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Abstract

Cameras, sensors, and autonomous vehicles deployed in agri-
cultural settings are producing large, complex, and highly
multidimensional datasets. Artificial intelligence techniques
can extract insights hidden within these datasets to automate
crop management and develop better farming practices. In
particular, recent studies have shown that neural networks
can accurately characterize crop health conditions within dig-
ital agriculture datasets. However, choosing between neu-
ral network architectures is challenging; One must select
from multiple architectures and hyper parameters. Bench-
mark datasets, i.e., datasets that represent a class of similar
datasets, are often used to select models for digital agricul-
ture datasets. However, if benchmark datasets are not faithful
representatives for digital agriculture datasets, their use could
lead to poor model selection. This paper demonstrates the
danger of using standard vision benchmarks to inform model
selection for digital agriculture datasets. We then propose
a gradient-boosting prediction approach that would signifi-
cantly reduce costs to benchmark digital agriculture datasets
directly, which could improve the fit between model and
dataset.

1 Introduction
Artificial intelligence (AI) models learned from digital agri-
culture (DA) datasets can improve crop health, yield, and
sustainability (Mulla 2013). As DA datasets proliferate and
expectations on their efficacy rise, model selection is a key
challenge, i.e., for a given dataset, which machine learning
approach and hyperparameter settings will produce mod-
els capable of improving crop health? Benchmark datasets
are widely used in machine learning for model selection.
Benchmarks serve as reference points on efficacy and per-
formance. They are used to predict performance for simi-
lar but untested datasets, providing one approach to solve
model selection problems. CIFAR (Krizhevsky 2009) and
MNIST (Deng 2012) are widely used benchmark datasets
for computer vision model selection. If these benchmark
datasets provide model selections representative for DA vi-
sion tasks, then their results can be used to characterize ef-
ficacy and performance without training and testing models
on each DA dataset.

Given the importance of data in the model design pro-
cess and the relatively few datasets that are used for bench-
marking (Koch et al. 2021), we ask, are widely used bench-

mark datasets actually faithful references for new, emerging
DA datasets? And, are they faithful representatives at every
stage in the process of model selection, including architec-
ture selection, CNN filter dimensions, and hyperparameter
searching?

Whether they are faithful representatives or not, bench-
mark datasets greatly reduce costs for model selection. For
this work, we trained one state-of-the-art neural network
architecture with a DA dataset on AWS cloud. The to-
tal cost was $36. Given per-acre profit on US corn fields
is $148, training and testing multiple model architectures
across more hyperparameters with multiple metrics of ef-
ficacy and performance is clearly cost prohibitive (Boubin
et al. 2019; Foreman 2014).

The structure and composition of DA datasets differs from
widely used benchmarks. First, DA datasets increasingly re-
quire high-definition images and lever domain-specific con-
volutions. In vision tasks, many DA datasets include infrared
and thermal channels, going beyond RGB channels included
in widely used benchmarks. Convolutions may capture con-
cepts like leaf area (Fang and Liang 2003), going beyond
classic edge detection. Additionally, the variation in pixel
values between different classes in DA is subtle: A small
number of pixel inversions can shift the label on aerial im-
ages from normal to severe leaf defoliation (Zhang et al.
2022). In prior work, Zhang et al. (Zhang et al. 2022) es-
chewed benchmark datasets and explored model selection
through exhaustive training and testing across 8 machine
learning algorithms, multiple neural network architectures,
and a variety of hyperparameters. They found only one ap-
proach provided a practical, cost-effective solution to man-
age crop scouting for pesticide use.

The high dimensionality of DA images and the inherent
complexity of the models increases the cost of testing ev-
ery model on a given DA dataset. We propose an approach
to reduce these costs. We explore a gradient-boosting ap-
proach that makes use of previous classification models’
weights to predict a new model’s final accuracy on a DA
dataset after just a few epochs of training, extending recent
efforts to predict accuracy (Unterthiner et al. 2020; Yamada
and Morimura 2016). This would significantly cut down on
the cost of model selection for classification tasks on DA
datasets and enable more models to be directly tested against
the intended DA dataset.



In this paper, we study the influence of popular bench-
marking practices on model selection for DA. We examine
the inherent differences in neural network performance on
8 different datasets. Finally, we explore a gradient-boosting
approach that exploits neural network weights to reduce
costs for model selection. This paper is formatted as follows:
Section 2 will summarize past work that examined popular
benchmarking datasets before examining past approaches
for predicting final neural network accuracy. Section 3 will
detail our experiments with classical and DA datasets. Fi-
nally, section 4 will explore what an early accuracy predic-
tion mechanism for DA models might look like.

2 Related Work
This section is organized as follows. Section 2.1 will explore
past work on dataset profiling and bias to demonstrate the
danger of using standard benchmarking datasets for agricul-
ture model selecton. Section 2.2 will describe new trends
leading to more DA datasets and the challenges presented in
DA model benchmarking. Finally, section 2.3 will provide
an overview of past work predicting neural network accu-
racy from weights.

2.1 Bias in Benchmarking Datasets
It is standard design practice to test new models (trained
weights, hyperparameter choices, and architecture itself)
by running them against popular datasets like CIFAR
(Krizhevsky 2009). This is in part due to the popularity of
dataset competitions as a method to popularize learning ar-
chitectures. However, this popularity comes with drawbacks.
An analysis by (Everingham et al. 2010) found no statisti-
cal difference between the performance of the top 10 algo-
rithms in the 2010 PASCAL Visual Object Classes competi-
tion. This suggests top algorithms are not fundamentally dif-
ferent from one another. Researchers worry that the lack of
dataset diversity among popular datasets is causing models
to learn from idiosyncrasies of the images rather than sig-
nificant generalized characteristics (Ponce et al. 2007; Tor-
ralba and Efros 2011). (Torralba and Efros 2011) also found
that models trained on one representative dataset tend to test
poorly on other representative datasets of the same category
(i.e types of cars). This is not surprising given models tend to
favor their own test sets. However, it is concerning that sup-
posedly representative datasets do not create models with
high enough levels of generalization to transfer to other sim-
ilarly representative datasets.

While the diversity of representative datasets has im-
proved over time, they still suffer from limitations. Recent
work found that neural networks were learning from noise
in biomedical image datasets instead of the relevant medi-
cal features ((Dhar and Shamir 2021)). These datasets were
popular image benchmarks that many new algorithms and
networks were tested against. While these datasets certainly
provide a good sanity check for new approaches, they also
can determine the success or failure of a new approach. This
bias can hamper novel approaches from widespread adop-
tion.

Past works suggest current representative datasets have
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Fig. 1: Data and AI topics are surging in top digital agricul-
ture journals.

the potential to skew development toward a narrow solu-
tion space not representative of the complexity of real-world
problems. In theory, the simple solution is to create a variety
of datasets by sub-area which are perfectly representative.
However, this is both impractical due to the black box na-
ture of neural networks and impossible due to pure cost. A
new benchmarking paradigm that enables lightweight low-
cost model testing against specific datasets is needed.

2.2 A Surge in Datasets
In recent years, the velocity of agriculture dataset creation
has surged (Lu and Young 2020). Figure 1 shows the fre-
quency of data and AI topics in Remote Sensing and Com-
puters and Electronics in Agriculture papers. These topics
have surged 4X and 2X in each journal respectively. A re-
cent survey of DA datasets analyzed a collection of the com-
plex, use-case specific DA datasets and suggested that these
datasets could be used for general DA benchmarking (Lu
and Young 2020). However, while machine learning algo-
rithms seek to perform classification and segmentation with
near equal accuracy on all DA datasets, the specifics needed
for success vary greatly depending on dataset and intended
use-case. We contend that these different use-cases impact
the efficacy of machine learning algorithms, in terms of ac-
curacy, training time and computational cost. This necessi-
ties an approach which can take both dataset domain and
use-case into account.

2.3 The Significance of Weights in Predicting
Neural Network Accuracy

The primary way past works have attempted to predict the fi-
nal accuracy of a network is through the use of early training
curves (Domhan, Springenberg, and Hutter 2015). However,
both concurrent and recent work has shown a strong rela-
tionship between a network’s weights and its characteristics
and performance. (Yamada and Morimura 2016) was able
to use weights obtained early in a neural network’s train-
ing process to predict its testing accuracy with higher ac-
curacy than existing learning curve-based approaches. Very
recently, (Unterthiner et al. 2020) found that using simple
summary statistics based on network’s fully trained weights
could predict test set accuracy with an R2 score of over 0.98.
This presents a compelling case for more investigation into
the use of weights to predict neural network performance.
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Fig. 2: We compared the rank order of NN architectures be-
tween classic image processing datasets and DA datasets.

(Yamada and Morimura 2016) uses a variety of weight
features to predict eventual accuracy based on early epoch
weights. (Unterthiner et al. 2020) creates a dataset of 32,000
small-scale neural network’s fully trained weights mapped
to their final test set accuracy. They then use that dataset
(dubbed CNN Zoo) to train gradient boosting machines
(GBMs) to predict the test set accuracy of large-scale mod-
els. While our early work (explored in 4) is inspired by both
(Yamada and Morimura 2016) and (Unterthiner et al. 2020),
it also builds on them in a significant way. (Unterthiner et al.
2020) uses a small 4-layer network with randomly initial-
ized weights. To build on this, we extract features from a
large deep neural network that incorporates pre-trained Ima-
geNet weights. We theorize that transfer learning will enable
us to reduce the number of hyperparameter configurations
needed to create a representative solution space (i.e scale
of 1000s vs less than 100). (Unterthiner et al. 2020)’s work
treated a network’s training cycle as one unit of data to be
mapped to final accuracy. We instead record data at an epoch
level. This enables the prediction of final accuracy based on
only a few training epochs. In addition, both (Yamada and
Morimura 2016) and (Unterthiner et al. 2020) focus on clas-
sical datasets. We instead focus on complex domain-specific
datasets which better account for the potential bias of repre-
sentative datsaets.

3 The Difference in AI model Performance
Across Domain

We studied AI models trained and tested on classic vision
benchmarks and DA datasets, comparing relative perfor-
mance of the models on each dataset. We hypothesized that
the rank order of AI models would be consistent, suggest-
ing that widely used vision benchmarks can be used to for
model selection on DA datasets.

3.1 Methodology
Figure 2 provides an overview of our methodology. To mea-
sure the distance between model rankings, we used 4 neural
network architectures for image processing: InceptionV3 (I),
VGG16 (V), EfficientNet (E), and ResNet50 (R) (He et al.
2016; Simonyan and Zisserman 2014; Szegedy et al. 2016;
Tan and Le 2019). To support datasets with any number of
classes, we appended a fully connected classification net-
work atop each network. We trained models until validation
accuracy stopped improving for 10 epochs.

We trained and tested these networks using two categories
of datasets: classical datasets and DA datasets. We selected

4 classical datasets based on popularity: CIFAR-10, CIFAR-
100, imagenette2 (a subset of Imagenet), and MNIST
((Deng et al. 2009; Krizhevsky 2009; Deng 2012)). The
DA datasets selected are as follows: fruits-360, PlantVil-
lage, weed seedlings, and leaf defoliation dataset ((Beck
et al. 2020; Hughes and Salathe 2015; Mures, an and Oltean
2018; Zhang et al. 2022)). We selected these datasets be-
cause they each represent a fundamental task in DA (e.g.
fruit classification, drone-based defoliation detection, dis-
eased plant classification, etc.). More details on each dataset
can be found in Figure 3.

Finally, we ranked each model’s performance for each
dataset. For example, on CIFAR-10 ranking by accuracy, we
observed the following rank order: I, V, E, R. On the Leaf
Defoliation dataset, we observed the following rank order:
E, R, I, V. By focusing on rankings, we isolate and standard-
ize the effectiveness of a given DNN relative to a specific
dataset. This avoids the inherent bias of comparing network
accuracy across different datasets. To measure the distance
between datasets, we use Euclidean distances.

3.2 Results
Figure 3 shows the distance of each accuracy rank order

from the baseline vector CIFAR-10. Figure 3 show that the
AI models were ranked changed significantly between agri-
culture datasets and vision benchmarks. CIFAR-10, CIFAR-
100, and Imagenette ranked models in the same order, sug-
gesting these benchmarks can used in lieu of each other.
However, all 4 agriculture datasets permuted rank order sig-
nificantly. We repeated our tests and replaced accuracy with
training loss as the rank order metric. Figure 3 shows simi-
lar results: Rank order for both CIFAR-100 and Imagenette
were identical to CIFAR-10. Rank order on PlantVillage and
Leaf Defoliation datasets differed greatly. However, MNIST,
Weed Seedlings, and Fruits-360 displayed the same distance
from CIFAR-10. We believe this is due to the simplicity
of Fruits-360 and Weed Seedlings compared to the other
datasets.

Our findings suggest that a model’s performance on clas-
sical datasets is not representative of how a model will per-
form on a given DA dataset, making classical datasets a
poor benchmarking choice for DA model selection. Addi-
tionally, our findings demonstrate that DA datasets are not
faithful representations of how a model will perform on all
DA datasets. A new benchmarking paradigm that goes be-
yond domain is needed.

4 Lightweight Model Profiling
Section 3 demonstrated that reusing DA learning archi-
tectures across different datasets, both classical and DA
datasets, falsely assumes that a model’s success is not
dataset specific. This leads to subpar DA models being cho-
sen for hyperparemter tuning. A simple but effective solu-
tion to the demonstrated problem is to view the dataset pro-
filing process as part of hyperparameter searching. However,
profiling each dataset-model combination makes the naive
assumption that cost can grow towards infinity, particularly
with high cost DA datasets. Individual dataset profiling is



Data Set Classes Images

CIFAR-10 10 60,000

CIFAR-100 100 60,000

MNIST 10 60,000

Imagenette 10 13,000

Leaf Defoliation 2 97,395

Fruits 360 131 90,483

Plant Village 38 87,000

Weed Seedlings 8 34,666

Table 1. Image data sets. Vision benchmarks are 
blue. Use-inspired agriculture data sets are green.

Figure 1. Euclidean distance between rank order of 
models on  CIFAR-10 versus other data sets. 

Figure 2. Distance between AI model rankings of 
Leaf Defoliation Data Set versus other data sets.
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not feasible on a large scale for the majority of developers. A
new method of model benchmarking and dataset profiling is
needed. This section details our experimentation using early
training weights to predict final training accuracy.

4.1 Methodology
We designed an experiment to test the use of weights to pre-
dict final testing accuracy on a complex DA dataset: the Leaf
Defoliation dataset ((Zhang et al. 2022). To create a solution
space, we tested a variety of hyperparameter configurations
using VGG16 with pre-trained ImageNet weights combined
with a small, fully connected classification neural network.

We chose 35 different hyperparameter configurations to
explore, varying optimizer, learning rate, and final layer ac-
tivation function. We ran each of the 35 configurations for
75 epochs and record the final accuracy per configuration.

Each epoch we saved the weights to later calculate sum-
mary statistics. We calculated the mean, variance, and q-th
percentiles where q ∈ {0, 25, 50, 75, 100} (Unterthiner et al.
2020) for biases and kernel weights separately. We calcu-
lated these statistics for each neural network layer, creating a
2x7 vector for each layer. Combining all 17 layers into a sin-
gle matrix, we generated a 17x2x7 representation of means,
variances, and percentiles. This matrix is then mapped to the
final testing accuracy of its respective model’s configuration.
Because we created mappings at an epoch level, we signif-
icantly increase the sample space we explore. In total, we
created 2625 accuracy mappings from the Leaf Defoliation
dataset.

We performed an 80/20 train/test split of our vector accu-
racy mappings. In contrast to typical train/test splits, we did
not randomize the placement of the mappings. Instead, we
ensured the 20% in the test set is composed entirely of hy-
perparameter combinations that do not exist in the training
set. The nonrandom nature of the test set is to prevent over-
fitting and leakage from the training set to the test set. Our
approach resulted in a training set with 31 hyperparameter
configurations and a testing set with four unseen hyperpa-
rameter configurations.

For prediction, we selected gradient boosting machines
implemented in XGBoost’s gradient boosting forest pack-
age ((Chen and Guestrin 2016)). We split our training set
into a train and validation set at an 80/20 ratio. Using that
validation set, we performed hyperparameter tuning, result-
ing in a model of 128 estimators with a max depth of 7 per
tree.

The testing data consists of the same number of hyper-
parameter configurations each time. However, we varied the
percent of each model configuration’s training cycle we in-
clude in the prediction process. By limiting the data inputted
to the GBM to an artificial n-th epoch of training time, we
simulated lightweight benchmarking runs. For example, by
reducing input data to the first five epochs of weight data,
we tested the accuracy of predictions given only a fraction
of the total training time. We select epochs 4, 8, 19, 38, 56,
76 which represent 5%, 10%, 25%, 50%, 75%, and 100% of
the training time respectively.

4.2 Results
After hyperparameter tuning on the validation set, we tested
our trained model on each of the test splits. Using the en-
tirety of the test data, we achieved an absolute accuracy of
81.33% and a relative root mean squared error (RRMSE) of
0.196. Crucially, there is a minimal decrease in accuracy if
we reduce the number of epochs we use as an input for our
test set. Using only 4 epochs of input data from the test set
(representing roughly 5% of its training time) we achieved
an absolute accuracy of 80.61% and an RRMSE of 0.201.
This trend continues across all designated input data splits.
Across all splits, there is less than a 1% change in abso-
lute accuracy and RRMSE. This indicates that the number
of epochs of input data has little impact on the accuracy of a
fully trained model.

5 Discussion
We have shown that widely used benchmark datasets are
not faithful reference points for DA datasets. Further, DA
vision datasets are not always faithful reference points for
other DA vision datasets. We argue for new approaches to
create benchmark datasets for DA. One potential approach
explored in this paper exploits weight distributions observed
in previous DA neural networks to predict accuracy and ef-
ficacy. In section 4, we accurately predicted unseen neural
network’s final test set accuracy using weights obtained af-
ter a fraction of total training time. It is especially promising
that weights obtained early in the training cycle produced
similar levels of prediction accuracy to predictions based on
the weights obtained in the last epoch before convergence.
In future work, we will explore this technique which could
improve the DA neural network design process by reducing
the training time necessary to determine if a model and its
hyper-parameter set are suitable for a complex dataset.
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