
Going Beyond Heuristics by Imposing Policy
Improvement as a Constraint

Chi-Chang Lee1∗, Zhang-Wei Hong2∗ , Pulkit Agrawal2
Improbable AI Lab

Massachusetts Institute of Technology

Abstract

In many reinforcement learning (RL) applications, incorporating heuristic rewards
alongside the task reward is crucial for achieving desirable performance. Heuristics
encode prior human knowledge about how a task should be done, providing valu-
able hints for RL algorithms. However, such hints may not be optimal, limiting the
performance of learned policies. The currently established way of using heuristics
is to modify the heuristic reward in a manner that ensures that the optimal policy
learned with it remains the same as the optimal policy for the task reward (i.e.,
optimal policy invariance). However, these methods often fail in practical scenarios
with limited training data. We found that while optimal policy invariance ensures
convergence to the best policy based on task rewards, it doesn’t guarantee better
performance than policies trained with biased heuristics under a finite data regime,
which is impractical. In this paper, we introduce a new principle tailored for finite
data settings. Instead of enforcing optimal policy invariance, we train a policy that
combines task and heuristic rewards and ensures it outperforms the heuristic-trained
policy. As such, we prevent policies from merely exploiting heuristic rewards with-
out improving the task reward. Our experiments on robotic locomotion, helicopter
control, and manipulation tasks demonstrate that our method consistently outper-
forms the heuristic policy, regardless of the heuristic rewards’ quality. Code is
available at https://github.com/Improbable-AI/hepo.

1 Introduction

Reinforcement learning (RL) [1] is a powerful framework for learning policies that can surpass
human performance in complex tasks. However, training RL policies with sparse or delayed rewards
is often ineffective. Instead of relying solely on sparse task rewards that indicate an agent’s success
or failure, it is common to augment the sparse reward with heuristic reward terms that provide denser
reward supervision to speed up and improve the performance of RL policies [2, 3]. Shining examples
of the success and necessity of heuristic reward terms are complex robotic object manipulation [4]
and locomotion [5–8] tasks. However, heuristics impose human assumptions that may limit the RL
algorithm. For example, a heuristic reward function may encourage a robot to walk like a human, yet
there could be faster walking policies that don’t resemble human gait.

The key question is how to learn a policy π that outperforms one trained solely on heuristics (i.e.,
heuristic policy πH). Practitioners tackle this problem by tuning the balance between the task
objective J(π) and the heuristic objective H(π) in the augmented training objective J(π) + λH(π),
where λ controls the balance between the two objectives for a policy π. However, it requires careful
tuning of λ to make the policy π outperform the heuristic policy; otherwise, the algorithm might
prioritize heuristic rewards while neglecting the task objective.

∗indicates equal contribution. 1 National Taiwan University, Taiwan. 2 Improbable AI Lab, MIT, Cambridge,
USA.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Improbable-AI/hepo

Tuning λ to balance both objectives is time-consuming. We desire an algorithm that finds a policy that
outperforms the heuristic policy without requiring such tuning for any given heuristic reward function.
Classic methods [2, 9–14] modify heuristic rewards to align the augmented objective’s optimal policy
with the one for the task objective (i.e., optimal policy invariance), theoretically ensuring that with
infinite data the policy outperforms the heuristic. However, in practice, these modified heuristics
often fall short on complex robotic tasks compared to policies trained solely on heuristic objectives,
as demonstrated in our study (Section 4.1) and prior work [10].

In this paper, we challenge the prevailing paradigm by questioning whether optimal policy invariance
is the appropriate objective to prevent heuristics from limiting RL agent’s performance in the finite
data regime. As optimal policy invariance ensures convergence to the optimal policy with infinite
data it may not be practical in many real-world settings. We propose an alternative paradigm that, in
every step of training, imposes the constraint of improving task performance beyond a policy trained
solely on heuristic rewards (i.e., J(π) ≥ J(πH)). This condition J(π) ≥ J(πH) guarantees that
the learned policy π outperforms the heuristic policy πH , effectively surpassing human-designed
heuristics. Additionally, such policy improvements can be verified and achieved using many existing
deep RL algorithms [15–18] in finite data settings.

Therefore, we enforce the policy improvement condition J(π) ≥ J(πH) as a constraint, preventing
the policy from exploiting heuristic rewards during training. We propose the following constrained
optimization objective:

max
π

J(π) +H(π) subject to J(π) ≥ J(πH)

Optimizing this objective at each iteration allows learning a policy performing better than or equal to
policies trained only on heuristic rewards. It prevents capitalizing on heuristic rewards at the expense
of task rewards. Moreover, it enables adaptively balancing both rewards over time instead of using
a fixed coefficient λ. Our contribution is an add-on to existing deep RL algorithms to improve RL
algorithms trained with heuristic rewards. We evaluated our method on robotic locomotion, helicopter,
and manipulation tasks using the IsaacGym simulator [19]. The results show that our method led
to superior task rewards and higher task-completion success rates compared to the policies solely
trained with heuristic rewards, even when heuristic rewards are ill-designed.

2 Preliminaries: Reinforcement Learning with Heuristic

Reinforcement Learning (RL): RL is a popular paradigm for solving sequential decision-making
problems [1] where the problems are modeled as an interaction between an agent and an unknown
environment [1]. The agent aims to improve its performance through repeated interactions with the
environment. At each round of interaction, the agent starts from the environment’s initial state s0 and
samples the corresponding trajectory. At each timestep t within that trajectory, the agent perceives the
state st, takes an action at ∼ π(.|st) according to its policy π, receives a task reward rt = r(st, at),
and transitions to a next state st+1 until reaching terminal states, after which a new trajectory is
initialized from s0, and the cycle repeats. The agent’s goal is to learn a policy π that maximizes the
expected return J(π) in a trajectory as below:

J(π) = Eπ[

∞∑
t=0

γtr(st, at)], (1)

where γ denotes a discount factor [1] and Eπ [.] denotes taking expectation over the trajectories
sampled by π. In the following, we term J as the true task objective, as it indicates the performance
of a policy on the task.

RL with Heuristic: In many tasks, learning a policy to maximize the true objective J is challenging
because rewards may be sparse or delayed. This lack of feedback makes policy optimization difficult
for RL algorithms. To address this, practitioners often use a heuristic reward function h with denser
reward signals to facilitate optimization, aiming to learn a policy that performs better in J . The policy
trained to maximize the expected return of heuristic rewards is called the heuristic policy πH . The
expected return of heuristic rewards, termed the heuristic objective H , is defined as:

H(πH) = EπH

[∞∑
t=0

γth(st, at)

]
, (2)

2

where h(st, at) is the heuristic reward at timestep t for state st and action at.

3 Method: Improving Heuristic Policy via Constrained Optimization

Problem statement: Optimizing both task J and heuristic H objectives jointly could lead to better
task performance than training solely with J or H , but needs careful tuning on the weight coefficient
λ among both objectives in maxπ J(π) + λH(π). Without careful tuning, the policy π may learn to
exploit heuristic rewards H and compromise performance of J . The goal of this paper is to mitigate
the requirement of tuning this coefficient to balance them in order to improve task performance.

Key insight - Leveraging Heuristic with Constraint: We aim to use the heuristic objective H for
training only when it improves task performance J and ignore it otherwise. Rather than manually
tuning the weight coefficient λ to balance both rewards, we introduce a key insight: impose a policy
improvement constraint (i.e., J(π) ≥ J(πH)) during training. This prevents RL algorithms from
exploiting heuristic rewards H at the expense of task rewards J . To achieve this goal, we introduce
the following constrained optimization objective:

max
π

J(π) +H(π) subject to J(π) ≥ J(πH). (3)

This constrained objective (Equation 3) results in an improved policy π over the heuristic policy
πH , leading us to call this framework Heuristic-Enhanced Policy Optimization (HEPO). A practical
algorithm to optimize this objective is presented in Section 3.1, and its implementation on a widely-
used RL algorithm [15] in robotics is detailed in Section 3.2.

3.1 Algorithm: Heuristic-Enhanced Policy Optimization (HEPO)

Finding feasible solutions for the constrained optimization problem in Equation 3 is challenging due
to the nonlinearity of the objective function J with respect to π. One practical approach is to convert
it into the following unconstrained min-max optimization problem using Lagrangian duality:

min
α≥0

max
π
L(π, α), where L(π, α) := J(π) +H(π) + α (J(π)− J(πH)) , (4)

where the Lagrangian multiplier is α ∈ R+. We can optimize the policy π and the multiplier α for
this min-max problem by a gradient descent-ascent strategy, alternating between optimizing π and α.

Enhanced policy π: The optimization objective for the policy π can be obtained by rearranging
Equation 4 as follows:

max
π

(1 + α)J(π) +H(π),

where (1 + α)J(π) +H(π) = Eπ

[∞∑
t=0

γt
(
(1 + α)r(st, at)) + h(st, at)

)]
.

(5)

This represents an unconstrained regular RL objective with the modified reward at each step as
(1 + α)r(st, at) + h(st, at), which can be optimized using any off-the-shelf deep RL algorithm. In
this modified reward, the task reward r(st, at) is weighted by the Lagrangian multiplier α, reflecting
the potential variation in the task reward’s importance during training as α evolves. The interaction
between the update of the Lagrangian multiplier and the policy will be elaborated upon next.

Lagrangian Multiplier α: The Lagrangian multiplier α is optimized for Equation 4 by stochastic
gradient descent, with the gradient defined as:

∇αL(π, α) = J(π)− J(πH). (6)

Notably, ∇αL(π, α) is exactly the performance gain of the policy π over the heuristic policy πH

on the task objective J . By applying gradient descent with ∇αL(π, α), when J(π) > J(πH) and
thus ∇αL(π, α) > 0, the Lagrangian multiplier α decreases. As α represents the weight of the task
reward in Equation 5, it indicates that when π outperforms πH , the importance of the task reward
diminishes because π already achieves superior performance compared to the heuristic policy πH

regarding the task objective J . Conversely, when J(π) < J(πH), α increases, thereby emphasizing
the importance of task rewards in optimization. The update procedure for the Lagrangian multiplier
α offers an adaptive reconciliation between the heuristic reward h and the task reward r.

3

3.2 Implementation

We present a practical approach to optimize the min-max problem in Equation 4 using Proximal
Policy Optimization (PPO) [15]. We selected PPO because it is widely used in robotic applications
involving heuristic rewards, although our HEPO framework is not restricted to PPO. The standard
PPO implementation involves iterative stochastic gradient descent updates over numerous iterations,
alternating between collecting trajectories with policies and updating those policies. We outline the
optimization process for each iteration and provide a summary of our implementation in Algorithm 1.

Training policies π and πH : Instead of pre-training the heuristic policy πH , which requires additional
data and reduces data efficiency, we concurrently train both the enhanced policy π and the heuristic
policy πH , allowing them to share data. For each iteration i, we gather trajectories τ and τH using the
enhanced policy πi and the heuristic policy πi

H , respectively. Following PPO’s implementation, we

compute the advantages Aπi

r (st, at), A
πi
H

r (st, at), Aπi

h (st, at), and A
πi
H

h (st, at) for the task reward
r and heuristic reward h with respect to πi and πi

H . We then weight the advantage with the action
probability ratio between the new policies being optimized (i.e., πi+1 and πi+1

H) and the policies
collecting the trajectories (i.e., πi or πi

H). Finally, we optimize the policies at the next iteration i+ 1
for the objectives in Equations 7 and 8:

πi+1 ← argmax
π

Eτ∼πi

[
π(at|st)
πi(at|st)

(
(1 + α)Aπi

r (st, at) +Aπi

h (st, at)
)]

+ (7)

EτH∼πi
H

[
π(at|st)
πi
H(at|st)

(
(1 + α)A

πi
H

r (st, at) +A
πi
H

h (st, at)+
)]

(Enhanced policy)

πi+1
H ← argmax

π
EτH∼πi

H

[
π(at|st)
πi
H(at|st)

Aπi

h (st, at)

]
+ (8)

Eτ∼πi

[
π(at|st)
πi(at|st)

A
πi
H

h (st, at)

]
(Heuristic policy).

Maximizing the advantages will result in a policy that maximizes the expected return for a chosen
reward function, as demonstrated in PPO [15]. This enables us to maximize the objective J and H .
We estimate the advantages Aπi

r (st, at) and Aπi

h (st, at) (or Aπi
H

r (st, at) and A
πi
H

h (st, at)) using the
standard PPO implementation with different reward functions. Therefore, we omit the details of the
advantage’s clipped surrogate objective in PPO, and leave them in Appendix A.1.

Although PPO is an on-policy algorithm, the use of off-policy importance ratio correction (i.e., the
action probability ratios between two policies) allows us to use states and actions generated by another
policy. This enables us to train π using data from πH and vice versa. Both policies π and πH are
trained using the same data but with different reward functions. Note that collecting trajectories from
both policies does not require more data than the standard PPO implementation. We collect half the
trajectories with each policy, π and πH , for a total of B trajectories (see Algorithm 1). Then, we
update both π and πH using all B trajectories.

Optimizing the Lagrangian multiplier α: To update the Lagrangian multiplier α, we need to
compute the gradient in Equation 6, which corresponds to the performance gain of the enhanced
policy π over the heuristic policy πH on the task objective J . Utilizing the performance difference
lemma [20, 16], we relate this improvement to the expected advantages over trajectories sampled by
the enhanced policy π as J(π)− J(πH) = Eπ [A

πH r(st, at)]. However, this approach only utilizes
half of the trajectories at each iteration since it exclusively relies on trajectories from the enhanced
policy π. To leverage trajectories from both policies, we also consider the performance gain in the
reverse direction as −(J(πH)− J(π)) = −EπH

[Aπr(st, at)]. Consequently, we can estimate the
gradient of α using trajectories from both policies, as illustrated below:

∇αL(π, α) = J(π)− J(πH) = Eπ [A
πH
r (st, at)] (9)

= −(J(πH)− J(π)) = −EπH
[Aπ

r (st, at)] . (10)

At each iteration i, we estimate the gradient of α using the advantage AπH
r (st, at) and Aπ

r (st, at)
on the trajectories sampled from both πi and πi

H , and update α with stochastic gradient descent as
follows:

α← α− η

2

(
Eτ∼πi

[
A

πi
H

r (st, at)
]
− Eτ∼πi

H

[
Aπi

r (st, at)
])

, (11)

4

where η ∈ R+ is the step size. The expected advantage in Equation 11 are estimated using the
generalized advantage estimator (GAE) [21].

Algorithm 1 Heuristic-Enhanced Policy Optimization (HEPO)

1: Input: Number of trajectories per iteration B
2: Initialize the enhanced policy π0, the heuristic policy π0

H , and the Lagrangian multiplier α
3: for i = 0 · · · do ▷ i denotes iteration index
4: Rollout B/2 trajectories τ by πi

5: Rollout B/2 trajectories τH by πi
H

6: πi+1 ←− Train the policy πi for optimizing Equation 7 using both τ and τH
7: πi+1

H ←− Train the policy πi
H for optimizing Equation 8 using both τ and τH

8: α←− Update the Lagrangian multiplier α by gradient descent (Equation 9) using τ and τH
9: end for

3.3 Connection to Extrinsic-Intrinsic Policy Optimization [22]

Closely related to our HEPO framework, Chen et al. [22] proposes Extrinsic-Intrinsic Policy Opti-
mization (EIPO), which trains a policy to maximize both task rewards and exploration bonuses [23]
subject to the constraint that the learned policy π must outperform the task policy πJ trained solely
on task rewards. HEPO and EIPO differ in their objective functions and implementation of the
constrained optimization problem. Additional information can be found in the Appendix, cover-
ing the objective formulation (Appendix A.1), implementation tricks (Appendix A.2), and detailed
pseudocode (Appendix A.3).

Exploration bonuses [23] can be viewed as heuristic rewards. The main difference between HEPO
and EIPO’s optimization objectives lies in constraint design. Both frameworks require the learned
policy π to outperform a reference policy πref (i.e., J(π) ≥ J(πref)) but use a different reference
policy. EIPO uses the task policy πJ as the reference policy πref because they aim for asymptotic
optimality in task rewards. If the constraint is satisfied with πJ being the optimal policy for task
rewards, the learned policy π will also be optimal for task rewards. In contrast, HEPO uses the
heuristic policy πH trained solely on heuristic rewards since HEPO aims to improve upon it.

HEPO simplifies the implementation. Both HEPO and EIPO train two policies with shared data, but
EIPO alternates the policy used for trajectory collection each iteration and has a complex switching
rule, which introduces more hyperparameters. HEPO collects trajectories using both policies together
at each iteration, simplifying implementation and avoiding extra hyperparameters.

4 Experiments

We evaluate whether HEPO enhances the performance of RL algorithms in maximizing task re-
wards while training with heuristic rewards. We conduct experiments on 9 tasks from IsaacGym
(ISAAC) [19] and 20 tasks from the Bidexterous Manipulation (BI-DEX) benchmark [24]. These
tasks rely on heavily engineered reward functions for training RL algorithms. Each task has a task
reward function r that defines the task objective J to be maximized, and a heuristic reward function
h that defines the heuristic objective H , provided in the benchmarks to facilitate the optimization
of task objectives J . We implement HEPO based on PPO [15] and compare it with the following
baselines:

• H-only (heuristic only): This is the standard PPO baseline provided in ISAAC. The policy is
trained solely using the heuristic reward: maxπ H(π). The heuristic reward functions in ISAAC
and BI-DEX are designed to help RL algorithms maximize the task objective J . This baseline is
crucial to determine if an algorithm can surpass a policy trained with highly engineered heuristic
rewards.

• J-only (task only): The policy is trained using only the task reward: maxπ J(π). This baseline
demonstrates the performance achievable without heuristics. Ideally, algorithms that incorporate
heuristics should outperform this baseline.

5

• J+H (mixture of task and heuristic): The policy is trained using a mixture of task and heuristic
rewards: maxπ J(π) + λH(π), with λ balancing the two rewards. As [22] shows, proper tuning of
λ can enhance task performance by balancing both training objectives.

• Potential-based Reward Shaping (PBRS) [2]: The policy is trained to maximize Eπ[
∑∞

t=0 γ
trt +

γht+1−ht], where rt and ht are the task and heuristic rewards at timestep t. PBRS guarantees that
the optimal policy is invariant to the task reward function. We include it as a baseline to examine if
these theoretical guarantees hold in practice.

• HuRL [10]: The policy is trained to maximize Eπ[
∑∞

t=0 γ
trt + (1 − βi)γht+1], where βi is a

coefficient updated at each iteration to balance heuristic rewards during different training stages.
The scheduling mechanism is detailed in [10] and our source code provided in the Supplementary
Material.

• EIPO [22]: The policy is trained using the constrained objective: maxπ J(π) +
H(π) s.t. J(π) ≥ J(πJ), where πJ is the policy trained with task rewards only. EIPO is
similar to HEPO but differs in formulation and implementation, as detailed in Section 4.3.

Each method is trained for 5 random seeds and implemented based on the open-sourced implementa-
tion [25], where the detailed training hyperparameters can be found in Appendix A.4.

Metrics: Based on the task success criteria in ISAAC and BI-DEX, we consider two types of task
reward functions r: (i) Progressing (for locomotion or helicopter robots) and (ii) Goal-reaching (for
manipulation). In progressing tasks, robots aim to maximize their traveling distance or velocity
from an initial point to a destination. Thus, movement progress is defined as the task reward. In
goal-reaching tasks, robots aim to complete assigned goals by reaching specific goal states. Here,
task rewards are binary, with a value of 1 indicating successful attainment of the goal and 0 otherwise.
Detailed descriptions of our task objectives and total reward definitions are provided in Appendix C.

4.1 Benchmark results

Setup: We aim to determine if HEPO achieves higher task returns and improves upon the policy
trained with only heuristic rewards (H-only) in the majority of tasks. In this experiment, we use
the heuristic reward functions from the ISAAC and BI-DEX benchmarks. To measure performance
improvement over the heuristic policy, we normalize the return of each algorithm X using the formula
(JX−Jrandom)/(JH-only−Jrandom), where JX , JH-only, and Jrandom denote the task returns of algorithm
X , the heuristic policy, and the random policy, respectively. In Figure 1, we present the interquartile
mean (IQM) of the normalized return and the probability of improvement for each method across
29 tasks, following [26]. IQM, also known as the 25% trimmed mean, is a robust estimate against
outliers. It discards the bottom and top 25% of runs and calculates the mean score of the remaining
50%. The probability of improvement measures whether an algorithm performs better than another,
regardless of the margin of improvement. Both approaches prevent outliers from dominating the
performance estimate.

Results: The results in Figure 1 indicate that policies trained with task rewards only (J-only) generally
perform worse than those trained with heuristics, both in terms of IQM of normalized return and
probability of improvement. PBRS does not improve upon J-only, demonstrating that the optimal
policy invariance guarantee rarely holds in practice. Both EIPO and HuRL outperform J-only but
do not surpass H-only, demonstrating that neither approach can improve upon the heuristic policy.
Policies trained with both task and heuristic rewards (J+H) perform slightly worse than those trained
with heuristics only (H-only), possibly because the weight coefficient balancing both rewards is too
task-sensitive to work across all tasks. HEPO, however, outperforms all other methods in both IQM
of normalized returns and shows a probability of improvement over the heuristic policy greater than
50%, indicating statistically significant improvements as suggested by Agarwal et al. [26]. Complete
learning curves are presented in the Appendix B.1. Additional results on various benchmarks and RL
algorithms are provided in Appendix B.3, demonstrating that HEPO is effective in hard-exploration
tasks using exploration bonuses [23] and with RL algorithms beyond PPO.

4.2 Can HEPO be robust to reward functions designed in the wild?

Setup: We envision to develop an RL algorithm that can effectively utilize heuristic reward functions,
thereby reducing the time costs associated with reward design. We simulate reward design scenarios

6

0.0 0.1 0.2 0.3 0.4 0.5 0.6
P(X > H-only)

Al
go

ri
th

m
 X

0.17

0.50

0.37

0.26

0.12

0.29

0.62

J-only H-only J+H HuRL PBRS EIPO HEPO (ours)

Algorithm
0.0

0.2

0.4

0.6

0.8

1.0

1.2
N

or
m

al
iz

ed
 r

et
ur

n

0.17

0.98
0.84

0.70

0.02

0.27

1.13

(a) IQM over ISAAC + BI-DEX

0.0 0.1 0.2 0.3 0.4 0.5 0.6
P(X > H-only)

Al
go

ri
th

m
 X

0.17
0.50

0.42
0.30

0.13
0.29

0.62

(b) Probability of Improvement over ISAAC + BI-DEX

Figure 1: (a) The vertical axis represents the interquartile mean (IQM) [26] of normalized task return
across 29 tasks. HEPO outperforms the policy trained solely with a heavily engineered heuristic
reward function (H-only) and other methods, demonstrating that HEPO makes better use of heuristic
rewards for learning. (b) The horizontal axis shows the probability that algorithm X outperforms
the policy trained solely with heuristic rewards (H-only). HEPO achieves a 62% probability of
improvement over the heuristic policy on average, with the lower bound of the confidence interval
above 50%, indicating statistically significant improvements over the heuristic policy.

and evaluate the algorithm’s performance when trained with heuristic reward functions created under
real-world conditions. Unlike the highly engineered reward functions in ISAAC, participants were
asked to design their heuristic reward functions within a short time frame. This approach assesses
the algorithm’s effectiveness when trained with less refined heuristic reward functions. Participants
were asked to iterate on their reward design by writing the reward function, training a policy with a
given RL algorithm, reviewing the videos and learning curves, refining the reward, and repeating
the process. We selected the FrankaCabinet task for this study because its original heuristic reward
function is heavily engineered and consisting of many terms. The task of FrankaCabinet is training a
robot arm to open a cabinet. We recruited twelve graduate students with varying levels of proficiency
in machine learning and robotics and divided them into two groups. One group used HEPO to
iterate on heuristic rewards, while the other group used PPO. This approach ensures that the designed
heuristic reward functions are not specialized for one algorithm and ineffective for another. Each
participant was instructed to edit the heuristic reward function to help RL algorithms maximize the
task return. We used the same task reward metric as in Section 4.1. We then used the final versions of
their heuristic reward functions to train HEPO and PPO, and reported the normalized return of the
learned policies. Note that we adhered to the normalization scheme outlined in Section 4.1, based
on the performance of the policy trained with the original heuristic reward function. This approach
allows us to observe any performance drop when training policies with less engineered heuristic
reward functions.

Algo. X IQM P(X > H-only)
H-only 0.44 (0.37, 0.52) 0.50 (0.49, 0.51)
HuRL 0.00 (0.00, 0.00) 0.33 (0.32, 0.33)
PBRS 0.00 (0.00, 0.00) 0.22 (0.21, 0.22)
HEPO 0.94 (0.85, 1.03) 0.73 (0.73, 0.74)

Table 1: IQM and probability of improvement (PI)
over H-only (P(X > H-only)) with 95% confidence
intervals across 12 heuristic reward functions (Sec-
tion 4.2). H-only uses PPO with heuristic rewards.
HEPO achieves higher normalized returns and a
statistically significant PI greater than 0.5, indicat-
ing it significantly outperforms H-only.

Quantitative results: Figure 2 shows that
HEPO achieves significantly higher (lower con-
fidence bound above the baselines’ upper confi-
dence bound) average normalized returns than
PPO trained only on heuristic rewards (PPO (H-
only)) in 9 out of 12 heuristic reward functions.
Additionally, Table 1 indicates that across all
heuristic functions, HEPO achieves a higher in-
terquartile mean (IQM) of normalized returns
and has a statistically significant probability of
outperforming PPO (H-only) with lower confi-
dence bound greater than 0.5. This suggests that
even when trained with poorly designed heuris-
tic reward functions, HEPO performs better than
PPO (H-only). Notably, PPO (H-only) that is
trained with H2, H5, and H6 achieves normal-

7

0

1

2

3

N
or

m
al

iz
ed

 r
et

ur
n

1.60
0.97

0.01

2.12

H1

0.36
0.09

0.00

0.96

H2

1.49

0.53

0.00

2.13

H3

0.000.000.000.07

H4

0.30
0.000.00

1.68

H5

0.66
0.15

0.00

2.01

H6

0

1

2

3

N
or

m
al

iz
ed

 r
et

ur
n

1.60

0.41

0.00

2.11

H7

1.59

0.78

0.00

2.16

H8

0.000.000.000.00

H9

0.000.000.000.00

H10

1.62

0.45

0.00

2.09

H11

0.000.000.000.00

H12

H-only HuRL PBRS HEPO

Figure 2: Normalized task return of PPO (H-only) and HEPO that are trained with heuristic reward
function H1 to H12 designed by human subjects in the real world reward design condition. HEPO
achieves higher task return than PPO (H-only) in 9 out of 12 tasks. This shows HEPO is robust to
possibly ill-designed heuristic reward functions and can leverage them to improve performance.

ized returns below 1, while HEPO achieves returns greater than or close to 1. Since returns are
normalized using the performance of the PPO policy trained with the well-designed heuristic reward
function in ISAAC, a return below 1.0 indicates a performance drop for PPO (H-only) when using
potentially ill-designed heuristic rewards. In contrast, HEPO can improve upon policies trained
with carefully engineered heuristic reward functions, even when trained with possibly ill-designed
heuristic reward functions.

Qualitative observation: We aim to understand why PPO’s performance declines when trained with
heuristic reward functions H2, H5, and H6. These functions are similar to the original heuristic
reward in FrankaCabinet, but with different weights for each term. For example, in H5, the weight
of action penalty is 1, whereas in the original heuristic reward function it is 7.5. This suggests that
HEPO might handle poorly scaled heuristic reward terms better than PPO, which is sensitive to
these weights. The heuristic reward functions H12 and H9 had an incorrect sign for the distance
component, which caused the policy to be rewarded for moving away from the cabinet instead of
toward it, making the learning task more challenging.

4.3 Ablation Studies

Expanding on the discussion of relation to relevant work EIPO [22] in Section 3.3, our goal is to
examine the implementation choices of HEPO and illustrate the efficacy of each modification in this
section. HEPO differs from EIPO primarily in two aspects: (1) the selection of a reference policy πref
in the constraint J(π) ≥ J(πref), and (2) the strategy for utilizing policies to gather trajectories. Both
studies are conducted on standard locomotion and manipulation tasks, such as Ant, FrankaCabinet,
and AllegroHand. In addition, we provide further studies on the sensitivity to hyperparameters in
Appendix B.2.

Selection of reference policy in constraint: HEPO and EIPO both enforce a performance improve-
ment constraint J(π) ≥ J(πref) during training. HEPO uses a heuristic policy πH as the reference
(πref = H-only), while EIPO uses a task-only policy (πref = J-only). However, relying solely on
policies trained with task rewards as references may not suffice for complex robotic tasks, as they
often perform much worse than those trained with heuristic rewards. We compared the performance
of HEPO with different reference policies in Figure 3a. The result shows that setting πref = J-only
(EIPO) improves the performance over the task-only policy J-only while notably degrading perfor-
mance, sometimes even worse than H-only, suggesting it’s insufficient for surpassing the heuristic
policy.

Strategy of collecting trajectories: We use both the enhanced policy π and the heuristic policy
πH simultaneously to sample half of the environment’s trajectories (referred to as Joint). Conversely,
EIPO switches between π and πH using a specified mechanism, where only one selected policy
samples trajectories for updating both π and πH within the same episode (referred to as Alternating).
This study compares the performance of these two trajectory rollout methods. We modify HEPO to

8

0 1000 2000
Iteration

0.0

0.5

1.0

N
or

m
al

iz
ed

 r
et

ur
n Ant

0 500 1000 1500
Iteration

0

1

2

FrankaCabinet

0 5000 10000 15000
Iteration

0.0

0.5

1.0

1.5

2.0
AllegroHand

J-only H-only HEPO(ref = J-only) HEPO(ref = H-only)

(a) Comparison of reference policy πref choice in HEPO’s constraint J(π) ≥ J(πref)

0 1000 2000
Iteration

0.00

0.25

0.50

0.75

1.00

N
or

m
al

iz
ed

 r
et

ur
n Ant

0 500 1000 1500
Iteration

0.0

0.5

1.0

1.5

2.0

FrankaCabinet

0 5000 10000 15000
Iteration

0.0

0.5

1.0

1.5

2.0
AllegroHand

J-only H-only HEPO(Alternating) HEPO(Joint)

(b) Comparison of trajectory collecting strategies

Figure 3: (a) We show that using the policies trained with heuristic rewards (J-only) is better than
using the policies trained with task rewards (J-only) when training HEPO. (b) HEPO(Joint) that
collects trajectories using both policies leads to better performance than HEPO(Alternating) that
alternates between two policies to collect trajectories. See Section 4.3 for details

gather trajectories using the Alternating strategy and present the results in Figure 3b. The findings
indicate that Alternating results in a performance drop during mid-training and fails to match the
performance of HEPO(Joint). We hypothesize that this occurs because the batch of trajectories
collected solely by one policy deviates significantly from those that another policy can generate
(i.e., high off-policy error), leading to less effective PPO policy updates. In contrast, Joint samples
trajectories using both policies, preventing the collected trajectories from deviating too much from
each other.

5 Related Works

Reward shaping: Reward shaping has been a significant area, including potential-based reward
shaping (PBRS) [2, 27], bilevel optimization approaches [28–30] on reward model learning, and
heuristic-guided methods (HuRL) [10] that schedule heuristic rewards. Our method differs as it is
a policy optimization method agnostic to the heuristic reward function and can be applied to those
shaped or learned rewards.

Constrained policy optimization: Recent work like Extrinsic-Intrinsic Policy Optimization (EIPO)
[22] proposes constrained optimization by tuning exploration bonuses to prevent exploiting them at
the cost of task rewards. Extensions [31] balance imitating a teacher model and reward maximization.
Our work differs in balancing human-designed heuristic rewards and task rewards, improving upon
policies trained with engineered heuristic rewards. We also propose implementation enhancements
over EIPO [22] (Section 4.3).

6 Discussion & Limitation

HEPO for RL practitioners: In this paper, we showed that HEPO is robust to the possibly ill-
designed heuristic reward function in Section 4.2 and also exhibit high-probability improvement
over PPO when training with heavily engineered heuristic rewards in robotic tasks in Section 4.1.
Moving forward, when users need to integrate heuristic reward functions into RL algorithms, HEPO
can potentially be a useful tool to reduce users’ time on designing rewards since it can improve
performance even with under-engineered heuristic rewards.

Limitations: While HEPO shows high-probability performance improvement over heuristic policies
trained with well-designed heuristic reward, one limitation is that HEPO does not have a guarantee

9

to converge to the optimal policy theoretically. One future work can be incorporating the insight in
recent theoretical advances on reward engineering [3] to make a convergence guarantee.

Acknowledgements

We thank members of the Improbable AI Lab for helpful discussions and feedback. We are grateful
to MIT Supercloud and the Lincoln Laboratory Supercomputing Center for providing HPC resources.
This research was supported in part by Hyundai Motor Company, Quanta Computer Inc., an AWS
MLRA research grant, ARO MURI under Grant Number W911NF-23-1-0277, DARPA Machine
Common Sense Program, ARO MURI under Grant Number W911NF-21-1-0328, and ONR MURI
under Grant Number N00014-22-1-2740. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed
or implied, of the Army Research Office or the United States Air Force or the U.S. Government.
The U.S. Government is authorized to reproduce and distribute reprints for Government purposes,
notwithstanding any copyright notation herein.

Author Contributions

• Chi-Chang Lee: Co-led the project, led the implementation of the proposed algorithms and
baselines, and conducted the experiments.

• Zhang-Wei Hong: Co-led the project, led the writing of the paper, scaled up the experiment
infrastructure, and conducted the experiments.

• Pulkit Agrawal: Played a key role in overseeing the project, editing the manuscript, and the
presentation of the work.

References
[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2018.

[2] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,
1999.

[3] Abhishek Gupta, Aldo Pacchiano, Yuexiang Zhai, Sham Kakade, and Sergey Levine. Unpacking
reward shaping: Understanding the benefits of reward engineering on sample complexity.
Advances in Neural Information Processing Systems, 35:15281–15295, 2022.

[4] Tao Chen, Jie Xu, and Pulkit Agrawal. A system for general in-hand object re-orientation.
Conference on Robot Learning, 2021.

[5] Gabriel B Margolis, Ge Yang, Kartik Paigwar, Tao Chen, and Pulkit Agrawal. Rapid locomotion
via reinforcement learning. Robotics: Science and Systems, 2022.

[6] Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for general-
ization with multiplicity of behavior. In Conference on Robot Learning, pages 22–31. PMLR,
2023.

[7] Ashish Kumar, Zipeng Fu, Deepak Pathak, and Jitendra Malik. RMA: rapid motor adaptation
for legged robots. In Robotics: Science and Systems XVII, Virtual Event, July 12-16, 2021,
2021.

[8] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[9] Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In 11th
International Conference on Autonomous Agents and Multiagent Systems (AAMAS 2012), pages
433–440. IFAAMAS, 2012.

[10] Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. Heuristic-guided reinforcement
learning. Advances in Neural Information Processing Systems, 34:13550–13563, 2021.

10

[11] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. Potential-based difference
rewards for multiagent reinforcement learning. In Proceedings of the 2014 international
conference on Autonomous agents and multi-agent systems, pages 165–172, 2014.

[12] Adam Eck, Leen-Kiat Soh, Sam Devlin, and Daniel Kudenko. Potential-based reward shaping
for finite horizon online pomdp planning. Autonomous Agents and Multi-Agent Systems, 30:
403–445, 2016.

[13] Babak Badnava, Mona Esmaeili, Nasser Mozayani, and Payman Zarkesh-Ha. A new potential-
based reward shaping for reinforcement learning agent. In 2023 IEEE 13th Annual Computing
and Communication Workshop and Conference (CCWC), pages 01–06. IEEE, 2023.

[14] Grant C Forbes and David L Roberts. Potential-based reward shaping for intrinsic motivation
(student abstract). In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pages 23488–23489, 2024.

[15] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[16] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning
(ICML-15), pages 1889–1897, 2015.

[17] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[18] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Pe-
tersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan
Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement
learning. Nature, 2015.

[19] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo, Michelle Lu, Kier Storey, Miles
Macklin, David Hoeller, Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel State. Isaac
gym: High performance gpu-based physics simulation for robot learning, 2021.

[20] Sham Kakade and John Langford. Approximately optimal approximate reinforcement learning.
In In Proc. 19th International Conference on Machine Learning. Citeseer, 2002.

[21] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. International Confer-
ence of Representation Learning, 2015.

[22] Eric Chen, Zhang-Wei Hong*, Joni Pajarinen, and Pulkit (* equal contribution) Agrawal.
Redeeming intrinsic rewards via constrained optimization. Advances in Neural Information
Processing Systems, 35:4996–5008, 2022.

[23] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=H1lJJnR5Ym.

[24] Yuanpei Chen, Yaodong Yang, Tianhao Wu, Shengjie Wang, Xidong Feng, Jiechuan Jiang,
Zongqing Lu, Stephen Marcus McAleer, Hao Dong, and Song-Chun Zhu. Towards human-level
bimanual dexterous manipulation with reinforcement learning. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022.

[25] Denys Makoviichuk and Viktor Makoviychuk. rl-games: A high-performance framework for
reinforcement learning. https://github.com/Denys88/rl_games, May 2021.

[26] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Belle-
mare. Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural
Information Processing Systems, 34, 2021.

11

https://openreview.net/forum?id=H1lJJnR5Ym
https://github.com/Denys88/rl_games

[27] Sam Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In Adaptive Agents
and Multi-Agent Systems, 2012.

[28] Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng Wu,
and Changjie Fan. Learning to utilize shaping rewards: A new approach of reward shaping.
Advances in Neural Information Processing Systems, 33:15931–15941, 2020.

[29] Dhawal Gupta, Yash Chandak, Scott Jordan, Philip S Thomas, and Bruno C da Silva. Behavior
alignment via reward function optimization. Advances in Neural Information Processing
Systems, 36, 2024.

[30] Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. Advances in Neural Information Processing Systems, 31, 2018.

[31] Idan Shenfeld, Zhang-Wei Hong, Aviv Tamar, and Pulkit Agrawal. TGRL: An algorithm for
teacher guided reinforcement learning. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

[32] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2014.

12

A Implementation Details

A.1 Full Derivation

We will detailedly describe the update of the enhanced policy (π in Equation 7) and the heuristic
policy (πH in Equation 8) at each iteration.

A.1.1 Notations

• V π
r (st) := E(st,at)∼π

[∑∞
t=0 γ

tr(st, at)|s0 = st

]
• V π

h (st) := E(st,at)∼π

[∑∞
t=0 γ

th(st, at)|s0 = st

]
• Aπ

r (st, at) := r(st, at) + V π
r (st+1)− V π

r (st)

• Aπ
h(st, at) := h(st, at) + V π

h (st+1)− V π
h (st)

• BHEPO: the buffer to store samples collected by πi

• BH : the buffer to store samples collected πi
H .

A.1.2 Enhanced Policy π Update

Given a α value, πi+1 is derived using the arguments of the maxima in Equation 4, which can be
re-written as follows:

πi+1 = argmax
π

{
J(π) +H(π)− α

(
J(π)− J(πi

H)
)}

= argmax
π

{
(1 + α)J(π) +H(π)

}
= argmax

π

{(
(1 + α)J(π) +H(π)

)
− 1

2

(
(1 + α)J(πi) +H(πi)

)
− 1

2

(
(1 + α)J(πi

H) +H(πi
H)

)}
= argmax

π

{1

2
Eπ

[
(1 + α)Aπi

r (st, at) +Aπi

h (st, at)
]

+
1

2
Eπ

[
(1 + α)A

πi
H

r (st, at) +A
πi
H

h (st, at)
]

= argmax
π

{1

2
Eπ

[
Uπi

α (st, at)
]
+

1

2
Eπ

[
U

πi
H

α (st, at)
]}

= argmax
π

{
Eπ

[
Uπi

α (st, at)
]
+ Eπ

[
U

πi
H

α (st, at)
]}

(12)

where Uπi

α and U
πi
H

α are defined as follows:

Uπi

α (st, at) := (1 + α)Aπi

r (st, at) +Aπi

h (st, at)

U
πi
H

α (st, at) := (1 + α)A
πi
H

r (st, at) +A
πi
H

h (st, at) (13)

To efficiently achieve the update process in Equation 12, we aim to utilize previously collected
trajectories for optimization, outlined in Equation 7. Here, we refer to [15], using those previously
collected trajectories to form a lower bound surrogate objectives, Ĵπi

α (π) and Ĵ
πi
H

α (π), as alternatives

13

of Eπ[U
πi

α (st, at)] and Eπ[U
πi
H

α (st, at)] to derive πi+1:

Ĵπi

HEPO(π) :=
1

|BHEPO|
∑

(st,at)∈BHEPO

[∞∑
t=0

γt min
{ π(at|st)
πi(at|st)

Uπi

α (st, at),

clip
(

π(at|st)
πi(at|st)

, 1− ϵ, 1 + ϵ

)
Uπi

α (st, at)
}]

Ĵ
πi
H

HEPO(π) :=
1

|BH |
∑

(st,at)∈BH

[∞∑
t=0

γt min
{ π(at|st)
πi
H(at|st)

U
πi
H

α (st, at),

clip
(

π(at|st)
πi
H(at|st)

, 1− ϵ, 1 + ϵ

)
U

πi
H

α (st, at)
}]

,

(14)

where Eπ[U
πi

α (st, at)] ≥ Ĵπi

HEPO(π) and Eπ[U
πi
H

α (st, at)] ≥ Ĵ
πi
H

HEPO(π) always hold; ϵ ∈ [0, 1] denotes
a threshold. Intuitively, this clipped objective (Eq. 14) penalizes the policy π that behaves differently
from πi or πi

H because overly large or small the action probability ratios between two policies are
clipped.

A.1.3 Heuristic Policy πH Update

πi+1
H is derived using the arguments of the maxima of H(π), which can be re-written as follows:

πi+1
H = argmax

π

{
H(π)

}
= argmax

π

{
H(π)− 1

2
H(πi)− 1

2
H(πi

H)
}

= argmax
π

{1

2
Eπ

[
Aπi

h (st, at)
]
+

1

2
Eπ

[
A

πi
H

h (st, at)
]}

= argmax
π

{
Eπ

[
Aπi

h (st, at)
]
+ Eπ

[
A

πi
H

h (st, at)
]}

(15)

Similarly, we again rely on the approximation from [15] to derive a lower bound surrogate objective
for both Eπ[A

πi

h (st, at)] and Eπ[A
πi
H

h (st, at)] as follows:

Ĥπi

(π) :=
1

|BHEPO|
∑

(st,at)∈BHEPO

[∞∑
t=0

γt min
{ π(at|st)
πi(at|st)

Aπi

h (st, at),

clip
(

π(at|st)
πi(at|st)

, 1− ϵ, 1 + ϵ

)
Aπi

h (st, at)
}]

,

(16)

Ĥπi
H (π) :=

1

|BH |
∑

(st,at)∈BH

[∞∑
t=0

γt min
{ π(at|st)
πi
H(at|st)

A
πi
H

h (st, at),

clip
(

π(at|st)
πi
H(at|st)

, 1− ϵ, 1 + ϵ

)
A

πi
H

h (st, at)
}] (17)

where Eπ[A
πi

h (st, at)] ≥ Ĥπi

(π) and Eπ[A
πi
H

h (st, at)] ≥ Ĥπi
H (π) always hold. Different from

vanilla heuristic training, instead of solely collecting trajectories from πi
H , we collect trajectories

from both π and πH to enrich sample efficiency.

A.2 Implementation Tricks

A.2.1 Sample Sharing for Value Function Update

In practice, obtaining real value functions for training is not feasible. We estimate the value function
using collected trajectories, but this approach tends to fail because the value function becomes biased
toward the policy responsible for trajectory collection.

14

To prevent error information from the estimated value function interfering with the training procedure,
we share the trajectory samples within the BHEPO and BH buffers to update our value functions:

V πi+1

r ← argmin
V

{ ∑(
st,r(st,at),st+1

)
∈BHEPO∪BH

|r(st, at) + γV πi

r (st+1)− V (st)|2

|BHEPO|+ |BH |

}
(18)

V πi+1

h ← argmin
V

{ ∑(
st,h(st,at),st+1

)
∈BHEPO∪BH

|h(st, at) + γV πi

h (st+1)− V (st)|2

|BHEPO|+ |BH |

}
(19)

V
πi+1
H

r ← argmin
V

{ ∑(
st,r(st,at),st+1

)
∈BHEPO∪BH

|r(st, at) + γV
πi
H

r (st+1)− V (st)|2

|BHEPO|+ |BH |

}
(20)

V
πi+1
H

h ← argmin
V

{ ∑(
st,h(st,at),st+1

)
∈BHEPO∪BH

|h(st, at) + γV
πi
H

h (st+1)− V (st)|2

|BHEPO|+ |BH |

}
(21)

A.2.2 Smoothing Lagrangian Multiplier α Update

The Lagrangian multiplier α determines the desired constraint information during training. However,
in practice the gradient α tends to become explosive. To stabilize the α update procedure, we
accumulate previous gradients and adopt the Adam optimizer [32] as follows:

g(α)← med
{ 1

|BHEPO|
∑

(st,at)∈BHEPO

[
A

πi
H

r (st, at)
]
− 1

|BH |
∑

(st,at)∈BH

[
Aπi

r (st, at)
]}i

i−K

α← AdamOpt
[
g(α)

] (22)

where K is the number of previous K advantage expectation records that we take into account. To
smooth the current α gradient for each update, we calculate the median of the previous K records. In
our experiments, we assigned K a value of 8.

A.3 Overall Workflow

Algorithm 2 Detailed Heuristic-Enhanced Policy Optimization (HEPO)

1: Initialize policies (π1, π1
H) and values (V π1

r , V π1

h , V π1
H

r , V π1
H

h)
2: for i = 1 · · · do ▷ i denotes iteration index
3: # ROLLOUT STAGE
4: Collect trajectory buffers (BHEPO, BH) using (πi, πi

H)

5: Compute
(
Aπi

r (st, at), A
πi

h (st, at)
)

via GAE with
(
V πi

r , V πi

h

)
∀(st, at) ∈ BHEPO

6: Compute
(
A

πi
H

r (st, at), A
πi
H

h (st, at)
)

via GAE with
(
V

πi
H

r , V
πi
H

h

)
∀(st, at) ∈ BH

7: Compute
(
Ĵπi

HEPO, Ĵ
πi
H

HEPO

)
based on Equation 14

8: Compute
(
Ĥπi

, Ĥπi
H

)
based on Equation 16

9:
10: # UPDATE STAGE
11: πi+1 ← argmaxπ

{
Ĵπi

HEPO(π) + Ĵ
πi
H

HEPO(π)
}

12: πi+1
H ← argmaxπ

{
Ĥπi

(π) + Ĥπi
H (π)

}
13: Update (V πi

r , V πi

h , V
πi
H

r , V
πi
H

h) based on Equation 18
14: Update α based on Equation 22
15: end for

15

A.4 Training details

Following the PPO framework [15], our experiments are based on a continuous action actor-critic
algorithm implemented in rl_games [25], using Generalized Advantage Estimation (GAE) [21]
to compute advantages for policy optimization. For PPO, we employed the same policy network
and value network architecture, and the same hyperparameters used in IsaacGymEnvs [19]. We
also include our source code in the supplementary material. In HEPO, we use two policies for
optimization, with each policy maintaining the same model configurations as those used in PPO.
Below we introduce HEPO-specific hyperparameters used in our experiments in Section 4.1. The
hyperparameters for updating the Lagrangian multiplier α in HEPO are listed as follows:

Table 2: HEPO Hyperparameters
Name Value

Initial α 0.0
Step size η of α (learning rate) 0.01
Clipping range of δα (−ϵα, ϵα) 1.0

Range of the α value [0,∞)

For baselines, we search for hyperparamters λ for J +H in Ant, FrankaCabinet, and AllegroHand,
as shown in Section B.2. We set λ = 1 for all the experiments because it shows better performance
on the three chosen environments. For HuRL [10], we follow the scheduling setting provided in their
paper.

16

B Supplementary Experimental Results

B.1 All Learning Curves on the task objective J

We present all the learning curves in Figure 4.

0 500 1000 1500 2000 2500
Iteration

0

2500

5000

7500

10000

R
et

ur
n

Ant

0 500 1000 1500
Iteration

1000

750

500

250

0
Anymal

0 1000 2000 3000
Iteration

100

200

300

400

Quadcopter

0 200 400 600 800
Iteration

0

500

1000

Ingenuity

0 2000 4000 6000 8000 10000
Iteration

0

2500

5000

7500

R
et

ur
n

Humanoid

0 5000 10000 15000
Iteration

0.00

0.02

0.04

AllegroHand

0 500 1000 1500
Iteration

0.0

0.2

0.4

0.6

FrankaCabinet

0 1000 2000 3000 4000 5000
Iteration

0.0

0.2

0.4

0.6
FrankaCubeStack

0 5000 10000 15000
Iteration

0.00

0.02

0.04

0.06

0.08

R
et

ur
n

ShadowHand

0 2000 4000 6000 8000 10000
Iteration

0.0

0.1

0.2

0.3

ShadowHandSpin

0 2000 4000 6000 8000 10000
Iteration

0.00

0.02

0.04

0.06

ShadowHandUpsideDown

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6
ShadowHandBlockStack

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

ShadowHandBottleCap

0 2000 4000 6000 8000 10000
Iteration

0.0

0.1

0.2

0.3
ShadowHandCatchAbreast

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6
ShadowHandCatchOver2Underarm

0 2000 4000 6000 8000 10000
Iteration

0.0

0.1

0.2

0.3

ShadowHandCatchUnderarm

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

ShadowHandDoorCloseInward

0 2000 4000 6000 8000 10000
Iteration

0.000

0.005

0.010

ShadowHandDoorCloseOutward

0 2000 4000 6000 8000 10000
Iteration

0.0

0.1

0.2

0.3

0.4
ShadowHandDoorOpenInward

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6
ShadowHandDoorOpenOutward

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8

R
et

ur
n

ShadowHandGraspAndPlace

0 2000 4000 6000 8000 10000
Iteration

0.0

0.1

0.2

0.3

0.4

ShadowHandKettle

0 2000 4000 6000 8000 10000
Iteration

0.000

0.025

0.050

0.075

0.100
ShadowHandLiftUnderarm

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6
ShadowHandOver

0 2000 4000 6000 8000 10000
Iteration

0.00000

0.00025

0.00050

0.00075

0.00100

R
et

ur
n

ShadowHandPushBlock

0 2000 4000 6000 8000 10000
Iteration

0.0000

0.0002

0.0004

ShadowHandReOrientation

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

0.6

0.8
ShadowHandScissors

0 2000 4000 6000 8000 10000
Iteration

0.0

0.2

0.4

ShadowHandSwingCup

0 2000 4000 6000 8000 10000
Iteration

0.050

0.025

0.000

0.025

0.050

R
et

ur
n

ShadowHandSwitch

0 2000 4000 6000 8000 10000
Iteration

0.000

0.005

0.010

0.015

0.020
ShadowHandTwoCatchUnderarm

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

J-only H-only J+H HuRL PBRS EIPO HEPO

Figure 4: All learning curves in Section 4.1

B.2 Sensitivity to hyperparameters

In this section, we aim to verify HEPO’s sensitivity to two main types of hyperparameters: (1) the
weight of the heuristic reward in optimization (denoted as λ) and (2) the learning rate for updating α.

17

0 1000 2000
Iteration

0.00

0.25

0.50

0.75

1.00
H

eu
ri

st
ic

 n
or

m
al

iz
ed

 r
et

ur
n

Ant

0 500 1000 1500
Iteration

0.0

0.5

1.0

1.5

2.0

2.5
FrankaCabinet

0 5000 10000 15000
Iteration

0.0

0.5

1.0

1.5

2.0
AllegroHand

0.01 0.1 1 5HEPO J+H

Figure 5: Sensitivity to λ

0 1000 2000
Iteration

0.00

0.25

0.50

0.75

1.00

H
eu

ri
st

ic
 n

or
m

al
iz

ed
 r

et
ur

n

Ant

0 500 1000 1500
Iteration

0.0

0.5

1.0

1.5

2.0

FrankaCabinet

0 5000 10000 15000
Iteration

0.0

0.5

1.0

1.5

2.0

AllegroHand
Lagrangian multiplier step size () 0.01 0.0001

Figure 6: Sensitivity to alpha learning rate

Similar to Section 4.3, we conducted our experiments on the Ant, FrankaCabinet, and AllegroHand
tasks.

B.2.1 Sensitivity to the λ Value

Both HEPO and J+H can set a scaling coefficient to weight the heuristic reward in optimization,
such that the objective becomes J(π) + λH(π). This scaling coefficient can be used to balance
both objectives. In this study, we compare HEPO and J+H on their performance sensitivity to the
choice of λ, exhaustively training both HEPO and J+H with varying λ values. Note that though the
formulation of HEPO does not depend on λ, one can still set a λ coefficient to scale the heuristic
reward in HEPO. In our experiments, we did not optimize λ for HEPO but for the baselines trained
with both rewards (J+H). In Figure 5, we found that J+H is sensitive to λ in all selected tasks, while
HEPO performs well across a wide range of λ values. This indicates that HEPO is robust to the
choice of λ.

B.2.2 Sensitivity to the Learning Rate for Updating α

HEPO’s robustness relies on the α update, as it reflects the necessary constraint information at
each iteration. Similar to Appendix B.2.1, setting different initial values of α is equivalent to using
different λ values for our estimation, since both can be rewritten as the ratio between H(π) and J(π).
Both of these parameters indicate the necessary constraint information for conducting multi-objective
optimization. In this study, we aim to verify whether HEPO can yield comparable improvement gaps
under different initial values of α, thus providing a more robust optimization procedure.

As shown in Figure 6, we observe that HEPO is also robust to the choice of α’s initial values, similar
to the results in Figure 5.

B.3 Additional results

Generality of HEPO: We also demonstrated HEPO can be implemented over the other RL algorithms
in addition to PPO. We integrated HEPO into HuRL’s SAC codebase. Despite HuRL using tuned
hyperparameters as reported in its paper [10], HEPO outperformed SAC and matched HuRL on the

18

most challenging task in Figure 7b using the same hyperparameters from Section 4 of our manuscript,
showing the generality of HEPO on different RL algorithms.

Better than EIPO on the most challenging task: Comparing HEPO and EIPO on the most
challenging task, Montezuma’s Revenge, reported in EIPO’s paper [22] using RND exploration
bonuses [23] (as used in the EIPO paper), Figure 7a shows that HEPO performs better than EIPO.
Also, HEPO matched PPO trained with RND bonuses at convergence (2 billion frames) reported in
[23] using only 20% of the training data, demonstrating drastically improved sample efficiency.

How quality of heuristic reward functions impact HEPO? We believe that Figure 2 reveals the
relationship between HEPO’s performance and the quality of the heuristic reward. The policy trained
with only heuristic rewards (H-only) represents both the asymptotic performance of in HEPO and the
quality of the heuristic itself. We found a positive correlation (Pearson coefficient of 0.9) between the
average performances of H-only and HEPO in Figure 2 results, suggesting that better heuristics lead
to improved HEPO performance. Figure 7c provides more details.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Frame 1e8

0

2000

4000

6000

8000

Av
er

ag
e

ta
sk

 r
et

ur
n

MontezumaRevenge-v5

PPO EIPO HEPO

(a) EIPO v.s. HEPO on PPO

0 50 100 150 200
Epoch

500

400

300

200

100

0

Av
er

ag
e

ta
sk

 r
et

ur
n

Sparse-Reacher-v2

SAC HuRL PBRS HEPO

(b) HuRL v.s. HEPO on SAC

0.0 0.5 1.0 1.5 2.0
Performance of H-only

0

1

2

3

Pe
rf

or
m

an
ce

 o
f H

E
PO Corr(HEPO, H-only) = 0.9

(c) Correlation between the
performance of HEPO and H-
only.

Figure 7: (a) Comparison of HEPO and EIPO [22] on the most challenging Atari task, Montezuma’s
Revenge, shown in the EIPO paper [22]. Both are implemented on top of EIPO’s PPO codebase
using RND exploration bonuses [23] as heuristic rewards H , as suggested in [22]. HEPO outperforms
EIPO, achieving the performance (denoted as dashed line) similar to PPO trained with RND at
convergence (2 billion frames) reported in [23] in five times fewer frames. (b) HEPO matches HuRL’s
performance on the most challenging Sparse-Reacher task using HuRL’s SAC codebase [10],
despite HuRL being tuned for this task and HEPO using the same hyperparameters from our Section
4. This also highlights HEPO’s generality in different RL algorithms. (c) HEPO’s performance is
positively correlated with that of the heuristic policy trained with heuristic rewards only (H-only),
suggesting that HEPO’s effectiveness will improve as the quality of heuristic rewards increases.

C Environment Details

As depicted in Section 4, we conducted our experiments based on the Isaac Gym (ISAAC) simu-
lator [19] and the Bi-DexHands (BI-DEX) benchmark [24]. The selected task classes in ISAAC
can be partitioned into 4 groups - Locomotion Tracking (Anymal), Locomotion Progressing (Ant
and Humanoid), Helicopter Progressing (Ingenuity and Quadcopter), and Manipulation Tasks
(FrankaCabinet, FrankaCubeStack, ShadowHand, and AllegroHand). In addition, BI-DEX pro-
vides dual dexterous hand manipulation tasks through ISAAC, reaching human-level sophistica-
tion of hand dexterity and bimanual coordination. Their tasks include ShadowHandOver, Shad-
owHandCatchUnderarm, ShadowHandCatchOver2Underarm, ShadowHandCatchAbreast, Shad-
owHandTwoCatchUnderarm, ShadowHandLiftUnderarm, ShadowHandDoorOpenInward, Shad-
owHandDoorOpenOutward, ShadowHandDoorCloseInward, ShadowHandDoorCloseOutward,
ShadowHandSpin, ShadowHandUpsideDown, ShadowHandBlockStack, ShadowHandBottleCap,
ShadowHandGraspAndPlace, ShadowHandKettle, ShadowHandPen, ShadowHandPushBlock,
ShadowHandReOrientation, ShadowHandScissors, ShadowHandSwingCup.

For Locomotion Tracking, our emphasis lies in assessing the precision of velocities in linear and
angular motions, ensuring that the robot responds closely to the assigned values. To this end, we define
tracking errors as our task rewards. For Locomotion Progressing and Helicopter Progressing, our
emphasis lies in evaluating the progress made by the robots in reaching the assigned destination from
a given start point. To this end, we define movement progress as our task rewards. For Manipulation
tasks and all tasks within the BI-DEX benchmark, our emphasis lies in whether and how quickly the
robotic hands can successfully complete the assigned missions, reaching the desired goal states. To

19

this end, we define task rewards using a binary label, assigning a value of 1 to indicate successful
attainment of the goal state and 0 otherwise.

The following are our reward function definitions, which include heuristic and task reward terms in
Python style:

Isaac Gym - Locomotion Tracking Task: Anymal

def compute_anymal_reward(
root_states,
commands,
torques,
contact_forces,
knee_indices,
episode_lengths,
rew_scales,
base_index,
max_episode_length

):
(reward, reset, feet_in air, feet_air_time, episode sums)
type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Dict[str, float], int, int) -> Tuple[Tensor,

Tensor, Tensor]↪→

prepare quantities (TODO: return from obs ?)
base_quat = root_states[:, 3:7]
base_lin_vel = quat_rotate_inverse(base_quat, root_states[:, 7:10])
base_ang_vel = quat_rotate_inverse(base_quat, root_states[:, 10:13])

velocity tracking reward
lin_vel_error = torch.sum(torch.square(commands[:, :2] - base_lin_vel[:, :2]), dim=1)
ang_vel_error = torch.square(commands[:, 2] - base_ang_vel[:, 2])
rew_lin_vel_xy = torch.exp(-lin_vel_error/0.25) * rew_scales["lin_vel_xy"]
rew_ang_vel_z = torch.exp(-ang_vel_error/0.25) * rew_scales["ang_vel_z"]

torque penalty
rew_torque = torch.sum(torch.square(torques), dim=1) * rew_scales["torque"]

total_reward = rew_lin_vel_xy + rew_ang_vel_z + rew_torque
total_reward = torch.clip(total_reward, 0., None)
tracking_reward = -(lin_vel_error + ang_vel_error)

reset agents
reset = torch.norm(contact_forces[:, base_index, :], dim=1) > 1.
reset = reset | torch.any(torch.norm(contact_forces[:, knee_indices, :], dim=2) > 1., dim=1)
time_out = episode_lengths >= max_episode_length - 1 # no terminal reward for time-outs
reset = reset | time_out
heuristic_reward, task_reward = total_reward.detach(), tracking_reward
return heuristic_reward, task_reward, reset

20

Isaac Gym - Locomotion Progressing Task: Ant

def compute_ant_reward(
obs_buf,
reset_buf,
progress_buf,
actions,
up_weight,
heading_weight,
potentials,
prev_potentials,
actions_cost_scale,
energy_cost_scale,
joints_at_limit_cost_scale,
termination_height,
death_cost,
max_episode_length

):
type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float,

float, float) -> Tuple[Tensor, Tensor, Tensor]↪→

reward from direction headed
heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight
heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:,

11] / 0.8)↪→

aligning up axis of ant and environment
up_reward = torch.zeros_like(heading_reward)
up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward)

energy penalty for movement
actions_cost = torch.sum(actions ** 2, dim=-1)
electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 20:28]), dim=-1)
dof_at_limit_cost = torch.sum(obs_buf[:, 12:20] > 0.99, dim=-1)

reward for duration of staying alive
alive_reward = torch.ones_like(potentials) * 0.5
progress_reward = potentials - prev_potentials

total_reward = progress_reward + alive_reward + up_reward + heading_reward - \
actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost *

joints_at_limit_cost_scale↪→

adjust reward for fallen agents
total_reward = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) *

death_cost, total_reward)↪→

reset agents
reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset)
heuristic_reward, task_reward = total_reward, progress_reward
return heuristic_reward, task_reward, reset

21

Isaac Gym - Locomotion Progressing Task: Humanoid

def compute_humanoid_reward(
obs_buf,
reset_buf,
progress_buf,
actions,
up_weight,
heading_weight,
potentials,
prev_potentials,
actions_cost_scale,
energy_cost_scale,
joints_at_limit_cost_scale,
max_motor_effort,
motor_efforts,
termination_height,
death_cost,
max_episode_length

):
type: (Tensor, Tensor, Tensor, Tensor, float, float, Tensor, Tensor, float, float, float, float,

Tensor, float, float, float) -> Tuple[Tensor, Tensor, Tensor]↪→

reward from the direction headed
heading_weight_tensor = torch.ones_like(obs_buf[:, 11]) * heading_weight
heading_reward = torch.where(obs_buf[:, 11] > 0.8, heading_weight_tensor, heading_weight * obs_buf[:,

11] / 0.8)↪→

reward for being upright
up_reward = torch.zeros_like(heading_reward)
up_reward = torch.where(obs_buf[:, 10] > 0.93, up_reward + up_weight, up_reward)

actions_cost = torch.sum(actions ** 2, dim=-1)

energy cost reward
motor_effort_ratio = motor_efforts / max_motor_effort
scaled_cost = joints_at_limit_cost_scale * (torch.abs(obs_buf[:, 12:33]) - 0.98) / 0.02
dof_at_limit_cost = torch.sum((torch.abs(obs_buf[:, 12:33]) > 0.98) * scaled_cost *

motor_effort_ratio.unsqueeze(0), dim=-1)↪→

electricity_cost = torch.sum(torch.abs(actions * obs_buf[:, 33:54]) *
motor_effort_ratio.unsqueeze(0), dim=-1)↪→

reward for duration of being alive
alive_reward = torch.ones_like(potentials) * 2.0
progress_reward = potentials - prev_potentials

total_reward = progress_reward + alive_reward + up_reward + heading_reward - \
actions_cost_scale * actions_cost - energy_cost_scale * electricity_cost - dof_at_limit_cost

adjust reward for fallen agents
total_reward = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(total_reward) *

death_cost, total_reward)↪→

reset agents
reset = torch.where(obs_buf[:, 0] < termination_height, torch.ones_like(reset_buf), reset_buf)
reset = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf), reset)
heuristic_reward, task_reward = total_reward, progress_reward
return heuristic_reward, task_reward, reset

22

Isaac Gym - Helicopter Progressing Task: Ingenuity

def compute_ingenuity_reward(root_positions, target_root_positions, root_quats, root_linvels,
root_angvels, reset_buf, progress_buf, max_episode_length):↪→
type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float) -> Tuple[Tensor, Tensor,

Tensor]↪→

distance to target
target_dist = torch.sqrt(torch.square(target_root_positions - root_positions).sum(-1))
pos_reward = 1.0 / (1.0 + target_dist * target_dist)

uprightness
ups = quat_axis(root_quats, 2)
tiltage = torch.abs(1 - ups[..., 2])
up_reward = 5.0 / (1.0 + tiltage * tiltage)

spinning
spinnage = torch.abs(root_angvels[..., 2])
spinnage_reward = 1.0 / (1.0 + spinnage * spinnage)

combined reward
uprigness and spinning only matter when close to the target
reward = pos_reward + pos_reward * (up_reward + spinnage_reward)

resets due to misbehavior
ones = torch.ones_like(reset_buf)
die = torch.zeros_like(reset_buf)
die = torch.where(target_dist > 8.0, ones, die)
die = torch.where(root_positions[..., 2] < 0.5, ones, die)

resets due to episode length
reset = torch.where(progress_buf >= max_episode_length - 1, ones, die)
heuristic_reward, task_reward = reward, pos_reward
return heuristic_reward, task_reward, reset

Isaac Gym - Helicopter Progressing Task: Quadcopter

def compute_quadcopter_reward(root_positions, root_quats, root_linvels, root_angvels, reset_buf,
progress_buf, max_episode_length):↪→
type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, float) -> Tuple[Tensor, Tensor, Tensor]

distance to target
target_dist = torch.sqrt(root_positions[..., 0] * root_positions[..., 0] +

root_positions[..., 1] * root_positions[..., 1] +
(1 - root_positions[..., 2]) * (1 - root_positions[..., 2]))

pos_reward = 1.0 / (1.0 + target_dist * target_dist)

uprightness
ups = quat_axis(root_quats, 2)
tiltage = torch.abs(1 - ups[..., 2])
up_reward = 1.0 / (1.0 + tiltage * tiltage)

spinning
spinnage = torch.abs(root_angvels[..., 2])
spinnage_reward = 1.0 / (1.0 + spinnage * spinnage)

combined reward
uprigness and spinning only matter when close to the target
reward = pos_reward + pos_reward * (up_reward + spinnage_reward)

resets due to misbehavior
ones = torch.ones_like(reset_buf)
die = torch.zeros_like(reset_buf)
die = torch.where(target_dist > 3.0, ones, die)
die = torch.where(root_positions[..., 2] < 0.3, ones, die)

resets due to episode length
reset = torch.where(progress_buf >= max_episode_length - 1, ones, die)
heuristic_reward, task_reward = reward, pos_reward
return heuristic_reward, task_reward, reset

23

Isaac Gym - Manipulation Task: FrankaCabinet

def compute_franka_reward(
reset_buf, progress_buf, reset_goal_buf, successes, consecutive_successes, actions, cabinet_dof_pos,
franka_grasp_pos, drawer_grasp_pos, franka_grasp_rot, drawer_grasp_rot,
franka_lfinger_pos, franka_rfinger_pos,
gripper_forward_axis, drawer_inward_axis, gripper_up_axis, drawer_up_axis,
num_envs, dist_reward_scale, rot_reward_scale, around_handle_reward_scale, open_reward_scale,
finger_dist_reward_scale, action_penalty_scale, distX_offset, max_episode_length

):
type: (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor,

Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, int, float, float, float, float, float, float,
float, float) -> Tuple[Tensor, Tensor, Tensor, Tensor]

↪→
↪→

distance from hand to the drawer
d = torch.norm(franka_grasp_pos - drawer_grasp_pos, p=2, dim=-1)
dist_reward = 1.0 / (1.0 + d ** 2)
dist_reward *= dist_reward
dist_reward = torch.where(d <= 0.02, dist_reward * 2, dist_reward)

axis1 = tf_vector(franka_grasp_rot, gripper_forward_axis)
axis2 = tf_vector(drawer_grasp_rot, drawer_inward_axis)
axis3 = tf_vector(franka_grasp_rot, gripper_up_axis)
axis4 = tf_vector(drawer_grasp_rot, drawer_up_axis)

dot1 = torch.bmm(axis1.view(num_envs, 1, 3), axis2.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) #
alignment of forward axis for gripper↪→

dot2 = torch.bmm(axis3.view(num_envs, 1, 3), axis4.view(num_envs, 3, 1)).squeeze(-1).squeeze(-1) #
alignment of up axis for gripper↪→

reward for matching the orientation of the hand to the drawer (fingers wrapped)
rot_reward = 0.5 * (torch.sign(dot1) * dot1 ** 2 + torch.sign(dot2) * dot2 ** 2)

bonus if left finger is above the drawer handle and right below
around_handle_reward = torch.zeros_like(rot_reward)
around_handle_reward = torch.where(franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2],

torch.where(franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2],
around_handle_reward + 0.5, around_handle_reward),

around_handle_reward)↪→
reward for distance of each finger from the drawer
finger_dist_reward = torch.zeros_like(rot_reward)
lfinger_dist = torch.abs(franka_lfinger_pos[:, 2] - drawer_grasp_pos[:, 2])
rfinger_dist = torch.abs(franka_rfinger_pos[:, 2] - drawer_grasp_pos[:, 2])
finger_dist_reward = torch.where(franka_lfinger_pos[:, 2] > drawer_grasp_pos[:, 2],

torch.where(franka_rfinger_pos[:, 2] < drawer_grasp_pos[:, 2],
(0.04 - lfinger_dist) + (0.04 - rfinger_dist),

finger_dist_reward), finger_dist_reward)↪→

regularization on the actions (summed for each environment)
action_penalty = torch.sum(actions ** 2, dim=-1)

how far the cabinet has been opened out
open_reward = cabinet_dof_pos[:, 3] * around_handle_reward + cabinet_dof_pos[:, 3] #

drawer_top_joint↪→

rewards = dist_reward_scale * dist_reward + rot_reward_scale * rot_reward \
+ around_handle_reward_scale * around_handle_reward + open_reward_scale * open_reward \
+ finger_dist_reward_scale * finger_dist_reward - action_penalty_scale * action_penalty

bonus for opening drawer properly
rewards = torch.where(cabinet_dof_pos[:, 3] > 0.01, rewards + 0.5, rewards)
rewards = torch.where(cabinet_dof_pos[:, 3] > 0.2, rewards + around_handle_reward, rewards)
rewards = torch.where(cabinet_dof_pos[:, 3] > 0.39, rewards + (2.0 * around_handle_reward), rewards)

prevent bad style in opening drawer
rewards = torch.where(franka_lfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset,

torch.ones_like(rewards) * -1, rewards)
rewards = torch.where(franka_rfinger_pos[:, 0] < drawer_grasp_pos[:, 0] - distX_offset,

torch.ones_like(rewards) * -1, rewards)

reset if drawer is open or max length reached
successes = torch.where(cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(successes), successes)
goal_reach = torch.where(cabinet_dof_pos[:, 3] > 0.39, torch.ones_like(reset_goal_buf),

torch.zeros_like(reset_goal_buf))↪→
reset_buf = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(reset_buf),

reset_buf)↪→

consecutive_successes = torch.where(reset_buf > 0, successes * reset_buf, consecutive_successes)
heuristic_reward, task_reward = rewards, goal_reach
return heuristic_reward, reset_buf, task_reward, consecutive_successes

24

Isaac Gym - Manipulation Task: FrankaCubeStack

def compute_franka_reward(
reset_buf, progress_buf, reset_goal_buf, actions, states, reward_settings, max_episode_length

):
type: (Tensor, Tensor, Tensor, Tensor, Dict[str, Tensor], Dict[str, float], float) -> Tuple[Tensor,

Tensor, Tensor]↪→

Compute per-env physical parameters
target_height = states["cubeB_size"] + states["cubeA_size"] / 2.0
cubeA_size = states["cubeA_size"]
cubeB_size = states["cubeB_size"]

distance from hand to the cubeA
d = torch.norm(states["cubeA_pos_relative"], dim=-1)
d_lf = torch.norm(states["cubeA_pos"] - states["eef_lf_pos"], dim=-1)
d_rf = torch.norm(states["cubeA_pos"] - states["eef_rf_pos"], dim=-1)
dist_reward = 1 - torch.tanh(10.0 * (d + d_lf + d_rf) / 3)

reward for lifting cubeA
cubeA_height = states["cubeA_pos"][:, 2] - reward_settings["table_height"]
cubeA_lifted = (cubeA_height - cubeA_size) > 0.04
lift_reward = cubeA_lifted

how closely aligned cubeA is to cubeB (only provided if cubeA is lifted)
offset = torch.zeros_like(states["cubeA_to_cubeB_pos"])
offset[:, 2] = (cubeA_size + cubeB_size) / 2
d_ab = torch.norm(states["cubeA_to_cubeB_pos"] + offset, dim=-1)
align_reward = (1 - torch.tanh(10.0 * d_ab)) * cubeA_lifted

Dist reward is maximum of dist and align reward
dist_reward = torch.max(dist_reward, align_reward)

final reward for stacking successfully (only if cubeA is close to target height and corresponding
location, and gripper is not grasping)↪→

cubeA_align_cubeB = (torch.norm(states["cubeA_to_cubeB_pos"][:, :2], dim=-1) < 0.02)
cubeA_on_cubeB = torch.abs(cubeA_height - target_height) < 0.02
gripper_away_from_cubeA = (d > 0.04)
stack_reward = cubeA_align_cubeB & cubeA_on_cubeB & gripper_away_from_cubeA

Compose rewards

We either provide the stack reward or the align + dist reward
rewards = torch.where(

stack_reward,
reward_settings["r_stack_scale"] * stack_reward,
reward_settings["r_dist_scale"] * dist_reward + reward_settings["r_lift_scale"] * lift_reward +

reward_settings[↪→
"r_align_scale"] * align_reward,

)

Compute resets
reset_buf = torch.where((progress_buf >= max_episode_length - 1), torch.ones_like(reset_buf),

reset_buf)↪→
goal_reach = torch.where(stack_reward > 0, torch.ones_like(reset_goal_buf),

torch.zeros_like(reset_goal_buf))↪→
heuristic_reward, task_reward = rewards, goal_reach
return heuristic_reward, task_reward, reset_buf

25

Isaac Gym - Manipulation Task: ShadowHand

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1)

if ignore_z_rot:
success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist * dist_reward_scale
rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale

action_penalty = torch.sum(actions ** 2, dim=-1)

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = dist_rew + action_penalty * action_penalty_scale

Find out which envs hit the goal and update successes count
goal_reach = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf),

reset_goal_buf)↪→
successes = successes + goal_reach

Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_reach == 1, reward + reach_goal_bonus, reward)

Fall penalty: distance to the goal is larger than a threshold
reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward)

num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())

cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 -
av_factor)*consecutive_successes, consecutive_successes)↪→

heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, resets, task_reward, progress_buf, successes, cons_successes

26

Isaac Gym - Manipulation Task: AllegroHand

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1)

if ignore_z_rot:
success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist * dist_reward_scale
rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale

action_penalty = torch.sum(actions ** 2, dim=-1)

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = dist_rew + rot_rew + action_penalty * action_penalty_scale

Find out which envs hit the goal and update successes count
goal_reach = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf),

reset_goal_buf)↪→
successes = successes + goal_reach

Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_reach == 1, reward + reach_goal_bonus, reward)

Fall penalty: distance to the goal is larger than a threshold
reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

timed_out = progress_buf >= max_episode_length - 1
resets = torch.where(timed_out, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(timed_out, reward + 0.5 * fall_penalty, reward)

num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())

cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 -
av_factor)*consecutive_successes, consecutive_successes)↪→

heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, resets, task_reward, progress_buf, successes, cons_successes

27

Bi-DexHands: ShadowHandOver

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)
if ignore_z_rot:

success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = torch.exp(-0.2*(dist_rew * dist_reward_scale + rot_dist))

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(goal_dist) <= 0, torch.ones_like(reset_goal_buf), reset_goal_buf)
successes = torch.where(successes == 0,

torch.where(goal_dist < 0.03, torch.ones_like(successes), successes), successes)

Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward)

Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(object_pos[:, 2] <= 0.2, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(object_pos[:, 2] <= 0.2, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length, reward + 0.5 * fall_penalty, reward)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()

goal_reach = torch.where(goal_dist <= 0.03, torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, task_reward, resets, goal_resets, progress_buf, successes, cons_successes

28

Bi-DexHands: ShadowHandCatchUnderarm

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)

if ignore_z_rot:
success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = torch.exp(-0.2*(dist_rew * dist_reward_scale + rot_dist))

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(goal_dist) <= 0, torch.ones_like(reset_goal_buf), reset_goal_buf)
successes = torch.where(successes == 0,

torch.where(goal_dist < 0.03, torch.ones_like(successes), successes), successes)

Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(object_pos[:, 2] <= 0.1, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(object_pos[:, 2] <= 0.1, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length, reward + 0.5 * fall_penalty, reward)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(goal_dist <= 0.03,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, task_reward, resets, goal_resets, progress_buf, successes, cons_successes

29

Bi-DexHands: ShadowHandCatchOver2Underarm

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, left_hand_base_pos,

right_hand_base_pos,↪→
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool, device:

str↪→
):

Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)
if ignore_z_rot:

success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = torch.exp(-0.2*(dist_rew * dist_reward_scale + rot_dist))

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(goal_dist) <= 0, torch.ones_like(reset_goal_buf), reset_goal_buf)
successes = torch.where(successes == 0,

torch.where(goal_dist < 0.03, torch.ones_like(successes), successes), successes)

Check env termination conditions, including maximum success number
right_hand_base_dist = torch.norm(right_hand_base_pos - torch.tensor([0.0, 0.0, 0.5],

dtype=torch.float, device=device), p=2, dim=-1)↪→
left_hand_base_dist = torch.norm(left_hand_base_pos - torch.tensor([0.0, -0.8, 0.5],

dtype=torch.float, device=device), p=2, dim=-1)↪→

resets = torch.where(right_hand_base_dist >= 0.1, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_base_dist >= 0.1, torch.ones_like(resets), resets)
resets = torch.where(object_pos[:, 2] <= 0.3, torch.ones_like(resets), resets)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length, reward + 0.5 * fall_penalty, reward)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(goal_dist <= 0.03,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, task_reward, resets, goal_resets, progress_buf, successes, cons_successes

30

Bi-DexHands: ShadowHandCatchAbreast

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, left_hand_pos,

right_hand_pos, left_hand_base_pos, right_hand_base_pos,↪→
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool, device:

str↪→
):

Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)

if ignore_z_rot:
success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = torch.exp(-0.2*(dist_rew * dist_reward_scale + rot_dist))

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(goal_dist) <= 0, torch.ones_like(reset_goal_buf), reset_goal_buf)

successes = torch.where(successes == 0,
torch.where(goal_dist < 0.03, torch.ones_like(successes), successes), successes)

Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(object_pos[:, 2] <= 0.2, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
right_hand_base_dist = torch.norm(right_hand_base_pos - torch.tensor([-0.3, -0.55, 0.5],

dtype=torch.float, device=device), p=2, dim=-1)↪→
left_hand_base_dist = torch.norm(left_hand_base_pos - torch.tensor([-0.3, -1.15, 0.5],

dtype=torch.float, device=device), p=2, dim=-1)↪→

resets = torch.where(right_hand_base_dist >= 0.1, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_base_dist >= 0.1, torch.ones_like(resets), resets)

resets = torch.where(object_pos[:, 2] <= 0.2, torch.ones_like(resets), resets)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length, reward + 0.5 * fall_penalty, reward)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(goal_dist <= 0.03,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, task_reward, resets, goal_resets, progress_buf, successes, cons_successes

31

Bi-DexHands: ShadowHandTwoCatchUnderarm

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, object_another_pos,

object_another_rot, target_another_pos, target_another_rot,↪→
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)
if ignore_z_rot:

success_tolerance = 2.0 * success_tolerance

goal_another_dist = torch.norm(target_another_pos - object_another_pos, p=2, dim=-1)
if ignore_z_rot:

success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

quat_another_diff = quat_mul(object_another_rot, quat_conjugate(target_another_rot))
rot_another_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_another_diff[:, 0:3], p=2, dim=-1),

max=1.0))↪→

dist_rew = goal_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = torch.exp(-0.2*(dist_rew * dist_reward_scale + rot_dist)) +
torch.exp(-0.2*(goal_another_dist * dist_reward_scale + rot_another_dist))↪→

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(goal_dist) <= 0, torch.ones_like(reset_goal_buf), reset_goal_buf)
successes = torch.where(successes == 0,

torch.where(goal_dist + goal_another_dist < 0.06, torch.ones_like(successes),
successes), successes)↪→

Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(object_pos[:, 2] <= 0.2, reward + fall_penalty, reward)
reward = torch.where(object_another_pos[:, 2] <= 0.2, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(object_pos[:, 2] <= 0.2, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(object_another_pos[:, 2] <= 0.2, torch.ones_like(reset_buf), resets)

if max_consecutive_successes > 0:
Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length, reward + 0.5 * fall_penalty, reward)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(goal_dist + goal_another_dist <= 0.06,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach
return heuristic_reward, task_reward, resets, goal_resets, progress_buf, successes, cons_successes

32

Bi-DexHands: ShadowHandLiftUnderarm

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, pot_left_handle_pos,

pot_right_handle_pos,↪→
left_hand_pos, right_hand_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)

goal_dist = target_pos[:, 2] - object_pos[:, 2]
right_hand_dist = torch.norm(pot_right_handle_pos - right_hand_pos, p=2, dim=-1)
left_hand_dist = torch.norm(pot_left_handle_pos - left_hand_pos, p=2, dim=-1)

right_hand_dist_rew = right_hand_dist
left_hand_dist_rew = left_hand_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_dist < 0.08,

torch.where(left_hand_dist < 0.08,
3*(0.385 - goal_dist), up_rew), up_rew)

reward = 0.2 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(object_pos[:, 2] <= 0.3, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(right_hand_dist >= 0.2, torch.ones_like(resets), resets)
resets = torch.where(left_hand_dist >= 0.2, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(goal_dist < 0.05, torch.ones_like(successes), successes), successes)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(goal_dist <= 0.05,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

33

Bi-DexHands: ShadowHandDoorOpenInward

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, door_left_handle_pos,

door_right_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)

right_hand_finger_dist = (torch.norm(door_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +
torch.norm(door_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(door_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +
torch.norm(door_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(door_right_handle_pos - right_hand_th_pos, p=2, dim=-1))
left_hand_finger_dist = (torch.norm(door_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +

torch.norm(door_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(door_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +

torch.norm(door_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(door_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.5,

torch.where(left_hand_finger_dist < 0.5,
torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) *

2, up_rew), up_rew)↪→

reward = 2 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(right_hand_finger_dist >= 1.5, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) >
0.5, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) >= 0.5,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

34

Bi-DexHands: ShadowHandDoorOpenOutward

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, door_left_handle_pos,

door_right_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
right_hand_finger_dist = (torch.norm(door_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(door_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(door_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(door_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(door_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(door_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(door_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(door_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(door_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(door_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.5,

torch.where(left_hand_finger_dist < 0.5,
torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) *

2, up_rew), up_rew)↪→
reward = 2 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(right_hand_finger_dist >= 1.5, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) >
0.5, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) >= 0.5,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

35

Bi-DexHands: ShadowHandDoorCloseInward

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, door_left_handle_pos,

door_right_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
right_hand_finger_dist = (torch.norm(door_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(door_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(door_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(door_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(door_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(door_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(door_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(door_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(door_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(door_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.5,

torch.where(left_hand_finger_dist < 0.5,
1 - torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:,

1]) * 2, up_rew), up_rew)↪→

reward = 2 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(right_hand_finger_dist >= 1.5, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) <
0.5, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) <= 0.5,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

36

Bi-DexHands: ShadowHandDoorCloseOutward

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, door_left_handle_pos,

door_right_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
right_hand_finger_dist = (torch.norm(door_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(door_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(door_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(door_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(door_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(door_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(door_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(door_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(door_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(door_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.5,

torch.where(left_hand_finger_dist < 0.5,
1 - torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:,

1]) * 2, up_rew), up_rew)↪→

reward = 6 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(right_hand_finger_dist >= 3, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_finger_dist >= 3, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) <
0.5, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(torch.abs(door_right_handle_pos[:, 1] - door_left_handle_pos[:, 1]) <= 0.5,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

37

Bi-DexHands: ShadowHandSpin

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1)

if ignore_z_rot:
success_tolerance = 2.0 * success_tolerance

Orientation alignment
Modified so pen is symmetrical; since we only rotate around the z axis,
quat_diff_1 = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist_1 = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff_1[:, 0:3], p=2, dim=-1), max=1.0))
quat_diff_2 = quat_mul(object_rot, quat_conjugate(flip_orientation(target_rot)))
rot_dist_2 = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff_2[:, 0:3], p=2, dim=-1), max=1.0))
rot_dist = torch.min(rot_dist_1, rot_dist_2)

dist_rew = goal_dist * dist_reward_scale
rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale

action_penalty = torch.sum(actions ** 2, dim=-1)

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = dist_rew + rot_rew + action_penalty * action_penalty_scale

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf),

reset_goal_buf)↪→
successes = successes + goal_resets

Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward)

Fall penalty: distance to the goal is larger than a threshold
reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward)

num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())

cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 -
av_factor)*consecutive_successes, consecutive_successes)↪→

goal_reach = torch.where(torch.abs(rot_dist) <= success_tolerance,
torch.ones_like(reset_goal_buf), torch.zeros_like(reset_goal_buf))

heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,
goal_resets, progress_buf, successes, cons_successes↪→

38

Bi-DexHands: ShadowHandUpsideDown

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(object_pos - target_pos, p=2, dim=-1)

if ignore_z_rot:
success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

dist_rew = goal_dist * dist_reward_scale
rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale

action_penalty = torch.sum(actions ** 2, dim=-1)

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = dist_rew + rot_rew + action_penalty * action_penalty_scale

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf),

reset_goal_buf)↪→
successes = successes + goal_resets

Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward)

Fall penalty: distance to the goal is larger than a threshold
reward = torch.where(goal_dist >= fall_dist, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(goal_dist >= fall_dist, torch.ones_like(reset_buf), reset_buf)
if max_consecutive_successes > 0:

Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length - 1, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length - 1, reward + 0.5 * fall_penalty, reward)

num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())

cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 -
av_factor)*consecutive_successes, consecutive_successes)↪→

goal_reach = torch.where(torch.abs(rot_dist) <= success_tolerance, torch.ones_like(reset_goal_buf),
torch.zeros_like(reset_goal_buf))↪→

heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,
goal_resets, progress_buf, successes, cons_successes↪→

39

Bi-DexHands: ShadowHandBlockStack

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, block_right_handle_pos,

block_left_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
stack_pos1 = target_pos.clone()
stack_pos2 = target_pos.clone()

stack_pos1[:, 1] -= 0.1
stack_pos2[:, 1] -= 0.1
stack_pos1[:, 2] += 0.05

goal_dist1 = torch.norm(stack_pos1 - block_left_handle_pos, p=2, dim=-1)
goal_dist2 = torch.norm(stack_pos2 - block_right_handle_pos, p=2, dim=-1)

right_hand_finger_dist = (torch.norm(block_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +
torch.norm(block_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(block_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +
torch.norm(block_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(block_right_handle_pos - right_hand_th_pos, p=2, dim=-1))
left_hand_finger_dist = (torch.norm(block_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +

torch.norm(block_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(block_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +

torch.norm(block_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(block_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.5,

torch.where(left_hand_finger_dist < 0.5,
(0.24 - goal_dist1 - goal_dist2) * 2, up_rew), up_rew)

stack_rew = torch.zeros_like(right_hand_dist_rew)
stack_rew = torch.where(goal_dist2 < 0.07,

torch.where(goal_dist1 < 0.07,
(0.05-torch.abs(stack_pos1[:, 2] - block_left_handle_pos[:, 2])) * 50

,stack_rew),stack_rew)↪→

reward = 1.5 - right_hand_dist_rew - left_hand_dist_rew + up_rew + stack_rew

resets = torch.where(right_hand_dist_rew <= 0, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(right_hand_finger_dist >= 0.75, torch.ones_like(resets), resets)
resets = torch.where(left_hand_finger_dist >= 0.75, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(stack_rew > 1, torch.ones_like(successes), successes), successes)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(stack_rew >= 1,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

40

Bi-DexHands: ShadowHandBottleCap

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, bottle_cap_pos,

bottle_pos, bottle_cap_up,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
right_hand_dist = torch.norm(bottle_cap_pos - right_hand_pos, p=2, dim=-1)
left_hand_dist = torch.norm(bottle_pos - left_hand_pos, p=2, dim=-1)

right_hand_finger_dist = (torch.norm(bottle_cap_pos - right_hand_ff_pos, p=2, dim=-1) +
torch.norm(bottle_cap_pos - right_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(bottle_cap_pos - right_hand_rf_pos, p=2, dim=-1) +
torch.norm(bottle_cap_pos - right_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(bottle_cap_pos - right_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)

up_rew = torch.where(right_hand_finger_dist <= 0.3, torch.norm(bottle_cap_up - bottle_pos, p=2,
dim=-1) * 30, up_rew)↪→

reward = 2.0 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(bottle_cap_pos[:, 2] <= 0.5, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(right_hand_dist >= 0.5, torch.ones_like(resets), resets)
resets = torch.where(left_hand_dist >= 0.2, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.norm(bottle_cap_up - bottle_pos, p=2, dim=-1) > 0.03,
torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(torch.norm(bottle_cap_up - bottle_pos, p=2, dim=-1) >= 0.03,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

41

Bi-DexHands: ShadowHandGraspAndPlace

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, block_right_handle_pos,

block_left_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
right_hand_finger_dist = (torch.norm(block_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(block_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(block_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(block_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(block_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(block_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(block_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(block_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(block_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(block_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = torch.exp(-10 * right_hand_finger_dist)
left_hand_dist_rew = torch.exp(-10 * left_hand_finger_dist)

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.exp(-10 * torch.norm(block_right_handle_pos - block_left_handle_pos, p=2, dim=-1)) * 2

reward = right_hand_dist_rew + left_hand_dist_rew + up_rew

resets = torch.where(right_hand_dist_rew <= 0, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(right_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)
resets = torch.where(left_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.norm(block_right_handle_pos - block_left_handle_pos, p=2, dim=-1) <
0.2, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(torch.norm(block_right_handle_pos - block_left_handle_pos, p=2, dim=-1) <=

0.2,↪→
torch.ones_like(successes), torch.zeros_like(successes))

heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,
goal_resets, progress_buf, successes, cons_successes↪→

42

Bi-DexHands: ShadowHandKettle

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, kettle_handle_pos,

bucket_handle_pos, kettle_spout_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
right_hand_finger_dist = (torch.norm(kettle_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(kettle_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(kettle_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(kettle_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(kettle_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(bucket_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(bucket_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(bucket_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(bucket_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(bucket_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.7,

torch.where(left_hand_finger_dist < 0.7,
0.5 - torch.norm(bucket_handle_pos - kettle_spout_pos, p=2, dim=-1) *

2, up_rew), up_rew)↪→

reward = 1 + up_rew - right_hand_dist_rew - left_hand_dist_rew

resets = torch.where(bucket_handle_pos[:, 2] <= 0.2, torch.ones_like(reset_buf), reset_buf)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.norm(bucket_handle_pos - kettle_spout_pos, p=2, dim=-1) < 0.05,
torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(torch.norm(bucket_handle_pos - kettle_spout_pos, p=2, dim=-1) <= 0.05,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

43

Bi-DexHands: ShadowHandPen

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, pen_right_handle_pos,

pen_left_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
right_hand_finger_dist = (torch.norm(pen_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(pen_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(pen_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(pen_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(pen_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(pen_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(pen_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(pen_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(pen_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(pen_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = torch.exp(-10 * right_hand_finger_dist)
left_hand_dist_rew = torch.exp(-10 * left_hand_finger_dist)

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.75,

torch.where(left_hand_finger_dist < 0.75,
torch.norm(pen_right_handle_pos - pen_left_handle_pos, p=2, dim=-1) * 5 - 0.8,

up_rew), up_rew)↪→

reward = up_rew + right_hand_dist_rew + left_hand_dist_rew

resets = torch.where(right_hand_dist_rew <= 0, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(right_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)
resets = torch.where(left_hand_finger_dist >= 1.5, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.norm(pen_right_handle_pos - pen_left_handle_pos, p=2, dim=-1) * 5 >
1.5, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes)
goal_reach = torch.where(torch.norm(pen_right_handle_pos - pen_left_handle_pos, p=2, dim=-1) * 5 >=

1.5,↪→
torch.ones_like(successes), torch.zeros_like(successes))

heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,
goal_resets, progress_buf, successes, cons_successes↪→

44

Bi-DexHands: ShadowHandPushBlock

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, left_target_pos, left_target_rot,

right_target_pos, right_target_rot, block_right_handle_pos, block_left_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
left_goal_dist = torch.norm(left_target_pos - block_left_handle_pos, p=2, dim=-1)
right_goal_dist = torch.norm(right_target_pos - block_right_handle_pos, p=2, dim=-1)

right_hand_finger_dist = (torch.norm(block_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +
torch.norm(block_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(block_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +
torch.norm(block_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(block_right_handle_pos - right_hand_th_pos, p=2, dim=-1))
left_hand_finger_dist = (torch.norm(block_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +

torch.norm(block_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(block_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +

torch.norm(block_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(block_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = 1.2-1*right_hand_finger_dist
left_hand_dist_rew = 1.2-1*left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = 5 - 5*left_goal_dist - 5*right_goal_dist

reward = right_hand_dist_rew + left_hand_dist_rew + up_rew

resets = torch.where(right_hand_finger_dist >= 1.2, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(left_hand_finger_dist >= 1.2, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(torch.abs(left_goal_dist) <= 0.1,
torch.where(torch.abs(right_goal_dist) <= 0.1, torch.ones_like(successes),

torch.ones_like(successes) * 0.5), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = 0.5 * (torch.where(torch.abs(left_goal_dist) <= 0.1,

torch.ones_like(successes), torch.zeros_like(successes)) \
+ torch.where(torch.abs(right_goal_dist) <= 0.1,

torch.ones_like(successes), torch.zeros_like(successes)))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

45

Bi-DexHands: ShadowHandReOrientation

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, object_another_pos,

object_another_rot, target_another_pos, target_another_rot,↪→
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
goal_dist = torch.norm(target_pos - object_pos, p=2, dim=-1)
if ignore_z_rot:

success_tolerance = 2.0 * success_tolerance

goal_another_dist = torch.norm(target_another_pos - object_another_pos, p=2, dim=-1)
if ignore_z_rot:

success_tolerance = 2.0 * success_tolerance

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

quat_another_diff = quat_mul(object_another_rot, quat_conjugate(target_another_rot))
rot_another_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_another_diff[:, 0:3], p=2, dim=-1),

max=1.0))↪→

dist_rew = goal_dist * dist_reward_scale + goal_another_dist * dist_reward_scale
rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale + 1.0/(torch.abs(rot_another_dist) +

rot_eps) * rot_reward_scale↪→

action_penalty = torch.sum(actions ** 2, dim=-1)

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

reward = dist_rew + rot_rew + action_penalty * action_penalty_scale

Find out which envs hit the goal and update successes count
goal_resets = torch.where(torch.abs(rot_dist) < 0.1, torch.ones_like(reset_goal_buf), reset_goal_buf)
goal_resets = torch.where(torch.abs(rot_another_dist) < 0.1, torch.ones_like(reset_goal_buf),

reset_goal_buf)↪→

successes = successes + goal_resets

Success bonus: orientation is within `success_tolerance` of goal orientation
reward = torch.where(goal_resets == 1, reward + reach_goal_bonus, reward)

Fall penalty: distance to the goal is larger than a threashold
reward = torch.where(object_pos[:, 2] <= 0.2, reward + fall_penalty, reward)
reward = torch.where(object_another_pos[:, 2] <= 0.2, reward + fall_penalty, reward)

Check env termination conditions, including maximum success number
resets = torch.where(object_pos[:, 2] <= 0.2, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(object_another_pos[:, 2] <= 0.2, torch.ones_like(reset_buf), resets)

if max_consecutive_successes > 0:
Reset progress buffer on goal envs if max_consecutive_successes > 0
progress_buf = torch.where(torch.abs(rot_dist) <= success_tolerance,

torch.zeros_like(progress_buf), progress_buf)↪→
resets = torch.where(successes >= max_consecutive_successes, torch.ones_like(resets), resets)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

Apply penalty for not reaching the goal
if max_consecutive_successes > 0:

reward = torch.where(progress_buf >= max_episode_length, reward + 0.5 * fall_penalty, reward)

num_resets = torch.sum(resets)
finished_cons_successes = torch.sum(successes * resets.float())

cons_successes = torch.where(num_resets > 0, av_factor*finished_cons_successes/num_resets + (1.0 -
av_factor)*consecutive_successes, consecutive_successes)↪→

goal_reach = 0.5 * (torch.where(torch.abs(rot_dist) <= 0.1, torch.ones_like(reset_goal_buf),
torch.zeros_like(reset_goal_buf)) \↪→

+ torch.where(torch.abs(rot_another_dist) <= 0.1, torch.ones_like(reset_goal_buf),
torch.zeros_like(reset_goal_buf)))↪→

heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,
goal_resets, progress_buf, successes, cons_successes↪→

46

Bi-DexHands: ShadowHandScissors

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, scissors_right_handle_pos,

scissors_left_handle_pos, object_dof_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
right_hand_finger_dist = (torch.norm(scissors_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(scissors_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(scissors_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(scissors_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(scissors_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(scissors_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(scissors_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(scissors_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(scissors_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(scissors_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = torch.where(right_hand_finger_dist < 0.7,

torch.where(left_hand_finger_dist < 0.7,
(0.59 + object_dof_pos[:, 0]) * 5, up_rew), up_rew)

reward = 2 + up_rew - right_hand_dist_rew - left_hand_dist_rew

resets = torch.where(up_rew < -0.5, torch.ones_like(reset_buf), reset_buf)
resets = torch.where(right_hand_finger_dist >= 1.75, torch.ones_like(resets), resets)
resets = torch.where(left_hand_finger_dist >= 1.75, torch.ones_like(resets), resets)

Find out which envs hit the goal and update successes count
resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

successes = torch.where(successes == 0,
torch.where(object_dof_pos[:, 0] > -0.3, torch.ones_like(successes), successes),

successes)↪→

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(object_dof_pos[:, 0] >= -0.3,

torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

47

Bi-DexHands: ShadowHandSwingCup

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, cup_right_handle_pos,

cup_left_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
right_hand_finger_dist = (torch.norm(cup_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(cup_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(cup_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(cup_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(cup_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(cup_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(cup_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(cup_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(cup_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(cup_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

Orientation alignment for the cube in hand and goal cube
quat_diff = quat_mul(object_rot, quat_conjugate(target_rot))
rot_dist = 2.0 * torch.asin(torch.clamp(torch.norm(quat_diff[:, 0:3], p=2, dim=-1), max=1.0))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

rot_rew = 1.0/(torch.abs(rot_dist) + rot_eps) * rot_reward_scale - 1

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(rot_rew)
up_rew = torch.where(right_hand_finger_dist < 0.4,

torch.where(left_hand_finger_dist < 0.4,
rot_rew, up_rew), up_rew)

reward = - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(object_pos[:, 2] <= 0.3, torch.ones_like(reset_buf), reset_buf)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(rot_dist < 0.785, torch.ones_like(successes), successes), successes)

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(rot_dist <= 0.785, torch.ones_like(successes), torch.zeros_like(successes))
heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,

goal_resets, progress_buf, successes, cons_successes↪→

48

Bi-DexHands: ShadowHandSwitch

def compute_hand_reward(
rew_buf, reset_buf, reset_goal_buf, progress_buf, successes, consecutive_successes,
max_episode_length: float, object_pos, object_rot, target_pos, target_rot, switch_right_handle_pos,

switch_left_handle_pos,↪→
left_hand_pos, right_hand_pos, right_hand_ff_pos, right_hand_mf_pos, right_hand_rf_pos,

right_hand_lf_pos, right_hand_th_pos,↪→
left_hand_ff_pos, left_hand_mf_pos, left_hand_rf_pos, left_hand_lf_pos, left_hand_th_pos,
dist_reward_scale: float, rot_reward_scale: float, rot_eps: float,
actions, action_penalty_scale: float,
success_tolerance: float, reach_goal_bonus: float, fall_dist: float,
fall_penalty: float, max_consecutive_successes: int, av_factor: float, ignore_z_rot: bool

):
Distance from the hand to the object
right_hand_finger_dist = (torch.norm(switch_right_handle_pos - right_hand_ff_pos, p=2, dim=-1) +

torch.norm(switch_right_handle_pos - right_hand_mf_pos, p=2, dim=-1)↪→
+ torch.norm(switch_right_handle_pos - right_hand_rf_pos, p=2, dim=-1) +

torch.norm(switch_right_handle_pos - right_hand_lf_pos, p=2, dim=-1)↪→
+ torch.norm(switch_right_handle_pos - right_hand_th_pos, p=2, dim=-1))

left_hand_finger_dist = (torch.norm(switch_left_handle_pos - left_hand_ff_pos, p=2, dim=-1) +
torch.norm(switch_left_handle_pos - left_hand_mf_pos, p=2, dim=-1)↪→

+ torch.norm(switch_left_handle_pos - left_hand_rf_pos, p=2, dim=-1) +
torch.norm(switch_left_handle_pos - left_hand_lf_pos, p=2, dim=-1)↪→

+ torch.norm(switch_left_handle_pos - left_hand_th_pos, p=2, dim=-1))

right_hand_dist_rew = right_hand_finger_dist
left_hand_dist_rew = left_hand_finger_dist

Total reward is: position distance + orientation alignment + action regularization + success bonus
+ fall penalty↪→

up_rew = torch.zeros_like(right_hand_dist_rew)
up_rew = (1.4-(switch_right_handle_pos[:, 2] + switch_left_handle_pos[:, 2])) * 50

reward = 2 - right_hand_dist_rew - left_hand_dist_rew + up_rew

resets = torch.where(right_hand_dist_rew <= 0, torch.ones_like(reset_buf), reset_buf)

Find out which envs hit the goal and update successes count
successes = torch.where(successes == 0,

torch.where(1.4-(switch_right_handle_pos[:, 2] + switch_left_handle_pos[:, 2]) >
0.05, torch.ones_like(successes), successes), successes)↪→

resets = torch.where(progress_buf >= max_episode_length, torch.ones_like(resets), resets)

goal_resets = torch.zeros_like(resets)

cons_successes = torch.where(resets > 0, successes * resets, consecutive_successes).mean()
goal_reach = torch.where(1.4 - (switch_right_handle_pos[:, 2] + switch_left_handle_pos[:, 2]) >=

0.05,↪→
torch.ones_like(successes), torch.zeros_like(successes))

heuristic_reward, task_reward = reward, goal_reach return heuristic_reward, task_reward, resets,
goal_resets, progress_buf, successes, cons_successes↪→

49

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper aims to explore alternatives for improving task performance in finite
data settings using heuristic signals. Our experiments on robotic locomotion, helicopter,
and manipulation tasks demonstrate that this method consistently improves performance,
regardless of the general effectiveness of the heuristic signals. We are confident that our
abstract and introduction sections accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of our approach are illustrated in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

50

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have shown our derivation details and limitations in Section A.1 and
Section 6.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided detailed derivation and implementation descriptions (includ-
ing the simulation environments, hyperparameters, and reward definitions for training and
evaluations) in our Appendix section. Additionally, we have also provided our source code
in our Supplementary Materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

51

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We have provided detailed implementation descriptions (including the simula-
tion environments, hyperparameters, and reward definitions for training and evaluations) in
our Appendix section. Additionally, we have also provided our source code in our Supple-
mentary Materials. The adopted simulation environments are all well-known and available
online.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We have provided detailed implementation descriptions (including the simula-
tion environments, hyperparameters, and reward definitions for training and evaluations) in
the experiment and Appendix sections. Additionally, we have also provided our source code
in our Supplementary Materials, including all the training and environment configurations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

52

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Answer: [Yes]

Justification: All of our experimental results were obtained by 5 random seeds. We have
provided the mean and standard deviation for our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: But each training procedure can be performed on a single GeForce RTX 2080
Ti device. The required computational resources for all the simulation benchmarks are listed
on their respective websites.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully examined the ethical guidelines and verified that our work
fully adheres to all the principles and requirements.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.

53

https://neurips.cc/public/EthicsGuidelines

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper does not discuss both potential positive societal impacts and negative
societal impacts of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper has no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]

54

Justification: Throughout this paper, we have provided proper citations and references for all
utilized repositories, benchmark simulations, and models/algorithms to uphold transparency
and ensure appropriate attribution.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We will furnish comprehensive documentation for our released code, elu-
cidating its usage and providing information about the original source. Additionally, we
have ensured that any code modified from external sources is subject to licenses that permit
modification and redistribution.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No, but we engaged 12 participants in devising reward functions as part of the
experiments detailed in Section 4.2.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

55

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

56

	Introduction
	Preliminaries: Reinforcement Learning with Heuristic
	Method: Improving Heuristic Policy via Constrained Optimization
	Algorithm: Heuristic-Enhanced Policy Optimization (HEPO)
	Implementation
	Connection to Extrinsic-Intrinsic Policy Optimization chen2022redeeming

	Experiments
	Benchmark results
	Can HEPO be robust to reward functions designed in the wild?
	Ablation Studies

	Related Works
	Discussion & Limitation
	Implementation Details
	Full Derivation
	Notations
	Enhanced Policy Update
	Heuristic Policy H Update

	Implementation Tricks
	Sample Sharing for Value Function Update
	Smoothing Lagrangian Multiplier Update

	Overall Workflow
	Training details

	Supplementary Experimental Results
	All Learning Curves on the task objective J
	Sensitivity to hyperparameters
	Sensitivity to the Value
	Sensitivity to the Learning Rate for Updating

	Additional results

	Environment Details

