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ABSTRACT

Forecasting future events is a fundamental capability for general-purpose systems
that plan or act across different levels of abstraction. Yet, evaluating whether a fore-
cast is “correct” remains challenging due to the inherent uncertainty of the future.
We propose a unified evaluation framework for assessing the forecasting capabili-
ties of frozen vision backbones across diverse tasks and abstraction levels. Rather
than focusing on single time steps, our framework evaluates entire trajectories and
incorporates distributional metrics that better capture the multimodal nature of
future outcomes. Given a frozen vision model, we train latent diffusion models to
forecast future features directly in its representation space, which are then decoded
via lightweight, task-specific readouts. This enables consistent evaluation across
a suite of diverse tasks while isolating the forecasting capacity of the backbone
itself. We apply our framework to nine diverse vision models, spanning image
and video pretraining, contrastive and generative objectives, and with or without
language supervision, and evaluate them on four forecasting tasks, from low-level
pixel predictions to high-level object motion. We find that forecasting performance
strongly correlates with perceptual quality and that the forecasting abilities of
video synthesis models are comparable or exceed those pretrained in masking
regimes across all levels of abstraction. However, language supervision does not
consistently improve forecasting. Notably, video-pretrained models consistently
outperform image-based ones.

1 INTRODUCTION

The ability to see does not just reveal the present. It lets us anticipate the future and plan or act in the
world accordingly. This capacity for visual forecasting is as critical for a gazelle dodging predators
on the savanna as it is for a self-driving car navigating the urban jungle. At the same time, in most
practical scenarios, the future is hard to predict. At any moment, countless possibilities lie ahead, and
any model of the future must grapple with this inherent uncertainty.

While modern computer vision models learn representations general enough to work across multiple
levels of abstraction such as DINOv2|Oquab et al.|(2023) and 4DS |Carreira et al.| (2024)), most focus
on perception — tasks grounded in past and present frames with little to no stochasticity. Several
methods of evaluations have been developed for self-supervised perception tasks, such as linear
readouts, nearest-neighbors, cross-attention based, etc. However, evaluating vision models on these
tasks tells us whether they understand what has already happened but may not reveal how well they
can forecast what is to come.

In this paper, we shift the focus from evaluating the video perception capabilities of vision models
to evaluating their video forecasting capabilities—assessing learned visual representations that
can be used to predict future states of the world under uncertainty and across multiple levels of
abstraction, such that diverse perceptually relevant quantities can be decoded from a single predictive
representation.

We propose a unified forecasting evaluation framework built around a diffusion-based forecasting
model, enabling forecasting across a range of frozen base video models and tasks: pixels, depth,
point tracks, and bounding boxes. While recent work has explored using generative models for
perception tasks (e.g.,Zhao et al.| (2023); Luo et al.| (2023)); |Li et al.[|(2023); |[Hedlin et al.| (2023));



RS R QAR
R
% g\ | v NN
WW S ReRR

Model .
. time
(a) Perception (read-
out train) (b) Forecasting (c) Downstream tasks

Figure 1: Diffusion-based forecasting evaluation framework of frozen vision model backbones.
(a) Perception-style readouts: we train readout heads on frozen representations to perform downstream
perception tasks like object detection on observed frames as in |Carreira et al.| (2024)). We extend this
setup to forecasting as follows. (b) Forecasting framework: We introduce a forecasting diffusion
model that predicts future representations conditioned on frozen observed context representations.
Pretrained readouts then decode these into future downstream abstractions, such as bounding boxes.
(c) Forecasting across abstraction levels: We apply our approach to evaluate forecasting on tasks
spanning low to high-level structure—pixels, depth, point tracks, and object detections. Each example
shows 4 observed frames and a sample from the 12 forecast frames (frames 7, 10, 13, and 16). Our
results show that frozen video representations can generalize to forecasting across a wide range of
downstream tasks.

Zhang et al.|(2023); Bhattad et al.| (2023)); Xu et al.|(2025))), the reverse—using perception models for
forecasting—has been less explored. We fill this gap by showing that frozen video models trained for
perception can be effectively repurposed for forecasting, and we establish a benchmark and strong
baselines to support future explorations.

Forecasting in video presents three key challenges. First, the future is inherently stochastic—multiple
plausible outcomes can unfold from the same past. Second, forecasting is not about reaching a single
endpoint, but about modeling how the future evolves over time as a continuous trajectory. Third,
the future manifests at multiple semantic levels, from low-level pixels to mid-level motion tracks
and high-level object abstractions. Our diffusion-based approach addresses all three: it captures
uncertainty by generating diverse samples, models full temporal trajectories rather than single future
states, and enables forecasting across a range of prediction targets, including pixels, depth, point
tracks, and bounding boxes.

We extend frozen, pretrained state-of-the-art video models to forecasting tasks in two stages. First,
we fit a lightweight attention-based readout head to each model for each downstream task, following
the perception-based paradigm of [Carreira et al| (2024) (Figure[Ta). This readout head maps from
the space of frozen video representations to task outputs (e.g. point tracks), trained using standard
perception-based supervision. Then, we train a diffusion model to forecast future trajectories directly
in the space of the frozen video representations (Figure [TB). During evaluation, we pass forecast
trajectories through the readout head and assess their quality in the space of the downstream task
(Figure using a suite of metrics that measure both realism and diversity—capturing the full
dynamics and stochastic nature of the predicted futures.

Our diffusion-based forecasting framework enables direct, apples-to-apples comparison between
perception- and synthesis-based models across all levels of visual abstraction. Our large-scale
study reveals several key insights. First, forecasting ability is generally correlated with perception
performance, but this association starts to break down with the strongest models. Second, video
synthesis models like WALT |Gupta et al.| (2024) meet or exceed the forecasting performance of
similarly-sized models trained with mask-based objectives when evaluated with a distribution-
sensitive metric. Third, language supervision does not help forecasting performance. Fourth, models



trained solely on static images consistently underperform, highlighting the importance of temporal
context in learning generalizable video representations.

2 RELATED WORK

Video (pixel) synthesis. Early video prediction models used recurrent architectures to directly
model pixel intensities [Ranzato et al.| (2014); |[Oprea et al.| (2022), but struggled with long-term
dynamics. Probabilistic models like SVG-LP |Denton and Fergus| (2018)) and GANs |Clark et al.
(2019); [Tulyakov et al.| (2018)); Wang et al.| (2020) improved visual quality by factoring content
and motion. More recently, diffusion models|Ho et al.|(2020) have dominated video synthesis, with
models like Sora|OpenAl|(2024), MovieGen Polyak et al.|(2025)), VideoPoet|Kondratyuk et al.[(2023)
and WALT |Gupta et al.|(2024) leading the way. These models capture temporal dynamics through
stochastic differential equations. While some diffusion-based works address video prediction|Gu et al.
(2023)); Xing et al.| (2024)); Hoppe et al.[(2022); |Ye and Bilodeau| (2024)); Yang et al.|(2023), they are
either language-guided or operate in implicit representation spaces. We leverage a diffusion model as
a general forecasting engine across a range of visual abstractions.

Task-specific video-based forecasting. Directly forecasting future pixels often fails to produce
representations useful across abstraction levels. [Luc et al.|(2017) showed that forecasting semantic
segmentation maps outperforms segmenting predicted RGB frames. They later proposed forecasting
in the feature space of Mask R-CNN |Luc et al.| (2018), an approach similar to ours. Similarly,
Vondrick et al.| (2016) forecast features of AlexNet to predict actions and objects in the future.
Similarly, other previous works Saric et al.|(2020); [Lin et al.|(2021])) also focus specifically on the task
of forecasting segments or pixel interpolation|Argaw and Kweon|(2022). However, we generalize this
framework: rather than relying on task-specific networks, we forecast in the frozen representation
space of large pretrained video models that support a broad range of downstream tasks.

A separate line of work focuses on learning temporal dynamics from scratch using generative models
or Neural Differential Equations (NDEs), such as Trajectory Flow Matching [Zhang et al.|(2024) and
ImageFlowNet Liu et al.| (2025). While these methods construct explicit, task-specific dynamical
models, we ask how well general-purpose frozen video representations capture implicit dynamics
that can be leveraged for forecasting via a separate diffusion-based module.

Multi-task forecasting with frozen video representations. Instead of designing task-specific
forecasting models, several works have explored forecasting directly in the frozen representation
space of large pretrained video models, leveraging their generality across downstream tasks. In
this setup, future representations are predicted by learning lightweight forecasting heads on top of
frozen features. Variants of this approach appear in recent work |Rajasegaran et al.| (2025); [Karypidis
et al.|(2024)). Rajasegaran et al.| (2025) pretrain autoregressive models on large-scale video data and
evaluate the resulting frozen features using probing tasks such as short-term interaction anticipation.

Most related to our work, DINO-Foresight Karypidis et al.| (2024) and Back to the Features Baldassarre
et al.|(2025) forecast frozen DINOv2|Oquab et al.| (2023) features using a masked transformer and
autoregressive model, respectively, evaluating downstream tasks such as segmentation, depth, and
surface normals at a single future time point. Unlike our approach, these works assume deterministic
futures and perform single-step prediction, while we model uncertainty and evaluate the entire
distribution of future trajectories.

Stochastic approaches to forecasting. In many contexts, visual forecasting is an inherently stochastic
problem. A simple deterministic regressor may not necessary capture the full diversity of possible
future outcomes. Some previous approaches have attempted to address this stochasticity. For ex-
ample, Bhattacharyya et al.|(2019) proposes a Bayesian model that jointly captures epistemic and
observation aleatoric of future states. Makansi et al.|(2020) uses mixture density networks to estimate
the location of objects like pedestrians and vehicles from an egocentric view. In this paper, we use a
diffusion model to directly learn the continuous distribution of future features.

3 METHOD

While prior works have explored forecasting directly in pixel space, we hypothesize that latent spaces
should be better because they make the scene structure more clear and remove non-semantic, hard-



to-predict details, which should make prediction easier. Therefore, we start with frozen pretrained
models, and use them to both represent the conditioning (past) video and the future video that we wish
to predict. We develop a two-stage forecasting evaluation framework built around a diffusion-based
forecasting module that operates directly in the space of frozen video representations. This setup
allows us to extend representations trained for perception or pixel synthesis to forecasting tasks
without fine-tuning. We first train lightweight readout heads to decode task-specific outputs from
frozen representations. Then, we train a diffusion model to forecast future latent trajectories in the
space of the frozen video representations. These forecast representations are passed through the same
readouts, enabling the evaluation of nondeterministic futures across multiple semantic levels. The
full pipeline is illustrated in Figure|[l]

3.1 LATENT FORECASTING VIA DIFFUSION

We forecast future representations using a conditional denoising diffusion model |Ho et al.| (2020).
Given a sequence of frozen representations up to time ¢, the diffusion model generates future latent
trajectories for times ¢ + 1. .. 7T conditioned on the past (Figure[Ib). Unlike pixel-space synthesis,
our model operates in the latent space of each frozen backbone, making it architecture-agnostic and
capable of comparing perception and synthesis models under the same framework.

We train one diffusion forecasting module per frozen video model under consideration. In our
experiments, we condition the diffusion model on the latent encodings of ¢ = 4 past frames after
applying layer normalization, as it was found that the diffusion model would occasionally struggle
to forecast in unnormalized latent space. We model latent encodings of a 7' = 16 frame clip, which
includes the 4 past frames and 12 future frames (16 x 224 x 224 x 3 clip). The diffusion models the
latent encodings of all these frames jointly in time. Even though the diffusion model may already
have information on the first ¢ frames for conditioning, the entire clip is modeled jointly to account
for temporally-entangled features.

The diffusion forecasting model never takes as conditioning any direct pixel information, only latent
encodings from a given video model. This pipeline is the same whether the encoder is a video or
image model. In the image encoder case, the latents are the stacked result of the image encoder on all
frames.

3.2 TASK READOUT HEADS

We decode the sampled latent trajectories using the previously trained readout heads to evaluate
forecast futures. This allows us to assess prediction quality across different abstraction levels using
task-appropriate metrics (Figure [Ic). We train a lightweight attention-based readout head to decode
the output of each frozen model into a task-specific prediction space. We focus on four tasks that vary
in their level of abstraction. These are pixels, depth, point tracks, and bounding boxes. The readout
heads for the four tasks follow those of |Carreira et al.|(2024) with the architecture of the depth readout
head also used (but trained separately) for the pixel readout task (Figure [Ta)). These readouts are
trained using standard supervised losses and provide a shared interface for comparing models across
different architectures and pretraining paradigms. Importantly, readout heads are trained only on
observed (past and present) frames and remain fixed during forecasting. We train a readout head for
each frozen video model and downstream task pair. During inference, the transformer-based readout
head processes features from all frames, conditional and forecast, simultaneously via full attention.
The loss from the readout heads is not backpropagated to the diffusion model.

3.3 EVALUATION METRICS

We measure performance by evaluating the accuracy and realism of the entire future trajectory rather
than a static single target timestep in the future. To do so, we use two perspectives to evaluation.
The first is to measure performance on a per example basis, measuring the statistics (mean, variance,
max, min) of task-specific metrics over a set of samples for each example. Because this uses task
specific metrics, it gives a reference point versus the corresponding perception task. The second is on
the dataset level, using Fréchet Distance and variance of samples from the ground truth dataset. We
argue that these metrics best consider the fact that future forecasting is inherently a stochastic task.



Per Example Metrics. For each example, we take 10 samples from our diffusion model and report
the statistics of task-specific metrics from the ground truth over each sample. For pixel prediction,
we use PSNR. For depth prediction, mean absolute relative error. For point tracks, we use Jaccard
Distance. For box tracking, we use intersection over union. In order to account for the stochastic
nature of forecasting, we report mean, minimum, and maximum of per-example samples for the given
metric. For relative comparison, we also report the perception, or standalone performance on the
ground truth latents on all frames, of the readout heads alongside the per example metrics.

Fréchet Distance. In order to capture the inherent stochasticity of forecasting the future, we must
allow for a distribution over possible future trajectories and ensure that this forecast distribution is
similar to that of the target ground truth data. We therefore compute the Fréchet Distance (FD)|Fréchet
(1957), a distribution distance metric comparing the forecast versus the ground truth set distribution
over trajectories, in the output representation of each task. While Ng et al.| (2022) employed FD
for motion forecasting evaluation and [Thakkar et al.|(2025) for self-driving cars, action, and object
interactions, we extend the use of FD for evaluating forecasts of pixels, depth, point tracks, and object
bounding box tracks. Specifically, we first represent forecasts as points in some fixed dimensional
space. For point tracks and box tracks, we represent each trajectory as, respectively, a vector in
a 24-dimensional (2D coordinates over 12 future frames) and 48-dimensional (4 coordinates over
12 frames) spaces. For depth and pixels, we downsample each of the 12 output frames to 14 x 14
patches, leading to a 2352-dimensional representation space. We then fit multivariate Gaussians to the
predicted and ground truth distributions in this space, and compute the Fréchet distance Dowson and
Landaul (1982) between them. To ensure our output is always of a fixed size, we filter out trajectories
that do not contain all the available data points (e.g. point tracks that are not visible across all target
frames due to occlusion). Note that while Heusel et al.|(2017); |[Unterthiner et al.| (2019) compute FD
in the Inception embedding space, there is no Inception here. We compute FD directly in the output
representation of each downstream task. Explicit details are provided in Appendix ??.

Variance. While FD considers the realism and stochasticity of the forecast futures, it is prudent to
pair it with a measure of the variance over these futures to ensure that the forecast futures are as
diverse as the ground truth ones. We report the variance of the trajectories over the temporal axis,
averaged over all other dimensions. This specifically assesses whether methods always forecast static
future trajectories, which may be realistic but certainly not diverse.

4 EXPERIMENTAL SETUP

4.1 DOWNSTREAM TASKS AND DATASETS

We center our evaluation on downstream forecasting tasks designed to span multiple levels of semantic
abstraction, from raw pixels to high-level object bounding boxes. This diversity allows us to probe
how well frozen video representations support different kinds of future prediction and identify where
video models generalize, and where they fail. We visualize each of these tasks in Figure[T}c).

Pixels. We evaluate models on the task of forecasting future RGB frames in ScanNet Dai et al.
(2017). While forecasting in pixel space is highly challenging and high-dimensional, it tests low-level
generative fidelity and temporal coherence. Pixel forecasting captures fine-grained dynamics but is
often sensitive to misalignment or visual ambiguity. We measure pixel accuracy using PSNR.

Depth. Predicting future depth maps tests a model’s ability to reason about 3D scene geometry
over time. It requires some abstraction beyond raw pixels while still relying on relatively dense
spatial information. Depth forecasting is particularly useful for studying how models encode physical
structure and motion. We measure mean absolute relative error in ScanNet.

Point Tracks. Forecasting the trajectories of dense visual features or tracked keypoints in the
Perception Test dataset [Patraucean et al.| (2023). Point tracks offer a structured yet fine-grained
measure of temporal consistency and motion understanding. Because the same points persist over
time, they provide a strong signal for evaluating both representation quality and future modeling. We
report Average Jaccard (Doersch et al.| (2022)).

Object Bounding Boxes. Forecasting future object locations as bounding boxes focuses on semantic-
level understanding of object motion and interaction. This task tests whether representations capture
object permanence, affordance, and dynamics—crucial for robotics or autonomous driving appli-



cations. We report Mean Intersection over Union (IoU) on the Open Waymo dataset Sun et al.
(2020).

4.2 BENCHMARKED MODELS

We benchmark a set of the highest performing and largest image and video models available. See the
supplementary material for the model and pretrainig specs for all models under consideration.

Image models. We benchmark SigLIP-2B [Zhai et al.| (2023)), a 2B-parameter vision transformer
trained on image—text pairs using a contrastive binary classification objective, and DINOv2 |Oquab
et al.| (2023), a 303M-parameter vision transformer trained purely on images using a self-distillation
loss without any language supervision. Since these models are not natively trained on video, we
follow |Carreira et al.| (2024)) and append learnable temporal positional embeddings to their output
features. This modification enables fair comparison with video models by allowing the readout heads
to exploit temporal structure when trained on top of the frozen embeddings.

Video models. We evaluate two categories of video models. The first group consists of models trained
using masking-based self-supervised objectives. VideoMAE [Tong et al.|(2022)), VideoMAEV2 Wang
et al.| (2023)), and 4DS-e |Carreira et al.[(2024) are trained to reconstruct masked pixels, while V-
JEPA Bardes et al.| (2024) uses a feature reconstruction loss based on predictions from a teacher
network. VideoPrism [Zhao et al.| (2024) incorporates language supervision through contrastive
learning between video and text during pretraining, followed by a second stage that applies a masked
reconstruction loss on video. The second group includes WALT |Gupta et al.|(2024)), a video synthesis
model trained jointly for frame prediction by conditioning on a past-frames-based signal with a
probability pg, = 0.1. We leverage this built-in capability in a pipeline referred to as Native WALT
(N-WALT). N-WALT is not a new model; it is simply the pretrained WALT model used exclusively in
its forecasting mode. For this pipeline, a single forward pass is performed with the past-frames-based
conditioning signal to extract predictive features from the model intermediate layers. These features
are then directly decoded by lightweight readout heads to produce task-specific outputs, thereby
obviating the need for a separate diffusion model. We use the same layers for feature extraction as
in|Vélez et al.| (2025).

4.3 IMPLEMENTATION DETAILS

Forecasting diffusion model and readout head. Our diffusion implementation uses DDIM Song
et al.[(2021) and incorporates a cosine schedule Nichol and Dhariwal|(2021). The underlying backbone
denoiser is a vanilla 5-layer transformer. Each transformer layer employs multi-headed attention with
8 heads, utilizing 1024 total dimensions for queries, keys, and values, alongside a 2048-dimension
hidden layer for the MLP. The training objective for the diffusion model minimizes the mean squared
error between the denoised output of the model and the original latents, computed from a given video
encoder. The diffusion model architecture is consistent across all of the underlying video models.

The training methodology for the task-specific readout heads is the same as in|Carreira et al.| (2024).
Readout heads are attention based and trained with L2 error for pixels and depth. For point tracks, a
weighted sum of Huber loss of positions and cross entropy over visibility and uncertainty is used. For
box tracking, L2 loss between the labeled box coordinates and predicted position is used.

Because the base video model latents are frozen, the forecasting diffusion model and the readout head
can be trained simultaneously. We found that layer normalization [Ba et al.|(2016) of the frozen latents
is extremely important for forecasting performance. We train for 40k iterations at a batch size of 32
or an equivalent 160k iterations for a batch size of 4 for the memory intensive SigL.IP. Aggregating
across all experiments, we utilize approximately 144 days worth of tpu-v5 and v6 chips.

Evaluation protocol. For pixels and depth, we use the standard train and validation split on ScanNet
Dai et al.| (2017). For point tracks, we train in the Kubric movie dataset |Greff et al.| (2022)) and test on
the Perception Test dataset |Patraucean et al.| (2023)). On box tracking, we use the train and validation
split of the Waymo Open Box dataset|Sun et al.| (2020). For all forecasting tasks we take as context 4
frames and forecast the next 12 frames in all experiments. We sample the diffusion model 10 times
per example during evaluation.



Model Pixels Depth Point Tracks Box Tracks

Mean{1 Best? FDJ] Mean] Best] FD | Mean T Best T FD | Meant Best? FD |

4DS-e Reg. 18.96 18.96  46.61 0.188 0.188  694.18 0.59 0.59 0.00070 0.58 0.58 2.26
4DS-e 19.89 22.03 3095 0.1937 0.096 533.0 0.58 0.61 0.00068 0.56 0.66 1.87

WALT Reg. 21.69 21.69 14.4 02196  0.2196  209.86 0.61 0.61 0.00140 0.54 0.54 2.44
WALT 500M 20.4 22.55 5.46 0.230 0.138 210.1 0.64 0.68 0.00134 0.50 0.58 2.47

Table 1: A deterministic regressor may be optimal in predicting the mean outcome, but it fails
to account for the variance in possible outcomes. Comparison of forecasting with a deterministic
regression model versus a stochastic diffusion model conditioned on 4 frames. Mean and Best
represents the mean and best out of 10 samples (for diffusion) on the task specific metric. For
regression, there is only 1 deterministic output. For pixels, this is PSNR. For depth, Mean Absolute
Relative Error. For point tracks, it is Jaccard Distance. For Box Tracks, it’s IoU. FD is Frechet
Distance in the output space.

Task (Dataset) Pixels (ScanNet) Depth (ScanNet) Points (Perc. Test) Boxes (Waymo)
FD)  Var(1073) FDJ  Var(1073) FDJ(107%)  Var FDJ Var.
GT 12.00 193 0.039 0.0032
DINOv2 62.97 3.1 588.36 8.9 1.9 0.038 3.08 0.044
SigLIP 203.32 0.5 849.18 2.4 3.0 0.038 3.22 0.05
VideoPrism 70.30 6 882.11 73 0.8 0.039 2.72 0.045
VJEPA 37.08 5.1 558.28 7.7 0.63  0.039 2.85 0.048
VideoMAE 28.14 7 547.40 9.2 0.55 0.039 2.62 0.045
VideoMAEv2 33.75 5.9 578.51 7.7 0.74  0.039 2.92 0.048
4DS-h 28.29 10.0 555.11 8.5 7.88  0.039 3.24 0.054
4DS-e 30.95 6.2 533.00 11.0 0.68 0.039 1.87 0.036
WALT 500M 5.46 6.9 210.10 5.6 1.34  0.039 247 0.040
N-WALT 500M 6.63 5.4 217.8 4.3 1.39  0.038 3.23 0.055

Table 2: Distributional alignment of forecast futures. We report Fréchet Distance (lower is better)
and the variance of fitted Gaussian distributions for each metric, comparing the ground truth distribu-
tion to the model’s sampled forecasts. Ideally, the forecast variance should closely match the ground
truth. Results show that stronger perception models produce forecasts with distributions more aligned
to the data, reinforcing trends observed in the per-example metrics (Fig. @

WALT setup. We utilized WALT, a text-to-video diffusion model, as a frozen encoder, probing its
intermediate layers in a setup similar to|Vélez et al.|(2025). WALT is designed to process 17 video
frames, tokenizing them into five latent representations: one for the initial frame and four for the
subsequent 16 frames. To maintain consistency with other models in this study, we sampled 16 frames,
duplicated the first frame, and simulated the forward diffusion process by adding noise at timestep
t. Instead of the complete multi-step generative process, the visual representation is obtained by a
single forward pass through the denoiser, utilizing a null text embedding. During the single pass, the
intermediate representations are extracted, discarding the initial latent representation. We use the
same layers for feature extraction as in|Vélez et al.| (2025).

5 RESULTS

The need for a stochastic evaluation. To demonstrate the need for modeling the stochasticity of
future events, we perform an ablation of our proposed diffusion forecasting module and compare it to
regression-based forecasting in Table |1} We find that while regression optimizes the traditional mean-
based metric, this does not account for the inherent stochasticity of forecasting. When considering
metrics such as Fréchet Distance or Best-of-N that take this stochasticity into account, we find that
diffusion models generally outperform the regression baselines in most cases.

Forecasting mostly correlates with perception. Overall, we observe a strong correlation between
per-example metrics and the perception performance in Figure [2] where forecasting performance
is displayed alongside perception performance. A more nuanced picture emerges when looking at
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Figure 2: Forecasting per-example metric results. We evaluate forecasting on pixels (PSNR), point
tracks (Jaccard Distance), bounding box tracks (IoU), and depth maps (Mean Absolute Relative Error)
using 10 samples per example. The colored bars represent the best of n metrics for a particular task.
Blue represents tasks where higher performance is better, while gold represents a metric where lower
is better. We also report perception performance on each task as gray bars. Given the stochastic nature
of forecasting, we report the mean (as whisker plot with standard deviation) and maximum/minimum
performance (colored bars) across samples. This reveals differences in sample quality not captured
by the mean alone—some models exhibit similar averages but differ significantly in their best-case
outputs, highlighting variation in their predictive distributions. Overall, we observe that stronger
perception models tend to yield better forecasting performance. However, with the exception of box
tracking, the best model in forecasting is never the best in perception.

the table in more detail. Here we find that, with the exception of box tracking, the best model in
perception for a given task is not the best model for forecasting. At higher levels of performance, it
appears that the dynamics of certain representations are inherently easier to model than others even if
other representations contain more information relevant to the downstream task.

Synthesis models like WALT achieve forecasting performance on par with or better than
models trained with mask-based objectives. WALT significantly excels at pixel and depth fore-
casting—tasks closely aligned with its training objective—as revealed by FD when evaluating
against masked representation-learning models of similar size (VideoMAE and 4DS-h). WALT also
outperforms 4DS-h in both point and bounding box forecasting, while performing comparably to
VideoMAE in these tasks. This outcome does not align with the lower perception performance of
WALT when benchmarked against these two models for depth prediction and object tracking. It
is worth noting that N-WALT does not exhibit the same performance. Since it was trained with a
frame prediction objective and is conditioned on past frames, it excels at pixel forecasting, effectively
capturing low-level spatiotemporal dynamics. However, it underperforms in other tasks that require
higher-level semantic understanding, such as point and box tracking. This performance disparity
reveals a fundamental limitation of the pixel prediction objective, suggesting that the learned features
are not truly generalizable.

Language supervision does not result in better forecasting. In Table [2] we find that language-
augmented models like SigLIP and VideoPrism, which were trained only on perception-style tasks,
lag behind.

Video backbones outperform image ones. Notably, we find that models pretrained exclusively on
image-based objectives, such as DINOv2 and SigLIP, perform poorly across most tasks, reinforcing
the importance of temporal supervision during pretraining, contrary to widespread belief|Baldassarre
et al.[(2025)).

Per-example vs. distribution-level metrics. To compare our two proposed metric approaches, we
first observe the per-example forecasting metrics in Figure[2} Unsurprisingly N-WALT is the strongest
in forecasting pixels, given it was directly trained to do so. However, for depth forecasting, DinoV2
seems to exhibit the best per-example results. WALT with the trained diffusion head, but not N-WALT,
is the best on forecasting point tracks. Interestingly, VideoMAEv2 underperforms its predecessor
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Figure 3: Qualitative forecasts from the 4DS-e model across diverse tasks. We condition on frames
1-4 and forecast frames 5—16. Top: Pixels forecasting—the model captures smooth camera motion.
Middle: Bounding boxes—it predicts a car turning (left) and vehicle motion (right). Bottom: Point
tracks—the model forecasts a hand rising (left) and camera motion (right). These results demonstrate
that our approach generalizes well across forecasting domains and abstraction levels.

across nearly all metrics, while VideoMAE (v1) shows strong results in bounding box forecasting
(per-example) and point tracks (FD), despite its smaller model size.

‘We next turn to the distribution level metrics in Table E} Overall, we observe a strong correlation
between the per-example metrics in Figure [2|and the distributional alignment of predicted futures
with ground truth, as captured by FD and variance. However, we also find notable discrepancies
emerge between the two forecasting evaluation paradigms. For instance, in depth forecasting, WALT
performs strongly in terms of Frechet Distance, but DinoV2 seems to exhibit better per-example
results. Similarly WALT excels on per-example metrics for point tracking, yet VideoMAE is better in
terms of Frechet Distance on this task. This discrepancy highlights how small-sample evaluations can
obscure poor distributional alignment.

We find that all models on most tasks, with the exception of point tracking, struggle to approach
the variance of the ground truth datasets. Even though WALT performs relatively well on pixel
forecasting with respect to the Frechet Distance metric, it still does not capture the full extent of
the underlying variance in pixel space. The variance disparity is especially apparent with depth
forecasting; this suggests that current models particularly struggle to model visual information
relevant to this particular domain.

Qualitative. We visualize forecasts from the 4DS-e model in Figure [3} These results demonstrate
that our approach generalizes well across multiple forecasting domains and abstraction levels.

6 DISCUSSION

We proposed a unified evaluation framework of frozen vision backbone models in forecasting tasks.
Our central findings are first, that forecasting performance in frozen pretrained video models closely
tracks their perception performance up to a point. At higher levels of performance, this association
starts to break down. Second, as expected, WALT, a video synthesis model explicitly trained to
generate future frames, significantly outperforms masked video models on low-level forecasting
tasks such as pixel and depth prediction. However, WALT’s forecasting strength is mixed for mid-
level structured tasks like point tracks and object bounding boxes when comparing masked models
of similar size. Third, language supervision alone does not appear to improve forecasting ability,
underscoring the importance of temporal visual learning for anticipating future states. Lastly, our
results clearly show that video backbone models outperform their image-based counterparts in
supporting future-forecasting tasks.
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