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Abstract

Understanding the interactions and interplay of
microorganisms is a great challenge with many ap-
plications in medical and environmental settings.
In this work, we model bacterial communities
directly from their genomes using graph neural
networks (GNNs). GNNs leverage the inductive
bias induced by the set nature of bacteria, enforc-
ing permutation invariance and granting combi-
natorial generalization. We propose to learn the
dynamics implicitly by directly predicting com-
munity relative abundance profiles at steady state,
thus escaping the need for growth curves. On
two real-world datasets, we show for the first time
generalization to unseen bacteria and different
community structures. To investigate the predic-
tion results more deeply, we create a simulation
for flexible data generation and analyze effects of
bacteria interaction strength, community size, and
training data amount.

1. Introduction
Microorganisms are ubiquitous and essential: in our gut,
they digest our food and influence our behavior (Cani
et al., 2019); in industrial plants, they treat our wastew-
ater (Mathew et al., 2022); their biomining ability outside
of Earth was even tested on the International Space Station
(Cockell et al., 2020). Accordingly, understanding their
functioning and optimizing their use are crucial challenges.

Microbial communities are driven by interactions that dic-
tate the assembly of communities and consequently micro-
bial output. To comprehend the functioning of a community,
it is necessary to characterize these interactions. Ideally, one
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would acquire time-series data for every combination of bac-
teria to obtain a complete understanding of their dynamics.
However, in reality, this is not possible because the num-
ber of experiments grows exponentially with the number of
bacteria. Accordingly, several challenges are faced when
modeling bacterial interactions: (i) available data generally
depict a single time-point of a community; (ii) models of
interactions should generalize to new bacteria and communi-
ties to limit the need for additional experiments; (iii) models
should be interpretable and provide insights on the system.

The most common approach to model interactions in bacte-
rial communities is to use generalized Lotka-Volterra mod-
els (Gonze et al., 2018; van den Berg et al., 2022; Picot
et al., 2023) (gLV, see Sec. 2.1). However, these deter-
ministic models fit parameters on time-series data for each
bacterium in the system: therefore, they cannot generalize to
new bacteria and are limited by experimental data. Further-
more, as they only model pairwise interactions, they may
fail to recover higher-order/complex interactions (Chang
et al., 2023; Gonze et al., 2018; Picot et al., 2023). How-
ever, it should be noted that there is a debate in the field
about whether bacterial communities are shaped by simple
(Friedman et al., 2017; Goldford et al., 2018) or complex
(Bairey et al., 2016; Chang et al., 2023) assembly rules. To
address the potential complexity of microbial systems, neu-
ral networks are emerging as alternatives to gLV models,
as they can capture complex interactions (Baranwal et al.,
2022; Michel-Mata et al., 2022). For instance, Baranwal
et al. (2022) fit recurrent neural networks to microbial com-
munities of up to 26 bacteria to predict their assembly and
ultimately a function of interest, namely butyrate production.
Although their results are encouraging, their models are fit-
ted on growth trajectories and rely on time-series, impeding
their generalization to new bacteria and communities.

In this work, we model bacterial communities directly from
bacterial genomes using graph neural networks (GNNs).
Our contribution can be described as follows.

1. We propose using GNNs as a powerful class of func-
tion approximators to model microbial communities,
such that each node in the graph represents a bacterial
species and the GNN performs regression on nodes.
Through the graph structure, GNNs isolate informa-
tion and share parameters across nodes, thus granting
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Figure 1. We propose to leverage Graph Neural Networks to implicitly learn bacterial communities’ dynamics from bacterial genomes.
This method allows accurate predictions of steady-state community profiles and generalization to larger communities and unseen bacteria.

permutation equivariance and generalization to unseen
bacteria, and enabling the prediction of compositions
of microbial communities.

2. We explore learning community dynamics directly
from genomes: since nucleic acids are the universal
information carrier of living organisms, this can, in
principle, allow generalizing to any unseen microor-
ganisms.

3. We propose learning dynamics implicitly by directly
predicting community relative abundance profiles at
steady state, thus escaping the need for growth curves.

4. We propose a simulation framework to facilitate ex-
ploratory benchmarks for models of microbial commu-
nities using genome features.

In practice, we evaluate the ability of conventional architec-
tures (i.e. MLPs) and GNNs to model bacterial communities
on two publicly available datasets (Friedman et al., 2017;
Baranwal et al., 2022), and further explore hypotheses in
simulations. Our results show that GNNs can accurately pre-
dict the relative abundances of bacteria in communities from
their genomes for communities of various compositions and
sizes. Furthermore, GNNs can generalize to marginally big-
ger communities and new bacteria not seen during training.

2. Methods
2.1. Terminology and problem definition

Bacterial communities A bacterium, plural bacteria, is
a unicellular microorganism. Bacteria are classified via
a taxonomy based on the DNA, the finer-grained group-
ings being the genus, species, and strain. The bacteria in
one strain are clones with almost identical DNA. In this
work, we will use the species designation to refer to dif-
ferent bacteria. A bacterial community is formed by two
or more species of bacteria that grow in the same environ-
ment. A community can be described by a set S of bacterial
species. At any time t, each bacterial species si ∈ S is
present in the environment in abundance ni(t). We define
yi(t) := ni(t)/

∑
j∈[1,|S|] nj(t) as the relative abundance

of bacterium si at time t. Over time, these metrics vary ac-
cording to the properties of each species (e.g. growth rate),

as well as complex inter-species interactions. Extrinsic fac-
tors may affect the amount of bacteria in the environment,
for instance, the amount of resources, but we will ignore
them for simplicity as in previous work (Bashan et al., 2016).
This is especially justified in the case of experimental data
from controlled environments (van den Berg et al., 2022).

Generalized Lotka-Volterra model Our method learns
to model community dynamics implicitly through a neural
network and thus makes minimal modeling assumptions.
Nevertheless, to give an intuition of how bacterial com-
munities change over time, we now describe a simplified
predictive model.

The generalized Lotka-Volterra model (Lotka, 1920;
Volterra, 1926) describes the change in abundances in the
environment (van den Berg et al., 2022; Gonze et al., 2018)
according to

dni

dt
= ni(t) · µi ·

(
1− 1

Ki

|S|∑
j=1

ai,jnj(t)
)
, (1)

with S the set of bacterial species in the environment.
For a given species si ∈ S, µi is the growth rate and Ki

represents the carrying capacity, which limits the amount
of bacteria that can exist in the environment. Finally, ai,j
is an interaction factor describing the effect of species si
on species sj , and ai,i = 1 ∀i ∈ [1, |S|].

Genomes Bacterial genomes consist of DNA sequences
organized into genes, coding for all information related
to bacterial functioning, e.g. metabolism, growth. Thus,
genomes can be represented by the presence/absence of
genes or groups of genes. An example of gene grouping is
their mapping to the KEGG Orthology database to group
them by molecular function (Moriya et al., 2007). For in-
stance, the genome of Anaerostipes caccae carries the gene
coding for the enzyme EC 1.3.8.1, which is a butyryl-CoA
dehydrogenase belonging to the KEGG group KO K00248.
Through the KEGG Orthology database mapping, genes
coding for proteins with similar functions across species
have the same annotation, and bacteria with similar molecu-
lar abilities have more similar representations.

In the context of this work, we represent genomes using
feature vectors. Such vectors should have the same
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dimensionality and semantics across all bacteria. To
represent all bacteria in a unified way, we consider all genes
that occur in any genome in the pool of bacteria and record
their presence/absence in the feature vector. Given an
ordered set of M genes (gk)Mk=0, we represent the genome
of species si ∈ S as a binary indicator vector xi = (xk

i )
M
k=0

such that xk
i is one if gene gk is present in the genome of si,

and zero otherwise. Hence, each bacterium, or node, has for
attributes a binary vector representing the genome. For real
data, the representation is taken from genome annotations
and for simulations the representation is abstracted to
contain information on bacterial growth (see section 2.4).

Task Our aim is to predict the composition of bacterial
communities C ⊆ S at steady state from the genomes of
the mixed bacteria. More specifically, we cast this task as
a supervised learning problem. Assuming an equilibrium
is reached at time-step Teq, our learning target is the ob-
served relative abundance of each bacterial species si ∈ C
at equilibrium: y(Teq) = (y1(Teq), . . . , y|C|(Teq)). Our
inputs are the feature vector representation of genomes of
bacteria present in the mixture xi ∀i ∈ [1, |C|]. To compare
architectures with fixed length input, namely MLPS, we
add null feature vectors xi = (0)Mk=0 for the bacteria absent
from the mix.

2.2. Models

Our method learns an implicit model of the dynamics of a
bacterial community. Instead of estimating the parameters
of a differential equation, which can then be solved to re-
trieve an equilibrium, we apply a flexible class of function
approximators and directly regress the solution at equilib-
rium. MLPs constitute a simple baseline, as they can in prin-
ciple approximate arbitrary functions (Cybenko, 1989). As
most commonly used neural network architectures, MLPs
assume that the position of each input carries a semantic
value. The prediction of bacterial community dynamics,
however, has an interesting property, namely permutation
equivariance. This is due to the fact that a community is a
set of species, and the predictions of the model should not
be affected by the order in which the species are presented.
For this reason, we propose to leverage Graph Neural Net-
works (GNNs) (Scarselli et al., 2009; Gilmer et al., 2017;
Kipf & Welling, 2017; Battaglia et al., 2018) to exploit this
particular inductive bias.

GNNs can be formalized as Message Passing Neural Net-
works (MPNNs) (Gilmer et al., 2017). A graph is described
by the tuple G = (V,E), where V denotes the set of ver-
tices and E the edges. The neighborhood of a vertex, i.e.
node, v ∈ V is described by N (v) = {u|{u, v} ∈ E}. The
attribute of each node is given by xi for i ∈ [1, |V |]. In
general, the attribute xi of each node in the graph is updated

as follows in each message passing step:

e(i,j) = ge
(
xi,xj

)
(2)

x′
i = gv

(
xi, aggrj∈N (i)

(
e(i,j)

))
. (3)

where ge and gv are arbitrary functions used for the edge
and node computations respectively. The permutation-
equivariant aggregation function is given by aggr. Depend-
ing on the choice of the node and edge update rules, we
can recover different GNN architectures. In this work, we
investigate two architectures: a spatial-convolutional GNN
using the GraphSAGE implementation (Hamilton et al.,
2017), and a slight variation of the message passing GNN
architecture in Kipf et al. (2020), which we will refer to as
MPGNN. The GATv2 (Veličković et al., 2018; Brody et al.,
2022) and GCNII (Kipf & Welling, 2017; Chen et al., 2020)
architectures were also tested but underperform the above
models; see results in the Appendix A and Table S3. In
the context of bacterial communities, for which we do not
know a priori the specific interactions, we have to specu-
late a network topology. Bacteria change their environment
by uptaking resources and releasing products. Hence, we
cannot assume the absence of interactions between any pair.
Consequently, we choose to use fully connected graphs such
that each node is updated based on all other nodes within
one message-passing step. The information propagation
over k-hops can capture k-order relations between entities:
the first message passing is limited to the neighboring node
attributes (pairwise interactions) and the next ones propa-
gate the interactions of neighbors (bacterium ni receives
information from nj and how it has been affected by others).
As edge update functions can potentially learn to stop incom-
ing information from certain nodes, using a fully connected
graph does not prevent modeling sparse interactions.

For GraphSAGE, the edge computation e(i,j) returns the
attributes of neighboring nodes j ∈ N (i), i.e. ge

(
xi,xj

)
=

xj . The node update function gv is given by: x′
i =

W1xi +W2 ·meanj∈N (i) xj , where W1 and W2 are learn-
able parameters. The mean is used as the aggregation func-
tion. By using k graph convolutional layers after one an-
other, we can achieve k-hop information propagation. Fi-
nally, we have an additional linear layer at the end with
sigmoid activation for the node attribute readouts.

In the MPGNN, we update the node attributes as x′
i =

gv
(
xi,meanj∈N (i)(ge(xi,xj))

)
. Here, gv and ge are

MLPs with l linear layers, each followed by a non-linearity,
e.g. ReLU activation. Layer normalization is applied in the
final layer. For the mapping from the node attributes to the
outputs, we also have a linear layer with sigmoid activa-
tion. For MPGNN, k message-passing steps are equivalent
to the k-hop information propagation we get by stacking
k GraphSAGE layers. We treat k as a hyperparameter for
both MPGNN and GraphSAGE. For MPGNN, the number
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and size of the hidden layers of ge and gv are both tuned as
hyperparameters, more details are given in Table S2.

Models were trained with the Adam optimizer (Kingma
& Ba, 2015) to minimize the Mean Squared Error (MSE).
We use the coefficient of determination R2 to assess model
performance on test set, with R2 = 1 −

∑
i∈N (xi−x̂i)∑
i∈N (xi−x̂) . To

allow calculating R2 across communities, we center values
with each community such that x̂ = 0. We compute R2 on
100 bootstraps of communities and report its average and
95% confidence interval; R2 = 1 correspond to a perfect
model, R2 ≤ 0 means the model is worse than random (i.e.
predicting the mean). Implementation details, data splits,
and reported metrics are detailed in Appendix A.

2.3. Publicly available real data

We use two publicly available datasets independently
recorded by separate laboratories; we describe them
here, provide more details in Appendix A.2. Datasets
can be found on our project webpage https://
sites.google.com/view/microbegnn. Models
were trained independently on each.

FRIEDMAN2017 Experimental data from Friedman et al.
(2017) consists of the relative abundances of 2, 3, 7, and
8-bacteria communities (Fig. S3, Fig. S4, and Fig. S5). The
dataset contains 93 samples with 2 to 15 replicates each.
Raw data was kindly provided by Friedman et al. (2017).

BARANWALCLARK2022 The dataset is published by
Baranwal et al. (2022), with certain samples originally pro-
duced by Clark et al. (2021). The dataset is composed
of relative abundances of 459 samples of 2 to 26-bacteria
communities, each replicated 1 to 9 times. When testing
generalization to excluded bacteria (see Sec. 3.3), we do not
attempt to generalize to (i) Holdemanella biformis (HB) as
the samples containing this bacterium are only present in
two community sizes (2 and 26), resulting in a small test
set, and (ii) Coprococcus comes (CC), Eubacterium rec-
tale (ER), Roseburia intestinalis (RI), and Faecalibacterium
praustnitzii (FP) due to their over-representation in samples,
and so the resulting small training sets.

Genomes of bacterial species were downloaded from NCBI
(Sayers et al., 2022) or the ATCC Genome Portal (Yarmosh
et al., 2022), annotated with the NCBI prokaryotic genome
annotation pipeline (Tatusova et al., 2016), and genes were
mapped to the KEGG database to obtain KO functional
groups (Moriya et al., 2007). When a specific strain’s
genome was unavailable, the genome of the closest type
strain was used instead. Details on strain genomes are pro-
vided in Supplementary Tables S4 and S5. Input genomes
are 1-hot encodings of KO groups presence/absence: we
listed detected annotations across genomes for each dataset,
recorded annotation presence/absence per bacteria, removed

annotations present in all genomes for each dataset.

2.4. Modeling bacterial communities in simulation

We design a simulator for the growth of bacterial commu-
nities based on the generalized Lotka-Volterra model (see
Sec. 2.1), to control data parameters and specifically assess
the application of GNNs to bacterial communities. This
simulator, as illustrated in Fig. 2, is not meant to produce a
faithful representation of real communities, but rather to pro-
vide a generative procedure that captures certain challenges
in the data, e.g. large dimensionality, while controlling other
characteristics, e.g. sample size.

Bacterial growth The growth of each bacterium in the
community was simulated using the generalized Lotka-
Volterra equation (Eq. 1), with: ln(µi) ∼ N (1, 0.52)
clipped to [0.5, 2], Ki ∼ U(5, 15), and ai,j ∼
Laplace(0, 0.22) clipped to [−2, 2], ∀i, j ∈ [1, |S|]. The
target relative abundance was calculated by simulating com-
munity growth until equilibrium: ni(0) = 10 ∀i ∈ [1, |S|]
and equilibrium was reached when dni/dt ≤ 10−3 ∀i ∈
[1, |S|] (Fig. S1). Theoretically, this is similar to solving the
roots of Eq. 1 which implies that steady-states depend on
the parameters Ki and ai,j ∀i, j ∈ [1, |S|]. Given our set of
parameters, all simulated communities were stable.

Bacterial genomes Bacterial genomes are generated to en-
code the simulated growth parameters such that there exists
an approximately bijective mapping from genomes to pa-
rameters. We achieve this by rescaling parameters to [0, 1],
discretizing them, and performing a simple binary encoding
to ng bits as gbin = bin

(
round

(
(g−gmin)/(gmax−gmin)·

(2ng − 1)
))

. Although the encoding is not representative
of any biological process, the mapping can be computed
efficiently, provides a compact representation, and can be
inverted up to discretization. This method is applied directly
to the parameters µ and K, resulting in two binary vectors
of size ng .

Encoding the interaction factors ai,j into the genomes of
each bacteria requires an additional step. Given a bacte-
rial community S, two intermediate ndim-dimensional vec-
tors for each bacterium si ∈ S are needed: one determin-
ing its effect on interaction partners, νsi ∈ Rn, and the
other determining how it is affected by others, νri ∈ Rn.
These vectors should contain sufficient information, such
that the influence of bacterium si on sj (encoded in ai,j)
can be retrieved from νsi and νrj . For each pair of bac-
teria (si, sj) ∈ S2, we simply reconstruct interactions
through inner products: âi,j = νsi · νrj . We treat inter-
mediate vectors as learnable parameters, and optimize them
through gradient descent by minimizing the distance of
the reconstructed interaction matrix from its ground truth:
J =

∑
i∈[1,|S|]

∑
j∈[1,|S|](âi,j −ai,j)

2. The ndim vector co-
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Figure 2. Simulation of bacterial community growth dynamics and genomes. For each bacterium i, we randomly draw its growth
parameters: the growth rate µi, the carrying capacity Ki, and its interaction factors ai,.. From these parameters, we calculate the
abundances of bacteria at equilibrium according to the generalized Lotka-Volterra equationsand use the relative abundances as a learning
target. In parallel, we simulate genomes by creating binary vectors that encode for the growth parameters. For that, we first approximate
two vectors per bacterium of ndim dimensions: one to determine the effect of bacterium i on others, νs

i , and the other to determine the
effect of other bacteria on i, νr

i . For bacteria i and j, we assume that the effect of i on j is expressed as ai,j = νs
i · νr

j . The approximation
is performed by minimizing the distance between the real matrix of interactions and the one generated by the approximated vectors. We
generate the binary encoding of the parameters µi, Ki, and the values in νr

i and νs
i . We also randomly draw a [0− 1] vector to add noise

to genomes. We use these “genomes” as input features to predict the relative abundances of bacteria at equilibrium.

ordinates for both vectors are finally encoded in the genomes
as described above for µ and K.

Here, we use ng = 7 for all parameters, ndim = 20 for
the 25 simulated bacteria, and add 5 % of random genes.
Empirically, we verify that µ, K, and νs, νr can be accu-
rately recovered from simulated genomes and that these
parameters produce low label noise (Fig. S2).

3. Experiments and results
The general goal of this work is to train and evaluate neural
models for the dynamics of bacterial communities, directly
from their genomes. On real data (FRIEDMAN2017 and
BARANWALCLARK2022), we first investigate whether in-
distribution predictions of unseen bacterial communities
with known bacteria are possible. Then, we evaluate the
generalization of learned models to (i) larger communities
and (ii) unseen bacteria with respect to those used for train-
ing. Finally, due to the scarcity of real data, we leverage
our proposed simulator to produce a dense and controllable
distribution over communities: by retraining models on sim-
ulated data, we are able to validate whether trends emerging
in real data can be explained in a simplified setting.

3.1. Can we model real communities? — Yes

We first set out to evaluate the general feasibility of predict-
ing bacterial community profiles from bacterial genomes
using GNNs (Fig. 3 A-B).

Due to the set nature of communities, their dynamics are
inherently permutation equivariant. This known property
of the target function might, however, not be captured by
universal function approximators such as MLPs. To con-

firm this, we train both GNNs and MLPs on the FRIED-
MAN2017 dataset. When shuffling the order of bacte-
ria within the train and test communities, the accuracy of
MLPs drops significantly, clearly showing that the dynam-
ics learned by MLPs are not equivariant to permutations
(Fig. 3 A), and thus fundamentally incorrect. Both MPGNN
and GraphSAGE provide accurate predictions; our best
model predicts unseen bacterial mixes with a goodness of
fit R2 = 0.81 and R2 = 0.77, for FRIEDMAN2017 and
BARANWALCLARK2022 respectively (Fig. 3 A).

3.2. Can we generalize to larger communities? —
Marginally.

We assess the ability of the models to generalize to com-
munities of larger or smaller sizes. The motivation in the
former case is to transfer knowledge from lab experiments
on smaller communities to larger ones observed in the wild.
In the latter case, the motivation is to evaluate whether one
can learn a model from a large dataset of observed samples,
and infer a model of bacterial interactions from it to monitor
bacteria in the lab.

We train GNNs on communities with 2- and 3-bacteria and
predict those with 7- and 8-bacteria from FRIEDMAN2017.
For the BARANWALCLARK2022 dataset, we train either
on communities with 2- to 15- or 2- to 22-bacteria and
predict the 23- to 26-bacteria communities (Fig. 3 B). The
best ensemble models for each dataset have an accuracy
of R2 = 0.55, R2 = 0.26, and R2 = 0.45, respectively
(Fig. 4). For BARANWALCLARK2022, including commu-
nities of sizes closer to test sizes greatly improves accu-
racy, suggesting that interactions may be different in larger
communities, hence limiting the models’ ability to gen-
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Figure 4. Prediction of larger communities. Each point repre-
sents a bacterium in a test community; x-axis: average of the
observed relative abundances; y-axis: model predictions. A/ Mod-
els trained on communities of size ≤ 3, test communities of size
≥ 7 bacteria. B/ Training communities of size ≤ 22 bacteria,
predictions for ≥ 23. Perfect predictions align on the dotted line.

eralize; we explore this hypothesis on simulated data in
Sec. 2.4. This may explain why the models wrongly predict
the growth of Pseudomonas citronellolis (Pci) and Serratia
marcescens (Sm) in the FRIEDMAN2017 dataset (Fig. 4 A).
Although in the observed communities, these bacteria do
not survive, the models predict a significant abundance.

For the BARANWAL-CLARK2022 data, predictions on
Anaerostipes caccae (AC) are the less accurate: the rel-
ative abundance of the bacterium is largely overestimated
with an MSE = 0.019 compared to MSE = 0.001 for the
other bacteria (Fig. 4 B). This difficulty to generalize to AC
is consistent across our results (see Sec. 3.3). Training on
larger communities to predict smaller ones does not achieve
good results with all R2 lower than zero, indicating worse
accuracy than predicting the average (Fig. 3 B). Empirically,
our results suggest that generalization to smaller communi-
ties poses different challenges with respect to generalization
to larger communities.

3.3. Can we generalize to unknown bacteria? — Sort of.

Generalization to unseen bacteria is a challenging task that
to our knowledge has not yet been performed for community
growth dynamics. If successful, this suggests that models
are able to extract relevant information from genomes that
likely relate to biological processes causing the observed
relative abundance of a bacterium in a community. This
could open new possibilities, such as anticipating the effect

of new pathogens on microbiomes or creating communities
in an informed way by forecasting which bacteria is most
likely to serve a desired purpose.

In practice, for every bacterium si ∈ S we filter the training
set to remove all communities that contain si, and use all
communities that contain si for testing. As no parameter
tuning was performed, we do not use a validation set; results
are shown for the test set directly.

The results vary depending on which species was left out
as an unseen bacterium (Fig. 5). For instance, reasonable
accuracies were obtained on the FRIEDMAN2017 dataset
for predicting unseen bacteria Enterobacter aerogenes (Ea)
and Sm (Fig. 5 A and Fig. S7 C; R2 = 0.55 and R2 = 0.58,
respectively). Interestingly, these two bacteria were the
most distant from the rest, being the only non-Pseudomonas
(Fig. 5 B). A hypothesis is that they do not interact much
with the Pseudomonas, or that they both interact in a simi-
lar manner. In line with this hypothesis, for Pseudomonas,
growing with either Sm or Ea led to resembling commu-
nities, making it possible for the knowledge gained from
the genome of one non-Pseudomonas to be accurately trans-
ferred to the other. This hypothesis is supported by the
comparable relative abundances of Pseudomonas in 2- and
3-bacteria communities with Sm or Ea (Fig. S7 A). Predic-
tions of communities with Pseudomonas chlororaphis (Pch)
achieve the lowest accuracy, in fact lower than predicting the
mean relative abundance for both types of models (Fig. 5 A,
R2 < 0). The genome of this species is not available on pub-
lic databases, so the genome of the closest species had to be
used instead. Hence, an uncontrolled error was introduced in
the data. Furthermore, the substitute genome belongs to the
same species as Pseudomonas aurantiaca (Pa), which has a
different phenotype than Pch in cultures, leading to different
relative abundances in communities (Fig. S7 B). Nonethe-
less, models generalize better to Pa (Fig. 5 A, R2 = 0.13 for
GraphSAGE). Hence, we can hypothesize that the models
learn from other Pseudomonas genomes, but cannot gener-
alize well to Pch due to its substitute genome. Finally, the
overall low accuracy when generalizing to Pseudomonas
may be due to the high similarity of Pseudomonas genomes
compared to their phenotypes. More training samples and
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Figure 5. Accuracy of GNN models on predictions of bacterial communities containing unseen bacteria. For each bacterium,
communities containing the bacterium are used for testing, and not for training. Average R2 values on the test set are shown with 95%
confidence interval (calculated on 100 sample bootstraps). A-B: Results and phylogenetic tree for FRIEDMAN2017. C: Results for
BARANWALCLARK2022.

a better resolution of the feature space would likely help
improve models as suggested by experiments on simulated
data (Sec. 3.4 and Appendix B).

The results obtained on BARANWALCLARK2022 are su-
perior to those on FRIEDMAN2017 data (Fig. 5 C). This
could be attributed to the larger dataset size, which includes
more bacteria and community sizes, thus providing a better
resolution of the feature space (a wider range of genomes to
learn from) and output space (more examples of co-cultures
due to the increased number of communities). Nevertheless,
we report significantly lower accuracy when generalizing
to communities including AC. This bacterium is not partic-
ularly phylogenetically distant from others (Fig. S6), but
is the only one that can produce butyrate from lactate and
is a driver of butyrate production (Clark et al., 2021). Em-
pirically, it inhibits the growth of CC, CH, BO, BT, BU,
BC, and BY in communities of 11- to 13-bacteria while
promoting the growth of CA and DL (Fig. S8 A; see the
abbreviations in Supplementary Table S4). However, these
effects are less clear in communities of 23- to 25-bacteria
(Fig. S8 B). The other bacterium to which models can trans-
fer less accurately is Bacteroides thetaiotaomicron (BT;
Fig. 5 C). This bacterium is considered a keystone of the
human gut microbiota, meaning that it drives community
assembly (Banerjee et al., 2018). Consequently, commu-
nities including such a bacterium may be harder to predict
due to the changes in interactions compared to communities
without the bacterium, which explains the lower accuracy
of the GNNs when generalizing to communities with BT.
Actinobacteria, the phylum to which AC belongs, are also
considered keystones of the human microbiota (Banerjee
et al., 2018). Although AC itself has not been reported to be
a keystone, given our results and the observation of butyrate
production from Clark et al. (2021), we hypothesize that it
may be one. We explore this hypothesis on simulated data

in Sec. 3.4 and discuss it further in Appendix B.

Our results suggest that GNNs can generalize predictions
of bacterial relative abundances to communities including
unseen bacteria. In practice, the performance of models may
still be limited due to noise in inputs (genomes) and output
resolution (similar genomes but different phenotypes).

3.4. Validating sources of model inaccuracies through
simulation

Due to the scarcity and lack of control of real data, we
take advantage of the simulator introduced in Sec. 2.4 to as-
sess whether model inaccuracies originate from community-
specific features. We remark that these experiments are
carried out on simulated data, generated through a simpli-
fied process; therefore, results in this section are meant to
undergo further validation in the real world. We briefly
present our findings here and detail them in Appendix B.

For the MLP, we show two versions for experiments on
small communities. MLP∗ receives input bacteria in a fixed
order. Thus, it can solely rely on positional information,
and avoid extracting information from the genome. Conse-
quently, it cannot generalize to unseen bacteria (Fig. 6 B).
This MLP∗ shows the prediction performance that could
be obtained by overfitting to each bacterium. The second
version, marked MLP, receives bacteria in a shuffled order
as input in training and testing. It is forced to extract all
information from the genomes, but is evidently unable to
make useful predictions (Fig. 6).

First, we evaluate the scalability of our approach on datasets
made of communities of sizes 5-20, 12-25, 25-100, and
50-200 (Fig. 6 A). We note that these communities contain
20, 50, 100, and 200 different bacteria species respectively.
We find that models trained on as few as 50 samples can
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Figure 6. Evaluation of prediction accuracy according to community features on simulated data. Bacterial communities were
simulated with varying parameters as described in Sec. 2.4. MLP∗ receives each bacterium at a fixed input location, with 0-vectors for
absent bacteria. MLP is a version with shuffled inputs. A: We simulate sets of 20, 50, 100, and 200 bacteria, and draw communities of
size n/4 to 0.9 ∗ n for training and testing. Increasing the number of training samples leads to improved accuracy at testing. B-D: A set
of 25 bacteria is used for simulations. B: The edge density, i.e. the probability of an edge, is varied between 0.1 and 0.6. C: The edge
density is set to 0.2 except for 2 bacteria with an edge density of 0.8 to mimic keystones. Each keystone and five random bacteria are
excluded from training as in Sec. 3.3, results are shown for the test set including communities with these bacteria. D: The training set is
limited to communities of sizes below 10, 15, 25 bacteria; the test set contains communities of sizes 16 to 25. The number of training
communities is reported below (samples).

already generalize in-distribution for communities of up
to 50 bacteria. For larger communities, models benefit
from increasing the number of samples for training. Given
the jump in complexity of communities when increasing
community sizes, overfitting with smaller communities and
lower generalization for larger ones is expected.

Next, we investigate how varying the density of community
interactions, controlled by edge probability in the interaction
matrix, impacts models’ performance. We observe that, as
we simulate denser interactions in the train and test sets,
the GNN accuracies stay stable on average but decrease in
variance (Fig. 6 B).

Then, we test the ability of the models to generalize to un-
seen keystone bacteria, which could explain the drop in
accuracy for certain species in Fig. 5. For that, we increase
the edge density for two specific bacteria by increasing the
probability of an edge to exist from 0.2 to 0.8 for these nodes
only. We simulate communities, exclude each keystone from
training, and predict the growth for communities including
them as in Sec. 3.3. We perform the same procedure on
five non-keystone bacteria for comparison. However, the
results do not validate our hypothesis (Fig. 6 C). This im-
plies that GNNs are, in principle, capable of generalizing
well to keystone bacteria and that other factors may explain
the lack of generalization to AC and its communities in
BARANWALCLARK2022 (see Appendix B).

In Appendix B and Supplementary Fig. S9, we additionally
assess the effect of feature diversity at training, i.e. the
number of seen genomes, on generalization to unknown
bacteria. We find that increasing the diversity of bacteria
seen during training helps generalize to unseen genomes
while maintaining good accuracy for seen ones.

Finally, we explore the ability to generalize to larger commu-
nity sizes at testing. For that, we initially assess whether we

can reproduce the decrease in accuracy with our simulations
as seen in Fig. 3 B. Crucially, while in real data higher-order
interactions can drive the drop in accuracy on the test sets,
this effect cannot be verified with our simulated data, as they
include only pairwise interactions. In fact, we see a decrease
in accuracy when the size of the training communities is
reduced compared to the test communities (Fig. 6 C). Specif-
ically, models trained on samples with communities of up to
10 bacteria cannot accurately predict communities of 16 to
25 bacteria (R2 < 0). Furthermore, we find that, in simula-
tion, relative abundances are systematically over-estimated
in predictions with larger communities. This is likely a con-
sequence of the higher relative abundances in the smaller
communities of the training set, indicating a tendency to
overfit to training communities. It also suggests that in real
data, where over- and under-estimations are observed, other
factors must influence the lack of generalization. Moreover,
we report a trend of higher accuracy when a larger number
of communities is used for training, while controlling for
community size. This is coherent with our results on scal-
ability (Fig. 6 A), showing that our approach can scale up
when provided with sufficient samples for training.

Overall, our results suggest that it is crucial to ensure that
sufficient data is gathered along three axes: (1) a sufficient
number of bacterial species, (2) a sufficient number of com-
munity samples, and (3) communities of size similar to
target.

4. Conclusion
Our work sets the stage for the application of GNNs to mi-
crobial communities. These models can implicitly learn
growth dynamics, and empirically outperform MLPs in
terms of accuracy and generalization capabilities. Al-
together, GNNs hold great potential for further applica-
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tions. Furthermore, our results show that genomes are
sufficient to learn an accurate model that can generalize
predictions beyond observed communities. To our knowl-
edge, this is the first attempt at predicting microbial com-
munity profiles from genomes directly. Recently, Lam et al.
(2020) employed genome-scale metabolic models (GEMs)
(van den Berg et al., 2022) adapted for microbial commu-
nities (Machado et al., 2018) to predict pairwise bacterial
interactions. Hence, a potential next step would be to apply
GNNs to such GEMs. Finally, our simulations provide a
flexible data generation procedure, which can be used to
benchmark models for bacterial growth from genomes. In
the future, the simulation can be further improved to account
for higher-order interactions and potentially environmental
factors. Nonetheless, we hope that its accessibility will en-
courage the explainable ML community to develop tools to
interpret GNN models of bacterial communities. As new
properties emerge from microbial communities, scientific
discoveries may arise from interactions between our fields.

Impact Statement
This paper presents work that aims to advance the fields of
Biology and Applied Machine Learning as it contributes
to developing machine learning methods for understanding
microbial communities. Consequently, its potential impact
ranges from medical applications to food technology. For
instance, understanding microbial interaction dynamics may
help restore healthy gut communities, e.g. after antibiotic
uptake or in malnourished populations. The ability to model
microbial communities would also benefit industrial appli-
cations, enabling efficient monitoring of bacterial consortia
and their metabolic optimization. We cannot think of nega-
tive consequences to highlight here.
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Appendix

A. Implementation details
The datasets contain replicates for some of the settings. To make evaluation simple, we average the results of replicates
when included in the validation or test sets. Cross-validation (CV) was performed on 5 train/validation/test data splits with 5
model initialization seeds for hyperparameter tuning (see Supplementary Table S2).

We chose the hyperparameter combination resulting in the lowest validation error. Consequently, we used 2 convolutional
layers/message-passing steps with 50 and 100 hidden features for FRIEDMAN2017 and BARANWALCLARK2022 data,
respectively. Note that for all architectures, we first have an embedding layer that maps the input genomes to the hidden
feature size. For predictions on the test sets, we show each of the 3-models and the average of the 3-models ensemble on
Fig. 3 and Fig. 5. Otherwise, predictions on test sets correspond to the average of the 3-models ensemble. As we assume
no prior knowledge of bacterial interactions, our graphs are fully connected. For the MPGNN, we used single layer MLPs
for the node and edge update functions gv and ge (see Eq. 3). These layers were followed by layer normalization and a
ReLU activation. For all architectures, output predictions were made with a linear layer followed by the sigmoid function to
constrain values into [0, 1]. Note that applying the SoftMax instead of sigmoid did not improve models (Supplementary
Table S2). We trained the spatial-convolution GNN with GraphSAGE layers implemented in the PyTorch Geometric Python
package (Fey & Lenssen, 2019) with mean aggregation. We also apply ReLU activation after each GraphSAGE layer and
layer normalization is applied before the activation in the final layer.

A.1. Model training

For all models, the batch size was 16, training samples were shuffled for making batches, and the learning rate was set to
0.005 for the Adam optimizer (Kingma & Ba, 2015).

Cross-validation on real data For cross-validation (Fig. 3 A), data were split into 80/10/10 % train/validation/test sets;
five splits were created. We trained models for 500 epochs, with the Adam optimizer to minimize the Mean Squarred Error
(MSE); five seeds per model were used. The MSE on the validation set was used to select parameters, no difference in
performance was observed when using the smooth L1 loss function. We assessed the number of layers, the number of
hidden features, whether to train on the average of replicates or each replicate, and whether to apply a SoftMax instead
of Sigmoid function after making predictions. Additionally, for the FRIEDMAN2017 dataset, the position of bacteria in
the community was shuffled for predictions on the test set for Fig. 3. For the BARANWALCLARK2022 dataset, CV was
performed on non-shuffled samples. Models’ performances according to parameters are given in Supplementary Table S2.

Fitting of models on real data When no cross-validation was performed, data were split according to community size
(Fig. 3 B) or composition (Fig. 5) and no validation set was used. Models were trained for 500 epochs, five seeds were used.

Fitting of models on simulated data We simulated a community of 25 bacteria as described in Sec. 2.4. Samples were
created by randomly drawing a subset of bacteria and calculating their relative abundance at equilibrium, also as described
in Sec. 2.4. Unless mentioned (Fig. 6 C), 100 samples were generated for training, 10 for validation, and 10 for testing.
Models were trained for 1000 epochs; results on test sets are given in Supplementary Table S6.

A.2. Real datasets

Friedman2017 The first set of data was published by Friedman et al. (2017). Experimental data consisted of the relative
abundances of bacteria in 2, 3, 7, and 8-bacteria communities at the beginning of the experiment and after 5 days of daily
passage, i.e. a fraction of the culture is re-inoculated into fresh growth media. For each mix of bacteria, several initial
inoculum ratios were used; 248 samples were performed in duplicates, and 25 samples were not replicated.

Growth curves for mono-cultures are shown in Supplementary Fig. S3, and relative abundances of bacteria in co-cultures are
shown in Supplementary Fig. S4 and Supplementary Fig. S5. Given our task to predict stable states of bacterial communities
from genomes, we exclude data from mono-cultures and treat mixes started from different inoculum ratios as one sample.
Hence, the final dataset consisted of 93 samples with 2 to 15 replicates each. Samples were randomly split in 80/10/10 %
train/validation/test sets for cross-validation (CV). We perform experiments in which we exclude 1 bacterium at a time.
For those, bacterial communities of 7- and 8-bacteria were excluded from training and testing, so only samples of 2- and
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3-bacteria communities were used. For the experiments testing for generalization to bigger communities, training was
performed on 2- and 3-bacteria communities and testing on 7- and 8-bacteria communities.

Raw experimental data was kindly provided by Friedman et al. (2017) and is now available on our project website:
https://sites.google.com/view/microbegnn.

BaranwalClark2022 The second dataset was published by Baranwal et al. (2022), with certain samples originally
produced by Clark et al. (2021). From the initial 1,850 replicates, we removed 258 with records of contamination or “Low
Abundance”, 39 with an OD600 ≤ 0.1, and 593 which had more than 0.1 % of non-inoculated bacteria – despite not being
recorded as contaminated by authors, resulting in 960 replicates from 459 samples. Each sample was replicated 1 to 9 times.

CV was performed on random 80/10/10 % train/validation/test splits. We carefully looked at the community size repre-
sentation when excluding each bacterium, and removed samples from the test set if their community size had not been
seen during training or only for a few samples (Supplementary Table S1). In particular, we did not attempt to generalize to
(i) Holdemanella biformis (HB) as only 2- and 26-bacteria communities had been produced with this bacterium, making
up a very small test set, and (ii) Coprococcus comes (CC), Eubacterium rectale (ER), Roseburia intestinalis (RI), and
Faecalibacterium praustnitzii (FP) due to their over-representation in samples, and so the resulting small training sets.

A.3. Additional architectures

In addition to the MPGNN and GraphSAGE architectures, we also tested improved versions of the Graph Attention
(Veličković et al., 2018; Brody et al., 2022) (GATII) and Graph Convolution (Kipf & Welling, 2017; Chen et al., 2020)
(GCNv2) architectures. We fitted models on the five CV folds of real data, BARANWALCLARK2022 and FRIEDMAN2017,
as for the MPGNN and GraphSAGE models. The average coefficient of determinations (R2) of the ensemble models fitted
on each dataset, with a 95% confidence interval, and calculated on 100 bootstraps of test samples, are reported in the
Supplementary Table S3.

B. Additional results
B.1. Edge density and keystone

For the edge density experiment (Fig. 6 B), interactions are drawn from the same distribution, uniformly across bacteria.
The decrease in variance with increased edge densities may indicate that models, having seen many interactions during
training, extrapolate interactions better to new combinations of bacteria, i.e. an unseen community. When interactions are
sparse, the model may not identify the interactions and predict their effect on bacterial growth, resulting in higher variance
in accuracy at test times. In non-uniform interaction contexts, where certain bacteria are more or less connected to others,
this extrapolation may, however, be wrong. Nonetheless, our keystone results suggest that GNNs are, in principle, capable
of generalizing well to non-uniformly distributed matrices of interactions (Fig. 6 C).

B.2. Diversity

We assessed the effect of out-of-distribution bacteria on models’ predictions. For that, we fixed (i) a set of 20 baseline
bacteria and (ii) a set of 10 bacteria used only in test samples. Training samples consisted of the 20 baseline bacteria,
incrementally augmented with more bacteria to create training sets of bacterial diversity, i.e. number of different bacteria, of
20, 50, and 100. The test set comprised communities made of the baseline bacteria plus one test bacterium. We gathered
predictions on baseline bacteria, i.e. “seen” during training, and out-of-distribution, i.e. “unseen”, and calculated the R2

(goodness of fit) for each type across all test samples. We show results with one unseen bacterium in test communities
in the Supplementary Fig. S9. In this case, we see that a higher bacterial diversity seen during training time increases
the generalization performance on the unseen bacteria at test time for the MPGNN. Notably, we observe an overall high
accuracy of MPGNN on seen bacteria despite including an unseen one to the community, indicating strong robustness of the
learnt GNN models.

B.3. The case of Anaerostipes caccae (AC)

In Sec. 3.3, we hypothesize that the lack of generalization to AC in the BARANWALCLARK2022 dataset may be due to its
potential keystone nature. Keystone bacteria are defined as community drivers that determine the microbial composition of
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an environment (Banerjee et al., 2018) and, therefore, may be more interactive than other bacteria. Given our results on
simulated data, the inability of GNNs to some bacteria, such as AC, may not be due to their keystone character. Note that
this is limited by how we simulate keystones and, consequently, remains hypothetical.

Other factors may contribute to the lack of generalization to AC and its communities in BARANWALCLARK2022. For
instance, AC may be unpredictable due to its genome. While it is, on average, not particularly different from a phylogenetic
perspective (Fig. S6), it was growing well in all communities. In communities with AC, certain bacteria grew to lower
relative abundances compared to communities without AC, while others grew more (Fig. S8). These growth dynamics
may be encoded by genes specific to AC and so, unknown to the model if not present at training. Just like models do not
generalize well to unseen Pseudomonas species in FRIEDMAN2017 (Fig. 5), lack of diversity in matched genomes and
phenotypes at training may hinder generalization to bacteria with genomes close to seen ones but different phenotypes. In
this line, our results on simulated data show that increasing the set of training genomes improves generalization to unknown
bacteria at test time (Appendix B and Fig. S9).
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Figure S1. Growth curves for a simulated bacterial community of 5 members. The grey dotted line indicates the time point considered
for equilibrium. In practice, the relative abundances (B) at this point would be used as the target for fitting models.
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Figure S2. Recovery of growth parameters from genomes. Most parameters can be reconstructed to high accuracy. Approximations
errors compound in the reconstructed interaction matrix, but interaction coefficients can still be reconstructed with an coefficient of
determination R2 > 0.7.
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Figure S3. Growth curves of bacteria in mono-cultures from Friedman et al. (2017). Thin lines correspond to replicates and the thick
line corresponds to the average at each time point across replicates; cultures were passed into fresh medium daily.
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Figure S4. Relative abundances of bacteria in co-cultures from Friedman et al. (2017). Each line corresponds to a replicate; cultures
were started with 0.95 / 0.05 relative abundances of each bacterium.
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Figure S5. Relative abundances of bacteria in 3-bacteria cultures from Friedman et al. (2017). Each line corresponds to a replicate;
cultures were started with different relative abundance ratios.
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Figure S6. Phylogenetic tree of bacteria used in the BaranwalClark2022 data set (from Clark et al. (2021)). Tree branches are
colored by phylum and underlined bacteria are butyrate producers.
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Figure S7. Comparison of the effect of two bacteria on the relative abundances of others in 2- and 3-bacteria cultures, in the
Friedman2017 data set. For each bacterium on the x and y-axis, communities were matched by co-partners, and the average relative
abundances of the bacteria are shown, colored by bacteria. Suppose the x- and y-axis bacteria had similar interaction effects with their
partners in the matched communities. In that case, the relative abundances of the other bacteria should be similar and so, close to the
x = y grey dotted line. A/ The two non-Pseudomonas resulted in resembling communities when grown with Pseudomonas species, with
a mean squared distance between relative abundances in matching communities of 0.0078. B/ Despite being the phylogenetically closest
strains, Pch and Pa resulted in very distinct communities. C-D/ Predicted versus observed relative abundances when generalizing to Sm,
Pa, and Pch. The average relative abundances across replicates are shown for the observed values.
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Figure S8. Comparison of relative abundances of bacteria when grown in communities containing or not Anaerostipes caccae (AC).
Due to the scale of relative abundances according to the size of the community, we show as examples results for communities of A/ 11 to
13-bacteria and B/ 22 to 25-bacteria. For example, Bacteroides thetaiotaomicron (BT) and Bacteroides caccae (BC) are, on average,
detected at lower relative abundances in communities containing AC than in communities without. However, while Bacteroides ovatus
(BO) and Coprococcus comes (CC) are detected in much lower abundances in 11- to 13-bacteria communities containing AC than without,
this effect disappears in communities of size 22-25 bacteria. On the contrary, Dorea longicatena and Collinsella aerofaciens grow to
higher relative abundances in the presence of AC.
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Figure S9. Generalization of GNNs to unseen bacteria improves with higher diversity seen during training. We simulate sets of
|S| = 20, 50, and 200 bacteria, and draw communities of size n/4 to 0.9 ∗ n for training. At test time, we introduce a new bacteria that
has not been seen before and test the generalization capabilities of our models on communities including this new bacterium that was
not seen at training time. The test sets are shared across models, and so all bacteria, except the new one, are from the smallest set of 20
bacteria. We use 10,000 samples for training all models.
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Table S1. Species and community sizes excluded from the test sets for results in 3.3.

Species Community sizes excluded from test set

CH 24-26
BT 24-26
DP 23-26
BL 22-26
BH 22-26
CG 22-26
EL 22-26
BF 22-26
PJ 22-26
BY 22-26
BA 18-26
DL 18-26
BP 18-26
CA 18-26
BV 18-26
BC 18-26
PC 2-4, 17-26
BU 2-4, 17-26
BO 2-10, 17-26
DF 16-26

1BC: BaranwalClark2022, F: Friedman2017
2BC: BaranwalClark2022, F: Friedman2017
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Table S2. Mean Squared Error of models on validation sets after 500 epochs of training. #conv refers to the number of convolution
layers stacked for GraphSAGE and the number of message-passing steps for MPGNN, both corresponding to the depth of information
propagation in the graph, and to the number of layers for the MLP.

Dataset1 Architecture # n hidden MSE Comment
conv features validation set

F MPGNN 2 50 0.013607
F GraphSAGE 2 200 0.014383
F GraphSAGE 2 50 0.014627
F MPGNN 2 200 0.014736
F GraphSAGE 3 50 0.014987
F MLP 2 100 0.015226 no permutation
F MPGNN 2 100 0.015554
F GraphSAGE 1 100 0.01597
F MPGNN 3 50 0.016013
F GraphSAGE 2 100 0.016515
F MPGNN 1 100 0.035642
F MLP 2 100 0.051399

BC GraphSAGE 2 200 0.006484
BC MPGNN 2 100 0.006641 train average replicates
BC GraphSAGE 2 100 0.006683
BC MPGNN 2 100 0.006821
BC GraphSAGE 2 50 0.006881
BC MPGNN 2 200 0.006897
BC GraphSAGE 3 100 0.006986
BC MPGNN 2 50 0.007218
BC GraphSAGE 2 100 0.007532 train average replicates
BC GraphSAGE 2 100 0.007538 SoftMax instead of Sigmoid
BC GraphSAGE 1 100 0.007584
BC MPGNN 1 100 0.015077
BC MPGNN 3 100 0.023026
BC MPGNN 2 100 0.811864 SoftMax instead of Sigmoid

Table S3. Mean Squared Error of models on validation sets after 500 epochs of training and coefficient of determination R2 on
test sets, with a 95% confidence interval. #conv refers to the number of convolution layers, corresponding to the depth of information
propagation in the graph.

Dataset2 Architecture # n hidden MSE R2

conv features validation set test set

F GCNII 1 50 0.0778 (0.0676, 0.0879) 0.0618 (-0.1410, 0.2822)
F GATv2 1 50 0.0724 (0.0642, 0.0805) 0.0279 (-0.0808, 0.1266)

BC GATv2 1 50 0.0468 (0.0379, 0.0556) 0.3569 (0.2455, 0.4711)
BC GATv2 1 100 0.0478 (0.0399, 0.0556) 0.1034 (0.0075, 0.1914)
BC GATv2 2 50 0.0539 (0.0464, 0.0613) -0.1621 (-0.2635, -0.0975)
BC GATv2 2 100 0.0550 (0.0469, 0.0632) -0.1305 (-0.1993, -0.0840)
BC GCNII 1 50 0.0405 (0.0327, 0.0483) 0.5059 (0.2705, 0.6959)
BC GCNII 1 100 0.0435 (0.0311, 0.0558) 0.2080 (-0.1771, 0.4842)
BC GCNII 2 50 0.0219 (0.0173, 0.0264) 0.6793 (0.4865, 0.8143)
BC GCNII 2 100 0.0235 (0.0187, 0.0283) 0.7090 (0.5498, 0.8277)
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3BC: BaranwalClark2022, F: Friedman2017
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Table S4. Bacterial strains in experimental data, their designation in the article, and the genomes used to fit models.

Data3 Bacterial strain Designation Substitute genome Database

BC Anaerostipes caccae L1-92 AC NCBI
BC Bacteroides cellulosilyticus CRE21 BY NCBI
BC Bacteroides uniformis VPI 0061 BU NCBI
BC Bifidobacterium adolescentis E194a

(Variant a)
BA ATCC

BC Bifidobacterium longum subs. infan-
tis S12

BL NCBI

BC Bifidobacterium pseudocatenulatum
B1279

BP NCBI

BC Blautia hydrogenotrophica S5a33 BH NCBI
BC Clostridium asparagiforme N6 CG NCBI
BC Clostridium hiranonis T0-931 CH NCBI
BC Collinsella aerofaciens VPI 1003 CA NCBI
BC Desulfovibrio piger VPI C3-23 DP NCBI
BC Dorea formicigenerans VPI C8-13 DF NCBI
BC Dorea longicatena 111–35 DL NCBI
BC Eggerthella lenta 1899 B EL NCBI
BC Bacteroides caccae VPI 3452 A BC Bacteroides caccae

CL03T12C61
NCBI

BC Bacteroides fragilis EN-2 BF NCBI
BC Bacteroides ovatus NCTC 11153 BO NCBI
BC Bacteroides thetaiotaomicron VPI

5482
BT NCBI

BC Bacteroides vulgatus NCTC 11154 BV ATCC
BC Coprococcus comes VPI CI-38 CC NCBI
BC Eubacterium rectale VPI 0990 ER ATCC
BC Faecalibacterium prausnitzii A2-165 FP NCBI
BC Parabacteroides johnsonii M-165 PJ NCBI
BC Prevotella copri CB7 PC NCBI
BC Roseburia intestinalis L1-82 RI NCBI
BC Holdemanella biformis DSM 3989 HB NCBI

F Enterobacter aerogenes ATCC 13048 Ea NCBI
F Pseudomonas aurantiaca ATCC

33663
Pa Pseudomonas chlororaphis

strain qlu-1
NCBI

F Pseudomonas chlororaphis ATCC
9446

Pch NCBI

F Pseudomonas citronellolis ATCC
13674

Pci Pseudomonas citronellolis
strain P3B5

NCBI

F Pseudomonas fluorescens ATCC
13525

Pf NCBI

F Pseudomonas putida ATCC 12633 PP NCBI
F Pseudomonas veronii ATCC 700474 PV Pseudomonas veronii strain

ASM202832
NCBI

F Serratia marcescens ATCC 13880 Sm NCBI

Table S5. Genome and annotation sizes in the real datasets. The average genome length and number (#) of annotations (ann.) is given
with the min and max in parenthesis. The number of ubiquitous annotations correspond to annotations that were detected in all genomes
and therefore removed. The number of non-ubiquitous annotations correspond to the input length for models.

Genome sizes # ann. # ubiquitous ann. # non-ubiquitous
(x166 base pairs) per genome across genomes ann. across genomes

Friedman2017 6.3 (5.2 - 7.0) 2,555 (2,393 - 2,811) 1,421 2,798
BaranwalClark2022 4.0 (2.1 - 6.8) 1,157 (850 - 1,653) 242 3,169
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Table S6. Mean Squared Error on validation set and coefficient of determination R2 on test sets of models fitted on simulated data after
250 epochs of training. MLP and MLP* are the same models, hence they have the same MSE on validation set; MLP received shuffled
input bacteria for the test set (similar to GNNs) while MLP* did not (optimal conditions).

Model Edge density MSE R2

validation set test set

MLP* 0.1 0.000202 0.8364
MLP* 0.4 0.000563 0.7798
MLP* 0.6 0.000566 0.7173
MLP 0.1 0.001205 -0.1911
MLP 0.4 0.003315 -0.2980
MLP 0.6 0.003471 -0.4157

GraphSAGE 0.1 0.001592 0.4749
GraphSAGE 0.4 0.001924 0.4034
GraphSAGE 0.6 0.002191 0.4184

MPGNN 0.1 0.001612 0.4324
MPGNN 0.4 0.001799 0.6016
MPGNN 0.6 0.001882 0.4173

Excluded bacteria

MLP* key 0.000897 -7.3473
MLP* random 0.000926 -8.5531
MLP key 0.011816 -0.1689
MLP random 0.013400 -0.1162

GraphSAGE key 0.001101 0.4900
GraphSAGE random 0.0011308 0.4465

MPGNN key 0.000576 0.6438
MPGNN random 0.000756 0.5594

Max training community size / training sample size

MLP* 10 / 100 0.002040 -1.0551
MLP* 10 / 200 0.000906 -0.0141
MLP* 15 / 50 0.000700 0.4234
MLP* 15 / 100 0.000306 0.7998
MLP* 15 / 200 0.000123 0.8959
MLP* 25 / 100 0.00324 0.8147
MLP 10 / 100 0.002953 -1.3241
MLP 10 / 200 0.002516 -1.3176
MLP 15 / 50 0.001244 -0.0740
MLP 15 / 100 0.001263 0.0011
MLP 15 / 200 0.001278 0.0404
MLP 25 / 100 0.001668 -0.066

GraphSAGE 10 / 100 0.002823 -1.7475
GraphSAGE 10 / 200 0.001779 -0.8447
GraphSAGE 15 / 50 0.001227 -0.3847
GraphSAGE 15 / 100 0.00100 0.1108
GraphSAGE 15 / 200 0.000789 0.3243
GraphSAGE 25 / 100 0.000760 0.4360

MPGNN 10 / 100 0.002595 -1.5964
MPGNN 10 / 200 0.001689 -0.8451
MPGNN 15 / 50 0.001529 -0.5713
MPGNN 15 / 100 0.000996 0.1456
MPGNN 15 / 200 0.000503 0.6597
MPGNN 25 / 100 0.000764 0.4579
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