
Improved Lower Bounds for First-order
Stochastic Non-convex Optimization under Markov Sampling

Zhenyu Sun 1 Ermin Wei 1 2

Abstract

Unlike its vanilla counterpart with i.i.d. samples,
stochastic optimization with Markovian sampling
allows the sampling scheme following a Markov
chain. This problem encompasses various appli-
cations that range from asynchronous distributed
optimization to reinforcement learning. In this
work, we lower bound the sample complexity of
finding ϵ-approximate critical solutions for any
first-order methods when sampling is Markovian.
We show that for samples drawn from station-
ary Markov processes with countable state space,
any algorithm that accesses smooth, non-convex
functions through queries to a stochastic gradient
oracle, requires at least Ω(ϵ−4) samples. More-
over, for finite Markov chains, we show a Ω(ϵ−2)
lower bound and propose a new algorithm, called
MaC-SAGE, that is proved to (nearly) match our
lower bound.

1. Introduction
Stochastic optimization methods have become integral to
a wide array of machine learning and statistical modeling
tasks, with applications ranging from large-scale data analy-
sis to reinforcement learning and control. Due to the pros-
perity in deep learning and large models, first-order opti-
mization methods, meaning only gradient information is
leveraged for algorithm design, stand out due to their ad-
vantages of implementability and computational efficiency
(Achiam et al., 2023; Zhao et al., 2023). In many real-
world scenarios, however, data do not arrive independently
and identically distributed (i.i.d.). Instead, they are gener-
ated by underlying dynamical processes exhibiting temporal
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or sequential dependencies, naturally modeled by Markov
chains. For instance, in reinforcement learning, an agent
typically collects data by interacting with an environment
governed by a Markov decision process (MDP) (Sutton,
2018), leading to correlated samples. In online recommen-
dation systems, user feedback often arrives sequentially in
a Markovian fashion, where each user’s response depends
on their previous engagements (Afsar et al., 2022). In time-
series analysis, measurements such as sensor data or stock
prices reflect underlying Markovian transitions (Hamilton,
2020; Esling & Agon, 2012). In the context of Bayesian
inference, Markov chain Monte Carlo (MCMC) methods
generate correlated samples to approximate posterior distri-
butions (Brooks, 1998; Nemeth & Fearnhead, 2021), which
in turn are used for high-dimensional parameter estimation.
Moreover, in the language models, transformers generate
next-token predictions via a Markov chain (Makkuva et al.,
2024). The above-mentioned practical applications high-
light the importance of generalizing analysis from the i.i.d.
sampling to Markov sampling. Over the last few years, a
growing body of literature has begun addressing questions
involving Markov sampling given specific contexts, such as
reinforcement learning (Bhandari et al., 2018; Zhang et al.,
2021), distributed optimization (Sun et al., 2023; Even et al.,
2024), and federated learning (Sun et al., 2024). This trig-
gers the need for a unified theory advance that captures the
intrinsic difficulty of dealing with Markovian dynamics.

Compared to the well-studied i.i.d. setting, analyses of first-
order optimization methods under Markov sampling are
faced with novel and substantial challenges posed by corre-
lated data. In the i.i.d. scenario, each data point is drawn
independently from the same distribution and hence ren-
ders unbiased estimate of stochastic gradient, which allows
straightforward variance bounds and concentration inequal-
ities to be applied (Nemirovski et al., 2009; Lan, 2012; Li
& Liu, 2022). In contrast, when samples follow a Markov
chain, neighboring data observations are correlated, which
complicates both the bias and variance characterizations of
stochastic gradient estimates. In fact, due to the Markovian
property, the gradient estimate is biased, prohibit direct gen-
eralization of analyses from the i.i.d. case (Bhandari et al.,
2018; Even, 2023; Roy et al., 2022; Sun et al., 2023; Kim
et al., 2022).
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Moreover, existing literature investigating stochastic opti-
mization under Markov sampling mainly focuses on de-
riving various convergence and sample complexity up-
per bounds for different algorithms. For example, re-
cently (Even, 2023) provides the sample complexity upper
bound for vanilla SGD under the Markov sampling scheme.
(Dorfman & Levy, 2022) proposes sophisticated variant of
SGD to guarantee robustness in hyperparameter selection.
(Beznosikov et al., 2024) further establishes the convergence
analysis for accelerating first-order methods and general-
izes them to variational inequalities. However, the lower
bound results are still lacking, especially when the objective
function is non-convex, even they are fruitful for (strongly)
convex case and for the i.i.d. case. Therefore, in this paper
we aim to bridge such research gap by establishing the lower
bounds on sample complexities of first-order methods that
solve stochastic non-convex optimization problems when
data samples are Markovian. Our main contributions are
summarized as follows:

• We provide the algorithm-independent sample com-
plexity lower bound for any first-order methods of
stochastic non-convex optimization problems, given
data samples are generated by a countable-state sta-
tionary Markov chain. Our lower bound shows a com-
plexity with the order of ϵ−4, which matches the upper
bound of algorithm MAG provided in (Dorfman &
Levy, 2022; Beznosikov et al., 2024).

• We further restrict on the case of finite-state Markov
chains and show an ϵ−2 lower bound on the sample
complexity. The bound is not contradictory to the
bound for the countable-state case, as we are search
under different function and oracle classes.

• We then propose a new algorithm, which is called MaC-
SAGE, when the Markov chain is finite-state. The con-
vergence analysis is provided for MaC-SAGE, which
indicates nearly the same order of ϵ−2, hence demon-
strating the (near) min-max optimality of the proposed
algorithm.

Sample complexity of stochastic optimization. The sam-
ple complexity analysis of first-order stochastic optimization
has thrived since last two decades. Lower bound results are
undoubtedly crucial, as these bounds provide a fundamental
limit on how efficiently any first-order algorithm can learn.
Typically when full batch of samples are used for algorithm
design, the lower bound of Ω(ϵ−2) is established for smooth
non-convex functions (Carmon et al., 2020) and algorithm
Gradient Descent matches this lower bound (Ghadimi &
Lan, 2013). When samples are assumed to be i.i.d., Ω(ϵ−2)
and Ω(ϵ−4) (which improves to Ω(ϵ−3) if the objective is
assumed mean-square smooth (Arjevani et al., 2023)) lower
bounds are provided for convex (Agarwal et al., 2009) and

non-convex objectives (Arjevani et al., 2023), respectively,
and SGD is shown to have matched upper bounds for both
cases (Foster et al., 2019; Ghadimi & Lan, 2013). For the
Markovian sampling scheme, denoting τ as the mixing or
hitting time of the Markov chain, (Beznosikov et al., 2024)
shows a bound with Ω(τ log(ϵ−1)) for strongly convex func-
tions and (Duchi et al., 2012) provides a bound of Ω(τϵ−2)
for the convex case which is proven to match the upper
bound of SGD (Duchi et al., 2012). Recently, (Even, 2023)
establishes a loose lower bound Ω(τϵ−1) for non-convex
functions, while the best-known upper bound for this case
is O(τϵ−4). Table 1 compares various lower bounds given
different function and sampling assumptions.

2. Problem Formulation
Consider the general stochastic optimization problem,

min
x

F (x) := Es∼Π[f(x; s)] (1)

where s ∈ S for S being the support, and Π denotes some
unknown underlying distribution. In this paper we focus
on the Markovian case, i.e., we assume that the samples
{st}∞t=0 form a sequence generated by some underlying
Markov chain with its stationary distribution being Π. More-
over we focus on countable-state Markov chains, meaning
the state spaces are countable but may not be finite. Note
that the Markovian setting reduces to the i.i.d. setting by
decoupling the dependence across time.

Since exactly solving (1) is NP-hard (Hillar & Lim, 2013),
by restricting to first-order methods, we search for an ϵ-
approximate critical solution, which is widely adopted
by literature (Carmon et al., 2020; Arjevani et al., 2023;
Beznosikov et al., 2024) of F (x) defined in (1). In particu-
lar, given differentiable function F : Rd → R, our goal is
to find some x such that

∥∇F (x)∥ ≤ ϵ

for any ϵ > 0.

2.1. An Example: Temporal-difference Learning

To illustrate the importance of our problem, we show that the
temporal-difference (TD) learning algorithm can be viewed
a special case that iteratively searching for an ϵ-approximate
critical solution of problem (1). Particularly, for the TD
learning, we aim to (approximately) learn the value function
defined by

V ∗(s) := E

[ ∞∑
t=0

γtr(st, st+1) | s0 = s

]
where r(st, st+1) is the reward function and st+1 ∼ P (· |
st) is drawn from some unknown stationary Markov chain
P .
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Table 1. Sample complexity lower bounds for stochastic optimization with smooth objectives. ”full” means the objective function is
directly used, corresponding to deterministic case; for convex case, the sample complexity measure metric is F (x) − F ∗ ≤ ϵ; for
non-convex case, the complexity measure metric is ∥∇F (x)∥ ≤ ϵ; τ represents the hitting/mixing time.

Reference Convexity Sampling Lower bound

(Nesterov, 2013) strongly convex full1 Ω(log(ϵ−1))

(Nesterov, 2013) convex full Ω(ϵ−0.5)

(Carmon et al., 2020) non-convex full Ω(ϵ−2)

(Agarwal et al., 2009) convex i.i.d. Ω(ϵ−2)

(Arjevani et al., 2023) non-convex i.i.d. Ω(ϵ−4)

(Beznosikov et al., 2024) strongly convex Markovian Ω(τ log ϵ−1)

(Duchi et al., 2012) convex Markovian Ω(τϵ−2)

(Even, 2023) non-convex Markovian Ω(τϵ−1)

This work non-convex Markovian Ω(τϵ−4)

Assuming that the value function can be parameterized by a
linear function, i.e., there exists some θ∗ such that V ∗(s) =
ϕ(s)T θ∗,∀s ∈ S for the known feature mapping ϕ(·), then
the TD-learning algorithm maintains an estimate θ of θ∗ by
the following update:

θt+1 = θt − ηt(ϕ(st)
T θt − r(st, s

′
t)− γϕ(s′t)

T θt)ϕ(st)

:= θt − ηtg(θt; st, s
′
t) (2)

where s′t is the sample drawn from s′t ∼ P (· | st),
g(θt; st, s

′
t) = (ϕ(st)

T θt − r(st, s
′
t) − γϕ(s′t)

T θt)ϕ(st)
and ηt is the stepsize. Defining the augmented state
s̄ = (s, s′) ∈ S × S for which s′ ∼ P (· | s) and letting

f(θ; s̄) =

∫ 1

0

g(θ0 + u(θ − θ0); s, s
′)T (θ − θ0)du

with g(θ; s, s′) defined in (2), we have ∇f(θ; s̄) =
g(θ; s, s′), implying that (2) is equivalent to

θt+1 = θt − ηt∇f(θt; s̄t) (3)

where {s̄}∞t=0 forms another Markov chain with augmented
state space S̄ = S × S. Shown by (Tsitsiklis & Van Roy,
1996; Bhandari et al., 2018) (2) asymptotically converges to
the solution to the following equation in expectation:

∥Es∼Π,s′∼P (·|s)[g(θ; s, s
′)]∥ = 0

where Π is the stationary distribution corresponding to the
Markov chain P . It then equivalently yields by (3) that the
TD-learning algorithm outputs an ϵ-approximation critical
solution of some F for which

Es̄=(s,s′)∼Π×P (·|s)[∇f(θ; s̄)] =: ∇F (θ).

2.2. Function class

Particularly, we consider all smooth functions in the follow-
ing set:

F(∆, L) :=
{
F : Rd → R | F (0)− inf

x
F (x) ≤ ∆,

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥,∀x, y ∈ Rd
}

(4)

where ∆ ≥ 0 and L > 0 are fixed parameters. The con-
dition F (0)− infx F (x) ≤ ∆ on F (0) can be generalized
to any initial value F (x0). However, for zero-respecting
algorithms (to be defined in Section 2.3), we have x0 = 0.
In particular, we consider the case where the objective F is
smooth and has bounded initial gap to the optimum.

2.3. Algorithm class

Our algorithm class is based on the flow of (Arjevani et al.,
2023). We consider the following first-order algorithms
such that:

• the algorithm access an unknown F ∈ F(∆, L) by a
stochastic first-order oracle O;

• the oracle O returns a sequence of samples z :=
{si}Bi=1 (B can be time-dependent) generated by a
Markov chain and a mapping

OF (x, {si}Bi=1) := {g(x; si))}Bi=1

where g(x; s) := ∇f(x; s) is the stochastic gradient.

• at iteration t, the algorithm queries a batch ofM points

xt := (xt,1, xt,2, . . . , xt,M );
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• for each batch query xt, O responses with

OF (xt, zt) := (OF (xt,1, zt,1), . . . , OF (xt,M , zt,M )),

where zt,i is the sequence of sample drawn for xt,i and
zt :=

⋃M
i=1 zt,i.

Then algorithm A consists of a sequence of measurable map-
pings {At}∞t=0 to generate a sequence of iterates {xt}∞t=0

satisfying the following conditions:

• the t+ 1-th iterate is the output of At when taking all
previous oracle responses as input, i.e.,

x
A[OF ]
t+1 = At

(
OF (x

A[OF ]
0 , z0), . . . , OF (x

A[OF ]
t , zt)

)
;

• Algorithm A is zero-respecting, i.e., for any O and
samples z0, z1, . . . with any M , it satisfies for any
t ≥ −1 and any m ∈ [M ]

support(xA[OF ]
t+1,m) ⊆

⋃
k≤t,m′∈[M ]

support(gk,m′), (5)

where gk,m′ is the stochastic gradient for xA[OF ]
k,m′ and

support(x) := {i ∈ [d] : [x]i ̸= 0} for [x]i being the
i-th coordinate of x.

We denote Azr(M) the class of all zero-respecting algo-
rithms. It is worth noting that for any A ∈ Azr(M),
x
A[OF ]
0,1 = 0 by definition.

We note that the above-mentioned algorithm class is general,
which captures many existing first-order algorithms. For
example, the vanilla MC-SGD (Even, 2023)

xt+1 = xt − ηtg(xt; st)

corresponds to M = 1, B = 1,∀t ≥ 0. For Randomized
ExtraGradient (Beznosikov et al., 2024), which maintains
the update by

xt+1/2 = proxηt
(xt − ηtg(xt; sTt+1))

xt+1 = proxηt
(xt+1/2 − ηtut)

where by generating Jt ∼ Geom(1/2)

ut = u0t +

{
2Jt(uJt

t − u
Jt−1

t ) if 2Jt ≤ K
0 otherwise

with

ujt := 2−j
2j∑
i=1

g(xt; sTt+i+1), Tt+1 = Tt + 1 + 2Jt .

one can clearly see that it fits in the case of M = 2 and
B = 2Jt .

2.4. Countable-state Markov Chain

In this section, we are interested in any sampling schemes
characterized by countable-state Markov chains, meaning
that the state space S is discrete while |S| = ∞ is allowed.
Particularly, when the state space is finite, i.e., |S| <∞, the
case reduces to that of finite-state Markov chains, which is
separately analyzed in Section 4.

The class of countable-state Markov chains is parameterized
by the hitting time defined as follows.
Definition 2.1 (Hitting time). For any state w ∈ S, define

τw := inf{t ≥ 1 | st = w}

as the Markov chain firstly reaches state w. The hitting time
τhit is defined by

τhit := max
v,w∈S×S

E[τw | s0 = v].

Intuitively, the hitting time measures the maximal number
of steps for which any pair of states take to transit between
each other.

Then we consider the class of countable-state Markov chains
for which the stationary distribution Π exists and the hitting
time τhit is upper bounded by parameter τ ≥ 1. We denote
the chain by P . Specifically,

Ms(τ) :=
{
P | τhit ≤ τ, lim

t→∞
µP t = Π,∀µ

}
(6)

where τhit is defined in Definition 2.1 and µP t represents
the distribution of the chain after t-step transitions starting
from the initial distribution µ.

2.5. Oracle Class

Recalling that the oracle O returns a sequence of stochastic
gradient evaluated at each query, we place the following
assumption.
Assumption 2.2. For any x ∈ Rd, denoting Π as the sta-
tionary distribution of the Markov chain, Es∼Π∥g(x; s)−
∇F (x)∥2 ≤ σ2 for some 0 < σ < ∞, and
Es∼Π[g(x; s)] = ∇F (x).

Basically, Assumption 2.2 requires 1) asymptotically unbi-
ased gradient estimate when the Markov chain reaches its
stationary distribution Π, i.e., Est∼Π[g(x; st)] = ∇F (x);
and 2) bounded variance after convergence of the chain to its
stationary distribution, i.e., Es∼Π∥g(x; s)−∇F (x)∥2 ≤ σ2.
This assumption becomes aligned with the bounded vari-
ance assumption of stochastic first-order methods under i.i.d.
sampling by further forcing independence across samples
(Ghadimi & Lan, 2013; Allen-Zhu & Hazan, 2016).

Then, the oracle class, denoted by Os(σ
2, τ), is that the

stochastic gradient g is sampled from a chain contained in
Ms(τ) by (6) and such that Assumption 2.2 is satisfied.
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2.6. Sample Complexity Measure

Our result of lower bound is established in terms of the
sample complexity for finding an ϵ-approximate critical
solution of F . Let St(A) =

⋃
s≤t zt be the collection of all

samples utilized til time t by algorithm A.

Concretely, the sample complexity measure is defined by

N ϵ
s(M,∆, L, σ2, τ)

:= sup
O∈Os(σ2,τ)

sup
F∈F(∆,L)

inf
A∈Azr(M)

inf
{
|ST (A)| ≥ 1 | E∥∇F (xA[OF ]

T,1 )∥ ≤ ϵ
}
. (7)

When N ϵ
s(M,∆, L, σ2, τ) is lower bounded by NT , i.e.,

N ϵ
s(M,∆, L, σ2, τ) ≥ NT with NT denoting all collected

samples up to time T , it indicates that there exists some
stationary Markov sampling process P with bounded hit-
ting time and an oracle O ∈ Os(σ

2, τ) such that for
any A ∈ Azr(M) there exists F ∈ F(∆, L) for which
E∥∇F (xA[OF ]

T,1 )∥ > ϵ, where the expectation is taken over
randomness in A and O. In other words, at least NT num-
ber of samples must be required to (possibly) achieve an
ϵ-approximate critical solution for any first-order algorithm.

3. Improved Lower Bound
In this section, we show our main result on the lower
bound of sample complexity for stochastic non-convex opti-
mization under Markov sampling. The result is algorithm-
independent, implying that all first-order methods that are
zero-respecting take at least such samples to reach an ϵ-
approximate critical point of the non-convex objective func-
tion.

When the sampling process is characterized by a countable-
state stationary Markov chains, we show the following sam-
ple complexity lower bound.

Theorem 3.1. Considering the samples are generated by
stationary Markov chains in Ms(τ), there exist numerical
constants c1, c2 > 0 such that for any M,L,∆, σ, τ > 0,

N ϵ
s(M,∆, L, σ2, τ) = Ω

(
τσ2

ϵ2
+
τσ2

ϵ4
min

{
c1σ

2, c2L∆
})

.

Remark 3.2. Note that the extreme case τ = 1 corresponds
to the i.i.d. sampling case. To see this, recalling the defini-
tion of hitting time τ = 1 indicates exactly one step is taken
transiting from one state to any other, which then implies the
samples are drawn exactly from the stationary distribution
Π and there is no time dependence across samples drawn
at different time steps, hence reducing to i.i.d. case. Thus,
when σ2 ⪰ L∆ our lower bound result is aligned with
the bound Ω

(
L∆
ϵ2 + σ2L∆

ϵ4

)
provided in (Arjevani et al.,

2023). Moreover, noting that both lower bounds reduce

to Ω
(

τL∆
ϵ2 + τσ2L∆

ϵ4

)
if σ2 ≿ L∆, it matches the best-

known upper bound for stationary Markov chains, which is
O
(

τL∆
ϵ2 + τσ2L∆

ϵ4

)
(Beznosikov et al., 2024).

4. Min-max Optimality for Finite Stationary
Markov Chains

In this section, we restrict on the case of finite-state station-
ary Markov chains, where we further assume that the state
space of stationary Markov chains is finite, i.e., |S| < ∞.
Then, we can further show a Ω(τϵ−2) sample complex-
ity lower bound, which is followed by a new proposed al-
gorithm (MaC-SAGE) with Õ(max{τ, τmix}ϵ−2) sample
complexity (τmix is the mixing time defined in Defintion
B.1), indicating the nearly min-max optimality of our pro-
posed algorithm.

We firstly define the class of finite-state Markov chains:

Ms,fi(τ) := {P | P ∈ Ms(τ), |S| <∞} . (8)

Our subsequent analysis is established on the oracle class de-
noted by Os,fi(σ

2, τ), which requires the sampled stochas-
tic gradients are drawn from a stationary Markov chain
P ∈ Ms,fi(τ) and also satisfy bounded noise assumption
given as follows:
Assumption 4.1. For any x ∈ Rd and any t ≥ 0,
∥g(x; st) − ∇F (x)∥2 ≤ σ2 for σ > 0 and if st ∼ Π,∀t,
Est∼Π[g(x; st)] = ∇F (x).

Moreover, given the finiteness of the state space, we con-
sider objective functions are in the following class

F ′(∆, L) :=
{
F : Rd → R | F (0)− inf

x
F (x) ≤ ∆,

∥∇f(x; s)−∇f(y; s)∥ ≤ L∥x− y∥,∀x, y ∈ Rd,∀s ∈ S
}

(9)

and note that F ′ ⊂ F by further place smoothness point-
wisely on every f(·; s), which is commonly used in liter-
ature (Even, 2023). Accordingly, the sample complexity
measure is given by

N ϵ
s,fi(M,∆, L, σ2, τ)

:= sup
O∈Os,fi(σ2,τ)

sup
F∈F ′(∆,L)

inf
A∈Azr(M)

inf
{
|ST (A)| | E∥∇F (xA[OF ]

T,1 )∥ ≤ ϵ
}
, (10)

based on which we provide the following lower bound of
sample complexity for finite-state stationary Markov chains:
Theorem 4.2. Considering the samples are generated by
finite-state Markov chains in Ms,fi(τ), there exist numeri-
cal constants c3, c4 > 0 such that for any M,L,∆, σ, τ >
0,

N ϵ
s,fi(M,∆, L, σ2, τ) = Ω

( τ
ϵ2

min
{
c3σ

2, c4L∆
})

.
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Note that the results shown in Theorems 3.1 and 4.2 are not
contradictory, in the sense that Os,f ⊂ Os by Ms,fi(τ) ⊂
Ms(τ),F ′ ⊂ F and Assumption 4.1 implying Assumption
2.2. Therefore, lower bounding N ϵ

s allows us to search for a
”hard” example in a broader space, compared to doing so for
N ϵ

s,f . In other words, the ”hard” example in Os that realizes
Ω(τϵ−4) of Theorem 3.1 is more special than the one to re-
alize Ω(τϵ−2) of Theorem 4.2 and is probably unrealizable
when restricting on the class Os,fi. Technically speaking,
finding such an example for Os needs more sophisticated
construction than for Os,fi.

A natural question following is then to ask that

Is the lower bound in Theorem 4.2 tight enough?

If we expect a positive answer to this question, an algo-
rithm should be designed such that it has an orderly-same
sample complexity upper bound, i.e., we need to show that
N ϵ

s,fi(M,∆, L, σ2, τ) = O(τϵ−2). In fact, we propose a
new algorithm, called MaC-SAGE (summarized in Algo-
rithm 1), which achieves a nearly-same order of τϵ−2.

As now the state space S of the Markov chain is finite, to
state our algorithm we simply set |S| = n and denote st ∈ S
as the state visited at time t. Further, we use st = i to indi-
cate the i-th state is visited at time t, hence correspondingly
∇f(xt, st) := ∇fi(xt). In Algorithm 1 only one sample
is drawn from the underlying Markov chain at each time
iteration, which returns the corresponding stochastic gra-
dient evaluated at the current query xt. Simultaneously a
vector yt is maintained to track the number of occurrences
of each state, serving as a role to reweigh the contribu-
tion of the gradient given by each state. Then ht is de-
signed to dynamically track the latest gradient information
provided by every state, which is then combined together
with yt to incorporate corrected gradient into Gt. Defining
ai(t) := sup{l | l ≤ t, sl = i}, it is straightforward to
observe that Algorithm 1 can be rewritten as follows:

xt+1 = xt − γtGt

where

yit =
1

t+ 1

t∑
l=0

1sl=i, ∀i ∈ [n],

Gt =

n∑
i=1

yit∇fi(xai(t)).

which is similar to the classical variance-reduced algorithm
SAG except for the weight yit. As a matter of fact, Algorithm
1 is inspired by SAG (Schmidt et al., 2017) by further intro-
ducing yt as an estimator of the stationary distribution Π.
Intuitively, when Π is known, SAG would effectively reduce
the variance and thus speedup the convergence rate as now

Algorithm 1 Markov-Chain Stochastic Average Gradient
with Estimation (MaC-SAGE)

1: Input: Initialize x0, y−1 = 0n, hi−1 = 0d,∀i ∈ [n],
G−1 = 0d, stepsizes {γt}.

2: for t = 0, 1, . . . , T − 1 do
3: Sample state st = i from the underlying Markov

chain, i.e., f(·; st) = fi(·).
4: Update yt = (y1t , . . . , y

n
t ) as

yjt =
t

t+ 1
yjt−1 +

1

t+ 1
1j=i, ∀j ∈ [n]. (11)

5: Calculate

Gt = Gt−1 − yit−1h
i
t−1 + yit∇fi(xt).

6: Update ht = (h1t , . . . , h
n
t ) as

hjt = hjt−1 + 1j=i(∇fi(xt)− hit−1), ∀j ∈ [n].

7: Update xt+1 = xt − γtGt.
8: end for

F is a (weighted) finite sum. Therefore, one may expect that
if the estimator yt of Π is asymptotically unbiased, meaning
limt→∞ yt = Π and if the rate of yt converging to Π is no
slower than the rate of SAG (which is O(T−0.5)), the sam-
ple complexity would be O(ϵ−2) (up to some logrithmic
factors). This intuitive result is summarized in the following
lemma (which is restated by Corollary B.4 in Appendix B).

Lemma 4.3. Suppose yt = (y1t , . . . , y
n
t ) with y−1 = 0n

is updated as (11) in Algorithm 1. Then, we have for any
t ≥ 1

E∥yt −Π∥2 = O
(τmix

t

)
.

where τmix is the mixing time of the chain defined in Defini-
tion B.1.

Formally, the convergence result of MaC-SAGE is presented
in the following. The proof is shown in Appendix B.

Theorem 4.4. Let F ∈ F ′(∆, L) defined in (9) with
∆, L > 0. Suppose Assumption 4.1 is satisfied. Then,
for any finite-state stationary Markov chain contained in
Ms,fi(τ) defined in (8) with τ > 0, the trajectory {xt}Tt=0

generated by MaC-SAGE (Algorithm 1) satisfies

E
[
min
t<T

∥∇F (xt)∥2
]
= O

(
τL∆

T

)
+ Õ

(
τ̃σ2

T

)
,

where τ̃ = max{τ, τmix} where τmix denotes the mixing
time of the chain defined by Definition B.1.
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It is straightforward to observe from Theorem 4.4 that
the sample complexity of MaC-SAGE to achieve an ϵ-
approximate critical solution is Õ(τ̃ ϵ−2), implying its (near)
optimality as it (nearly) matches the lower bound provided
by Theorem 4.2.

5. Proof Idea of the Lower Bounds
In this section we present the proof idea of how we obtain
the sample complexity lower bounds for both finite-state and
countable-state stationary Markov chains. We first clarify
the proof sketch by focusing on the case where B = 1,
i.e., only one sample is drawn from the underlying Markov
chain by the algorithm. Then, we generalize it to the case of
B ≥ 1 which can also be time-dependent. Full proofs are
presented in Appendix A.

The core technique inspired by (Arjevani et al., 2023) is
to construct a ”hard” function F with f(·; s) supported on
each state of a Markov chain lying in the required class
such that the gradient norm, ∥∇F (x)∥, is small only if each
coordinate of x has a large enough absolute value. We
use the progress function to mathematically evaluate the
largest coordinate whose absolute value is larger than some
nonnegative scalar α, i.e.,

progα(x) := max{k ≥ 1 | |[x]k| > α}

where [x]k represents the k-th coordinate of x. We set
progα(x) = 0 if |[x]k| ≤ α,∀k ∈ [d]. Then the task of find-
ing an ϵ-approximate critical solution is equivalently trans-
formed to finding a solution x whose coordinate progress is
high. Formally it is stated by the following lemma.

Lemma 5.1. There exists some F ∗ ∈ F ′(O(∆ϵ2d), L) ⊂
F(O(∆ϵ2d), L) such that ∥∇F ∗(x)∥ > ϵ,∀ϵ > 0 if
prog0(x) < d.

Indicated by Lemma 5.1 ensuring ∥∇F ∗(x)∥ ≤ ϵ requires
all coordinates of x to be nonzero. Then for the case of finite-
state Markov chains, we construct a chain with its hitting
time upper bounded by τ and lower bounded by Ω(τ) and
design g∗(x; s) such that Assumption 4.1 is satisfied and

i. prog0(g
∗(x; s)) ≤ prog0(x) + 1

only if prog0(x) is even and s = v∗ (12)
ii. prog0(g

∗(x; s)) ≤ prog0(x) + 1

only if prog0(x) is odd and s = w∗ (13)

and otherwise prog0(g
∗(x; s)) ≤ prog0(x),∀s /∈ {v∗, w∗}.

where at least Ω(τ) number of state transitions are taken for
transiting from state v∗ to state w∗ and vice versa. See Fig-
ure 1 for a visualization. With conditions (12),(13) holding
we obtain that at least Ω(τd) iterations (if only one sample
is used every iteration, i.e., B = 1) are required for any al-
gorithm (which is zero-respecting) to output a solution such

that all its coordinates are nonzero, which then combines
with Lemma 5.1 to guarantee the sample complexity lower
bound Ω(τϵ−2) as shown by Theorem 4.2 by further setting
d = Ω(ϵ−2) (since we have to guarantee O(∆ϵ2d) = ∆).

To get the lower bound for countable-state Markov chains,
we modify conditions (12) and (13) such that they hold prob-
abilistically. This can be done by splitting v∗ and w∗ into
two substates, respectively, where each substate is sampled
with some probability q > 0. Specifically, for instance if
state v∗ is sampled there is with probability q that condition
(12) becomes true, similarly for the case w∗ is sampled.
Figure 2 depicts a concrete construction of the chain. Thus,
similar to the construction for the finite-state Markov chains
we show the following result.
Lemma 5.2. For any q ∈ (0, 1) and any zero-
respecting algorithm A ∈ Azr, there exist a countable-
state stationary Markov chain contained in Ms(τ)
and some F ∗ ∈ F ′(O(∆dϵ2), L) with g∗(x; s) sat-
isfying ∇F ∗(x) = Es∼Π[g

∗(x; s)] and E∥g∗(x; st) −
∇F ∗(x)∥2 ≤ O(σ2ϵ2/q),∀t ≥ 0 such that for any 0 <
δ < 1, with probability at least 1− δ

max
m∈[M ]

max
s≤t

prog0(x
A[OF ]
s,m ) < d, ∀t ≤ τ(d− log δ−1)

4q
.

In fact the constructive function F ∗ in Lemma 5.2 coin-
cides with the one in Lemma 5.1, which then implies that
at least Ω(τd/q) iterations are needed to guarantee an ϵ-
approximate critical solution output by any algorithm and
hence Ω(τd/q) samples (due to B = 1). Finally setting
d = Ω(ϵ−2) and q = O(ϵ2) concludes the lower bound
Ω(τϵ−4) shown by Theorem 3.1.

Note that the above proof derivations are established on the
precondition when B = 1 by which we are able to directly
obtain the sample complexity bounds through the iteration
complexity analysis, since the iteration complexity is the
same as the sample complexity. To generalize our results to
B ≥ 1, we present the following result.
Lemma 5.3. There exist a Markov chain in (6) (or
(8)) and some functions F ∗, g∗ satisfying correspond-
ing conditions in Lemma 5.2 (or Lemma 5.1) such that
for any zero-respecting algorithm Azr with B ≥ 1,
there is a zero-respecting algorithm A∗

zr with B =
1 for which the following holds: for any t ≥
0 if maxm∈[M ] maxs≤t prog0(x

A∗[OF ]
s,m ) ≤ k, then

maxm∈[M ] maxs≤t prog0(x
A[OF ]
s,m ) ≤ k, ∀0 ≤ k ≤ d.

The above lemma indicates that we can always find an al-
gorithm that only draws one sample per iteration to achieve
no worse progress in its update than other algorithms that
access multiple samples per iteration. In other words, com-
bining with Lemmas 5.1 and 5.2 yields that accessing multi-
ple samples every iteration has no benefit on improving the

7
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sample complexity for the algorithm, which hence implies
the lower bounds that holds for B = 1 also holds for B ≥ 1.

6. Conclusion
In this paper, we study the sample complexity of general
first-order stochastic non-convex optimization problems.
Unlike the conventional i.i.d. sampling, we focus on the case
where data samples and stochastic gradient estimates are
generated by an unknown Markov chain, which introduces
additional data correlation and hence non-trivial analysis
difficulties. Due to the lack of sample complexity lower
bound results and the gap to the best-known upper bound,
we provide an improved complexity lower bound with the
order of ϵ−4 for Markov chains with countable states, which
then matches the best-known upper bound. Moreover, we
establish an ϵ−2 lower bound for finite-state Markov chains.
Finally, we propose algorithm MaC-SAGE such that its
sample complexity upper bound nearly matches our lower
bound, implying its near min-max optimality and the tight-
ness of the lower bound.
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A. Proofs of Lower bounds
A.1. Construction of Markov chains

We construct Markov chains which are finite-state contained in Ms,fi(τ) and countable-state contained in Ms(τ). We take
the countable-state Markov chain case as an example. The construction for finite-state Markov chains are similar. Without
loss of generality we assume that τ is even.

First, we pick a countable-state Markov chain P ′ with state space S ′ (different from S) such that its hitting time is λτ for
some λ ∈ (0, 1/2), which can be always done since Ms(

1
2τ) ̸= ∅. Then we choose two states s∗, w∗ that realizes the

hitting time, i.e.,

(s∗, w∗) ∈ arg max
(v,w)∈S×S

E[τw | s0 = v], s.t. max
(v,w)∈S′×S′

E[τw | s0 = v] =
1

2
τ.

Next we append a number of additional states S \ S ′ into the chain P ′ to form a new chain P ∗ such that the state space of
P ∗ is S. Moreover the way we append additional states satisfies that 1) there is a state v∗ ∈ S \ S ′ for which at least 1

4τ
steps are needed to transit between v∗ and s∗; 2) any state in S \ S ′ must transit to state s∗ before transiting to other states
in S′. One specific construction of the appended chain is directed cyclic chain with self-loops, where a straightforward
calculation gives its hitting time is τ/2. Thus we guarantee that the new constructed chain P ∗ has hitting time to be τ . The
following figure (Figure 1) illustrates a concrete example of the construction satisfying the above-mentioned requirements.

𝑠∗ 𝑤∗𝑣∗

1

2
𝜏 steps

1

2
𝜏 steps

……

……

…
…
…

𝒮\𝒮′ 𝒮′

Figure 1. Construction of Markov chain P ∗ with bounded hitting time

A.2. Construction of the function F

Now we construct a ”hard” function that is difficult for any first-order algorithm to search for the critical point. Specifically
we consider the following two functions

h1(x) = −ψ(1)ϕ([x]1) +
⌊d/2⌋−1∑

i=1

(ψ(−[x]2i)ϕ(−[x]2i+1)− ψ([x]2i)ϕ([x]2i+1)) (14)

h2(x) =

⌊d/2⌋∑
i=1

(ψ(−[x]2i−1)ϕ(−[x]2i)− ψ([x]2i−1)ϕ([x]2i)) (15)

where

ψ(u) =

{
0 , u ≤ 1

2

exp
(
1− 1

(2u−1)2

)
, u > 1

2

and

ϕ(u) =
√
e

∫ u

−∞
e−

t2

2 dt

10
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with u ∈ R.

We denote πs as the corresponding probability of state s of the stationary distribution Π. Then, given the Markov chain
constructed above, we know that at least 1

2τ steps are required to take transiting from v∗ to w∗ and vice versa. Then, we
construct function F and f(·; s) such that

f(x; s) =

 h1(x), if s = v∗

h2(x), if s = w∗

0, otherwise
(16)

and F (x) = πv∗h1(x) + πw∗h2(x). For any x and i ≥ 0 define x≤i := ([x]1, . . . , [x]i, 0, . . . , 0) as the truncated version
by only keeping the first i coordinates. We also set x≤0 = x. Then we have the following properties of F .

Lemma A.1. Let F (x) = πv∗h1(x) + πw∗h2(x) for h1, h2 defined by (14),(15). Then we have the following:

(1). F (0)− infx F (x) ≤ ∆0d for some constant ∆0 > 0.

(2). ∥∇hi(x)∥∞ ≤ 23 and ∥∇hi(x)∥ ≤ 23
√
d, i = 1, 2.

(3). F (x) is l1-smooth for some constant l1 > 0.

(4). If prog1(x) < d, ∥∇F (x)∥ ≥ 1.

(5). [∇hi(x)]≤prog 1
2
(x) = [∇hi(x≤prog 1

2
(x))]≤prog 1

2
(x), i = 1, 2.

(6). If prog0(x) is odd, prog0(∇h1(x)) ≤ prog 1
2
(x), prog0(∇h2(x)) ≤ prog 1

2
(x) + 1. If prog0(x) is even,

prog0(∇h1(x)) ≤ prog 1
2
(x) + 1, prog0(∇h2(x)) ≤ prog 1

2
(x).

(7). If prog 1
2
(x) is odd, ∇h1(x) = ∇h1(x≤prog 1

2
(x)), ∇h2(x) = ∇h2(x≤1+prog 1

2
(x)). If prog 1

2
(x) is even, ∇h1(x) =

∇h1(x≤1+prog 1
2
(x)), ∇h2(x) = ∇h2(x≤prog 1

2
(x)).

Proof. For Part (1), observing that F (0) < 0 and noting that 0 ≤ ψ(u) ≤ e, 0 ≤ ϕ(u) ≤
√
2πe,

F (x) ≥ −ψ(1)ϕ([x]1)−
d∑

i=2

ψ([x]i−1)ϕ([x]i) ≥ −de
√
2πe = −d∆0

with ∆0 = e
√
2πe, which completes its proof.

For Part (2), noting that 0 ≤ ψ′(u) ≤
√
54e−1 and 0 ≤ ϕ′(u) ≤

√
e, combining with the fact that for each i = 1, 2

∂hi
∂xj

(x) ≥ ψ(−[x]j−1)ϕ
′(−[x]j)− ψ([x]j−1)ϕ

′([x]j)− ψ′(−[x]j)ϕ(−[x]j+1)− ψ′([x]j)ϕ([x]j+1)

yields ∣∣∣∣ ∂hi∂xj
(x)

∣∣∣∣ ≤ e
√
e+

√
54e−1

√
2πe ≤ 23

implying ∥∇hi(x)∥ ≤ 23 and ∥∇hi(x)∥ ≤ 23
√
d,∀i = 1, 2.

Parts (3) and (4) follow directly from (Carmon et al., 2020). Parts (5)-(7) follow from the observation that

∇h1(x) = ∇h1([x]1, . . . , [x]2i+1, 0, . . . , 0), if |x2j | ≤
1

2
, ∀j ≥ i+ 1

∇h2(x) = ∇h2([x]1, . . . , [x]2i, 0, . . . , 0), if |x2j−1| ≤
1

2
, ∀j ≥ i+ 1.
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A.3. Lower bound for finite-state Markov chains

According to Part (6) of Lemma A.1, the above constructive F and f as (16) satisfy the conditions (12) and (13). Consider
the following F ∗

F ∗(x) :=
Lλ2

l1
F
(x
λ

)
, where λ =

2l1
L
ϵ. (17)

Accordingly, we have

g∗(x; s) := ∇f∗(x; s) = Lλ

l1
∇f

(x
λ
; s
)
= 2ϵ∇f

(x
λ
; s
)
.

We note that
∇2F ∗(x) =

L

l1
∇2F

(x
λ

)
which implies that F ∗ is L-smooth by Part (3) of Lemma A.1, and similarly we conclude f∗(·; s) is L-smooth for any s ∈ S .
Moreover, by Part (1) of Lemma A.1 we obtain that

F ∗(0)− inf
x
F ∗(x) =

4l1ϵ
2

L
(F (0)− inf

x
F (x)) ≤ 4l1∆0ϵ

2

L
d

and further we note for any s ∈ S and any x

∥∇f(x; s)−∇F (x)∥2 ≤ 2(∥h1(x)∥2 + ∥∇h2(x)∥2) ≤ 2 · (23)2d

where we use Part (2) of Lemma A.1, implying that

∥g∗(x; s)−∇F ∗(x)∥2 ≤ 8 · 232ϵ2d.

Therefore by setting

d = min

{⌊
L∆

4l1∆0ϵ2

⌋
,

⌊
σ2

8 · 232ϵ2

⌋}
(18)

we guarantee that

F ∗(0)− inf
x
F ∗(x) ≤ ∆

∥∇F ∗(x)−∇F ∗(y)∥ ≤ L∥x− y∥, ∀x, y
∥∇f∗(x; s)−∇f∗(y; s)∥ ≤ L∥x− y∥, ∀x, y
∥g∗(x; s)−∇F ∗(x)∥2 ≤ σ2

which hence indicates that F ∗ ∈ F ′(∆, L) and Assumption 4.1 is satisfied.

Further combining with (16) and Part (6) of Lemma A.1 yields that conditions (12) and (13) hold for F ∗ and f∗, where we
use that prog 1

2
(x) ≤ prog0(x),∀x. Therefore, for B = 1,

max
m∈M

max
l≤t

prog0(x
A[OF∗ ]
l,m ) < d, ∀t ≤ 1

2
τd (19)

For any algorithm A with B ≥ 1, we observe that by the construction of F ∗ and f∗ and the Markov chain P ∗, for any
t ≥ 0 and m ∈ [M ], there exists an algorithm Ã with B = 1 for which prog0(x

A[OF∗ ]
t,m ) ≤ prog0(x

Ã[OF∗ ]
t,m ), since multiple

samples do not contribute to additional progress of x (This also proves the finite-state case of Lemma 5.3). Therefore, (19)
also holds for B ≥ 1, which implies that for any m ∈ [M ]

∥∇F ∗(x
A[OF∗ ]
t,m )∥ =

Lλ

l1

∥∥∥∇F (x
λ

)∥∥∥ ≥ Lλ

l1
≥ 2ϵ, ∀t ≤ 1

2
τd

where we use Part (4) of Lemma A.1 and note that prog1(x) ≤ prog0(x). Thus we conclude

N ϵ
s,fi(M,∆, L, σ2, τ) ≥ 1

2
τd ≥ τ

ϵ2
min

{⌊
L∆

2l1∆0

⌋
,

⌊
σ2

4 · 232

⌋}
completing the proof of Theorem 4.2.
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A.4. Lower bound for countable-state Markov chains

Note that Assumption 2.2 for the countable-state case is more general than Assumption 4.1 for the finite-case, which
provides us with more flexibility on the construction of the ”hard” example. In particular, we slightly modify the construction
of the Markov chain P ∗ in Section A.1 by further splitting states v∗ and w∗ into two substates, i.e., v∗ = {v∗1 , v∗2} and
w∗ = {w∗

1 , w
∗
2} such that conditioning on v∗ (or w∗) is visited, the probability that v∗1 or (w∗

1) is sampled is q ∈ (0, 1). We
denote the modified construction as P̃ ∗ Figure 2 visualizes our construction.

𝑠∗ 𝑤∗𝑣∗

1

2
𝜏 steps

1

2
𝜏 steps

……

……

…
…
…

𝒮\𝒮′ 𝒮′

𝑣1
∗ 𝑣2

∗ 𝑤1
∗ 𝑤2

∗

Figure 2. Construction of Markov chain P̃ ∗ with splitting states

We define πv∗ = πv∗
1
+ πv∗

2
and πw∗ = πw∗

1
+ πw∗

2
as the marginal probabilities of virtual states v∗ and w∗. Then, we

construct our F and f for countable-states Markov chains as following: for each i-th coordinate of f

if s ∈ {v∗1 , v∗2}, [g(x; s)]i = [∇h1(x)]i ·
(
1 + 1{i > prog 1

2
(x)}

(
1s=v∗

1

q
− 1

))
,

if s ∈ {w∗
1 , w

∗
2}, [g(x; s)]i = [∇h2(x)]i ·

(
1 + 1{i > prog 1

2
(x)}

(
1s=w∗

1

q
− 1

))
,

otherwise, f(x; s) = 0, (20)

where P(s = v∗1 | s ∈ {v∗1 , v∗2}) = P(s = w∗
1 | s ∈ {w∗

1 , w
∗
2}) = q ∈ (0, 1) and let F (x) = πv∗h1(x) + πw∗h2(x). Then

we have the following lemma.

Lemma A.2. Considering stochastic gradient g(x; s) constructed as (20), the following statements hold:

(1). For s ∈ {v∗1 , v∗2 , w∗
1 , w

∗
2}, with probability at least 1 − q, prog0(g(x; s)) ≤ prog 1

2
(x) and g(x; s) = g(x≤prog 1

2
(x); s)

for all x.

(2). For s /∈ {v∗1 , v∗2 , w∗
1 , w

∗
2}, with probability 1, prog0(g(x; st)) ≤ prog 1

2
(x) and g(x; st) = g(x≤prog 1

2
(x); st) for all x.

(3). For any s, with probability 1, prog0(g(x; s)) ≤ 1 + prog 1
2
(x) and g(x; s) = g(x≤1+prog 1

2
(x); s) for all x.

(4). Es∼π[g(x; s)] = ∇F (x).

Proof. We firstly show Part (3). Note that by (20) and Part (7) of Lemma A.1, for any x, s, [g(x; st)]i = 0,∀i > 1+prog 1
2
(x)

in the sense that [∇h1(x)]i = [∇h2(x)]i = 0,∀i > 1+prog 1
2
(x), which implies prog0(g(x; s)) ≤ 1+prog 1

2
(x). Moreover,

by Part (7) of Lemma A.1, defining x′ := x≤1+prog 1
2
(x) gives ∇h1(x) = ∇h1(x′) and ∇h2(x) = ∇h2(x′). Thus, we

obtain g(x; s) = g(x′; s) for any x, s, implying Part (3).

13



Lower Bounds of Stochastic Non-convex Optimization under Markov Sampling

For Part (1), we note that when i ≥ 1+prog 1
2
(x) and s ∈ {v∗2 , w∗

2}, g(x; s) = [∇hj(x)]≤prog 1
2
(x) for j = 1, 2, which implies

prog0(g(x; s)) ≤ prog 1
2
(x),∀s ∈ {v∗2 , w∗

2}. Further, according to (5) of Lemma A.1, we have g(x; s) = g(x≤prog 1
2
(x); s)

for s ∈ {v∗2 , w∗
2} and all x. Since P (z = 0) = 1− q, hence Part (1) is proved.

Part (2) holds trivially in the sense that g(x; st) = 0 when s /∈ {v∗1 , v∗2 , w∗
1 , w

∗
2}. Finally, Part (4) holds since E[1s/q | s ∈

{v∗1 , v∗2}] = E[1s/q | s ∈ {w∗
1 , w

∗
2}] = 1.

Also, we show in the following lemma that g has bounded variance.

Lemma A.3. For F (x) = πv∗h1(x) + πw∗h2(x) and g defined as (20), then for any Markov chain with stationary
distribution Π, given any x ∈ Rd, t ≥ 0 and any initial distribution of the chain,

E∥g(x; st)−∇F (x)∥2 ≤ a1d+ a2
1− q

q

for some constant a1, a2 > 0.

Proof. By Part (4) of Lemma A.2, we know Es∼π[g(x; s)] = ∇F (x).

Denote i∗ = 1 + prog 1
2
(x). For any s ∈ {v∗1 , v∗2 , w∗

1 , w
∗
2}, we have

g(x; s)−∇F (x) = (0, . . . , 0, [∇h1(x)]i∗(1s=v∗
1
/q − 1), 0, . . . , 0) + (1− π̃v∗)∇h1(x)− π̃w∗∇h2(x), if s ∈ {v∗1 , v∗2}

g(x; s)−∇F (x) = (0, . . . , 0, [∇h2(x)]i∗(1s=w∗
1
/q − 1), 0, . . . , 0) + (1− π̃w∗)∇h2(x)− π̃v∗∇h1(x), if s ∈ {w∗

1 , w
∗
2}.

When i∗ − 1 is odd, from Part (6) of Lemma A.1 we know that [∇h1(x)]i∗ = 0. Therefore,

∥g(x; s)−∇F (x)∥2 ≤ 2∥∇h1(x)∥2 + 2∥∇h2(x)∥2 ≤ 4 · 232d, s ∈ {v∗1 , v∗2}

∥g(x; s)−∇F (x)∥2 ≤ 3|[∇h2(x)]i∗ |2(1s=w∗
1
/q − 1)2 + 3∥∇h1(x)∥2 + 3∥∇h2(x)∥2

≤ 3 · 232(1s=w∗
1
/q − 1)2 + 6 · 232d, s ∈ {w∗

1 , w
∗
2}

and

∥g(x; st)−∇F (x)∥2 = ∥∇F (x)∥2 ≤ 4 · 232d, when s /∈ {v∗1 , v∗2 , w∗
1 , w

∗
2}

where we use (2) of Lemma A.1. Combining the above three inequalities, it yields that when i∗ − 1 is odd, for any Markov
chain, any x, t ≥ 0 and any initial distribution of the chain,

E∥g(x; st)−∇F (x)∥2 ≤ a1d+ a2
1− q

q

where a1 = 6 · 232, a2 = 3 · 232 and we use that E[(1s/q − 1)2 | s ∈ {w∗
1 , w

∗
2}] = (1 − q)/q. The case when i∗ − 1 is

even can be derived similarly.

Then, we are ready to show Lemma 5.2. Again we first focus on the case of B = 1 and then generalize it to B ≥ 1.

Proof of Lemma 5.2. We construct F ∗ the same as (17) with λ = 2l1ϵ/L and

g∗(x; s) =
Lλ

l1
g
(x
λ
, s
)

with g(x; s) defined as (20). Then by Lemma A.3, we have

E∥g∗(x; st)−∇F ∗(x)∥2 ≤ 4a1dϵ
2 +

4a2(1− q)

q
ϵ2, ∀t ≥ 0.

Then, define
Bt := 1

{
∃ x : prog0(g

∗(x; st)) = 1 + prog 1
2
(x)
}
.

14



Lower Bounds of Stochastic Non-convex Optimization under Markov Sampling

Note that under the construction of the Markov chain P̃ ∗ and F ∗ and g∗, for any zero-respecting algorithm A

Bt+k = 0, ∀k = 1, . . . ,
1

2
τ, conditioning on Bt = 1.

That is to say within every 1
2τ iterations Bt can be 1 at most once. And Part (1) of Lemma A.2 indicates that the probability

of Bt being 1 is no greater than q. Let k(t) := maxm∈[M ] maxl≤t prog0(x
A[O]F∗
l,m ). Then, the above implies that

k(t) ≤
∑
l≤t

Bl

which then gives

P(k(t) ≥ d) ≤ P

∑
l≤t

Bl ≥ d


= P

exp

∑
l≤t

Bl

 ≥ ed


≤ e−dE[e

∑
l≤t Bl ]

≤ e−dE[e
∑⌈2t/τ⌉

i=1 zi ]

= e−d(1− q + eq)⌈2t/τ⌉

≤ e⌈4t/τ⌉q−d

where zis are i.i.d. Bernoulli random variable with succeeding probability at most q and in the fourth inequality we use
the fact that the number of Bl that can possibly be 1 is at most ⌈2t/τ⌉ and they are independent if not forcing to be zero.
Therefore, we conclude that for any δ ∈ (0, 1) and q ∈ (0, 1) with probability at least 1− δ,

k(t) < d, ∀t ≤ τ(d− log(1/δ))

4q

which completes the proof of Lemma 5.2. Similarly we can use the same technique in the last section to show the
countable-state case of Lemma 5.3.

Now to show Theorem 3.1, setting

d = min

{⌊
L∆

4l1∆0ϵ2

⌋
,

⌊
σ2

8a1ϵ2

⌋}
(21)

and
1

q
= 1 +

σ2

8a2ϵ2
(22)

yields that F ∗ ∈ F(∆, L) and Assumption 2.2 is satisfied. By Part (4) of Lemma A.1 and Lemma 5.2, choosing δ = 1/2
renders that for any m ∈ [M ] with probability at least 1/2,

∥∇F ∗(x
A[OF∗ ]
t,m )∥ ≥ 2ϵ, ∀t ≤ τ(d− 1)

4q

which implies that

E∥∇F ∗(x
A[OF∗ ]
t,m )∥ ≥ ϵ, ∀t ≤ τ(d− 1)

4q
.

Therefore, we conclude that

N ϵ
s(M,∆, L, σ2, τ) ≥ τ(d− 1)

4q
⪰ τσ2

ϵ2
+
τσ2

ϵ2
min

{
c1σ

2, c2L∆
}

by the selections of d, q as (21),(22) for some constants c1, c2 > 0.

15



Lower Bounds of Stochastic Non-convex Optimization under Markov Sampling

B. Convergence Analysis of MaC-SAGE
In the following, we denote πi the stationary probability according to state i.

Definition B.1. Define tmix(ϵ) := inf{l ≥ 1 | dTV (µP
l,Π) ≤ ϵ}. Then τmix = tmix(1/4) is the mixing time of the

chain.

Lemma B.2. We have the following claims:

• dTV (µP
t+1,Π) ≤ dTV (µP

t,Π).

• For k ≥ 2, tmix(2
−k) ≤ (k − 1)τmix.

• Moreover,
T∑

k=0

dTV (µP
k,Π) ≤ c0τmix, ∀T ≥ 0

for some c0 > 0.

Proof. The first two claims are directly from (Levin & Peres, 2017).

To see the third claim, we note that

T∑
k=0

dTV (µP
k,Π) ≤

∞∑
k=0

dTV (µP
k,Π)

≤
τmix∑
l=0

dTV (µP
l,Π) +

∞∑
k=0

tmix(2
−(k+1))∑

l=tmix(2−k)+1

dTV (µP
l, π)

≤ dTV (µ,Π)τmix +

∞∑
k=2

(tmix(2
−(k+1))− tmix(2

−k))2−k

≤ dTV (µ,Π)τmix +

∞∑
k=2

k2−kτmix

≤ dTV (µ,Π)τmix + 2τmix

which completes the proof with c0 = dTV (µ, π) + 2.

Theorem B.3. Let S be the state space of the Markov chain with |S| = N . Consider any real-valued mapping v : S → RNd

and µ is any initial distribution. Without particularly claiming, v(·) is a row vector. Define V = [v(1)T , . . . , v(N)T ]T ∈
RN×Nd. Then

Eµ

(
1

T

T−1∑
t=0

v(st)−ΠTV

)
=

1

T

T−1∑
t=0

µT (P t − 1ΠT )V

TEΠ

∥∥∥∥∥ 1T
T−1∑
t=0

v(st)−ΠTV

∥∥∥∥∥
2

≤ max
i

∥v(i)∥2∞∥I − 1ΠT ∥∞ + 2c0 max
i

∥v(i)∥2∞τmix

TEµ

∥∥∥∥∥ 1T
T−1∑
t=0

v(st)−ΠTV

∥∥∥∥∥
2

≤ TEΠ

∥∥∥∥∥ 1T
T−1∑
t=0

v(st)−ΠTV

∥∥∥∥∥
2

+ 3c0 max
i

∥g(i)∥2∞τmix

where Eµ(·) means the initial state s0 follows µ; g(i) = v(i)−ΠTV .
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Proof. We firstly show the first equality. Note that

Eµ

(
1

T

T−1∑
t=0

v(st)−ΠT f

)
=

1

T

T−1∑
k=0

(µTP kV −ΠTV )

=
1

T

T−1∑
k=0

µT (P k − 1ΠT )V

where we observe that µT1 = 1.

Then we turn to show the second inequality. By definition, we have

TEΠ

∥∥∥∥∥ 1T
T−1∑
t=0

v(st)−ΠTV

∥∥∥∥∥
2

= EΠ∥v(s0)−ΠTV ∥2

+
2

T

T−1∑
k=1

(T − k)EΠ[(v(s0)−ΠTV )(v(sk)−ΠTV )T ]. (23)

Moreover,

EΠ[(v(s0)− πTV )(v(sk)− πTV )T ] =
∑
i

πiv(i)
∑
j

[P k]i,jv(j)
T −

∑
i,j

πiπjv(i)v(j)
T

=
∑
i

πiv(i)
∑
j

[P k − 1ΠT ]i,jv(j)
T

≤
∑
i

πi∥v(i)∥∞
∑
j

|[P k − 1ΠT ]i,j |∥v(j)∥∞

≤ max
i

∥v(i)∥2∞∥P k − 1ΠT ∥∞

Applying Lemma B.2 to (23) yields

TEΠ

(
1

T

T−1∑
t=0

v(st)−ΠTV

)2

≤ max
i

∥v(i)∥2∞∥I − 1ΠT ∥∞ + 2c0 max
i

∥v(i)∥2∞τmix

which completes the proof of the second inequality.

To obtain the third inequality, defining g(i) = v(i)−ΠTV we aim to bound

T

∣∣∣∣∣∣Eµ

∥∥∥∥∥ 1T
T−1∑
k=0

g(sk)

∥∥∥∥∥
2

− EΠ

∥∥∥∥∥ 1T
T−1∑
k=0

g(sk)

∥∥∥∥∥
2
∣∣∣∣∣∣

≤

∣∣∣∣∣ 1T
T−1∑
k=0

Eµ∥g(sk)∥2 − EΠ∥g(sk)∥2
∣∣∣∣∣+ 2

T

T−1∑
k=0

T−1∑
l=k+1

∣∣Eµ(g(sk)g(sl)
T )− Eπ(g(sk)g(sl)

T )
∣∣.

Note

∣∣Eµ(g(sk)g(sl)
T )− Eπ(g(sk)g(sl)

T )
∣∣ =

∣∣∣∣∣∣
∑
i,j

µig(j)((P
k)i,j − πj)

∑
r

((P l−k)j,r − πr)g(r)
T

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i,j

µig(j)((P
k − 1ΠT ))i,j

∑
r

((P l−k − 1ΠT ))j,rg(r)
T

∣∣∣∣∣∣
≤ max

i
∥g(i)∥2∞∥P l − 1ΠT ∥∞.
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Thus,

T

∣∣∣∣∣∣Eµ

∥∥∥∥∥ 1T
T−1∑
k=0

g(sk)

∥∥∥∥∥
2

− EΠ

∥∥∥∥∥ 1T
T−1∑
k=0

g(sk)

∥∥∥∥∥
2
∣∣∣∣∣∣

≤ 1

T

T−1∑
k=0

∥µT (P k − 1ΠT )∥∞ max
i

∥g(i)∥2∞ +
2

T
c0 max

i
∥g(i)∥2∞

T−1∑
k=0

τmix

≤ 1

T

T−1∑
k=0

∥µT (P k − 1ΠT )∥∞ max
i

∥g(i)∥2∞ + 2c0 max
i

∥g(i)∥2∞τmix

≤ c0 max
i

∥g(i)∥2∞τmix(2 + T−1).

Combining all the above completes the proof.

Corollary B.4.

E

∥∥∥∥∥
n∑

i=1

(yit − πi)(∇fi(xt)−∇F (xt))

∥∥∥∥∥
2

= O
(
σ2τmix

t

)

E

∥∥∥∥∥
n∑

i=1

(yit − πi)

∥∥∥∥∥
2

= O
(
σ2τmix

t

)

Proof. For any t, setting v(i) = [0, . . . ,∇fi(xt)T −∇F (xt)T , . . . , 0] and noting ∥v(i)∥2∞ ≤ ∥∇fi(xt)−∇F (xt)∥2 ≤ σ2

completes the first result. Similarly setting v(i) = [0, . . . , 0, 1, 0, . . . , 0] completes the second.

Theorem B.5. Considering MaC-SAGE (Algorithm 1) and supposing all conditions in Theorem 4.4 hold, then

E
[
min
t<T

∥∇F (xt)∥2
]
= O

(
τL∆

T

)
+ Õ

(
σ2 max{τ, τmix}

T

)
.

Proof. Using the smoothness of F ,

F (xt+1)− F (xt) ≤ ⟨∇F (xt), xt+1 − xt⟩+
L

2
∥xt+1 − xt∥2

= −γt⟨∇F (xt), Gt⟩+
Lγ2t
2

∥Gt∥2

=
γt
2
∥∇F (xt)−Gt∥2 −

γt
2
∥∇F (xt)∥2 −

γt
2
(1− Lγt)∥Gt∥2

≤ γt
2
∥∇F (xt)−Gt∥2 −

γt
2
∥∇F (xt)∥2 −

γt
4
∥Gt∥2

for γt ≤ 1/(2L).

Note that by ai(t) = sup{l ≥ 1 | l ≤ t, sl = i}

∥∇F (xt)−Gt∥2 ≤ 2

∥∥∥∥∥
n∑

i=1

(yit − πi)∇fi(xt)

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
n∑

i=1

yit(∇fi(xai(t))−∇fi(xt))

∥∥∥∥∥
2

= 2

∥∥∥∥∥
n∑

i=1

(yit − πi)(∇fi(xt)−∇F (xt))

∥∥∥∥∥
2

+ 2

∥∥∥∥∥
n∑

i=1

yit(∇fi(xai(t))−∇fi(xt))

∥∥∥∥∥
2

≤ 2

∥∥∥∥∥
n∑

i=1

(yit − πi)(∇fi(xt)−∇F (xt))

∥∥∥∥∥
2

+ 2

n∑
i=1

yit∥∇fi(xai(t))−∇fi(xt)∥2

≤ 2

∥∥∥∥∥
n∑

i=1

(yit − πi)(∇fi(xt)−∇F (xt))

∥∥∥∥∥
2

+ 2

n∑
i=1

yitL
2∥xai(t) − xt∥2
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where the third inequality follows the convexity of l2-norm by
∑n

i=1 y
i
t = 1 and yit ≥ 0 by definition; the last one follows

L-smoothness of each fi. Further we have

∥xt − xai(t)∥
2 ≤

t−1∑
l=ai(t)

(t− ai(t))γ
2
l ∥Gl∥2.

Denoting et :=
∥∥∑n

i=1(y
i
t − πi)(∇fi(xt)−∇F (xt))

∥∥2, we obtain

γt∥∇F (xt)−Gt∥2 ≤ 2γtet + 2L2γt

n∑
i=1

t−1∑
l=ai(t)

yit(t− ai(t))γ
2
l ∥Gl∥2

≤ 2γtet + L

n∑
i=1

yit

t−1∑
l=ai(t)

γ2l ∥Gl∥2

when γt ≤ 1
2Lmaxi{t−ai(t)} . Further note that

T−1∑
t=0

t−1∑
l=ai(t)

γ2l ∥Gl∥2 =

T−1∑
t=0

γ2t ∥Gt∥2(bi(t)− t− 1)

where bi(t) = inf{l | l > t, sl = i}. Thus, by letting ∆T = F (x0)− F (xT ) we have
T−1∑
t=0

γt
2
∥∇F (xt)∥ ≤ ∆+

T−1∑
t=0

γtet −
T−1∑
t=0

γt
4
∥Gt∥2 +

L

2

n∑
i=1

T−1∑
t=0

yitγ
2
t ∥Gt∥2(bi(t)− t− 1).

Moreover, since

E

[
n∑

i=1

T−1∑
t=0

yitγ
2
t ∥Gt∥2(bi(t)− t− 1) | Ft

]
=

n∑
i=1

T−1∑
t=0

yitγ
2
t ∥Gt∥2E[bi(t)− t− 1 | Ft]

≤
n∑

i=1

T−1∑
t=0

yitγ
2
t ∥Gt∥2τhit

= τhit

T−1∑
t=0

γ2t ∥Gt∥2

≤
T−1∑
t=0

γt
4L

∥Gt∥2

for γt = 1
4L(maxi{t−ai(t)}+τhit)

≤ 1
4Lτhit

, it yields

E
[
min
t<T

∥∇F (xt)∥2
]
≤ E

[
2∆T∑T−1
t=0 γt

]
+ E

[
2
∑T−1

t=0 γtet∑T−1
t=0 γt

]
.

Noting that according to Lemma A.5 of (Even, 2023)

T∑T−1
t=0 γt

≤ 1

T

T−1∑
t=0

γ−1
t ≤ 8L log(n)τhit

and by Corollary B.4

E

[
T−1∑
t=0

γtet

]
≤ 1

4Lτhit
E

[
T−1∑
t=0

et

]
= O

(
σ2τmix log T

Lτhit

)
.

Finally combining with the fact τhit ≤ τ we obtain

E
[
min
t<T

∥∇F (xt)∥2
]
= O

(
τL∆

T

)
+ Õ

(
σ2 max{τ, τmix}

T

)
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