
Under review as a conference paper at ICLR 2024

REINFORCEMENT LEARNING FOR CONTROL WITH
STABILITY GUARANTEE

ABSTRACT

Reinforcement learning (RL) has achieved promising performance in complicated
system control. However, current RL-based control systems cannot utilize ad-
vanced RL methods while considering stability guarantees. To overcome this de-
fect, we firstly apply a Lyapunov stable dynamical model as a reference system
to fit the real system. Then, we prove that if the state fitting error between the
reference and real system are bounded, the real system has Uniformly Ultimately
Bounded (UUB) stability guarantee. Motivated by our theoretical analysis, we
guide the design of reward functions for RL based on conditions of UUB guar-
antee for real systems and propose ITSRL, an Iterative Training framework for
learning Stable RL control policy with UUB stability guarantee, by iteratively
minimizing the state fitting error between the reference and real system, which
can be adapted to various advanced RL methods. Our evaluation results on three
control tasks demonstrate that the proposed ITSRL framework can improve the
performance of RL controller under perturbation.

1 INTRODUCTION

Modern control theory typically requires the understanding of system dynamics in order to derive
the optimal controller (Shinners, Shinners (1998)). However, for complicated non-linear systems
where accurately modeling the system dynamics is challenging, it is difficult for modern control
theory to find the optimal controller (Hangos et al., 2004). Reinforcement learning (RL), due to its
model-free nature, has been used to solve optimal control problems with unknown system dynamics,
such as robotic control, unmanned autopilot control, etc. (Wiering & Van Otterlo, 2012).

However, existing RL approaches rarely consider the stability guarantee of the control system
(Buşoniu et al., 2018), which is the most fundamental property for any control system (Sastry,
2013). Adaptive Dynamic Programming (ADP, Yang et al., 2016) design the controller with Uni-
formly Ultimately Bounded (UUB, Jain & Bhasin, 2017) stability guarantee, but it requires the
model structure as a prior. Lyapunov Actor-Critic (LAC, Han et al., 2020) and Lyapunov-based soft
actor–critic(LSAC, Han et al., 2021) learn the control policy which is stable in mean cost and UUB.
Both methods are designed based on specific RL methods to meet the stability guarantee, which
cannot be generalized to other advanced RL methods. However, different systems require different
methods to achieve SOTA performance, so there are still challenges in applying the above methods
to control systems.

In this paper, we propose a novel and general approach for stability analysis of real systems with
control policy, which does not rely any assumptions about Markov chain induced by RL control
policy. Specifically, we prove that if the state fitting error between a real system and the reference
system can be bounded, then the real system has UUB stability guarantee. Motivated by our theoret-
ical results, we guide the design of reward functions for RL based on conditions of UUB guarantee
for real systems and establish ITSRL, an Iterative Training framework that can learn Stable RL
control policy by minimizing the state fitting error between a real system and the reference system.
For ITSRL, RL methods are equivalent to plug-ins in the framework, and we can adopt any advanced
RL method to adapt different control systems while the stability guarantee of the control policy can
be satisfied as well. Specifically, we start by learning a stable dynamical model as a reference system
of the real system. Then, instead of only using the original control objective as reward when opti-
mizing RL control policy, we include the state fitting error as an additional penalty in the reward.
By iterating these two steps, the performance of the RL control policy is improved as the fitting
error decreases.To demonstrate the effectiveness of the proposed ITSRL framework, we evaluate it

1



Under review as a conference paper at ICLR 2024

on three control tasks with external input disturbance. Our evaluation results show that the proposed
ITSRL can improve the performance of RL control policy under perturbation, compared with RL
control policy without using our frameworks.

The contributions of this paper can be summarized as follows:

• We design an exponentially stable reference system with controller by applying the learning-
based stable dynamic system model. We prove that the UUB stability of the real system can be
guaranteed, if the state fitting error between a real system and the reference system can be bounded

• We propose an iterative training framework named ITSRL to train a RL control policy with UUB
stability guarantee by minizing the state fitting error between the real system and the reference
system.

• Experiments on multiple control tasks demonstrate that the proposed ITSRL can improve the
performance of RL control policy under external perturbations.

2 RELATED WORK

Incorporating machine learning to design controllers has made great strides in recent years. Watter
et al., 2015 introduces the embed to control (E2C) to learn non-linear dynamics with control from
high-dimensional observations. Zhong et al., 2019 introduces the symplectic network deep learning
framework to learn the Hamiltonian dynamic model with control, which takes physics-based pri-
ors into consideration. Nevertheless, these methods feed the control input directly into the neural
network as the training dataset, without taking the design of the controller into account. Reinforce-
ment learning (RL, Sutton et al., 1992) evaluates and optimizes policies through the interaction of
agents with environment, which has shown stunning results in solving nonlinear control problems
(Kaufmann et al., 2023).

However, machine learning-based control controllers have limitations in their applications as they
cannot ensure stability on the controlled system (Sun, 2015). Therefore, it is natural to combine
control theory and machine learning to develop learned control strategies with stability guarantees
(Buşoniu et al., 2018). Lederer et al. (2021) propose a Gaussian process-based approach to quantify
the impact of data on control performance and develop a control law that ensures the stability and
performance of a closed-loop system despite model uncertainty. However, this uncertainty does not
consider the disparities between the fitted system and the real system. Consequently, the learned
control law may not perform well in the real system. Reinforcement learning is classified into two
types of model-based (Moerland et al., 2023) and policy-based (Sewak & Sewak, 2019) learning
strategies, based on whether the system model is known or not. Adaptive Dynamic Programming
(ADP) gradually approximates the solution of dynamic programming as it learns (Luo et al., 2019).
This is achieved by modeling the system’s dynamics and reward function to predict the outcome
of different decisions. The designed controller ensures the UUB of the state and the estimation
error in the uncertain system. However, ADP faces challenges in dealing with complex environ-
ments that can hardly be modeled since it needs to know the model structure of the system, which
is the common bottle-neck of model-based reinforcement learning as well. Han et al., 2020 pro-
poses a data-driven UUB theorem without the prior knowledge of the system model, and develops
Lyapunov-based actor-critic algorithm (LAC) to learn controllers with UUB guarantees. Based on
LAC, Han et al., 2021 designs LSAC, which extends LAC into Markov Decision Process with safety
constraints. However, both of these works assume that the Markov chain induced by the RL control
policy is ergodic with a unique stationary distribution, which may not hold for some practical sys-
tems. By contrast, our stability guarantee is more general, without relying on any assumptions of
the Markov chain induced by the RL control policy.

3 PRELIMINARIES

In this paper we mainly consider the case of dynamics control system ẋ = f(x(t), u(x(t)) for
x(t) ∈ Rn, u(x) ∈ Rm. It is necessary to introduce the stability in the sense of Lyapunov, which is
the basis for further determining the subsequent gradual stability and exponential stability.
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Lyapunov Function. Lyapunov second method formulate the Lyapunov function that can estimate
the stability of the system based on the theory of energy in physics. For dynamical system, if a
continuously differentiable function V (x, t) can be constructed with all non-zero states in the state
space satisfy: (i) V (x, t) is positive definite and bounded, i.e. there exists two continuously non-
decreasing functions a1(∥x∥) and a2(∥x∥), where a1(0) = a2(0) = 0, such that the inequality
below

a1(∥x∥) ≤ V (x, t) ≤ a2(∥x∥) (1)
is satisfied for ∀t ∈ [t0,+∞], x ̸= 0 (ii) The derivative of V (x, t) with respect to time t is negative
definite and bounded, which means there exists a continuously non-decreasing function a3(∥x∥),
a3(0) = 0, such that the inequality below

V̇ (x, t) ≤ −a3(∥x|∥) (2)

is satisfied for ∀t ∈ [t0,+∞], x ̸= 0

Input to State Stability. Consider the system of ordinary differential equations with external in-
put(for control system the external input here is pointed out to be system errors, external distur-
bances, etc.)

ẋ = f(x, ω), x(0) = x0, (3)
where x(t) ∈ Rn, ω ∈ Rm is bounded in terms of infinite norm, the affine f : Rn × Rm →
Rn, f(0, 0) = 0 is locally Lipschitz. The system (3) above is called to be input-to-state stable (ISS,
Agrachev et al., 2008) if there exist a1 ∈ KL and a2 ∈ K such that for any initial value x0 ∈ Rn and
any external input ω ∈ Rm the corresponding solution x = ϕ(·, x0, ω) exists on [0.∞) and satisfies

|ϕ(t, x0, ω)| ≤ a1(|x0|, t) + a2(∥u∥∞) (4)

The proposition follow gives the definition of an ISS-Lyapunov function.
Proposition 1. A smooth function V is an ISS-Lyapunov function for (3) if and only if there exist
αi ∈ K∞(1 ≤ i ≤ 4) such that

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥) (5)

∇V (x)f(x, ω) ≤ −α3(∥x∥) + α4(∥ω∥) (6)

Uniformly Ultimately Bounded. Uniformly ultimately bounded (UUB) is also an approach to
characterize the stability of uncertain systems. The UUB starts from the initial value of the system
and considers the final stability region of the system, which is a degree of proximity to the final state
to the origin equilibrium point of the uncertain system.

Consider the system ẋ = f(t, x), where f : [0,∞)×D → Rn is piecewise continuous in t, locally
Lipschitz in x on [0,∞) × D, and D ⊂ Rn is a domain that contains the origin xe = 0. The
solutions of system above is uniformly ultimately bounded if there exists positive constants b and c,
independent of t0 ≥ 0, and for ∀a ∈ (0, c), there is T = T (a, b), independent of t0, such that

∥x(t0)∥ ≤ a ⇒ ∥x(t)∥ ≤ b, ∀t ≥ t0 + T (7)

4 REINFORCEMENT LEARNING FOR CONTROL WITH STABILITY
GUARANTEE

In this section, the design of the stable reference system is firstly given. Then the theoretical analysis
of the stability of the real system with the controller is provided, by assuming that the state fitting
error between the stable reference system and the real system is bounded. Finally, the design of
the proposed ITSRL framework that can learn stable RL control policy with UUB guarantee is
described.

Given a real system ẋ = f(x, u(x)) with control policy u(·), we can learn a stable dynamic system
˙̂x = f̂(x̂, u(x̂)) to fit the aforementioned real system and then use the learnt stable as a reference
system. If the fitting error between the real system and the reference system converges to zero, the
real system can also be stable. With the consistent initial state x0 and the controller u(·), we can
obtain the state sequence and furthermore the error sequence from both system, where the error e
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between the reference and the real system can be directly observed from states or implicitly from
system models. It is worth noting that although errors may be observed between both system models,
modeling the real system is unnecessary. Thanks to the data-driven reference system used to fit the
real environment, we solely need to analyze the impact of error bounds on the stability analysis
of the real system. Finally as for the two cases of observed errors, we separately provide the ISS
analysis when the error is observed from states, and the UUB analysis when the error is implicitly
observed from system models, for the real system.

4.1 THE STABLE REFERENCE SYSTEM

Following the framework mentioned above, it is significant to provide a data-driven reference system
with the stability guarantee. Let f̃ : Rn → Rn denote the common dynamics model composed of
multi-layer perceptron (MLP). The design of reference system is defined as:

f̂(x̂, u) = Proj(f̃(x̂, u), {f̂ : ∇V (x̂)f̂ ≤ −αV (x̂)})

=

{
f̃(x̂, u) if ∇V (x̂)f̃ ≤ −αV (x̂)

f̃(x̂, u)−∇V (x̂)∇V (x̂)f̃(x̂,u)+αV (x̂)
∥V (x̂)∥2

2
otherwise

= f̃(x̂, u)−∇V (x̂)
ReLU(∇V (x̂)f̂(x̂, u) + αV (x̂))

∥V (x̂)∥22

(8)

where Proj(A,B) denotes the orthogonal projection of A onto B. The second equation comes from
the analytical projection of a point onto the half-space. The Lyapunov function V : Rn → R is
designed as below.

z1 = σ0(W0x̂+ b0)

zi+1 = σi(Uizi +Wix̂+ bi)

g(x̂) ≡ zk

V (x̂) = σk+1(g(x̂)− g(0)) + ϵ∥x̂∥22

(9)

where the quadratic regularization term ϵ∥x̂∥22 makes sure the strict positive definiteness of V , the
function g(x̂) is the ICNN (Amos et al., 2017) with real-value weights Wi, positive weights Ui

and real valued bias bi, σi(x̂)(i = 0, 1, 2 . . . ) are nonlinear convex, non-decreasing monotonically
smoothed ReLU activations with a quadratic region in [0, d], d ∈ (0, 1).

σi(x̂) =


0 x̂ ≤ 0

x̂2

2d
0 < x̂ < d

x̂− d

2
x̂ ≥ d

(10)

4.2 STABILITY ANALYSIS

For the reference system defined above, we can draw the following inference referred in Kolter &
Manek, 2019.
Lemma 1. The dynamical control systems

˙̂x = f̂(x̂, u) (11)

defined by f̂ from (8) and V from (9) are globally exponentially stable to the equilibrium point
x̂ = 0, for any (bounded weight) networks defining the f̃ and V function.

With the stability of the reference system, the ISS and the UUB analysis to the real system can be
respectively proposed under different conditions. Firstly, we make the following assumption:
Assumption 1. The error over time e(t) between the reference and the real system is bounded and
Lipschitz continuous with e(0) = 0.

which is a common assumption for the optimal control. The assumption e(0) = 0 is hold since the
initial state for both systems is the same. With the assumption above, we can obtain the following
analysis as the error is observed under respective conditions.
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Input-to-State Stability Analysis. If the error e can be directly observed from states, the follow-
ing stability analysis of the control system can be given.
Theorem 1. Under Assumption 1, consider the real system under control

ẋ = f(x, u(x)) (12)

The reference system with the controller ˙̂x = f̂(x̂, u(x̂)) is exponentially stable around x̂e = 0. If
states between both systems satisfies

x(t) = x̂(t) + e(t), ∀t > t0 (13)

where e(t) denotes the error observed from states of the real system and the reference system. Then
the real system (12) under control is ISS stable while the V defined from (9) is the ISS-Lyapunov
function of the system (12).

Proof. Assume that the solutions of real system and reference system with the same initial x0 are
x = ϕ(t, x0, u) and x̂ = ϕ̂(t, x0, u). As x = x̂ + e we have ẋ = dx/dt = d(x̂ + e)/dt = f̂ + ė.
According to Assumption1, let e+sup as the positive upper bound of the error e and let Le be the
Lipschitz constant of ė. The definition of f̂ implies that

V̇ (x̂) = ∇V (x̂)T f̂(x̂, u(x̂)) ≤ −αV (x̂(t)) (14)

Based on (9), it can be obtained that V (x̂) is a polynomial function composed of power terms of x̂
and so is its derivative, thus ∇V (x̂+ e) can be written as

V (x) = V (x̂+ e) = V (x̂) + p(x̂, e| Ui,Wj , bm)

∇V (x) = ∇V (x̂+ e) = ∇V (x̂) + pd(x̂, e| Ui,Wj , bm)
(15)

where p(x̂, e| Ui,Wj , bm) and pd(x̂, e| Ui,Wj , bm) are polynomial functions formulated by the
power terms of x̂ and e with coefficient composed of the weight Ui ∈ R+, Wj ∈ R, bm ∈
R, (i, j,m = 0, 1, 2, . . . k). Since the reference system is exponentially stable, it can be inferred
that x is bounded, define x̂+

sup as the positive upper bound of x̂. Thus we can conclude that poly-
nomial functions p(x̂, e| Ui,Wj , bm) and ∇V (x̂) + pd(x̂, e| Ui,Wj , bm) are both bounded as the
error e is bounded.

Moreover consider the neural network of reference system x̂k+1 = f(x̂k, u(x̂k)), it can be obtained
that

lim
k→∞

f(x̂k, u(x̂k)) = lim
k→∞

x̂k+1 = 0 (16)

which means that f is upper bounded by some positive f+
sup. Thus it can be inferred that

V̇ (x) = V̇ (x̂+ e) = ∇V (x̂+ e)
d

dt
(x̂+ e)

= (∇V (x̂) + pd(x̂, e| Ui,Wj , bm))(f̂ + ė)

= ∇V (x̂)f + pd(x̂, e| Ui,Wj , bm)f̂ +∇V (x)ė

≤ −αV (x̂) + f+
suppd(e| x+

sup, Ui, ∥Wj∥, ∥bm∥) + ∥∇V (x)∥Le

= −αV (x) + αp(x̂, e| Ui,Wj , bm) + f+
suppd(e| x+

sup, Ui, ∥Wj∥, ∥bm∥) + ∥∇V (x)∥Le

≤ −αV (x) + f+
suppd(e| x+

sup, Ui, ∥Wj∥, ∥bm∥) + (αp+
sup + ∥∇V (x)∥Le)

(17)

where p+
sup is the positive upper bound of p(x̂, e| Ui,Wj , bm). It can be inferred that x is bounded

cause x̂ and e are both bounded, which can further obtain that the polynomial function ∇V (x) is
bounded. Let V+ denote the positive upper bound of ∇V (x). Then we have:

αp+
sup + ∥∇V (x)∥Le ≤ αp+

sup + V+Le (18)

Let N = αp+
sup + V+Le. By the definition of (9) we have ϵ∥x∥22 ≤ V (x), where the lower bound

is decided by σi(·) ≥ 0 and g is positive. Define g(e) = f+
suppd(e| x+

sup, Ui, ∥Wj∥, ∥bm∥) +N and
(17) can be written as:

V̇ (x) ≤ −αϵ∥x∥22 + g(e) (19)
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Meanwhile by the definition of (9), we have V (x) ≤ M∥x∥22 based on the fact that V (x) behaves
linearly as ∥x∥ → ∞ and is quadratic around the origin. Since ϵ∥x∥22, M∥x∥22, αϵ∥x∥22 and g(e) are
class K∞ functions with respect to x and e, which satisfies the Proposition 1. The V defined from
(9) is proved as the ISS-Lyapunov function to the control system.

Uniformly Ultimate Boundedness stability Analysis. If the error is observed from system mod-
els and accumulates as the system evolves. Consider the globally exponentially stability of the
reference system, we can regard it as a ”nominal” system so that the controller under the real system
is equivalent to the perturbed ”nominal” system, where the perturbation corresponds to the observed
system model error. Then we can obtain the following theorem:
Theorem 2. Consider the controller under the real system

ẋ = f(x, u(x)) + e(t, x) (20)

where the reference system ˙x = f(x, u(x)) is globally exponentially stable around x̂e = 0, e(t, x)
is the observed system model error. Let V (t, x) defined from (9) be the Lyapunov function of the
reference that satisfies:

α1(∥x∥) ≤ V (t, x) ≤ α2(∥x∥) (21)

V̇ (t, x) =
∂V

∂t
+

∂V

∂x
f(t, x) ≤ −α3(∥x∥) (22)∥∥∥∥∂V∂x

∥∥∥∥ ≤ α4(∥x∥) (23)

in [0,∞) × D, where D = {x ∈ Rn| ∥x∥ < µ}, where µ is the upper bound of the state x, the
αi(∥x∥)(i = 1, 2, 3, 4) are class K functions shown as below:

α1(∥x∥) = ϵ∥x∥2, α2(∥x∥) = M∥x∥2,
α3(∥x∥) = αϵ∥x∥2, α4(∥x∥) = pd(∥x∥2 | Ui, ∥Wj∥, ∥bm∥)

(24)

Suppose the error e(t) and initial state ∥x0∥ satisfies:

∥e(t, x)∥ ≤ δ <
θα3(α

−1
2 (α1(µ)))

α4(µ)
(25)

∥x0∥ < α−1
2 (α1(µ)) (26)

for ∀t > 0, x ∈ D, and some positive constant θ < 1. The real system (20) will be uniformly
ultimately bounded, that is, the state x(t) of the real system satisfies:

∥x(t)∥ ≤ β(∥x(t0)∥, t− t0), ∀t0 ≤ t < t0 + T (27)

∥x(t)∥ ≤ ρ(δ), ∀t ≥ t0 + T (28)
for some class KL function β and some finite T with the initial time t0, where ρ is a class K function
of δ defined by

ρ(δ) = α−1
1

(
α2

(
α−1
3

(
δα4(r)

θ

)))
(29)

Proof. According to the definition of the V we have:

ϵ∥x∥2 ≤ V (x) ≤ M∥x∥2 (30)

where the lower bound follows by definition and the fact that g is positive. The upper bound deter-
mined by the fact that the activation function σi is defined to be linear when x > d and quadratic
around the origin, which result in that V (x) behaves linearly as ∥x∥ → ∞. Therefore V (x) can
be upper bounded by some quadratic term M∥x∥2. Moreover V̇ can be bounded on the basis of
construction of V and (30) we can obtain that:

V̇ (x, t) ≤ −αV (x) ≤ −αϵ∥x∥22 (31)

As for the gradient of V with respect to x, we can obtain from the form of ICNN of V that ∥∂V/∂x∥
is a polynomial function pd consisting of power terms of x as follows∥∥∥∥∂V∂x

∥∥∥∥ = pd(∥x∥|Ui,Wj , bm) (32)
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where Ui ∈ R+, Wj ∈ R, bm ∈ R are the weights and bias in V . We can further get∥∥∥∥∂V∂x
∥∥∥∥ = pd(∥x∥|Ui,Wj , bm) ≤ pd(∥x∥| Ui, ∥Wj∥, ∥bm∥) (33)

It is straightforward to recognize that the polynomial function consisting of power terms of
∥x∥ with all the positive real-value weights is a K function. Meanwhile it is evidence that
ϵ∥x∥2, M∥x∥2, αϵ∥x∥2 are K function of ∥x∥. Thus we can infer that the Lyapunov function
defined in (9) satisfies (21) through (23). We use V (t, x) as a Lyapunov function for the real system.
The derivative of V (t, x) along the trajectories of the real system satisfies:

V̇ (t, x) ≤ −α3(∥x∥) +
∥∥∥∥∂V∂x

∥∥∥∥ ∥e(t, x)∥
≤ −α3(∥x∥) + δα4(∥x∥)
≤ −(1− θ)α3(∥x∥)− θα3(∥x∥) + δα4(r), 0 < θ < 1

≤ −(1− θ)α3(∥x∥), ∀∥x∥ ≥ α−1
3

(
δα4(r)

θ

) (34)

Then applying the lemma (Khalil, 2015, Page 172) can complete the proof.

4.3 ITERATIVE REINFORCEMENT LEARNING FRAMEWORK WITH STABILITY GUARANTEE

Reinforcement Learning

e

( , )r x u

*( , )r x u

Real SystemReal System

( , ( ))f x ux x=

Real System

( , ( ))f x ux x=

--

--

Reference SystemReference SystemReference System

ˆˆ ˆ ˆ( , ( ))x f x u x=

Reference System

ˆˆ ˆ ˆ( , ( ))x f x u x=x̂

Policy

Update
( )u  x

Figure 1: The proposed ITSRL framework learns the RL controller with stability guarantee by
decreasing the observed error to satisfy the conditions of stability analysis.

Combined with the stability analysis in the previous subsection, we propose an iterative framework
towards learning stable control system By minimizing the error between the reference system and
the real system, the stability of the real system with the RL controller can be guaranteed. Note that
we denote our framework by ITSRL in the rest of this paper. As shown in Figure 1, the RL controller
uk will take the error as an additional feedback to enhance the performance of the RL controller.
Specifically, instead of maximizing the reward function r(xk, uk) of RL only, the RL controller will
also be trained to minimize the fitting error e. Formally, the RL controller is trained with the reward
r∗ below:

r∗(xk, uk) = r(xk, uk)− λ||e||2, (35)

where λ is an adjustable parameter.

Iterative Training Process. The RL controller and the stable reference system model are trained
iteratively. Specifically, given a pretrained RL controller, we firstly fix the RL controller and train
the reference system model to fit the real system. Then, we fix the well-trained reference system
model and train the RL controller to maximize the above reward function while minimizing the
fitting error. We repeat these two processes until r∗(xk, uk) converges.

5 EMPIRICAL RESULTS

In this section, we discuss the results related to the proposed ITSRL framework. Firstly, we em-
pirically show that by only minimizing the fitting error between the reference system and the real
system, the RL controller can be more stable, achieving higher reward. Our experimental results
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are consistent with the theoretical analysis, which motivates the design of our proposed framework.
Then we show the performance of the RL controller under the ITSRL framework, and compare it
with the vanilla RL controller under different levels of perturbations. All experiments are conducted
within OpenAI gym environments (Brockman et al., 2016) with Mujoco (Todorov et al., 2012), and
we use the RL policy trained by PPO (Schulman et al., 2017) as our default RL controller.

5.1 MOTIVATION EXPERIMENT
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Figure 2: Hopper’s training reward and fitting error during RL training by minimizing the fitting
error only.

We experimentally demonstrate the effectiveness of the proposed iterative training framework, as
shown in Figure 2. We eliminate the originally existing reward mechanism in the motivated exper-
iments and only add the error between the real system (OpenAI gym) and the reference system as
the reward evaluation term for the RL controller. As shown in Figure 2, by only using the error as
a penalty term, the controller still gradually obtains better performance during the learning process.
It is worth mentioning that the error between the two systems gradually decreases as the reward in-
creases during the training process, which also demonstrates the optimization effect of our iterative
training in terms of reducing the fitting error. This in turn allows the stability guarantee in Section 4
to be achieved.
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Figure 3: Results of anti-disturbance experiments. Note that the left three columns of figure show
how the reward changes during training, under small, medium, and large perturbation. The right
three columns of figures show how the state fitting error between the real system and the reference
system changes during training, under small, medium, and large perturbation.
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5.2 ANTI-DISTURBANCE EXPERIMENTS

We demonstrate the superiority of the ITSRL framework under different perturbations in different
OpenAI gym environments. For anti-disturbance training, we firstly train agents with PPO with
default parameters under each perturbation. The RL agents are then made more robust to the same
perturbations by iterative training based on the ITSRL framework. As for reference system network,
the Lyapunov function network and the common dynamics model network both have two hidden
layers of sizes (64, 64) with ReLU activation functions. The learning rate for common dynamics
model is 3 × 10−4, the learning rate of lyapunov function is 1 × 10−4, and the Lyapunov constant
is 0.9. For evaluation, we test the performance and obtain the reward of these agents under a range
of different perturbations subjected to no greater than the maximum case at training.

Cart Pole. In this experiment, we set the learning rate as 10−4. Since CartPole environment uses
a binary value (i.e. 0 and 1) as the control input, we inject perturbation by randomly flipping the
control input with probability σ. Specifically, we choose σ from {0, 0.1, 0.2, 0.25}, corresponding
to zero, small, medium, and large perturbations.

Pendulum. In this experiment, we set the learning rate as 4 × 10−5. Considering that Pendulum
environment uses a vector with real values as input, we inject perturbation by adding Gaussian
random noise with zero mean and standard deviation of σ to the control input. Specifically, we select
σ from {0, 1.5, 2, 3}, which are defined as zero, small, medium and large perturbations respectively.

Hopper In this experiment, we set the learning rate as 4 × 10−5. The perturbation is added as
the Gaussian random noise with with zero mean and standard deviation of σ to the control in-
put.Specifically, we select σ from {0, 0.1, 0.5, 1}, which are defined as zero, small, medium and
large perturbations respectively.

Task Zero Perturbation Small Perturbation Medium Perturbation Large Perturbation
PPO ITSRL PPO ITSRL PPO ITSRL PPO ITSRL

Cartpole 500.0 500.0 471.0 487.6 318.8 350.9 185.6 201.2
Pendulum -222.9 -221.2 -386.6 -310.4 -612.4 -480.8 -904.6 -835.4

Hopper 2634.1 2889.3 2162.5 2794.2 1800.7 2015.8 634.6 1103.7

Table 1: Comparison of testing reward between PPO and ITSRL under different amount of pertur-
bations on three control tasks.

Figure 3 and Table 1 show the improvement in the training reward and testing reward of the RL
controller with and without the ITSRL framework under three levels of perturbation respectively.
Through the testing results, we can observe that in the three groups of anti-disturbance experiments
under each control task, the agent’s performance can be improved. Meanwhile, Figure 3 present
the changes of state fitting error during iterative learning process, which demonstrate that the error
indeed converges during training process.

6 CONCLUSION

This paper first introduces a reference system with RL controller which has exponential stability
property. Then it gives the stability analysis of the real system with RL controller, assuming that
the fitting error between the reference system and the real system can be bounded. Furthermore,
a novel iterative learning framework motivated by the stability analysis is developed to improve
the stability performance of RL controller in the face of perturbations by reducing the state error.
Future direction involves optimizing the ITSRL framework to further improve the robustness of RL
controller and reduce the training time.
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