 75.8

ManiSkill Environments

Push Cube 69.3 76.7 46.7 92.7 89.3
Pick Cube 68.0 78.7 60.7 90.7 88.0

Table 4: Mean success rate of the last evaluation for each methods on training tasks.

20


	Introduction
	Related Work
	Robotic Manipulation with Visual Input
	Reward Learning from Videos
	Hierarchical Reinforcement Learning

	Method
	Anticipation Model Learning with Keypoints
	Subgoal Dataset Generation
	Anticipation Model Learning

	Policy Learning with Point-based Reward

	Experiments
	Experiment Setup
	Main Results
	Ablation Study

	Conclusion
	 Appendix
	More Implementation Details & Experiment Setup
	More Details for Learning Anticipation Model
	More Details For Policy Learning
	More Details for PPO
	More Details for Offline RL
	Experiment environments

	Algorithm Description
	Hyper Parameters
	Prompt Used in SAM
	Mathematical Analysis
	More Experiment Results


