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Abstract

Detecting AI-generated images remains a persistent chal-
lenge, as existing detectors often struggle to generalize to
forgeries produced by previously unseen generative mod-
els. This generalization gap mainly stems from entan-
glement with semantic content and overfitting to model-
specific artifacts. Moreover, many state-of-the-art methods
rely on large pre-trained backbones or computationally inten-
sive pipelines, which limit their applicability in real-world,
resource-constrained environments. We propose RealNet, a
lightweight and unsupervised framework that constructs a
disentangled, forgery-aware representation space using only
real images. RealNet first extracts semantic-agnostic repre-
sentations through a dual adversarial denoising mechanism,
producing compact features with low intra-class variance.
These representations are then perturbed in feature space to
generate pseudo-negative samples, which are combined with
the original real features to train a lightweight discrimina-
tor, enabling robust detection without any dependence on
synthetic images during training. Comprehensive evaluations
across GAN, diffusion, and emerging VAR-based paradigms
demonstrate that RealNet achieves superior cross-model gen-
eralization and robustness. RealNet surpasses previous state-
of-the-art approaches by 4.51% in accuracy and 3.93% in av-
erage precision, while maintaining significantly lower com-
putational cost. Furthermore, we introduce a medically rele-
vant synthetic image dataset and show RealNet remains effec-
tive under severe distribution shifts, highlighting its potential
for deployment in high-stakes real-world scenarios. Together,
these advantages position RealNet as a practical, scalable and
socially impactful solution for robust AI-generated image de-
tection.

Introduction
In recent years, AI generative technologies have progressed
at an unprecedented pace, giving rise to a succession of
powerful paradigms such as generative adversarial networks
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(GANs) (Karras et al. 2018; Brock, Donahue, and Simonyan
2019; Zhu et al. 2017; Choi et al. 2018), diffusion mod-
els (Dhariwal and Nichol 2021; Nichol et al. 2022; Mid-
journey 2023; Gu et al. 2022), and, most recently, visual
autoregressive modeling (VAR) (Ren et al. 2024; Han et al.
2024; Chen et al. 2024b; Yao et al. 2024; Tian et al. 2024).
These models are capable of synthesizing photorealistic im-
ages with remarkable fidelity and diversity, driving substan-
tial advances across art, entertainment, and scientific appli-
cations. Yet as synthetic content becomes increasingly in-
distinguishable from authentic imagery, the associated soci-
etal risks continue to escalate: highly realistic fake images
can exacerbate privacy breaches, amplify misinformation at
scale, and undermine public trust in digital media, ultimately
affecting individual reputations, social stability, and safety-
critical decision making.

This rapidly evolving landscape demands detection meth-
ods that are not only highly reliable but also practically
deployable at scale. A persistent and fundamental chal-
lenge, however, is generalization: while existing detectors
often perform well on forgeries generated by models seen
during training, their accuracy deteriorates markedly when
confronted with content produced by previously unseen or
newly emerging architectures, such as VAR models (Wang
et al. 2020; Chen et al. 2022b; Ren et al. 2024; Han
et al. 2024). This vulnerability has become increasingly pro-
nounced as generative paradigms evolve at an accelerat-
ing pace, exposing the limitations of detectors that rely on
paradigm-specific artifacts or training distributions and ulti-
mately restricting their long-term applicability in real-world
scenarios.

Recent research has attempted to improve generaliza-
tion by learning forgery-aware representation and suppress-
ing semantic information (Wang et al. 2023; Ojha, Li, and
Lee 2023; Qu et al. 2024b), often exploiting spatial (Li
et al. 2021, 2024; Qu et al. 2025) or frequency-domain
artifacts (Zhang, Karaman, and Chang 2019a; Durall, Ke-
uper, and Keuper 2020; Qu et al. 2023). However, these
approaches typically rely on labeled synthetic forgeries or



patterns unique to known generative models, which inher-
ently tie them to model-specific biases and limit their robust-
ness to paradigm shifts (Zhang et al. 2025). More recent at-
tempts leverage generic pre-trained representations, such as
CLIP-ViT (Ojha, Li, and Lee 2023; Liu et al. 2024), to im-
prove transferability, but such features remain highly entan-
gled with semantic content (He, Chen, and Ho 2024), mak-
ing them unreliable under unseen or emerging generative
architectures. At the same time, detector designs increas-
ingly depend on large neural backbones or heavyweight pre-
trained models, resulting in substantial computational over-
head. This makes broad, efficient deployment difficult in
real-world scenarios, particularly in resource-constrained or
edge environments, further restricting the practical impact of
current detectors. These limitations collectively underscore
the need for a detection framework that is both more gener-
alizable and more computationally efficient.

Beyond the challenges posed by rapidly evolving gen-
erative models, high-risk domains such as medical imag-
ing face increasing yet under-recognized threats from AI-
generated content. Recent advances have enabled the syn-
thesis of highly realistic medical images that can assist train-
ing but may also mislead even experienced clinicians (Prezja
et al. 2022; Li et al. 2025; Hao et al. 2025), raising con-
cerns for clinical trust and safety-critical decision making.
Moreover, the substantial distribution gap between medical
and natural images further underscores the need for detec-
tion methods that remain domain-agnostic, efficient, and ro-
bust even when model-generated forgeries are unavailable
during training. These observations highlight the need for
a different detection paradigm capable of meeting these re-
quirements.

To address the intertwined challenges of robustness, ef-
ficiency, and generalization without relying on synthetic
training forgeries, we propose RealNet. RealNet is an un-
supervised and lightweight detection framework that learns
a disentangled and forgery-aware representation space di-
rectly from real images. As illustrated in Figure 1, RealNet
first performs real feature encoding. An input image is pro-
cessed by a Real Pattern Extractor, which is frozen during
training and produces a semantic-agnostic real representa-
tion (SARR). A Feature Transformer further refines this rep-
resentation through frequency-domain transformation and
adaptive normalization, yielding a compact real representa-
tion (CRR) that suppresses semantic content and generator-
specific biases. Based on CRR, a Feature Perturbator injects
controlled Gaussian noise into the compact feature space
to form pseudo-fake representations (PFR). These perturbed
representations serve as training-only negative samples that
capture model-agnostic forgery patterns. A lightweight dis-
criminator then learns to separate CRR from PFR, establish-
ing a stable decision boundary that enables robust forgery-
aware representation learning without the need for synthetic
images. Through this integrated design, RealNet offers a
unified and computationally efficient approach for deriving
forgery-sensitive representations solely from real images.

To facilitate comprehensive evaluation and to support re-
search in high-impact domains, we additionally construct
and release two complementary datasets. The first contains

synthetic images produced by several advanced VAR-based
models, which enables broad and rigorous benchmarking
across emerging generative paradigms. The second contains
medical forgeries created by state-of-the-art medical image
synthesis methods, reflecting realistic and safety-critical dis-
tribution shifts. These datasets offer valuable resources for
assessing robustness under both challenging generative pro-
cesses and important real-world application scenarios. Our
main contributions are summarized as follows:
• We propose RealNet, an unsupervised and lightweight

detection framework that learns a disentangled forgery-
aware representation space directly from real images,
effectively reducing both semantic interference and
generator-specific biases.

• We develop a positive-compression mechanism and a
pseudo-negative sample generation strategy that enable
a compact and robust decision boundary without any re-
liance on synthetic image supervision, thereby support-
ing strong generalization and improved domain adapta-
tion.

• RealNet achieves state-of-the-art detection performance,
cross-model generalization, and robustness across a wide
range of generative paradigms, including challenging
VAR-based models, while maintaining computational ef-
ficiency suitable for large-scale and resource-constrained
deployment.

• We construct two datasets that broaden the range of
evaluation settings, covering both emerging generative
paradigms and sensitive application domains. These
datasets enable evaluation under diverse generative pro-
cesses and distribution shifts.

Related Work
Generative Frameworks in Vision Recent advances in
generative modeling have led to a diverse set of ar-
chitectures capable of synthesizing high-fidelity images.
GANs (Karras et al. 2018; Brock, Donahue, and Simonyan
2019) learn through adversarial training, while normalizing
flows (Kingma and Dhariwal 2018; Dao et al. 2023) and
autoregressive models (Razavi, van den Oord, and Vinyals
2019) provide explicit likelihood formulations. Diffusion
models construct a denoising process parameterized by vari-
ational or score-based objectives, gradually mapping noise
to data. Visual autoregressive modeling (VAR) (Tian et al.
2024) has recently emerged as a strong alternative, gener-
ating images in a hierarchical coarse-to-fine manner that
captures both global structure and fine textures. Models
such as Infinity (Han et al. 2024) and FlowAR (Ren et al.
2024) demonstrate the high realism achievable under this
paradigm, often surpassing diffusion models in detail and
complexity. However, the rapid diversification of generative
mechanisms increases the difficulty of forgery detection, as
artifacts vary widely across paradigms. This underscores the
need for detectors that generalize across unseen architec-
tures without relying on access to synthetic training data.

AI-Generated Image Detection A variety of detectors
have been proposed to counter increasingly powerful gen-
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Figure 1: Overview of RealNet. An input image is first encoded by a frozen Real Pattern Extractor (RPE) to obtain a semantic-
agnostic real representation (SARR). The Feature Transformer refines and compresses SARR into a compact real representation
(CRR). During training, the Feature Perturbator injects controlled Gaussian noise into CRR to generate pseudo-fake represen-
tations (PFR), which serve as negative samples. A lightweight discriminator then learns to distinguish CRR from PFR, enabling
forgery-aware representation learning without synthetic images.

erative models, which can be broadly grouped into spatial-
artifact, frequency-artifact, and pre-trained-feature based
methods. Spatial methods exploit architecture- or pipeline-
specific traces in the image domain: for example, (Yu,
Davis, and Fritz 2019) shows that each GAN leaves dis-
tinct fingerprints tied to its network structure and param-
eters, while (Zhao et al. 2021) formulates detection as
fine-grained classification with a multi-attention network.
Frequency-based approaches (Zhang, Karaman, and Chang
2019a; Dzanic, Shah, and Witherden 2020; Qu et al. 2024a)
instead operate in the spectral domain, modeling discrep-
ancies in spectrum statistics and high-frequency attenuation
between real and synthetic images. More recent pre-trained-
based methods build on frozen large-scale backbones with
lightweight classification heads (Ojha, Li, and Lee 2023; Tan
et al. 2023), which help mitigate overfitting to specific train-
ing sets and improve transferability. For instance, (Ojha, Li,
and Lee 2023) leverages nearest-neighbor and linear probing
on CLIP-ViT features, and (Tan et al. 2023) transforms im-
ages into gradient representations using a pre-trained CNN
to capture GAN-induced artifacts.

Another complementary line of work avoids relying on
fake samples for training or is entirely training-free (Ricker,
Lukovnikov, and Fischer 2024; Zhang, Karaman, and Chang
2019b; Jeong et al. 2022). Methods such as (Zhang, Kara-
man, and Chang 2019b; Jeong et al. 2022) generate hard
negative samples using predefined perturbation patterns, but
their simulated artifacts are mainly effective for GAN-based
models. AEROBLADE (Ricker, Lukovnikov, and Fischer

2024) exploits the observation that latent diffusion autoen-
coders reconstruct synthetic images more faithfully than real
ones, enabling training-free detection but restricting applica-
bility to latent diffusion outputs. In contrast, RealNet learns
a disentangled representation space directly from real im-
ages in an unsupervised manner. The resulting semantic-
agnostic and model-agnostic features allow our detector to
avoid overfitting to forgery-irrelevant content or generator-
specific patterns, leading to stronger cross-paradigm gener-
alization.

Method
As illustrated in Figure 1, RealNet consists of four modules:
a Real Pattern Extractor (RPE), a Feature Transformer, a
Feature Perturbator, and a lightweight discriminator. Train-
ing is performed in two stages. In the first stage, we pre-
train the RPE on real noisy–clean image pairs using a dual
adversarial denoising framework and then freeze its param-
eters. In the second stage, only real images are used: the
frozen RPE extracts a semantic-agnostic real representation
(SARR), the Feature Transformer compresses SARR into
a low-dimensional compact real representation (CRR), the
Feature Perturbator perturbs CRR to synthesize pseudo-fake
features, and the discriminator learns a decision boundary
that separates CRR from its perturbed counterparts. The Fea-
ture Perturbator is used only during training and is removed
at inference. We next present each component of RealNet
and the overall learning pipeline in detail.
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Figure 2: Overview of the Real Pattern Extractor (RPE).
A restorer and a generator form a dual adversarial frame-
work that constructs pseudo clean-noisy pairs from two
complementary directions, while a discriminator aligns
them with real image pairs. After training, the restorer is
frozen and used to derive SARR through residual recon-
struction.

Real Pattern Extractor
The Real Pattern Extractor (RPE) aims to suppress forgery-
irrelevant content and capture the stable statistical patterns
of real images, which we refer to as the Semantic-Agnostic
Real Representation (SARR). For RealNet to function effec-
tively, SARR must be compact so that real images with dif-
ferent semantics occupy a low-variance region. At the same
time, it must be sensitive to noise so that small perturbations
to the input produce noticeable changes in the representation
and can serve as useful pseudo-negative samples. Prior stud-
ies (Marra et al. 2019; Wang et al. 2023) have shown that re-
construction residuals and noise-related cues are informative
for distinguishing real and synthetic images. Motivated by
this, we obtain SARR through an adversarial denoising and
restoration framework that learns real-image noise statistics
while reducing semantic influence.

To obtain such a representation, we adopt a dual ad-
versarial denoising framework proposed by (Yue et al.
2020; LI et al. 2017). As shown in Figure 2, RPE consists
of three components: a denoising restorer R(·), a noise-
generating generator G(·), and a discriminator D(·). The
restorer branch takes a real noisy image y as input and pre-
dicts a pseudo-clean image x̂ = R(y), forming a pseudo
clean–noisy pair (x̂,y). From a probabilistic perspective,
with p(·) denoting the data distributions, this branch can be
written as:

y ∼ p(y), x̂ = R(y) → (x̂,y). (1)

In parallel, the generator branch learns to synthesize realis-
tic noise. It takes a real clean image x together with a la-
tent variable z ∼ N (0, I) and produces a pseudo-noisy im-
age ŷ = G(x,z), yielding another pseudo clean–noisy pair

(x, ŷ):

z ∼ p(z),x ∼ p(x), ŷ = G(x, z) → (x, ŷ). (2)

Together with real clean–noisy pairs (x,y), these two types
of pseudo pairs are fed into the discriminator D, which
is trained to distinguish real from synthetic pairs. Follow-
ing (Liu et al. 2021), R, G, and D are jointly optimized with
a dual adversarial objective:

min
R,G

max
D

LGAN(R,G,D) + λ1∥x̂− x∥1

+λ2∥F(ŷ − x)−F(y − x)∥1,
(3)

where LGAN is the dual adversarial loss from Triple-
GAN (LI et al. 2017), F(·) denotes a Gaussian filtering op-
erator used to extract noise statistics, and λ1, λ2 are balance
factors.

This adversarial training is performed on real noisy–clean
image pairs from standard denoising datasets (Abdelhamed,
Lin, and Brown 2018; Anaya and Barbu 2018; Xu et al.
2018). After convergence, we discard the generator and dis-
criminator and freeze the restorer R as the Real Pattern Ex-
tractor. For any real image Ir, we reconstruct it with the pre-
trained restorer Fϕ and take the reconstruction residual as
SARR:

fr = Fϕ (Ir)− Ir. (4)
Because Fϕ has been adversarially trained to model real-
image noise, the residual fr ∈ R256×256×3 captures real-
image noise patterns that are largely decoupled from se-
mantic content yet highly sensitive to perturbations. These
semantic-agnostic residuals form the input to the subsequent
Feature Transformer in RealNet. Both the restorer and the
generator adopt a UNet (Ronneberger, Fischer, and Brox
2015)-style architecture with residual modules, while the
discriminator consists of five convolutional layers followed
by a fully connected layer that aggregates pair-wise infor-
mation.

Feature Transformer
The Feature Transformer compresses the SARR into a
compact representation that emphasizes authenticity-related
statistics while reducing semantic variation. Operating in a
low dimensional space benefits RealNet by enlarging the
distinction between real and perturbed features. Prior stud-
ies (Frank et al. 2020; Bi et al. 2023) also indicate that com-
pact frequency-based embeddings help highlight subtle sig-
nal differences. As shown in Figure 1, we first apply a Dis-
crete Fourier Transform to the SARR fr to obtain its fre-
quency domain representation:

d(u, v) =
1

MN

M−1∑
x=0

N−1∑
y=0

fr(x, y) · e−j2π(ux
M + vy

N ). (5)

We compute the amplitude spectrum As ∈ R256×256×3

and fuse the three channels using the luminosity method to
produce a single channel map. To enhance discriminative
frequencies, amplitudes below the mean are suppressed and
the remaining values are squared, resulting in a refined spec-
trum As

′ ∈ R256×256×1. Periodic sampling and instance



normalization are then applied to As
′, yielding the Compact

Real Representation fcr ∈ R64. This mapping is expressed
as

fcr = Tθ(fr), (6)

where Tθ denotes the Feature Transformer. The result-
ing feature space preserves real image noise characteristics
while remaining compact enough to support robust pertur-
bation based pseudo-fake generation.

Feature Perturbator
The Feature Perturbator is designed to construct informa-
tive pseudo-negative samples directly in the learned compact
space, allowing RealNet to approximate forgery-oriented
variations without accessing synthetic images. Since the
compact real representation fcr already forms a low-
variance manifold, deviations from this manifold can be ef-
ficiently simulated through stochastic perturbations. Given
fcr, we draw a noise vector ϵ from an i.i.d. Gaussian distri-
bution N (0, σ2) and synthesize a perturbed representation
through additive modulation:

fp = fcr + ϵ, ϵ ∼ N (0, σ2). (7)

This formulation provides two advantages. First, pertur-
bations in a compact frequency-conditioned space amplify
subtle discrepancies between real and shifted features, pro-
ducing pseudo-fake samples that mimic the off-manifold
patterns commonly induced by generative models. Second,
the use of isotropic noise avoids introducing model-specific
artifacts, ensuring that the resulting negative samples remain
paradigm-agnostic. These perturbed features are used solely
during training to guide the discriminator toward learning a
stable and generalizable decision boundary between real and
non-real regions of the embedding space.

Discriminator
The discriminator Dχ is responsible for learning a deci-
sion boundary that separates real compact representations
from the perturbed pseudo-negative samples. During train-
ing, both fcr and its perturbed counterpart fp are fed into
Dχ, which outputs positive scores for real features and neg-
ative scores for pseudo-fake features. Since all features lie in
the same low-dimensional space, the discriminator focuses
solely on deviations from the real-feature manifold rather
than on semantic or generator-specific cues.

Before classification, an adaptor maps the input features
to a unified embedding dimension to stabilize optimization.
We use a lightweight fully connected layer, which we found
to be sufficient for preserving discriminative structure while
avoiding unnecessary model capacity. A two-layer MLP
then serves as the classification head, producing the nor-
mality score Dχ(fcr,p). Real and pseudo-negative samples
are processed in parallel but independently, without feature-
level coupling, ensuring that the decision boundary is shaped
purely by the geometry of the compact representation space.
Empirically, mapping features to 64 dimensions yields the
best trade-off between stability and generalization.

Experiments
In this section, we conduct extensive experiments to evalu-
ate RealNet across diverse generative paradigms, compare it
against state-of-the-art detectors, assess its robustness under
domain shifts, analyze its efficiency, and perform detailed
ablations.

Experimental Settings
We outline the datasets, baseline configurations, evaluation
metrics, and implementation details used to assess RealNet.

Datasets We evaluate RealNet across a broad spec-
trum of generative paradigms, including GAN, diffusion,
and VAR-based models. Concretely, we consider Pro-
GAN (Karras et al. 2018), BigGAN (Brock, Donahue,
and Simonyan 2019), CycleGAN (Zhu et al. 2017), Star-
GAN (Choi et al. 2018), ADM (Dhariwal and Nichol 2021),
Glide (Nichol et al. 2022), Midjourney (Midjourney 2023),
SD v1.4/v1.5 (Rombach et al. 2022), VQDM (Gu et al.
2022), Wukong (wukong 2023), DALLE2 (Ramesh et al.
2022), VAR (Tian et al. 2024), CAR (Yao et al. 2024),
CoDe (Chen et al. 2024b), FlowAR (Ren et al. 2024), and In-
finity (Han et al. 2024). For GAN and diffusion models, we
use forged images from standard public datasets (Wang et al.
2020). Because recent VAR-based forgeries are not publicly
available, we additionally construct a dataset using their offi-
cial pre-trained models. To evaluate robustness under distri-
bution shifts, we further assemble a medical forgery dataset
containing AI-generated and real radiology and pathology
images, representing high-risk real-world scenarios.

Baselines We compare RealNet with a comprehen-
sive set of state-of-the-art forgery detectors, including
CNNSpot (Wang et al. 2020), FreDect (Frank et al. 2020),
GramNet (Liu, Qi, and Torr 2020), LGrad (Tan et al.
2023), UniFD (Ojha, Li, and Lee 2023), NPR (Tan et al.
2024), Fatformer (Liu et al. 2024), AEROBLADE (Ricker,
Lukovnikov, and Fischer 2024), DRCT (Chen et al. 2024a),
D3 (Yang et al. 2025), and FIRE (Chu et al. 2025). Following
the protocol in (Wang et al. 2020; Ojha, Li, and Lee 2023),
we either adopt publicly released checkpoints (Zhong et al.
2023; Tan et al. 2024; Liu et al. 2024) for the baselines or
train them on ProGAN-generated images using official im-
plementations (Yang et al. 2025; Chu et al. 2025). DRCT
is evaluated with its diffusion-trained official checkpoint,
which is a constraint inherent to its model design. RealNet is
trained solely on real images by design, and for fairness, the
amount of real data is matched to that used by the baselines.

Evaluation Metrics Following previous work (Wang
et al. 2020; Ojha, Li, and Lee 2023), we report accuracy
(Acc) and average precision (AP) for all methods. The de-
cision threshold for Acc is calibrated using the protocol
in (Wang et al. 2020; Ojha, Li, and Lee 2023). To summa-
rize performance over all generative models, we also com-
pute the mean accuracy (mAcc) and mean average precision
(mAP).

Implementation Details Training proceeds in two stages:
pre-training the Real Pattern Extractor (RPE) and subse-



Methods Ref
GAN Diffusion VAR

mAPPro-
GAN

Big-
GAN

Cycle-
GAN

Star-
GAN ADM Glide

Mid-
journey

SD
v1.4

SD
v1.5 VQDM

Wu-
kong

DALL
E2 VAR CAR CoDe

Flow-
AR Infinity

CNNSpot CVPR2020 100.0 84.51 93.48 98.15 71.10 66.18 55.93 56.91 57.31 61.96 52.90 50.53 42.93 52.53 45.67 53.92 38.23 63.66
FreDect ICML2020 99.99 93.62 84.77 99.49 61.76 52.91 46.08 37.83 37.76 85.10 39.58 38.20 68.45 61.37 76.77 70.18 39.27 64.30
GramNet CVPR2020 100.0 62.34 74.82 100.0 57.07 55.18 58.78 63.11 63.31 54.19 61.01 53.74 45.58 42.81 79.99 77.91 79.58 66.44
LGrad CVPR2023 100.0 89.10 93.78 99.98 67.01 82.42 73.57 63.32 63.73 71.88 61.26 84.13 58.96 59.58 77.60 89.27 72.19 76.93
UniFD CVPR2023 100.0 99.27 99.80 99.37 89.80 88.04 49.72 68.63 68.07 97.53 78.44 66.06 68.95 93.31 82.60 90.79 39.90 81.19
NPR CVPR2024 99.95 84.40 97.83 100.0 79.14 86.55 83.84 84.37 84.38 80.84 77.63 79.56 41.39 40.74 91.04 89.75 65.67 80.42
Fatformer CVPR2024 100.0 99.98 100.0 100.0 91.73 95.99 62.76 81.12 81.09 96.99 85.86 81.84 66.37 86.80 99.26 99.25 63.94 87.82
AEROBLAD CVPR2024 46.48 42.14 40.87 43.38 87.42 97.96 99.84 98.68 98.87 78.42 99.07 98.69 35.69 36.86 41.38 40.87 45.59 66.60
DRCT ICML2024 91.03 93.51 98.68 96.29 88.96 94.64 97.03 99.65 99.49 96.54 99.37 97.67 60.20 69.92 74.08 82.91 92.32 90.13
D3 CVPR2025 100.00 98.18 99.91 98.84 95.86 92.42 80.15 84.83 84.96 93.38 85.44 81.34 87.65 86.92 99.21 84.18 84.60 90.46
FIRE CVPR2025 100.00 97.69 98.29 99.03 93.62 90.13 82.76 86.42 86.02 90.76 86.05 82.79 84.10 84.97 99.34 83.95 86.70 90.15
Ours - 77.81 96.46 99.78 100.0 97.96 95.00 90.31 92.55 93.05 97.99 92.06 97.90 95.28 95.17 99.97 91.87 91.46 94.39

Table 1: Cross-model average precision (%) comparison with state-of-the-art detectors. The best and second-best results
are marked in bold and underline, respectively.

Methods Ref
GAN Diffusion VAR

mAccPro-
GAN

Big-
GAN

Cycle-
GAN

Star-
GAN ADM Glide

Mid-
journey

SD
v1.4

SD
v1.5 VQDM

Wu-
kong

DALL
E2 VAR CAR CoDe

Flow-
AR Infinity

CNNSpot CVPR2020 99.99 81.13 86.34 92.75 67.31 66.30 54.44 58.58 58.67 62.37 54.83 52.50 50.63 55.25 50.85 52.58 50.13 64.39
FreDect ICML2020 99.75 86.78 81.42 97.57 68.33 63.44 50.18 50.04 50.01 78.28 50.03 50.00 72.13 68.33 69.53 62.50 50.53 67.58
GramNet CVPR2020 100.0 68.05 75.28 100.0 60.41 58.42 62.50 69.78 69.98 58.37 66.06 56.55 53.80 48.23 70.73 70.33 70.70 68.19
LGrad CVPR2023 99.80 82.40 85.92 99.30 61.95 73.07 67.82 64.65 65.04 69.27 60.77 76.25 56.90 56.38 73.55 72.13 73.50 72.86
UniFD CVPR2023 99.86 95.78 98.33 96.65 80.78 79.98 50.42 66.43 66.33 91.53 72.67 64.95 63.75 84.60 74.10 80.78 50.03 77.47
NPR CVPR2024 99.86 85.05 96.40 99.82 75.58 88.61 83.26 83.93 84.32 79.53 75.13 86.60 50.00 50.00 93.90 91.83 70.40 82.01
Fatformer CVPR2024 99.96 99.63 99.92 100.0 83.48 89.65 58.41 71.75 72.05 90.43 76.98 73.95 60.48 77.65 96.30 95.98 60.51 82.77
AEROBLAD CVPR2024 50.04 50.10 50.08 53.03 80.32 93.02 98.84 97.83 97.91 73.88 98.14 95.95 50.03 50.03 52.70 51.20 60.16 70.78
DRCT ICML2024 83.31 86.45 94.51 90.30 80.77 89.33 91.63 97.29 96.73 90.18 96.43 93.35 58.35 65.15 67.63 73.88 83.79 84.65
D3 CVPR2025 99.89 97.84 98.35 97.60 77.36 74.21 70.44 73.73 73.82 89.72 72.32 70.07 80.51 81.90 98.92 80.83 82.65 83.54
FIRE CVPR2025 96.93 83.36 86.13 95.08 85.66 84.42 77.88 85.24 85.18 79.81 84.78 83.54 79.49 79.38 99.12 79.45 80.02 85.03
Ours - 69.75 90.33 97.99 99.90 95.47 89.68 82.39 87.33 87.75 94.60 86.72 95.00 88.73 88.38 99.53 84.13 84.56 89.54

Table 2: Cross-model accuracy (%) comparison with state-of-the-art detectors. Notations follow those in Table 1.

quently training RealNet. RPE is trained as an image de-
noiser using real clean–noisy pairs (x,y). Following (Ar-
jovsky, Chintala, and Bottou 2017; LI et al. 2017), the re-
storer R, generator G, and discriminator D are jointly op-
timized under the WGAN-GP framework to ensure stable
adversarial training. For each update of R and G, the dis-
criminator is updated three times. The weights of R and G
are initialized with He initialization (He et al. 2015), while
D follows the initialization strategy in (Yu et al. 2017) using
a normal distribution with standard deviation 0.02. Adam
is used for all three modules, with momentum terms set to
(0.9, 0.999), (0.5, 0.9), and (0.5, 0.9), and learning rates of
1×10−4, 1×10−4, and 2×10−4, respectively. Learning rates
are reduced by 50% every 10 epochs. We set λ1 = 1000 and
λ2 = 10, and adopt the same LGAN hyper-parameters as
in (LI et al. 2017).

For RealNet training, we use the real-image subset of the
training split in (Wang et al. 2020). SARR features are re-
sized to 256× 256 before entering the Feature Transformer,
and the resulting compact real representation has a dimen-
sionality of 64. The Feature Perturbator adds Gaussian noise
with distribution ε ∼ N (0, 0.008), and the adaptor in the
discriminator is implemented as a single linear layer. We
train RealNet for 100 epochs with a batch size of 8 using
Adam, an initial learning rate of 1 × 10−4, and cosine an-
nealing scheduling. All experiments are implemented in Py-
Torch and conducted on a single NVIDIA GeForce RTX

4090 GPU.

Comparison with the State of the Arts
Here we compare RealNet with state-of-the-art detectors in
terms of detection performance, cross-paradigm generaliza-
tion, computational efficiency, and robustness under domain
shifts.

Quantitative Results Across all test sets (Tables 1 and
2), RealNet achieves the highest accuracy (Acc) and aver-
age precision (AP) among all competing detectors, with im-
provements of 4.51% in mean accuracy (mAcc) and 3.93%
in mean average precision (mAP). These gains demonstrate
the effectiveness of learning a forgery-aware representation
entirely from real images, which reduces reliance on syn-
thetic supervision and mitigates overfitting to semantic con-
tent or generator-specific cues.

RealNet also exhibits strong cross-paradigm generaliza-
tion. UniFD, trained on ProGAN-generated forgeries, per-
forms well on GAN data but drops sharply on diffusion and
VAR models. DRCT, optimized on Stable Diffusion outputs,
exhibits the opposite pattern, strong diffusion performance
but limited transfer to GAN and VAR domains. AEROB-
LADE, although training-free, depends on autoencoder re-
construction residuals and therefore aligns best with latent
diffusion architectures. In contrast, RealNet maintains con-
sistently high performance across paradigms due to its com-
pact and paradigm-agnostic representation. On challenging
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Figure 3: Embedding space visualization. t-SNE plots of
RealNet and baseline detectors. Baselines show dispersed
and generator-biased clusters; RealNet produces compact
real embeddings and clearly separated fake regions across
generative paradigms.

VAR-based generators, RealNet surpasses supervised detec-
tors by more than 6.24% mAP, demonstrating its strong
generalization to diverse and previously unseen generative
mechanisms.

Qualitative Results Figure 3 presents t-SNE (Van der
Maaten and Hinton 2008) visualizations of feature distribu-
tions from RealNet and baseline detectors. Existing meth-
ods produce dispersed real-image features and separate fake
clusters only when the forgery type resembles their training
data, revealing strong generator-specific biases and limited
transfer to unseen architectures. RealNet yields a markedly
different geometry: real samples form a compact cluster,
while fakes from GAN, diffusion, and VAR models occupy
distinct, well-separated regions. This confirms the effective-
ness of our semantic-agnostic representation learning and
noise-based pseudo-negative generation, which together en-
able stable decision boundaries and strong generalization to
previously unseen generative paradigms.

Efficiency Test We assess the computational efficiency
of RealNet, an important factor for real-world deployment.
Table 3 reports inference throughput on two widely used
GPU platforms (RTX 4090 and 2080Ti). RealNet achieves
the highest processing speed among all compared methods,
benefiting from its compact architecture and the absence
of heavy reconstruction modules or large pre-trained back-
bones. These results indicate that RealNet is well suited for

Model FPS (4090) FPS (2080Ti) mAcc mAP

NPR 18.4 8.1 82.01 80.42
Fatformer 9.6 5.2 82.77 87.82
DRCT 11.8 4.8 84.65 90.13
D3 10.4 5.5 83.54 90.46
FIRE 7.1 4.4 85.03 90.15
Ours 24.5 10.1 89.54 94.39

Table 3: Inference efficiency comparison. We report
throughput (FPS) and overall performance (mAcc/mAP, %)
on two GPU platforms.

Model mAcc mAP

NPR 72.03 76.14
Fatformer 73.91 76.72
DRCT 76.34 79.48
D3 77.60 80.57
FIRE 75.12 79.17
Ours 81.20 84.74

Table 4: Domain transfer evaluation on the medical
forgery dataset. Results are reported in accuracy and av-
erage precision (%).

real-time and resource-limited settings, complementing its
strong generalization performance.

Domain Transfer Evaluation We further examine Re-
alNet’s robustness to domain shifts on a medical forgery
dataset containing real and AI-generated radiology and
pathology images. These images exhibit characteristics that
differ markedly from natural-image distributions and are as-
sociated with high-stakes risks such as diagnostic errors and
clinical misuse (Albahli and Nawaz 2024; Alsaheel et al.
2023). As shown in Table 4, RealNet achieves a clear per-
formance advantage over prior detectors. Existing methods
degrade substantially because their feature representations
entangle semantic cues or rely on generator-specific artifacts
that do not transfer to the medical domain. In contrast, Re-
alNet’s real-only training paradigm and disentangled repre-
sentation space yield strong domain generalization without
requiring medical synthetic data during training.

Ablation Analysis
We conduct comprehensive ablations to evaluate the con-
tribution of each component in RealNet, with results sum-
marized in Table 5. Replacing the Real Pattern Extrac-
tor (RPE) with other restoration or feature-extraction mod-
els (Tu et al. 2022; Chen et al. 2022a; He et al. 2016)
leads to substantial performance degradation (e.g., NAFNet
causes a 12.25%/13.49% drop in mAcc/mAP), indicat-
ing that these alternatives fail to produce compact and
perturbation-sensitive real representations, whereas RPE’s
dual adversarial design is crucial for learning such proper-
ties. Removing the Feature Transformer (FT) or substitut-
ing it with simpler mappings (a 1×1 convolution or a sin-
gle bilinear layer) likewise reduces accuracy, confirming that
FT’s frequency-domain transformation and structured com-
pression are important for forming a discriminative compact



Component Settings mAcc mAP

Transformer
w/o trans. 58.15 56.23

vanilla trans. 60.33 55.76
feature compression 89.54 94.39

Extractor

ResNet 50 55.03 52.22
MAXIM 83.94 87.43
NAFNet 77.29 80.90

noise sensitive restoration 89.54 94.39

Variance

0.004 88.40 93.26
0.006 88.51 92.61
0.008 89.54 94.39
0.010 86.95 90.87

Discriminator

1 layer, 32 dim 83.24 88.52
1 layer, 64 dim 89.54 94.39
1 layer, 128 dim 88.17 93.18
2 layers, 64 dim 89.10 93.67

Table 5: Ablation study of the main components. Results
reflect mean accuracy and average precision (%) across all
test sets.

space and enabling effective pseudo-negative synthesis. We
further vary the noise variance in the Perturbator and ob-
serve that a variance of 0.008 yields the most reliable per-
formance, while smaller or larger perturbations weaken the
decision boundary. Finally, experiments on the discriminator
adaptor show that a single-layer MLP with a 64-dimensional
output achieves the best results, suggesting that lightweight
adaptation before classification is sufficient and beneficial
for stable optimization.

Conclusion
In this paper, we presented RealNet, an unsupervised frame-
work that learns a semantic-agnostic and model-agnostic
representation space directly from real images, without
relying on synthetic forgeries. By disentangling forgery-
irrelevant semantics and suppressing model-specific arti-
facts, RealNet forms a compact and perturbation-sensitive
feature space that supports stable and generalizable detec-
tion. Extensive experiments show that RealNet consistently
surpasses state-of-the-art detectors across GAN, diffusion,
and emerging VAR paradigms, and remains robust under se-
vere distribution shifts such as medical image forgery, while
requiring substantially lower computational cost. These re-
sults highlight real-only representation learning as a practi-
cal and scalable direction for reliable AI-generated content
detection in high-impact real-world settings.

Acknowledgments
This work was supported by the National Natural Science
Foundation of China (No. 62176010), the Beijing Natural
Science Foundation (No. 4252029), the Open Project Pro-
gram of State Key Laboratory of Virtual Reality Technology
and Systems, Beihang University (No. VRLAB 2024B02),
the National Natural Science Foundation of China (No.
62572059), and the Fundamental Research Funds for the
Central Universities (No. 2253200009).

References
Abdelhamed, A.; Lin, S.; and Brown, M. S. 2018. A High-
Quality Denoising Dataset for Smartphone Cameras. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).
Albahli, S.; and Nawaz, M. 2024. MedNet: Medical deep-
fakes detection using an improved deep learning approach.
Multimedia Tools and Applications, 83(16): 48357–48375.
Alsaheel, A.; Alhassoun, R.; Alrashed, R.; Almatrafi, N.; Al-
mallouhi, N.; and Albahli, S. 2023. Deep Fakes in Health-
care: How Deep Learning Can Help to Detect Forgeries.
Computers, Materials & Continua, 76(2).
Anaya, J.; and Barbu, A. 2018. RENOIR-A benchmark
dataset for real noise reduction evaluation. Journal of Vi-
sual Communication and Image Representation, 144–154.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
generative adversarial networks. In International conference
on machine learning, 214–223. PMLR.
Bi, X.; Liu, B.; Yang, F.; Xiao, B.; Li, W.; Huang, G.; and
Cosman, P. C. 2023. Detecting Generated Images by Real
Images Only. arXiv:2311.00962.
Brock, A.; Donahue, J.; and Simonyan, K. 2019. Large Scale
GAN Training for High Fidelity Natural Image Synthesis. In
International Conference on Learning Representations.
Chen, B.; Zeng, J.; Yang, J.; and Yang, R. 2024a. Drct: Dif-
fusion reconstruction contrastive training towards universal
detection of diffusion generated images. In Forty-first Inter-
national Conference on Machine Learning.
Chen, L.; Chu, X.; Zhang, X.; and Sun, J. 2022a. Sim-
ple Baselines for Image Restoration. In Computer Vision
– ECCV 2022, 17–33. Cham: Springer Nature Switzerland.
Chen, Y.; Mancini, M.; Zhu, X.; and Akata, Z. 2022b. Semi-
supervised and unsupervised deep visual learning: A survey.
IEEE transactions on pattern analysis and machine intelli-
gence, 46(3): 1327–1347.
Chen, Z.; Ma, X.; Fang, G.; and Wang, X. 2024b. Collab-
orative Decoding Makes Visual Auto-Regressive Modeling
Efficient. arXiv preprint arXiv:2411.17787.
Choi, Y.; Choi, M.; Kim, M.; Ha, J.-W.; Kim, S.; and Choo,
J. 2018. StarGAN: Unified Generative Adversarial Net-
works for Multi-Domain Image-to-Image Translation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).
Chu, B.; Xu, X.; Wang, X.; Zhang, Y.; You, W.; and Zhou, L.
2025. Fire: Robust detection of diffusion-generated images
via frequency-guided reconstruction error. In Proceedings
of the Computer Vision and Pattern Recognition Conference,
12830–12839.
Dao, Q.; Phung, H.; Nguyen, B.; and Tran, A. 2023.
Flow Matching in Latent Space. arXiv e-prints,
arXiv:2307.08698.
Dhariwal, P.; and Nichol, A. 2021. Diffusion Models Beat
GANs on Image Synthesis. In Advances in Neural Informa-
tion Processing Systems, 8780–8794.



Durall, R.; Keuper, M.; and Keuper, J. 2020. Watch Your
Up-Convolution: CNN Based Generative Deep Neural Net-
works Are Failing to Reproduce Spectral Distributions. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR).
Dzanic, T.; Shah, K.; and Witherden, F. 2020. Fourier Spec-
trum Discrepancies in Deep Network Generated Images. In
Advances in Neural Information Processing Systems, vol-
ume 33, 3022–3032.
Frank, J.; Eisenhofer, T.; Schönherr, L.; Fischer, A.; Kolossa,
D.; and Holz, T. 2020. Leveraging Frequency Analysis
for Deep Fake Image Recognition. In Proceedings of the
37th International Conference on Machine Learning, 3247–
3258.
Gu, S.; Chen, D.; Bao, J.; Wen, F.; Zhang, B.; Chen, D.;
Yuan, L.; and Guo, B. 2022. Vector Quantized Diffu-
sion Model for Text-to-Image Synthesis. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 10696–10706.
Han, J.; Liu, J.; Jiang, Y.; Yan, B.; Zhang, Y.; Yuan, Z.; Peng,
B.; and Liu, X. 2024. Infinity: Scaling bitwise autoregres-
sive modeling for high-resolution image synthesis. arXiv
preprint arXiv:2412.04431.
Hao, P.; Li, S.; Wang, H.; Kou, Z.; Zhang, J.; Yang, G.;
and Zhu, L. 2025. Surgery-R1: Advancing Surgical-VQLA
with Reasoning Multimodal Large Language Model via Re-
inforcement Learning. arXiv preprint arXiv:2506.19469.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on im-
agenet classification. In Proceedings of the IEEE interna-
tional conference on computer vision, 1026–1034.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Resid-
ual Learning for Image Recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).
He, Z.; Chen, P.-Y.; and Ho, T.-Y. 2024. Rigid: A training-
free and model-agnostic framework for robust ai-generated
image detection. arXiv preprint arXiv:2405.20112.
Jeong, Y.; Kim, D.; Ro, Y.; Kim, P.; and Choi, J. 2022.
Fingerprintnet: Synthesized fingerprints for generated image
detection. In European Conference on Computer Vision, 76–
94. Springer.
Karras, T.; Aila, T.; Laine, S.; and Lehtinen, J. 2018. Pro-
gressive Growing of GANs for Improved Quality, Stability,
and Variation. In Proceedings of International Conference
on Learning Representations (ICLR) 2018.
Kingma, D. P.; and Dhariwal, P. 2018. Glow: Generative
Flow with Invertible 1x1 Convolutions. In Advances in Neu-
ral Information Processing Systems, volume 31.
LI, C.; Xu, T.; Zhu, J.; and Zhang, B. 2017. Triple Gener-
ative Adversarial Nets. In Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.
Li, S.; Ma, W.; Guo, J.; Xu, S.; Li, B.; and Zhang, X. 2024.
Unionformer: Unified-learning transformer with multi-view
representation for image manipulation detection and local-
ization. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 12523–12533.

Li, S.; Xing, Z.; Wang, H.; Hao, P.; Li, X.; Liu, Z.; and Zhu,
L. 2025. Toward Medical Deepfake Detection: A Compre-
hensive Dataset and Novel Method. In International Confer-
ence on Medical Image Computing and Computer-Assisted
Intervention, 626–637. Springer.
Li, S.; Xu, S.; Ma, W.; and Zong, Q. 2021. Image manipu-
lation localization using attentional cross-domain CNN fea-
tures. IEEE Transactions on Neural Networks and Learning
Systems, 34(9): 5614–5628.
Liu, H.; Tan, Z.; Tan, C.; Wei, Y.; Wang, J.; and Zhao,
Y. 2024. Forgery-aware Adaptive Transformer for Gen-
eralizable Synthetic Image Detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).
Liu, Y.; Qin, Z.; Anwar, S.; Ji, P.; Kim, D.; Caldwell, S.;
and Gedeon, T. 2021. Invertible Denoising Network: A
Light Solution for Real Noise Removal. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 13365–13374.
Liu, Z.; Qi, X.; and Torr, P. H. 2020. Global Texture En-
hancement for Fake Face Detection in the Wild. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR).
Marra, F.; Gragnaniello, D.; Verdoliva, L.; and Poggi, G.
2019. Do gans leave artificial fingerprints? In 2019 IEEE
conference on multimedia information processing and re-
trieval (MIPR), 506–511. IEEE.
Midjourney. 2023. https://www.midjourney.com/home/.
Nichol, A. Q.; Dhariwal, P.; Ramesh, A.; Shyam, P.;
Mishkin, P.; Mcgrew, B.; Sutskever, I.; and Chen, M. 2022.
GLIDE: Towards Photorealistic Image Generation and Edit-
ing with Text-Guided Diffusion Models. In Proceedings
of the 39th International Conference on Machine Learning,
16784–16804.
Ojha, U.; Li, Y.; and Lee, Y. J. 2023. Towards Universal
Fake Image Detectors That Generalize Across Generative
Models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 24480–
24489.
Prezja, F.; Paloneva, J.; Pölönen, I.; Niinimäki, E.; and
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