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ABSTRACT

Reward design remains a critical bottleneck in visual reinforcement learning (RL)
for robotic manipulation. In simulated environments, rewards are conventionally
designed based on the distance to a target position. However, such precise posi-
tional information is often unavailable in real-world visual settings due to sensory
and perceptual limitations. In this study, we propose a method that implicitly
infers spatial distances through keypoints extracted from images. Building on
this, we introduce Reward Learning with Anticipation Model (ReLAM), a novel
framework that automatically generates dense, structured rewards from action-free
video demonstrations. ReLAM first learns an anticipation model that serves as a
planner and proposes intermediate keypoint-based subgoals on the optimal path
to the final goal, creating a structured learning curriculum directly aligned with
the task’s geometric objectives. Based on the anticipated subgoals, a continuous
reward signal is provided to train a low-level, goal-conditioned policy under the hi-
erarchical reinforcement learning (HRL) framework with provable sub-optimality
bound. Extensive experiments on complex, long-horizon manipulation tasks show
that ReLAM significantly accelerates learning and achieves superior performance
compared to state-of-the-art methods.

1 INTRODUCTION

Reward design stands as one of the most fundamental challenges in reinforcement learning (RL),
particularly in the domain of vision-based robotic manipulation (Tian et al., 2023; Lu et al., 2025;
Escontrela et al., 2023; Huang et al., 2024; Pang et al., 2025). In simulated environments, a common
and often effective approach is to engineer dense reward signals based on precise geometric informa-
tion, such as the Euclidean distance between a robot’s end-effector and a target position. However,
this paradigm faces a critical limitation in real-world applications: exact state information is typi-
cally unavailable due to sensory noise, occlusions, and perceptual ambiguities. Consequently, agents
must rely on high-dimensional visual observations, making hand-engineered reward design not only
labor-intensive but also notoriously challenging. This reward specification bottleneck severely im-
pedes the scalability and adoption of RL in practical robotic settings.

Some prior works overcome this limitation by adopting Learning from Observation (LfO) ap-
proaches. A common practice is to employ adversarial frameworks (Ho & Ermon, 2016; Torabi
et al., 2018; Kostrikov et al., 2019), where a discriminator that does not take action as input is
trained and subsequently used as a reward function. However, when dealing with high-dimensional
visual inputs, such methods suffer from significant challenges in terms of training difficulty and
stability. In recent years, several works (Tian et al., 2023; Sontakke et al., 2023; Ma et al., 2023;
Escontrela et al., 2023; Huang et al., 2024) have instead attempted to design visual rewards based
on heuristic strategies. These approaches either yield sparse rewards or lack an explicit structured
learning process, making them inefficient for long-horizon tasks with extended periods of partial
observability or complex dynamics. Thus, there still remains a need for a framework that can auto-
matically synthesize informative, dense reward signals from readily available video demonstrations,
while guiding the agent through a structured and geometrically grounded learning curriculum.

In this work, we introduce Reward Learning with Anticipation Model (ReLAM), a novel framework
that automatically generates dense and structured rewards from action-free video demonstrations.
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Video Demo
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Figure 1: An illustration of ReLAM for gen-
erating the keypoint subgoals with anticipa-
tion model and calculating rewards for a goal-
conditioned policy.

ReLAM is built on the recent insight that ob-
ject keypoints can serve as a powerful interme-
diate representation for capturing task geometry
and progression (Wen et al., 2024). ReLAM be-
gins by extracting task-relevant keypoints from
video demonstrations: we first use the Segment
Anything Model (SAM) (Zhang et al., 2024) to
isolate objects of interest, then apply a tracking
model (Karaev et al., 2024b) to follow pixel-level
features across frames. A sparse set of repre-
sentative points is selected and propagated con-
sistently, forming a trajectory of keypoints that
encode object motion. From these, we identify
keyframes that signify critical stages of the task,
and define the keypoint configurations in those
frames as subgoals. Using this curated dataset, ReLAM learns an anticipation model capable of
predicting a sequence of intermediate keypoint-based subgoals that lead to the final goal. This
model acts as a high-level planner, constructing a structured curriculum aligned with the geometric
requirements of the task. The anticipated subgoals then enable the computation of a continuous re-
ward signal based on keypoint distance, which is used to train a low-level, goal-conditioned policy
under the hierarchical RL (HRL) framework with provable sub-optimality bound.

Our contributions are as follows: First, we make a novel derivation from the established point-to-
point movement principle (Wen et al., 2024) specifically for reward design: we demonstrate that
the distances between learned keypoints provide a meaningful reward signal. Second, we intro-
duce ReLAM, a novel framework that uniquely combines this keypoint-based reward with an an-
ticipative generative model to automatically construct a structured learning curriculum from mere
video demonstrations, entirely without action labels. Third, our method bridges the gap between
high-level planning and low-level control within an HRL framework, where the anticipation model
proposes geometrically meaningful subgoals and the dense, keypoint-derived reward signal reliably
guides policy optimization with provable sub-optimality bound. Finally, through extensive empir-
ical validation, we demonstrate that this approach not only significantly accelerates learning but
also achieves new state-of-the-art performance on long-horizon tasks, thereby offering a robust and
practical pathway toward scalable visual reinforcement learning for robotics.

2 RELATED WORK

2.1 ROBOTIC MANIPULATION WITH VISUAL INPUT

Robotic Manipulation with visual input has long been a prominent research topic. Traditional
approaches rely on supervised learning for behavior cloning, and this paradigm has continued to
evolve, giving rise to methods such as Diffusion Policy (Chi et al., 2023; Ze et al., 2024) and VLA-
based methods (Kim et al., 2024; Black et al., 2024). However, these approaches require large
amounts of data and tend to suffer from substantial compounding errors in long-horizon tasks. In
light of these issues, many studies have adopted reinforcement learning to train control policies
based on visual input. For example, VPG (Zeng et al., 2018) and QT-Opt (Kalashnikov et al., 2018)
apply the vision-based reinforcement learning framework to learn a grasping policy. Recent works
(Ren et al., 2025; Lu et al., 2025) have employed RL to diffusion policy or VLA model, demonstrat-
ing promising performance in robotic manipulation tasks. Although these image-based reinforce-
ment learning methods show considerable promise, they share a common challenge: the difficulty
of reward design. Recently, ATM (Wen et al., 2024) abstracted images into a set of representative
keypoints as task representations and employed behavior cloning to train policies, demonstrating
strong generalization capability. Motivated by their method, we propose a keypoint-based reward
learning approach, which provides an effective solution to the challenge of reward design for robotic
manipulation.
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2.2 REWARD LEARNING FROM VIDEOS

A common source of reward functions in visual reinforcement learning is the extraction of signals
from videos, particularly from expert video demonstrations. Some adversarial imitation learning
approaches (Li et al., 2017; Torabi et al., 2018; Rafailov et al., 2021; Kostrikov et al., 2019) employ
the output of a discriminator as the reward function; however, such methods often exhibit instabil-
ity when handling high-dimensional inputs. Benefiting from recent advances in foundation models,
a number of works (Tian et al., 2023; Ma et al., 2023; Sontakke et al., 2023) instead use the dis-
tance between observations and target images/videos in the representation space as rewards. Since
generated targets from generative models typically contain considerable noise and blurriness, these
approaches usually require pre-given target images, which limits their applicability to open-ended
tasks. To address the issue of inaccurate generation, some methods (Escontrela et al., 2023; Huang
et al., 2024) indirectly leverage the model’s confidence in its generated outputs as a reward signal.
Such methods rely entirely on generative models and lack a substantive understanding of the spa-
tial and temporal structures of the task. As a result, they continue to exhibit constraints in unseen
areas. In contrast, ReLAM effectively extracts structural information across different dimensions of
the task from video demonstrations, simplifying the task into point-to-point movements and thereby
yielding more generalizable rewards.

2.3 HIERARCHICAL REINFORCEMENT LEARNING

Hierarchical reinforcement learning (HRL) aims to improve scalability and efficiency in long-
horizon tasks by introducing temporal abstractions. Early frameworks such as Options (Sutton et al.,
1999) and MAXQ (Dietterich, 2000) formalize sub-task structures through temporally extended ac-
tions and value function decomposition. More recent works focus on goal-conditioned hierarchies
and often employ a high-level policy, which can be either a neural network (Nachum et al., 2018;
Chane-Sane et al., 2021) or even some foundation models (Pang et al., 2023), to generate subgoals
and a low-level policy to execute. It is argued that the high-level policy, which can be called as an
anticipation model (Yu, 2025), should identify a waypoint that lies on an optimal shortest path to the
final goal to find a global optimal policy. In this work, we will leverage the geometric priors inher-
ent in robotic manipulation tasks to learn an anticipation model capable of continuously generating
subgoals and train policy under the HRL framework.

3 METHOD

This section presents the method ReLAM which automatically provides reward by learning from
video demonstrations D = {Vi = (Ii1, I

i
2, · · · , IiTi

)}i=1,··· ,N . We divide our approach into two
stages. The first stage is to learn an anticipation model which takes in the current task state and
desired final goal as input to produce a relatively easy-to-reach intermediate keypoint-based sub-
goal. At the second stage, with the assistance of the anticipation model, a dense reward function is
designed to train a low-level, goal-conditioned policy. We will elaborate on these two stages below.

3.1 ANTICIPATION MODEL LEARNING WITH KEYPOINTS

This part introduces how we learn an anticipation model from video demonstrations. Instead of
training the anticipation model to generate images, we simplify it into a keypoint generation model
like ATM (Wen et al., 2024). A good selection of keypoints can be a highly abstract and effective
representation of the task, and will reduce the difficulty of generating subgoals simultaneously. In
the following section, the learning procedure of keypoint-based anticipation model will be presented
by answering three questions: (1) How to select the representative keypoints? (2) How to determine
an appropiate subgoal for anticipation model to generate? (3) How to train the anticipation model?

3.1.1 SUBGOAL DATASET GENERATION

Keypoint Selection For the first question, i.e., to select the representative keypoint in one image,
it is important to first pick out the key objects. ATM (Wen et al., 2024) samples pixels averagely
in one image, which might make too many points chosen, leaving these points unrepesentative. In
ReLAM, we propose a new sampling strategy to elect the representative keypoints. First, for each
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Figure 2: Overall training framework ReLAM method. (A) ReLAM first picks out representative
keypoints in the initial frame of the video and then selects keyframes throught the video, turning the
position of keypoints in these frames into subgoals. (B) Training the anticipation model based on
the generated subgoal dataset. (C) Training policy with point-based reward with subgoals generated
from anticipation model.

video demonstration, we extract its first frame and apply a grounded SAM model (Zhang et al.,
2024) to obtain task-relevant segmentations. Next, for the pixels corresponding to each key object
in the image, we employ a track model (Karaev et al., 2024a) to follow their motion trajectories
throughout the entire video demonstration. Specifically, each trajectory records the two-dimensional
coordinates of the pixel within the image coordinate system across all frames of the demonstration.
Among all pixels corresponding to key objects in the image, we identify those that are truly relevant
to the task by applying a predefined threshold to remove pixels whose motion range across the video
is negligible. After filtering out pixels with small displacements, we further select the final keypoints
using Farthest Point Sampling (FPS) (Eldar et al., 1997). The entire procedure for keypoint selection
can be summarized by the following formulation:

P = FPS

(
{p = (x, y) ∈ SAM(I0) : max

0≤t,t′≤T
(xt − xt′)

2 + (yt − yt′)
2 ≥ Θ}

)
(1)

For the equation above, I0 represents the initial frame of the video, SAM denotes the segmentation
model that picks out the task-relevant pixels, (xt, yt) means to which position the point (x, y) in
Io will move at time t in the video, Θ is a predefined threshold and FPS denotes the Farthest
Point Sampling technique. In most robotic manipulation tasks, these points serve as a high-level
abstraction of the task state. By tracking the motion of these keypoints, one can infer the location
and posture of the robotic arm, as well as whether it has performed the intended action on the object.

Keyframe Selection Filtering task-relevant keypoints in the image simplifies and condenses the
spatial structure of the task. For a video sequence, however, the temporal dimension is equally
important, as it reveals the underlying logic and patterns of the robot arm’s motion, which can
assist to determine which subgoal for the anticipation model to generate. Suppose a robotic arm is
instructed to press a button with a wall obstructing between, directly using the final goal position of
the arm as guidance, i.e. where the button places, might mislead the robot to collide with the wall.
In such cases, the task is usually decomposed into two steps: first, moving around the wall, and
second, pressing the button. Each step is relatively simple for the robotic arm, whereas executing
them simultaneously as a single step would be considerably more challenging. To formalize this
decomposition, we first introduce the following definition: a robot arm motion is said to be a linear
motion, if the arm is able to move from the starting point to the target point along a straight line.
Based on this concept, we posit that a robotic manipulation task can be decomposed into multiple
segments, each representing a linear motion. Under this assumption, the frames situated between
consecutive linear motions can be identified as keyframes. Extracting these keyframes enables us
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to characterize the intrinsic motion regularities of the task. Combining these keyframes with the
keypoints elected with Eq (1), the position of keypoints in these images become a perfect subgoal
for the anticipation model to generate, which marks the optimal path to the final goal.

In ReLAM, keyframes are picked out from the video demonstration every certain interval. Specifi-
cally, we predefine a minimum step size m and a maximum step size M . We then track the move-
ments of the keypoints and, within the step range [m,M ], identify the timestep at which the change
of keypoint motion is most pronounced. Specifically, since we assume that keyframes lie at the tran-
sition between two linear motions, we determine them based on the angle between the displacement
vector of the current timestep and that of the previous timestep: if the frame lies within a linear
motion, the angle is nearly zero; whereas at the boundary between two consecutive linear motions,
the angle becomes significantly larger, in which case the frame is regarded as a keyframe. This
keyframe selection process can be formalized as follows:

tj = arg min
t∈[tj−1+m, tj−1+M ]

K∑
k=1

⟨pkt − pkt−1, p
k
t+1 − pkt ⟩

∥pkt − pkt−1∥∥pkt+1 − pkt ∥
(2)

where tj is the timestep for j-th keyframe, pkt denotes the coordinate of the k-th keypoint at timestep
t and ⟨·, ·⟩ is the inner product operation. For each video demo, we take the keypoints extracted from
the initial frame using Eq. (1) and track their coordinates across the video keyframes obtained via
Eq. (2). In this way, we construct the keypoint dataset below, with pki being the position of k-th
keypoint at keyframe j for demo i, and xk

i,j , y
k
i,j being its corresponding coordinate.

K =

N⋃
i=1

Ki =

N⋃
i=1

{pki,j = (xk
i,j , y

k
i,j)}

3.1.2 ANTICIPATION MODEL LEARNING

history
coordinates

Initial
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Figure 3: The structure of the anticipa-
tion model for subgoal generation.

The dataset K can be regarded as a collection of subgoal
sequences composed of keypoint coordinates. Therefore,
we employ an autoregressive model as the anticipation
model to generate these subgoals sequentially. The antic-
ipation model takes the initial visual observation I0 of the
task as input and performs two steps: (1) it identifies the
keypoints within I0 and records their coordinates P0; (2)
based on I0 and P0, it autoregressively predicts the co-
ordinates of these keypoints in the subsequent keyframes.
Note that ReLAM can be extended to multi-task scenarios
by adding a task indication frame Itask to the anticipation
model’s input. This frame serves solely to identify the
current task and remains constant across all states within
a task and can be predefined.

For image inputs, previous research (Zhou et al., 2024)
have shown that directly leveraging representations from
pretrained vision models often endows the model with
stronger spatial understanding, thereby enhancing its gen-
eralization capability. Motivated by this observation, we
also adopt a frozen DINOv2 (Oquab et al., 2023) model to extract image embeddings. The visual
input for anticipation model here is two RGB images of size 256× 256, one being initial frame and
one being Itask. After being processed by the DINOv2 model, each image is divided into 16 × 16
patch embeddings. These patch embeddings are then concatenated with the tokens formed by the
coordinates of keypoints from historical keyframes and fed into the model. The coordinates of the
keypoints are first normalized and then mapped through a Multilayer Perceptron (MLP) into the
embedding dimension. In the case of the first step, where no historical keypoints exist, we instead
use a fixed special token to indicate that the model should predict the keypoint positions based on
the given images. After being fed into the model, the image and point embeddings will pass through
12 layers of causal transformer blocks. Subsequently, the tokens corresponding to the points are
processed by a MLP to predict the point coordinates in a residual form. These predicted coordi-
nates are then compared with the ground-truth coordinates using Mean Squared Error loss under a
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teacher-forcing scheme to train the anticipation model. The structure of the anticipation model is
displayed in Fig. 3.

3.2 POLICY LEARNING WITH POINT-BASED REWARD

We train our policy under the hierarchical reinforcement learning framework. At the beginning of
each episode, the initial image is fed into the anticipation model trained in the previous section. The
model first predicts the keypoints’ location P0, and then autoregressively generates a sequence of
subgoals (i.e., keypoint) P1, · · · , Pk. Our objective is to design a reward function that encourages P0

to sequentially move towards P1, · · · , Pk, thereby enabling the robot arm to successfully complete
the task. Based on the assumption that motion between keyframes is linear, the transitions from Pj

to Pj+1 correspond to approximately a straight path. Therefore, the reward can be directly defined
using the Euclidean distance in the pixel coordinate system. Formally, we define the movement of a
subgoal from Pj−1 to Pj as the j-th stage. For this stage, the distance between the current position
of the keypoint and the subgoal Pj can be expressed as:

l =
1

K

K∑
k=1

∥pk − pkj ∥2 (3)

where pk denotes the current position of the k-th keypoint, pkj represents its target position at stage j.
Next, a monotonic function is employed to transform the distance into dense reward rdense. We find
that a piecewise linear function performs best and the results can be seen in Fig. 6(b). We assume
that when the distance between a keypoint and the subgoal is smaller than a predefined threshold
θs, the robot is considered to have successfully achieved the subgoal of stage s. At this point,
the process transitions to stage s + 1, with the subgoal updated to the (s + 1)-th target position.
Upon completing each subgoal, the robot receives an additional stage-success reward, and upon
accomplishing the entire task, it is granted a final success reward. Consequently, the overall reward
can be expressed as follows:

r = rdense + rsuccess + I(ls ≤ θs) (4)

We find that when trained with this kind of reward, the policy is able to find a near-shortest path to
complete the task. We provide a brief mathematical proof to show this near-optimality in Appx. E.

4 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate our proposed method in robotic ma-
nipulation tasks. We first introduce the experiment setup.

4.1 EXPERIMENT SETUP

Evaluation environments. We conduct experiments on two robotics manipulation environments:
Meta-World (Yu et al., 2019) and ManiSkill (Gu et al., 2023), as shown in Fig. 7. (1) Meta-World:
This environment requires the agent to control a Sawyer robotics arm with 7 degrees of freedom
(DoF) and a parallel finger gripper. Meta-World offers a suite of 50 distinct manipulation tasks,
covering a wide array of scenarios, such as interactions with drawers, buttons, doors and balls. For
our experiments, we assess the performance of our methods on a subset of tasks: drawer opening,
door opening and button pressing. (2) ManiSkill: ManiSkill is a powerful unified framework for
robot simulation and training powered by SAPIEN. Here we focus on table-top manipulation tasks,
which involve a Panda robotic arm by Franka Emika with 7 DoF and a parallel finger gripper. These
tasks are primarily focused on block manipulation tasks, which are designed to test the robot’s
foundational skills, such as reaching a goal point. We mainly use Drawer Open, Door Open and
Button Press Wall from Meta-World, and Push Cube, Pick Cube from ManiSkill for evaluation. The
observations on all tasks are images with 256× 256 pixels, which are captured by the fixed-position
third-person camera. We run online RL for Meta-World and offline RL for ManiSkill environments.

Dataset for training. Video demonstration dataset contains 100 trajectories collected by motion
planning for each task in both Meta-World and ManiSkill. This video dataset is action-free and used
to generate keypoint subgoal dataset for the training of anticipation model. Besides the video demo
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(c) Button Press Wall

Figure 4: Performance of different methods on Meta-World tasks. The x-axis denotes the number of
interaction steps with the environment, and the y-axis denotes the average success rate, by evaluation
for 30 episodes. The error bars stand for the half standard deviation over five seeds.

dataset, we also have an offline control dataset which contains action for offline reinforcement
learning setting with 200 trajectories gathered for each task. Among these trajectories, 100 of them
are expert demonstrations and another 100 are obtained by adding random noise to expert action.

Implementation details. For online RL with Meta-World, We build upon the well-established
open-source reinforcement learning library Stable Baselines3 (Raffin et al., 2021), utilizing its PPO
implementation. In some tasks, we slightly adjust the camera viewpoints to prevent severe occlusion
of task-relevant objects. For offline RL setting on ManiSkill, we utilize OfflineRL-kit (Sun, 2023), a
well-verified offline RL codebase. Specifically, we use Implicit Q-Learning (Kostrikov et al., 2022),
an offline reinforcement learning algorithm that avoids explicit policy constraints by learning value
functions implicitly and extracting a policy through advantage-weighted regression.

4.2 MAIN RESULTS

Baselines for comparison We choose the following representative approaches which learn a reward
from videos for comparison. (1) DACfO is an adversarial imitation learning method which combines
the idea of DAC (Kostrikov et al., 2019) and GAIfO (Torabi et al., 2018), where we modify the
discriminator’s input like GAIfO to consist of the current observation o and the next observation o′,
enabling it to handle action-free demonstration datasets. For offline data, we first run DACfO online
and save the last 10 checkpoints of the discriminator. Then we use them to label the offline dataset
with ensemble technique. (2) Diffusion Reward (DR) (Chi et al., 2023) trains a diffusion model
with the video demo data and learn policy by computing the conditional entropy of the diffusion
model as reward. (3) Image Subgoal (IS) integrates our method with the idea of VP2 (Tian et al.,
2023) by employing a flow matching model to autoregressively generate subgoals from the initial
image, and then uses the cosine similarity between the current visual observation and the target
image in the representation space of DINOv2 (Oquab et al., 2023) as the reward to train a goal-
conditioned policy with image subgoal. (4) Orcale replaces the generated image subgoals in IS
baseline with the ground-truth ones for each episode, with all other components unchanged.

Results for Meta-World. Fig. 4(a), 4(b), 4(c) shows the success rate of different reward learn-
ing methods for online reinforcement learning results in Metaworld environments. In general, our
proposed method ReLAM outperforms the baselines for all three environments. It can be observed
that on these tasks, ReLAM rapidly achieves very high success rate. In contrast, other baseline
methods either fail to reach such high success rates or require significantly more interaction steps.
We evaluate for five fixed seeds (0 − 4), and it is worth noting that for some seeds, the Diffusion
Reward approach completely fails to learn. This occurs because their method relies on an auxiliary
RND reward to encourage exploration, which does not necessarily provide a correct exploration
signal and instead results in highly stochastic exploration. Under such circumstances, certain seeds
may never encounter the correct trajectory, ultimately preventing successful learning. In contrast,
our method incorporates both the current and target coordinates of keypoints as part of the policy
input, inherently providing the policy with implicit guidance. Moreover, the distance-based reward
enables the policy to gradually recognize that approaching the target yields higher returns, thereby
steering exploration toward meaningful regions of the state space and allowing the agent to acquire
the task more efficiently. For DACfO, the curve exhibits substantial fluctuations, indicating that
the training process is indeed unstable. For Orcale, since it leverages ground-truth subgoal images,
we can see that learning proceeds relatively quickly and ultimately achieves a high success rate.
In contrast, when we replace the subgoals with results generated by the flow matching model, the
performance, as shown by IS, drops significantly. The generated images often contain noise and
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Figure 5: (a), (b): Performance of different methods on ManiSkill tasks. The x-axis denotes the
number of update, and the y-axis denotes the average success rate, by evaluation for 30 episodes.
The error bars stand for the half standard deviation over five seeds. (c): t-SNE projections of the
rewards generated by different methods.

local blurriness, making it difficult to establish a consistent similarity threshold in the representation
space. For example, while a threshold of 0.95 may be appropriate for the first generated result, the
second might require 0.9, and this threshold can vary further depending on the initial state of the
task. Due to this inconsistency, the IS method achieves very low success rates, with only a small
fraction of well-generated cases for the policy to learn.

Results for ManiSkill. Fig. 5(a), 5(b) displays the success rate of different approaches for offline
reinforcement learning results in ManiSkill environments. On Pick Cube and Push Cube tasks, our
method surpasses all baseline approaches except Orcale which cheats with the ground-truth image
subgoal. It can be observed that ReLAM achieves performance comparable to Orcale, whereas IS
shows a clear performance drop compared to Orcale. This indicates that even without access to
privileged information, by leveraging abstract keypoints as targets, ReLAM not only reduces the
generation difficulty for the anticipation model but also effectively captures structural information of
the task to guide the policy. The reason why IS achieves much higher success rates than Meta-World
is that: (1) The offline control dataset contains expert action label, reducing the need for exploration;
(2) The sequence of subgoals for ManiSkill is shorter, leading to less compounding error of the
generation results anticipation model. The performance of Diffusion Reward and DACfO is also
quite similar, as both methods share essentially the same underlying principle: rewards are higher
near the expert distribution and lower when further away from it. Since a large portion of the offline
decision-making data is near-expert, the rewards assigned by both methods are generally high, which
explains why they ultimately achieve comparable results. However, their performances still fall short
of ReLAM . We think this is because our approach can recognize and reward trajectories that deviate
slightly from the expert distribution yet still move effectively toward the goal. This is enabled by our
distance-based reward design, which provides the policy with a strong guidance signal and fosters
a deeper understanding of the task’s spatiotemporal structure. In contrast, Diffusion Reward may
assign lower returns to such trajectories due to its higher entropy, leading to less efficient learning.

We make a visualization of the rewards for different methods in Fig. 5(c), which verifies our analysis
above. We sample 20 trajectory segments for Pick Cube task and label them with four types of
rewards: environment rewards, ReLAM, DR, and DACfO. We then projected the labeled trajectories
into a two-dimensional space using t-SNE, where each trajectory corresponds to a single point.
Since ReLAM assigns rewards based on keypoint distances and the environment reward is based
on distances in the world coordinate system, these two rewards are relatively close. Moreover, as
mentioned above, both Diffusion Reward and DACfO assign higher rewards to regions closer to the
expert distribution, which explains why their projections are not far away from each other.

4.3 ABLATION STUDY

Effect of the point number. We study whether the number of points selected for the task will affect
the performance of the policy. We sample 4, 8 and 12 points for Drawer Open task and the result is
shown in Fig. 6(a). The best performance is achieved when sampling four keypoints, followed by
eight keypoints, while twelve keypoints yield the weakest results. This outcome can be explained
by the truth that for Drawer Open task, sampling four keypoints—three on the robotic arm and one
on the drawer—is sufficient to provide an adequate representation of the task state, thereby enabling
rapid policy learning. In contrast, with eight or twelve keypoints, the prediction difficulty for the
anticipation model increases. Moreover, requiring the policy to simultaneously drive all keypoints
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Figure 6: Ablation study of ReLAM on Drawer Open task.

toward their respective targets imposes stricter constraints on its actions, effectively forcing the
behavior to closely mimic the demonstrations. In this regard, four points can provide a sufficiently
broad criterion while allowing more flexible exploration.

Effect of the reward function. We evaluate the impact of different type of reward functions con-
ditioned on the keypoint distance have on the performance of reinforcement learning. We introduce
three kinds of reward functions and compare them to the separate linear function used in ReLAM: (1)
pure linear function; (2) exponential function; (3) logistic function. All these functions are designed
to have the same range when the point distance is between [0, 30]. The performance is displayed in
Fig. 6(b). We found that the piecewise linear function took the lead and linear function achieved
relatively good performance, while the exponential and logarithmic functions performed worse. We
think this is because the slopes of the latter two functions vary continuously, making it difficult for
the policy to adapt; while the slope of the linear function remains constant, resulting in insufficient
encouragement for the policy as it approaches the target. The piecewise linear function, however,
strikes a balance between the two: it provides sufficient incentives for the policy to reach the goal
while maintaining a certain degree of stability.

Generated subgoal versus ground-truth subgoal. To evaluate the accuracy of the anticipation
model in generating subgoals, we compare its predictions with the ground-truth subgoals. Specifi-
cally, at each environment initialization, we provide the subsequent sequence of ground-truth key-
point subgoals and train a goal-conditioned RL policy based on these targets like ReLAM. Fig. 6(c)
presents a comparison between the performance of policies trained with AR-generated subgoals and
those trained with ground-truth subgoals. The performance gap between the two is relatively small,
indicating that the anticipation model produces sufficiently accurate subgoals. In contrast, when
the subgoals are represented as images rather than points, the performance of Image Subgoal drops
significantly compared to the Orcale baseline. This result further confirms that point-based represen-
tations substantially reduce the difficulty of the generation problem, thereby enabling point-based
rewards to effectively guide the policy toward task completion.

5 CONCLUSION

This study explores the reward design problem for robotic manipulation. We propose a novel ap-
proach, ReLAM, which first learns an anticipation model that serves as a planner and proposes
intermediate keypoint-based subgoals and then train a goal-conditioned policy with the distance of
keypoints as reward signal. We conduct extensive experiments and demonstrate that ReLAM is ca-
pable of being applied to a variety of robotic platforms, enabling a robust and practical pathway
towards scalable RL for robotic manipulation. Despite the promising results, there are still limita-
tions. One limitation of our work is reliance on the viewpoint. Our anticipation model is trained with
video demos from a single camera with the assistance of a track model. If the viewpoint undergoes
a dramatic change, the model will struggle to generate the desired target. Moreover, significant oc-
clusions can prevent the track model from accurately following the keypoints. A potential solution
is to use observation from multi views and merge them into the point cloud, which is more robust to
viewpoint disturbance and occlusion. Besides, the experiment scale is limited, in terms of the dataset
scale and model size. In future works, we hope to scale up the framework to solve more challenging
tasks. For instance, employing a pre-trained VLM as the anticipation model such as Qwen-VL-2.5
(Bai et al., 2025), and training with more data like Open X-Embodiment (Collaboration, 2023). We
believe these interesting directions are worth further exploration for developing smarter and more
robust robots with the support of more general-purpose reward and reinforcement learning.
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ETHICS STATEMENT

In the development and evaluation of ReLAM for robotic manipulation, we have carefully consid-
ered the ethical implications of this research, particularly as they pertain to the use of robotic ma-
nipulation tasks and artificial intelligence. The proposed involves the use of some free open-source
vision foundation models, along with the collection and use of data in simulators. ReLAM is de-
signed to respect privacy and ensure the security of these models and data. The datasets used do not
contain any personal or sensitive information, and all data collection processes comply with relevant
legal standards and best practices in research ethics. The potential for bias and discrimination has
been addressed by ensuring that the anticipation model does not inadvertently generate any biased
results of the environment. This is particularly important in maintaining fairness and avoiding any
form of discrimination that could arise from biased training data. The research has been conducted
with a commitment to research integrity, including thorough documentation and adherence to IRB
guidelines where applicable. We recognize that the insights and methods presented in this paper
must be applied responsibly, avoiding any potentially harmful applications. The technology devel-
oped is intended for beneficial purposes and should not be used in ways that could cause harm or
diminish the safety of individuals. The experiment results are reported with the most transparency
and accuracy, reflecting our commitment to advancing knowledge in the field of robotic manipula-
tion while upholding the highest ethical standards.

REPRODUCIBILITY STATEMENT

In this study, to ensure the reproducibility of our approach, we provide key information from our
submission as follows.

1. Training Algorithm. We provide our approach in Sec. 3.
2. Experimental Details. We list the detailed experiment settings in Sec. 4.1, Appx. A and

hyperparameters in Appx. C.
3. Derivation Details. We provide the missing proofs in Appx. E.
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Appendix
ACKNOWLEDGMENT FOR LLM USAGE

We acknowledge that the Large Language Model was employed solely for polishing the language
of certain paragraphs in this manuscript. The model was not used for any other part of the work.
All scientific contributions, including conceptualization, method, experimentation and analysis, are
entirely the work of the authors.

A MORE IMPLEMENTATION DETAILS & EXPERIMENT SETUP

A.1 MORE DETAILS FOR LEARNING ANTICIPATION MODEL

After obtaining the segmentation of task-relevant objects in the keypoint selection stage, we perform
an additional filtering step: a point is retained only if it, along with all the pixels within an L × L
square centered on it, lies inside the segmentation. This is because the SAM model sometimes in-
cludes extra pixels from the background or other irrelevant objects, which usually appear as isolated
rather than contiguous regions. The above operation effectively filters out such points.

As for the track model, It is important to note that it is capable of following points that initially
appear within the image boundaries but later move outside the frame. In other words, assuming the
image size is H×W , the coordinates of a point (xt, yt) may take values such as xt < 0 or yt > W .
This property further ensures the model’s robustness in tracking keypoints and extends its effective
tracking range.

A.2 MORE DETAILS FOR POLICY LEARNING

As we say, various monotonic functions can be used to form a keypoint distance-based reward,
such as exponential, logarithmic, or linear functions. But We find that a piecewise linear function
performs best. We provide its specific form below:

rdense = ks · (l − ls) + bs, ls ≤ l ≤ ls+1,

ks =
bs+1 − bs
ls+1 − ls

.
(5)

We ensure that ks > ks+1, meaning that as the keypoint approaches the target position, the slope
of the reward function gradually increases. This gives continuous and stable encouragement to the
policy to reach the desired subgoal. During inference, we do as the training stage: first generate the
subgoal sequences with anticiaption model, then instruct the policy to complete them one by one.

A.3 MORE DETAILS FOR PPO

We make some modifications based on the source code of PPO in Stable Baselines3. To make
the collecting process compatible with hierarchical reinforcement learning framework, we set
terminal = True once a subgoal is achieved or a whole episode ends. This operation segments
the whole trajctory by subgoal, which makes GAE computation done separately for each low-level
policy. Besides, we add reward scaling technique to make learning faster and more stable. For policy
and critic network, the input consists of the current RGB observation I , the current coordinate of
the keypoints p, and the target coordiante of the keypoints p′ predicted by anticipation model. For
image I , we utilize a three-layer CNN network as encoder. For the points p and p′, we flatten and
feed them into a MLP to get point representation. The image and point features are concatenated
together and sent into another MLP to get the final output.
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A.4 MORE DETAILS FOR OFFLINE RL

For offline RL with ReLAM , we first generate the desired subgoals using anticipation model for
each trajectory. Then a similar way to online RL is employed to label the reward with distance like
Eq. 4, and we will proceed to the next subgoal if the distance is within the threshold. For IS and
Orcale baseline, we assign rewards in the same way to ReLAM. For DACfO, we first run online
DAC in the task environment and save the last 10 checkpoints of the discriminator. After online
training, rewards are given by the average of the output from these 10 discriminators, which is found
to be more generalizable than using only one discrimator (Luo et al., 2022).

A.5 EXPERIMENT ENVIRONMENTS

We provide a visualization of the experiment environments in Fig. 7.

(A) Meta-world (B) ManiSkill

Figure 7: A visualization of the environments in our experiments. (A) In Meta-world, the agent
controls a Sawyer robot to manipulate various objects such as window, drawer and door. (B) In the
ManiSkill environment, the agent controls a Franka robot with 7-DoF.

Algorithm 1 Reward Learning with Anticipation Model (ReLAM)
Required: an action-free video demo dataset D, a text-grounded SAM model EVF-SAM, an off-
the-shelf track model Cotracker
Output: the optimized robotic control policy π.

1: Initialize the anticipation model Gϕ, policy πΦ, where the subscript denotes their parameters.
2: // Generate keypoint subgoal dataset K
3: for each trajectory in D do
4: Pick out the keypoint in the initial frame with Eq. (1).
5: Select the key frames using Eq. (2).
6: Generate the subgoal data with the coordinate of keypoints in key frames.
7: end for
8: // Training anticipation model
9: while training not converge do

10: Sample keypoint subgoal data from K.
11: Update ϕ by predicting the keypoint sequences with teacher-forcing.
12: end while
13: // Training policy
14: while policy training not converge do
15: Collect trajectories (ot, at, ot+1, gt) by rolling out πΦ.
16: Compute reward for each transition using Eq. (4)
17: Update πΦ using collected trajectories with PPO.
18: end while
19: return the optimized policy π.
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B ALGORITHM DESCRIPTION

The practical implementation of ReLAM method for online reinforcement learning is presented in
the form of pseudo-code in Algorithm 1.

C HYPER PARAMETERS

Table 1: Core Hyper-parameters for Learning Anticipation Model

Hyper-parameters Value
Embedding dimension 512
Layer Num. 12
Dropout rate 0.1
Head Num. 8
Keypoint Num. 4
Batch size 8
Learning rate 3× 10−5

Table 2: Core Hyper-parameters for PPO

Hyper-parameters Value

Learning rate 3× 10−4

Batch size 64
Number of epochs 10
Gamma 0.99
GAE lambda 0.95
Number of Steps 2000
Clip range 0.2
Entropy coefficient 0.0
Value function coefficient 0.5
Max gradient norm 0.5
CNN channels [16, 32, 64]
CNN kernal sizes [8, 8, 8]
CNN strides [4, 4, 4]
Mlp hidden dims [512, 256]

Table 3: Core Hyper-parameters for IQL

Hyper-parameters Value

Learning rate 3× 10−4

Batch size 64
Step per epoch 2000
Number of epochs 50
Gamma 0.99
Tau 0.005
Expectile 0.7
Temperature 3.0
CNN channels [16, 32, 64]
CNN kernal sizes [8, 8, 8]
CNN strides [4, 4, 4]
Mlp hidden dims [256, 256]

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D PROMPT USED IN SAM

The prompts used in SAM model are listed below:

• Button Press Wall:
– robot arm
– button

• Door Open:

– robot arm
– door

• Drawer Open:

– robot arm
– green drawer

• Push Cube:

– robot arm
– blue cube

• Pick Cube:

– robot arm
– red cube

E MATHEMATICAL ANALYSIS

We provide a brief mathematical analysis on the effectiveness of ReLAM below. We start by pro-
viding an assumption about the learning environment.

Assumption 1. We assume the learning environment, which takes the coordinate of keypoints in the
image as state space, satisfies the following conditions:

(1) The state space S is continuous.

(2) The state space S has a Euclidean distance metric d(·, ·).

(3) The environment’s transition function P is deterministic.

This assumption usually holds in the point space. Apart from this assumption, we impose an addi-
tional one that restricts the point’s stepwise movement range.

Assumption 2. For each timestep, the robot takes action a, and the point s transits to s′, which
satisfies the following condition:

(1) s′ is reachable.

(2) There exists a fixed constant M , s.t. d(s, s′) ≤ M .

(3) ∀ŝ ∈ B(s,M), if ŝ is reachable, there exists a unique action â, s.t. P (s, â) = ŝ. For
simplicity, we denote P−1(s, ŝ) = â as the inverse dynamics model.

Assumption 2 can hold for robotic manipulation environments, especially when the action mode is
set to be delta position of the end effector. Next, we will give a definition which describes the linear
motion of robotic manipulation.

Definition 1 (Linear Reachability). We say s′ is linearly reachable from s, if: ∃ϵ > 0,∀ŝ ∈ S, if
∃t ∈ [0, 1], d(ŝ, t · s+ (1− t) · s′) < ϵ, then ŝ is reachable.

And we define two kinds of reward:

Definition 2 (Reward definition). Suppose the final goal is g, the we define two reward:
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(1) Time reward:

rt(s, g) =

{
−1, if g is not reached,
0, if g is reached

(2) Distance reward:

rd(s, g) =

{
f(d(s, g)), if g is not reached,
0, if g is reached

where f is a monotonically decreasing function that is always negative.

With these definitions, we can obtain the following lemma:
Lemma 1. Suppose we have a task starting from s0, and the terminal point state is g. The environ-
ment satisfies assumption 1, 2. If g is linearly reachable from s0, then the optimal policy rd is also
optimal for rt.

Proof. Based on assumption 2 and linear reachability, it is easy to find that one of the optimal policy
for time reward rt is:

π∗
rt(a|s) =

{
P−1(s, s+ M ·(g−s)

d(s,g) ), if d(s, g) > M,

P−1(s, g), if d(s, g) ≤ M
(6)

For the distance reward rd, when starting from s0, suppose the episode ends at time T , then the total
return G is computed as:

G =

T∑
t=0

rtd(st, g)

≤
T∑

t=0

f(d(st, g))

=

⌈d(s,g)/M⌉∑
t=0

f(d(st, g)) +

T∑
t=⌈d(s,g)/M⌉+1

f(d(st, g))

≤
⌈d(s,g)/M⌉∑

t=0

f(d(st, g)) +

T∑
t=⌈d(s,g)/M⌉+1

0

≤
⌈d(s,g)/M⌉∑

t=0

f(d(ŝt, g))

(7)

where ŝt = s0 + t · M ·(g−s0)
d(s0,g)

lines in the straight line between s0 and g. Eq. (7) shows that the
optimal policy for distance reward rd is the same as Eq. (6).

Obviously, the policy in Eq. (7) always takes the action to reach the farthest reachable point in the
straight line between the current state and the desired goal if it is linearly reachable. Therefore, it de-
fines a shortest path from the start point to the goal point. Next, we will introduce some propositions
about the anticipation model and pixel tracking in robotic manipulation.
Definition 3. We say (g0, g1, · · · , gk) is a path for the start point state s0 and the goal point state
g, if g0 = s0, gk = g and ∀0 ≤ i ≤ k − 1, gi+1 is linearly reachable from gi. A path is said to be
the shortest if (g0, · · · , gk) = argmin

∑k−1
i=0 d(gi, gi+1) among all paths for the task.

Assumption 3. The learning task has a shortest path (g0, g1, · · · , gk). And the anticipation model
can predict a path (ĝ0, · · · , ĝk) satisfying:

∀0 ≤ i ≤ k, d(ĝi, gi) < ϵA (8)

With the assumption above, we get k subtasks where for each subtask i, the low-level policy
πReLAM
i is trained with distance reward using PPO. By denoting the expected return of πReLAM

i

under a reward r in subtask i as V̂ πReLAM
i

i,r , we can obtain the following theorem:
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Theorem 1 (sub-optimality bound for ReLAM). If for all 0 ≤ i ≤ k − 1, the low-level policy
πReLAM
i trained with reward rReLAM satisfys:

|V
π∗
i,rReLAM

i,rt
− V

πReLAM
i

i,rt
| < ϵπ (9)

which means that the expected time used for πReLAM
i and π∗

i,rReLAM to complete the subtask i is
almost the same. Then ReLAM will train a policy πReLAM , whose sub-optimality is bounded by:

V ∗
rt − V πReLAM

rt ≤ k · (ϵπ +
2ϵA
M

) (10)

Proof. For all 0 ≤ i ≤ k − 1, we have:

V πReLAM

i,rt = V πReLAM

i,rt − V
π∗
i,rReLAM

i,rt
+ V

π∗
i,rReLAM

i,rt

≥ −ϵπ + V
π∗
i,rReLAM

i,rt

= −ϵπ + V ∗
i,rt

= −ϵπ +
d(ĝi, ĝi+1)

M

≥ −ϵπ +
d(gi, gi+1)− 2ϵA

M

(11)

The first inequality can be deduced by lemma 1 and the fact that V
π∗
i,rReLAM

i,rt
= V

πrt∗
i,rt

= V ∗
i,rt

. The
penultimate line is from the definition of time reward, the max-step-size assumption 2 and the fact
that ĝi+1 is linearly reachable from ĝi. The last inequality comes from assumption 3 and the triangle
inequality. By summing from i = 0 to k − 1, we have:

V πReLAM

rt =

k−1∑
i=0

V πReLAM

i,rt

≥
k−1∑
i=0

[
−ϵπ +

d(gi, gi+1)− 2ϵA
M

]

=

∑k−1
i=0 d(gi, gi+1)

M
− k · (ϵπ +

2ϵA
M

)

= V ∗
rt − k · (ϵπ +

2ϵA
M

)

(12)

The last equality is because (g0, g1, · · · , gk) is the shortest path. And finally we can get Eq. (10),
which completes the proof.

Theorem 1 shows that the learnt policy πReLAM will find an almost shortest path, validating the
soundness of our approach.

F MORE EXPERIMENT RESULTS

We provide the mean success rate of the last evaluation for each methods on training tasks in Tab. 4.
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Diffusion Reward DACfo IS Oracle ReLAM

Meta-World Environments

Drawer Open 80.0 71.3 4.0 93.3 100.0
Door Open 100.0 70.0 24.7 100.0 100.0
Button Press Wall 60.0 47.8 12.7 76.7 75.8

ManiSkill Environments

Push Cube 69.3 76.7 46.7 92.7 89.3
Pick Cube 68.0 78.7 60.7 90.7 88.0

Table 4: Mean success rate of the last evaluation for each methods on training tasks.
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