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Abstract

Deep neural networks (DNNs) in the infinite width/channel limit have received
much attention recently, as they provide a clear analytical window to deep learning
via mappings to Gaussian Processes (GPs). Despite its theoretical appeal, this
viewpoint lacks a crucial ingredient of deep learning in finite DNNs, laying at
the heart of their success — feature learning. Here we consider DNNs trained
with noisy gradient descent on a large training set and derive a self-consistent
Gaussian Process theory accounting for strong finite-DNN and feature learning
effects. Applying this to a toy model of a two-layer linear convolutional neural
network (CNN) shows good agreement with experiments. We further identify, both
analytically and numerically, a sharp transition between a feature learning regime
and a lazy learning regime in this model. Strong finite-DNN effects are also derived
for a non-linear two-layer fully connected network. We have numerical evidence
demonstrating that the assumptions required for our theory hold true in more
realistic settings (Myrtle5 CNN trained on CIFAR-10). Our self-consistent theory
provides a rich and versatile analytical framework for studying strong finite-DNN
effects, most notably - feature learning.

1 Introduction

The correspondence between Gaussian Processes (GPs) and deep neural networks (DNNs) has
been instrumental in advancing our understanding of these complex algorithms. Early results
related randomly initialized strongly over-parameterized DNNs with GP priors [33, 24, 30]. More
recent results considered training using gradient flow (or noisy gradients), where DNNs, potentially
following some ensembling, map to Bayesian inference on GPs governed by the neural tangent
kernel [21, 25, 18] (or the NNGP kernel [32]). These correspondences carry over to a wide variety
of architectures, going beyond fully connected networks (FCNs) to convolutional neural networks
(CNNs) [4, 36], recurrent neural networks (RNNs) [2] and even attention networks [20]. They provide
us with closed analytical expressions for the outputs of strongly over-parameterized trained DNNs,
which have been used to make accurate predictions for DNN learning curves [11, 9, 8].

Despite their theoretical appeal, GPs are unable to capture feature learning [47, 46], which is a
well-observed key property of trained DNNs. Indeed, it was noticed [21] that as the width tends
to infinity, the neural tangent kernel (NTK) tends to a constant kernel that does not evolve during
training and the weights in hidden layers change infinitesimally from their initialization values. This
regime of training was thus dubbed lazy training [10]. Other studies showed that for CNNs trained on
image classification tasks, the feature learning regime generally tends to outperform the lazy regime
[15, 14, 23]. Clearly, working in the feature learning regime is also crucial for performing transfer
learning [45, 46].
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It is therefore desirable to have a theoretical approach to deep learning which enjoys the generality
and analytical power of GPs while capturing feature learning effects in finite DNNs. Here we make
several contributions towards this goal:

1. We show that the mean predictor of a finite DNN trained on a large data set with noisy
gradients, weight decay and MSE loss, can be obtained from GP regression on a shifted
target (§3). Central to our approach is a non-linear self-consistent equation involving the
higher cumulants of the finite DNN (at initialization) which predicts this target shift.

2. Using this machinery on a toy model of a two-layer linear CNN in a teacher-student setting,
we derive explicit analytical predictions which are in very good agreement with experiments
even well away from the GP/lazy-learning regime (large number of channels, C) thus
accounting for strong finite-DNN corrections (§4.1). The match to empirical values of
our theory in this toy model is shown to be clearly superior to two alternative theoretical
predictions, one of them being a purely perturbative theory. Similarly strong corrections to
GPs, yielding qualitative improvements in performance, are demonstrated for the quadratic
two-layer fully connected model of Ref. [28].

3. We show how our framework can be used to study statistical properties of weights in hidden
layers. In particular, in the CNN toy model, we identify, both analytically and numerically,
a sharp transition between a feature learning phase and a lazy learning phase (§4.1.4). We
define the feature learning phase as the regime where the features of the teacher network
leave a clear signature in the spectrum of the student’s hidden weights posterior covariance
matrix. In essence, this phase transition is analogous to the transition associated with the
recovery of a low-rank signal matrix from a noisy matrix taken from the Wishart ensemble,
when varying the strength of the low-rank component [6].

1.1 Additional related work

Several previous papers derived leading order finite-DNN corrections to the GP results [32, 44, 13,
39]. While these results are in principle extendable to any order in perturbation theory, such high
order expansions have not been studied much, perhaps due to their complexity. These previous
perturbative approaches are expected to be satisfactory only when the GP limit already gives a
reasonable approximation to the DNN behavior. In contrast, we develop an analytically tractable
non-perturbative approach which we find crucial for obtaining non-negligible feature learning and
associated performance enhancement effects.

Previous works [15, 14, 43] studied how the behavior of infinite DNNs depends on the scaling of the
top layer weights with its width. In [45] it is shown that the standard and NTK parameterizations of a
neural network do not admit an infinite-width limit that can learn features, and instead suggest an
alternative parameterization which can learn features in this limit. While unifying various viewpoints
on infinite DNNs, this approach does not immediately lend itself to analytical analysis of the kind
proposed here. Also, in our work, feature learning as a purely finite-width effect.

Several works [38, 27, 16, 3] show that finite width models can generalize either better or worse than
their infinite width counterparts, and provide examples where the relative performance depends on the
optimization details, the DNN architecture and the statistics of the data. Another study [1] considered
cases where the enhanced flexibility of a finite DNN relative to its infinite width counterpart provides
the former with superior performance. Here we demonstrate analytically that finite DNNs outperform
their GP counterparts when the latter have a prior that lacks some constraint found in the data (e.g.
positive-definiteness [28] or translation invariance / equivariance [36]).

Deep linear networks (FCNs and CNNs) similar to our CNN toy example have been studied in the
literature [5, 40, 22, 17]. These studies use different approaches and assumptions and do not discuss
the target shift mechanism which applies also for non-linear CNNs. In addition, their analytical
results hinge strongly on linearity whereas our approach could be useful whenever several leading
cumulants of the DNN output are known or can be approximated, and we give an example of this in a
non-linear setting in §4.2. While there are some similarities between the phase transition we discuss
in §4.1.4 and the one appearing in Ref. [22], there are several important differences, to mention one
of them: that study considers the statistics of a noisy teacher, whereas we consider the statistics of the
first layer of the trained student network.
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Two concurrent works [48, 34] derived exact expressions for the output priors of finite FCNs induced
by Gaussian priors over their weights. However, these results only apply to the limited case of a prior
over a single training point and only for a FCN. In contrast, our approach applies to the setting of a
large training set, it is not restricted to FCNs and yields results for the posterior predictions, not the
prior. Focusing on deep linear fully connected DNNs, recent work [26] derived analytical finite-width
renormalization results for the GP kernel, by sequentially integrating out the weights of the DNN,
starting from the output layer and working backwards towards the input. Our analytical approach, its
scope, and the models studied here differ substantially from that work.

2 Preliminaries

We consider a fixed set of n training inputs {xµ}nµ=1 ⊂ Rd and a single test point x∗ over which we
wish to model the distribution of the outputs of a DNN. We consider a generic DNN architecture
where for simplicity we assume a scalar output f(x) ∈ R. The learnable parameters of the DNN
that determine its output, are collected into a single vector θ. We pack the outputs evaluated on the
training set and on the test point into a vector ~f ≡ (f (x1) , . . . , f (xn) , f (xn+1)) ∈ Rn+1, where
we denoted the test point as x∗ = xn+1. We train the DNNs using full-batch gradient decent with
weight decay and external white Gaussian noise. The discrete dynamics of the parameters are thus

θt+1 − θt = − (γθt +∇θL (fθ)) η + 2σ
√
ηξt (1)

where θt is the vector of all network parameters at time step t, γ is the strength of the weight decay,
L(fθ) is the loss as a function of the DNN output fθ (where we have emphasized the dependence
on the parameters θ), σ is the magnitude of noise, η is the learning rate and ξt ∼ N (0, I). As
η → 0 this discrete-time dynamics converge to the continuous-time Langevin equation given by
θ̇ (t) = −∇θ

(
γ
2 ‖θ(t)‖

2
+ L (fθ)

)
+ 2σξ (t) with 〈ξi(t)ξj(t′)〉 = δijδ (t− t′), so that as t → ∞

the DNN parameters θ will be sampled from the equilibrium Gibbs distribution P (θ).

As shown in [32], the parameter distribution P (θ) induces a posterior distribution over the trained
DNN outputs P (~f) with the following partition function:

Z
(
~J
)

=

∫
d~fP0

(
~f
)

exp

(
− 1

2σ2
L
(
{fµ}nµ=1 , {gµ}

n
µ=1

)
+

n+1∑
µ=1

Jµfµ

)
(2)

Here P0(~f) is the prior generated by the finite-DNN with θ drawn from N (0, 2σ2/γ) where the
weight decay γ may be layer-dependent, {gµ}nµ=1 are the training targets and ~J are source terms
used to calculate the statistics of f . We keep the loss function L arbitrary at this point, committing to
a specific choice in the next section. As standard [19], to calculate the posterior mean at any of the
training points or the test point xn+1 from this partition function one uses

∀µ ∈ {1, . . . , n+ 1} : 〈fµ〉 = ∂Jµ logZ
(
~J
) ∣∣∣∣

~J=~0

(3)

3 A self-consistent theory for the posterior mean and covariance

In this section we show that for a large training set, the posterior mean predictor (Eq. 3) amounts to
GP regression on a shifted target (gµ → gµ −∆gµ). This shift to the target (∆gµ) is determined by
solving certain self-consistent equations involving the cumulants of the prior P0(~f). For concreteness,
we focus here on the MSE loss L =

∑n
µ=1 (fµ − gµ)

2 and comment on extensions to other losses,
e.g. the cross entropy, in App. C. To this end, consider first the prior of the output of a finite DNN.
Using standard manipulations (see App. A), it can be expressed as follows

P0

(
~f
)
∝
∫
Rn+1

d~t exp

(
−
n+1∑
µ=1

itµfµ +

∞∑
r=2

1

r!

n+1∑
µ1,...,µr=1

κµ1,...,µr itµ1
· · · itµr

)
(4)

where κµ1,...,µr is the r’th multivariate cumulant of P0(~f) [31]. The second term in the exponent
is the cumulant generating function (CGF), denoted by C(~t), corresponding to P0. As discussed in
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App. B and Ref. [32], for standard initialization protocols the r’th cumulant will scale as 1/C(r/2−1),
where C controls the over-parameterization, e.g. number of neurons / channels in each layer for
FCNs / CNNs, respectively. The second (r = 2) cumulant which is C-independent, describes the
NNGP kernel of the finite DNN and is denoted by K(xµ1

,xµ2
) = κµ1,µ2

.

Consider first the case of C → ∞ [24, 30, 33] where all r > 2 cumulants vanish. Here
one can explicitly perform the integration in Eq. 4 to obtain the standard GP prior P0

(
~f
)
∝

exp
(
− 1

2

∑n+1
µ1,µ2=1 κµ1,µ2

fµ1
fµ2

)
. Plugging this prior into Eq. 2 with MSE loss, one recovers

standard GP regression formulas [37]. In particular, the predictive mean at x∗ is: 〈f (x∗)〉 =∑n
µ,ν=1K

∗
µK̃
−1
µν gν where K∗µ = K (x∗,xµ) and K̃µν = K (xµ,xν) + σ2δµν . Another set of

quantities we shall find useful are the discrepancies in GP prediction, which for the training set read

∀µ ∈ {1, . . . , n} : 〈δ̂gµ〉 ≡ gµ − 〈f (xµ)〉 = gµ −
n∑

ν,ν′=1

Kµν′K̃
−1
ν′,νgν (5)

Saddle-point approximation for the mean predictor. For a DNN with finite C, the prior P0(~f)
will no longer be Gaussian and cumulants with r > 2 would contribute. This renders the partition
function in Eq. 2 intractable and so some approximation is needed to make progress. To this end we
note that f can be integrated out (see App. A.1) to yield a partition function of the form

Z
(
~J
)
∝
∫
Rn
dt1 · · · dtne−S(

~t, ~J) (6)

where S(~t, ~J) is the action whose exact form is given in Eq. A.14. Interestingly, the itµ variables
appearing above are closely related to the discrepancies δ̂gµ, in particular 〈itµ〉 = 〈δ̂gµ〉/σ2.

To proceed analytically we adopt the saddle-point (SP) approximation [12] which often relies on
having a partition function of the form Z =

∫
dte−nS(t) where n is a large number and S is O(1).

In our settings we cannot simply extract such a large factor from the action and make it O(1).
Nonetheless, we argue in App. A.4 that the saddle-point is still a good approximation for large n
(training set size). This relies on the fact that the non-linear terms in the action comprise of a sum
of many itµ’s. Given that this sum is dominated by collective effects coming from all data points
(as opposed to only a selected few), expanding S(~t, ~J) around the saddle-point yields terms with
increasingly negative powers of n.

For the training points µ ∈ {1, . . . , n}, taking the saddle-point approximation amounts to setting
∂itµS

(
~t, ~J
) ∣∣∣

~J=~0
= 0. This yields a set of equations that has precisely the form of Eq. 5, but where

the target is shifted as gν → gν −∆gν and the target shift is determined self-consistently by

∆gν =

∞∑
r=3

1

(r − 1)!

n∑
µ1,...,µr−1=1

κν,µ1,...,µr−1

〈
σ−2δ̂gµ1

〉
· · ·
〈
σ−2δ̂gµr−1

〉
(7)

Equation 7 is thus an implicit equation for ∆gν involving all training points, and it holds for the
training set and the test point ν ∈ {1, . . . , n+ 1}. Once solved, either analytically or numerically,
one calculates the predictions on the test point via

〈f∗〉 = ∆g∗ +

n∑
µ,ν=1

K∗µK̃
−1
µν (gν −∆gν) (8)

Equation 5 with gν → gν − ∆gν along with Eqs. 7 and 8 are the first main result of this paper.
Viewed as an algorithm, the procedure to predict the finite DNN’s output on a test point x∗ is as
follows: we shift the target in Eq. 5 as g → g−∆g with ∆g as in Eq. 7, arriving at a closed equation
for the average discrepancies 〈δ̂gµ〉 on the training set. For some models, the cumulants κν,µ2,...,µr
can be computed for any order r and it can be possible to sum the entire series, while for other models
several leading cumulants might already give a reasonable approximation due to their 1/Cr/2−1
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scaling. The resulting coupled non-linear equations can then be solved numerically, to obtain ∆gµ
from which predictions on the test point are calculated using Eq. 8.

Notwithstanding, solving such equations analytically is challenging and one of our main goals here
is to provide concrete analytical insights. Thus, in §4.1.2 we propose an additional approximation
wherein to leading order we replace all summations over data-points with integrals over the measure
from which the data-set is drawn. This approximation, taken in some cases beyond leading order as
in Ref. [11], will yield analytically tractable equations which we solve for two simple toy models,
one of a linear CNN and the other of a non-linear FCN.

Saddle-point plus Gaussian fluctuations for the posterior covariance. The SP approximation
can be extended to compute the predictor variance by expanding the action S to quadratic order in
the deviation from the SP value δtµ ≡ tµ − tSP

µ (see App. A.3). Due to the saddle-point being an
extremum this leads to S ≈ SSP + 1

2

∑
µ,ν δtµA

−1
µν δtν This leaves the previous SP approximation

for the posterior mean on the training set unaffected (since the mean and maximizer of a Gaussian
coincide), but is necessary to get sensible results for the posterior covariance. Using the standard
Gaussian integration formula, one finds that Aµν is the covariance matrix of itµ. Performing such an
expansion one finds

A−1
µν = −

(
σ2δµν +Kµν + ∆Kµν

)
(9)

∆Kµν = ∂itµ∂itν C̃ (it1, . . . , itn)

where the it’s on the r.h.s. are those of the saddle-point and C̃ is the CGF C without the second
cumulant (see App. A.1). This gives an expression for the posterior covariance matrix on the training
set:

Σµν ≡ 〈fµfν〉 − 〈fµ〉 〈fν〉 = −σ4
[
σ2I +K + ∆K

]−1

µν
+ σ2δµν (10)

where the r.h.s. coincides with the posterior covariance of a GP with a kernel equal to K + ∆K [37].
The variance on the test point is given by (repeating indices are summed over the training set)

Σ∗∗ = K∗∗ −K∗µA−1
µνK

∗
ν +

〈
∂2
it∗ C̃|it∗=0

〉
+ 2

(〈
∆g∗K

∗
µitµ

〉
− 〈∆g∗〉

〈
K∗µitµ

〉)
+ Var (∆g∗)

(11)

where here ∆g∗ is as in Eq. 7 but where the
〈
σ−2δ̂gµ

〉
’s are replaced the itµ’s that have Gaussian

fluctuations. The first two terms in Eq. 11 yield the standard result for the GP posterior covariance
matrix on a test point [37], for the case of ∆K = 0 (see Eq. 9). The rest of the terms can be evaluated
by the SP plus Gaussian fluctuations approximation, where the details would depend on the model at
hand.

4 Experiments

4.1 The two layer linear CNN

4.1.1 Setting of the model and its properties

Here we define a teacher-student toy model showing several qualitative real-world aspects of feature
learning and analyze it via our self-consistent shifted target approach. Concretely, we consider the
simplest student CNN f(x), having one hidden layer with linear activation, and a corresponding
teacher CNN, g(x)

f (x) =

N∑
i=1

C∑
c=1

ai,cwc · x̃i g (x) =

N∑
i=1

C∗∑
c=1

a∗i,cw
∗
c · x̃i (12)

This describes a CNN that performs 1-dimensional convolution where the convolutional weights
for each channel are wc ∈ RS . These are dotted with a convolutional window of the in-
put x̃i =

(
xS(i−1)+1, . . . , xS·i

)T ∈ RS and there are no overlaps between them so that x =

(x1, . . . , xN ·S)
T

= (x̃1, . . . , x̃N )
T ∈ RN ·S . Namely, the input dimension is d = NS, where N is
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the number of (non-overlapping) convolutional windows, S is the stride of the conv-kernel and it is
also the length of the conv-kernel, hence there is no overlap between the strides. The inputs x are
sampled from N (0, Id).

Despite its simplicity, this model distils several key differences between feature learning models and
lazy learning or GP models. Due to the lack of pooling layers, the GP associated with the student fails
to take advantage of the weight sharing property of the underlying CNN [36]. In fact, here it coincides
with a GP of a fully-connected DNN (see Eq. 13) which is quite inappropriate for the task. We thus
expect that the finite network will have good performance already for n = C∗(N + S) whereas
the GP will need n of order of the dimension (NS) to learn well [11]. Thus, for N + S � NS
there should be a broad regime in the value of n where the finite network substantially outperforms
the corresponding GP. We later show (§4.1.4) that this performance boost over GP is due to feature
learning, as one may expect.

Conveniently, the cumulants of the student DNN of any order can be worked out exactly. Assuming γ
and σ2 of the noisy GD training are chosen such that1 ai,c ∼ N

(
0, σ2

a/CN
)
, wc ∼ N

(
0,

σ2
w

S IS

)
(and similarly for the teacher DNN) the covariance function for the associated GP reads

K (x,x′) =
σ2
aσ

2
w

NS

N∑
i=1

x̃T
i x̃
′
i =

σ2
aσ

2
w

NS
xTx′ (13)

Denoting λ :=
σ2
a

N
σ2
w

S , the even cumulant of arbitrary order 2m is (see App. F):

κ2m (x1, . . . ,x2m) =
λm

Cm−1

N∑
i1,...,im=1

(•i1 , •i2) · · ·
(
•im−2

, •im−1

) (
•im−1

, •im
)
· · · [(2m− 1)!]

(14)
while all odd cumulants vanish due to the sign flip symmetry of the last layer. In this notation, we
mean that the •’s stand for integers in {1, . . . , 2m} and e.g. (1i1 , 2i2) ≡

(
x̃1
i1
· x̃2

i2

)
and the bracket

notation [(2m− 1)!] stands for the number of ways to pair the integers {1, ..., 2m} into the above
form. This result can then be plugged in 7 to obtain the self-consistent (saddle-point) equations on the
training set. See App. A.4 for a convergence criterion for the saddle-point, supporting its application
here.

4.1.2 Self-consistent equation in the limit of a large training set

In §3 our description of the self-consistent equations was for a finite and fixed training set. Further
analytical insight can be gained if we consider the limit of a large training set, known in the GP
literature as the Equivalent Kernel (EK) limit [37, 42]. For a short review of this topic, see App. D.
In essence, in the EK limit we replace the discrete sums over a specific draw of training set, as in Eqs.
5, 7, 8, with integrals over the entire input distribution µ(x). Given a kernel that admits a spectral
decomposition in terms of its eigenvalues and eigenfunctions: K (x,x′) =

∑
s λsψs (x)ψs (x′), the

standard result for the GP posterior mean at a test point is approximated by [37]

〈f (x∗)〉 =

∫
dµ (x)h (x∗,x) g (x) ; h (x∗,x) =

∑
s

λs
λs + σ2/n

ψs (x∗)ψs (x) (15)

This has several advantages, already at the level of GP analysis. From a theoretical point of view, the
integral expressions retain the symmetries of the kernel K(x,x′) unlike the discrete sums that ruin
these symmetries. Also, Eq. 15 does not involve computing the inverse matrix K̃−1 which is costly
for large matrices.

In the context of our theory, the EK limit allows for a derivation of a simple analytical form for
the self-consistent equations. As shown in App. E.1, in our toy CNN we can write both ∆g and
δ̂g in terms of the target g using corresponding proportionality factors. Thus the self-consistent
equations can be reduced to a single equation governing the proportionality factor α between δ̂g and
g (δ̂g = αg). Notice that α itself is governed by an equation that is non-linear in g, which means that
∆g and δ̂g do not scale linearly with g, only that we can trade the function-valued self-consistent

1Generically this requires C dependent and layer dependent weight decay.
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equation for a scalar-valued one. Thus, starting from the general self-consistent equations, 5, 7, 8,
taking their EK limit, and plugging in the general cumulant for our toy model (14) we arrive at the
following equation for α

α =
σ2/n

λ+ σ2/n
+

(1− q)λ
λ+ σ2/n

+

(
q

λ

λ+ σ2/n
− 1

)
λ2

C

(
α

σ2/n

)3
[

1− λ

C

(
α

σ2/n

)2
]−1

(16)

Setting for simplicity σ2
a = 1 = σ2

w we have λ = 1/ (NS) and we also introduced the constant
q ≡ λ−1(1− α̂GP)(λ+ σ2/n) where α̂GP is computed using the empirical GP predictions on either
the training set or test set: α̂GP ≡ 1−

(∑
µ f

GP
µ gµ

)
/
(∑

µ g
2
µ

)
, or analytically in the perturbation

theory approach developed in [11]. The quantity q has an interpretation as a 1/n correction to the
EK approximation [11] but here can be considered as a fitting parameter. It is non-negative and is
typically O(1); for more details and analytical estimates of q see App. E.2.

Equation 16 is the second main analytical result of this work. It simplifies the highly non-linear
inference problem to a single equation that embodies strong non-linear finite-DNN effect and feature
learning (see also §4.1.4). In practice, to compute αtest we numerically solve 16 using qtrain for the
training set to get αtrain, and then set α = αtrain in the r.h.s. of 16 but use q = qtest. Equation 16
can also be used to bound α analytically on both the training set and test point, given the reasonable
assumption that α changes continuously with C. Indeed, at large C the pole in this equation lays
at αpole = (σ2/n)(C/λ)1/2 � 1 whereas α ≈ αGP < αpole. As C diminishes, continuity implies
that α must remain smaller than αpole. The latter decays as σ2

√
CNS/n implying that the amount

of data required for good performance scales as
√
CNS rather than as NS in the GP case.

4.1.3 Numerical verification

In this section we numerically verify the predictions of the self-consistent theory of Sec. §4.1.2, by
training linear shallow student CNNs on a teacher with C∗ = 1 as in Eq. 12, using noisy gradients as
in Eq. 1, and averaging their outputs across noise realizations and across dynamics after reaching
equilibrium.

For simplicity we used N = S and n ∈ {62, 200, 650} , S ∈ {15, 30, 60} so that n ∝ S1.7.
The latter scaling places us in the poorly performing regime of the associated GP while allowing
good performance of the CNN. Indeed, as aforementioned, the GP here requires n on the scale of
λ−1 = NS = O(S2) for good performance [11], while the CNN requires n on the scale of the
number of parameters (C(N + S) = O(S)).

(A) (B) (C)

Figure 1: (A) The CNNs’ cosine distance α, defined by 〈f〉 = (1 − α)g between the ensemble-
averaged prediction 〈f〉 and ground truth g plotted vs. number of channels C for the test set (for
the train set, see App. H.1). As n increases, the solution of the self-consistent equation 16 (solid
line) yields an increasingly accurate prediction of these empirical values (dots). (B) Same data as
in (A), presented as empirical α vs. predicted α. As n grows, the two converge to the identity line
(dashed black line). Solid lines connecting the dots here are merely for visualization purposes. (C)
The theoretical predictions of the self-consistent theory but using only the fourth cumulant rather
than all cumulants (dotted lines), and the predictions of perturbation theory to order 1/C (dashed
lines, truncated to avoid large negative values in the figure).

The results are shown in Fig. 1 where we compare the theoretical predictions given by the solution
of the self-consistent equation (16) to the empirical values of α obtained by training actual CNNs
and averaging their outputs across the ensemble. We can see that as n increases, the predictions of
our theory match the empirical data more closely (panels A and B), as can be expected from our SP
approximation which is valid for large n.
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In panel C, we compare the empirical values to two alternative theoretical predictions: (i) our self-
consistent theory but using only the fourth cumulant, equivalent to equation Eq. 16 while ignoring
the [· · · ]−1 term, rather than summing the geometric series of cumulants of all orders which gives
rise to this term (dotted lines); (ii) A purely perturbative theory (see e.g. [32, 44, 39]) keeping only a
leading O(1/C) term on top of the GP predictions (dashed lines, truncated to avoid large negative
values in the figure). We see that the predictions of our full self-consistent theory (panels A and B)
are clearly better than those of either (i) or (ii) above, at least for sufficiently small C or sufficiently
large n: e.g. the predictions of (ii) for n ∈ {62, 200} match the empirical data nicely for C ≥ 24 but
diverge rapidly for smaller values of C, as one would expect. The predictions of (i) don’t diverge
so rapidly from the empirical data and always gives 0 ≤ α ≤ 1, but are also quite poor for C . 25.
This shows that in these settings knowing all the cumulants provides a much more accurate theory.
For sufficiently large C, all predictions, including our own theory, coincide as they all converge to
the GP limit.

4.1.4 Feature learning phase transition in the CNN model

At this point there is evidence that our self-consistent shifted target approach works well within the
feature learning regime of the toy model. Indeed, GP is sub-optimal here, since it does not represent
the CNN’s weight sharing present in the teacher network. Weight sharing is intimately tied with
feature learning in the first layer, since it aggregates the information coming from all convolutional
windows to refine a single set of repeating convolution-filters. Empirically, we observed a large
performance gap of finite-C CNNs over the infinite-C (GP) limit, which was also observed previously
in more realistic settings [23, 15, 36]. Taken together with the existence of a clear feature in the
teacher, a natural explanation for this performance gap is that feature learning, which is completely
absent in GPs, plays a major role in the behavior of finite C CNNs.

To analyze this we wish to track how the feature of the teacher w∗ is reflected in the student network’s
first layer weights wc across training time (after reaching equilibrium) and across training realizations.
However, as our formalism deals with ensembles of DNNs, computing averages of wc with respect
to these ensembles would simply give zero. Indeed, the chance of a DNN with specific parameters
θ = {ai,c, wc} appearing is the same as that of −θ. Consequently, to detect feature learning the
first reasonable object to examine is the empirical covariance matrix ΣW ≡ S

CWWT, where the
matrix W ∈ RS×C has wc as its c’th column. This ΣW is invariant under such a change of signs and
provides important information on the statistics of wc.

As shown in App. G, using our field-theory or function-space formulation, we find that to leading
order in 1/C the ensemble average of the empirical covariance matrix, for a teacher with a single
feature w∗, is

〈[ΣW ]ss′〉 =

(
1 +

(
1

λ
+

n

σ2

)−1
)
δss′ +

2

C

λ

(λ+ σ2/n)
2w
∗
sw
∗
s′ +O(1/C2) (17)

A first conclusion that could be drawn here, is that given access to an ensemble of such trained
CNNs, feature learning happens for any finite C as a statistical property. We turn to discuss the more
common setting where one wishes to use the features learned by a specific randomly chosen CNN
from this ensemble.

To this end, we follow Ref. [29] and model ΣW as a Wishart matrix with a rank-one perturbation.
The variance of the matrix and details of the rank one perturbation are then determined by the above
equation. Consequently the eigenvalue distribution is expected to follow a spiked Marchenko-Pastur
(MP) model, which was studied extensively in [7]. To test this modeling assumption, for each snapshot
of training time (after reaching equilibrium) and noise realization we compute ΣW ’s eigenvalues and
aggregate these across the ensemble. In Fig. 2 we plot the resulting empirical spectral distribution for
varying values of C while keeping S fixed. Note that, differently from the usual spiked-MP model,
varying C here changes both the distribution of the MP bulk (which is determined by the ratio S/C)
as well as the strength of the low-rank perturbation.

Our main finding is a phase transition (analogous to [7]) between two regimes which becomes sharp as
one takes n, S →∞. In the regime of large C the eigenvalue distribution of ΣW is indistinguishable
from the MP distribution, whereas in the regime of small C an outlier eigenvalue λm departs from
the support of the bulk MP distribution and the associated top eigenvector has a non-zero overlap
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with w∗, see Fig. 2. We refer to the latter as the feature-learning regime, since the feature w∗ is
manifested in the spectrum of the students weights, whereas the former is the non-feature learning
regime. We use the quantityQ ≡ w∗TΣWw∗ as a surrogate for λm, as it is valid on both sides of the
transition. Having established the correspondence to the MP plus low rank model, we can use the
results of [7] to find the exact location of the phase transition, which occurs at the critical value Ccrit

given by

Ccrit =
4

S (S−1 + (σ2/n)S)
4

(
1 +

(
S2 +

n

σ2

)−1
)

+O

(
1 +

(
1

λ
+

n

σ2

)−1
)

(18)

where we assumed for simplicity N = S so that λ = S−2.

(A) (B)

Figure 2: (A) Aggregated histograms of ΣW eigenvalues where ΣW = S
CWWT is the normalized

empirical covariance matrix of the hidden layer weights during training. Different colors indicate
varying number of channels, C. Solid smooth lines indicate the corresponding Marchenko-Pastur

(MP) distributions with support on [λ−, λ+] where: λ± =
(

1±
√
S/C

)2

. The quantity Q ≡
w∗TΣWw∗, which correlates with the strength of rank-1 component of the feature w∗, is represented
by thick short bars. For large C, Q remains within the MP bulk whereas for small C it pops out.
(B) The theoretical λ+ curve and interpolated curve of Q intersect very close to the theoretically
predicted value given in Eq. 18, here given by Ccrit = 473 (dashed vertical line).

4.2 Two-layer FCN with average pooling and quadratic activations

Another setting where GPs are expected to under-perform finite-DNNs is the case of quadratic fully
connected teacher and student DNNs where the teacher is rank-1, also known as the phase retrieval
problem [28]. Here we consider some positive target of the form g(x) = (w∗ · x)2 − σ2

w‖x‖
2 where

w∗,x ∈ Rd and a student DNN given by f(x) =
∑M
m=1(wm · x)2 − σ2

w‖x‖
2. We consider training

this DNN on n train points {xµ}nµ=1 using noisy GD training with weight decay γ = 2Mσ2/σ2
w.

Similarly to the previous toy model, here too the GP associated with the student at large M (and
finite σ2) overlooks a qualitative feature of the finite DNN — the fact that the first term in f(x) is
non-negative. Interestingly, this feature provides a strong performance boost [28] in the σ2 → 0 limit
compared to the associated GP. Namely the DNN, even at large M , performs well for n > 2d [28]
whereas the associated GP is expected to work well only for n = O(d2) [11].

We wish to solve for the predictions of this model with our self-consistent GP based approach. As
shown in App. I, the cumulants of this model can be obtained from the following cumulant generating
function

C(t1, ..., tn+1) = −M
2

Tr

(
log

[
I − 2M−1σ2

w

∑
µ

itµxµx
T
µ

])
−
n+1∑
µ=1

itµσ
2
w‖xµ‖

2 (19)

The associated GP kernel is given by K(xµ,xν) = 2M−1σ4
w(xµ · xν)2. Following this, the target

shift equation, at the saddle-point level, appears as

∆gν = −
∑
µ

K(xν ,xµ)
δ̂gµ
σ2

+ σ2
wx

T
ν

[
I − 2M−1σ2

w

∑
µ

δ̂gµ
σ2

xµx
T
µ

]−1

xν − σ2
w‖xν‖

2 (20)
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In App. I, we solve these equations numerically for σ2 = 10−5 and show that our approach captures
the correct n = 2d threshold value. An analytic solution of these equations at low σ2 using EK or
other continuum approximations is left for future work (see Refs. [11, 8, 9] for potential approaches).
As a first step towards this goal, in App. I we consider the simpler case of σ2 = 1 and derive the
asymptotics of the learning curves which deviate strongly from those of GP for M � d.

4.3 Validity of the saddle-point approximation in realistic settings

In this subsection we complement the above results on controlled toy models by some preliminary
results in more realistic settings. The approximation underlying our analysis was that the fluctuations
of the integrand in the partition function of Eq. 6 are near-Gaussian. A strong indication of how
adequate this approximation is in real-world settings can be given by performing normality tests on
an ensemble of the outputs of trained DNNs on the training set. Indeed, this is the ensemble described
by our partition function. In App. H.3 we report some preliminary results we obtained by training the
Myrtle-5 deep CNN [41] using our protocol on tiny subsets (n ∈ {16, 32, 64}) of CIFAR-10, and
inspecting the normality of output fluctuations, as measured by the 4th cumulant of the outputs. In
the experiments with small enough C, although the CNN predictions already deviated strongly from
those at infinite width, we haven’t found a measurable signal of non-normality, thus our Gaussian
fluctuation assumption is consistent with these findings.

5 Discussion

In this work we presented a correspondence between ensembles of finite DNNs trained with noisy
gradients and GPs trained on a shifted target. The shift in the target can be found by solving a set of
self-consistent equations for which we give a general form. We found explicit expressions for these
equations for the case of a 2-layer linear CNN and a non-linear FCN, and solved them analytically
and numerically. For the former model, we performed numerical experiments on CNNs that agree
well with our theory both in the GP regime and well away from it, i.e. for small number of channels
C, thus accounting for strong finite C effects. For the latter model, the numerical solution of these
equations captures a remarkable and subtle effect in these DNNs which the GP approach completely
overlooks — the n = 2d threshold value.

Considering feature learning in the CNN model, we found that averaging over ensembles of such
networks always leads to a form of feature learning. Namely, the teacher always leaves a signature
on the statistics of the student’s weights. However, feature learning is usually considered at the
level of a single DNN instance rather than an ensemble of DNNs. Focusing on this case, we show
numerically that the eigenvalues of ΣW , the student hidden weights covariance matrix, follow a
Marchenko–Pastur distribution plus a rank-1 perturbation. We then use our approach to derive the
critical number of channels Ccrit below which the student is in a feature learning regime.

There are many directions for future research. Our toy models were chosen to be as simple as
possible in order to demonstrate the essence of our theory on problems where lazy learning grossly
under-performs finite-DNNs. Even within this setting, various extensions are interesting to consider
such as adding more features to the teacher CNN (e.g. biases or a subset of linear functions which
are more favorable), studying linear CNNs with overlapping convolutional windows, or deeper linear
CNNs. As for non-linear CNNs, we believe it is possible to find the exact cumulants of any order for
a variety of toy CNNs involving, for example, quadratic activation functions. For other cases it may
be useful to develop methods for characterizing and approximating the cumulants.

More generally, we advocated here a physics-style methodology using approximations, self-
consistency checks, and experimental tests. As DNNs are very complex experimental systems,
we believe this mode of research is both appropriate and necessary. Nonetheless we hope the insights
gained by our approach would help generate a richer and more relevant set of toy models on which
mathematical proofs could be made.
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