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Abstract

Credal sets are sets of probability distributions that are considered as candidates
for an imprecisely known ground-truth distribution. In machine learning, they have
recently attracted attention as an appealing formalism for uncertainty representation,
in particular, due to their ability to represent both the aleatoric and epistemic
uncertainty in a prediction. However, the design of methods for learning credal
set predictors remains a challenging problem. In this paper, we make use of
conformal prediction for this purpose. More specifically, we propose a method
for predicting credal sets in the classification task, given training data labeled by
probability distributions. Since our method inherits the coverage guarantees of
conformal prediction, our conformal credal sets are guaranteed to be valid with high
probability (without any assumptions on model or distribution). We demonstrate
the applicability of our method on ambiguous classification tasks for uncertainty
quantification.

1 Introduction

Representing and quantifying uncertainty is becoming increasingly important in machine learning
(ML), particularly as ML models are employed in safety-critical application domains such as medicine
or autonomous driving. In such domains, a distinction between so-called aleatoric uncertainty (AU)
and epistemic uncertainty (EU) is often useful [21]. Broadly speaking, aleatoric uncertainty is due to
the inherent randomness of the data-generating process, whereas epistemic uncertainty stems from
the learner’s lack of knowledge about the best predictive model. Thus, while the former is irreducible,
the latter can, in principle, be reduced through additional information, e.g., by gathering additional
data to learn from.

Representation of aleatoric and epistemic uncertainty requires formalism more expressive than
standard probability distributions [22]. One such formalism which prevails in the recent ML literature
is second-order probability distributions. Essentially, in a classification setting, these are distributions
over distributions over classes. Models producing second-order distributions as predictions can be
learned in a classical Bayesian way [16, 25] or using more recent approaches such as evidential
deep learning [44]. Yet, approaches of that kind are not unproblematic and have been subject to
criticism [8, 9]. Specifically, such approaches have been shown to misrepresent epistemic uncertainty.
Another formalism suitable for representing both types of uncertainty is the concept of a credal
set, which is well-established in the field of imprecise probability theory [58] and meanwhile also
attracted attention in ML [23, 46]. Credal sets are (convex) sets of probability distributions that can
be considered as candidates for an imprecisely known ground-truth distribution.
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Figure 1: For the three-class classification setting, the space of probability distributions can be
illustrated by a two-dimensional simplex: each point in the simplex corresponds to a probability
distribution so that credal sets can be depicted as regions. The left case corresponds to the special
case of a singleton (credal) set, i.e., a precise probability distribution, signifying aleatoric but no
epistemic uncertainty. The case in the middle represents partial knowledge with a certain degree
of (epistemic) uncertainty about the true distribution, and the right one corresponds to the case of
complete ignorance, where nothing is known about the distribution.

Figure 1 shows examples of credal sets in a three-class scenario, where the space of distributions can
be visualized by the two-dimensional probability simplex. Broadly speaking, the larger the credal set,
the higher the epistemic uncertainty, and the more “in the middle” the set is located, i.e., the closer it
is to the uniform distribution, the higher the aleatoric uncertainty.

Learning to predict second-order representations, such as credal sets or second-order distributions,
from standard “zero-order” data — training instances together with observed class labels — has been
shown to be difficult in that it typically provides biased estimates of epistemic uncertainty [8, 9]. To
alleviate this problem, we assume “first-order” training data, i.e., instances associated with probability
(frequency) distributions over the class labels. In other words, instances are labeled probabilistically
instead of being assigned a deterministic class label. This type of data is becoming increasingly
available in practice, for example, in the form of aggregations over multiple annotations per data
instance [10, 31, 35, 63], and hence increasingly relevant in many applications [52, 53]. Moreover,
such data facilitates second-order learning.

In this paper, we leverage conformal prediction (CP), a non-parametric approach for set-valued
prediction rooted in classical frequentist statistics [57], to construct credal sets. With relatively
mild assumptions similar to those in CP, this approach inherits the so-called marginal coverage
from CP: Predicted sets are guaranteed to cover the true target with high probability. For us, this
means that we can use any first-order or second-order predictive model to construct unbiased credal
sets equipped with such a coverage guarantee. Specifically, we propose various nonconformity
functions applicable to first- and second-order predictors to construct conformal credal sets. We
also study the case where only a noisy version of first-order distributions is available, demonstrating
that the coverage guarantee holds under a bounded noise assumption. On ChaosNLI [31], an
ambiguous natural language inference task with multiple annotations per example, we show that our
conformal credal sets are valid, i.e., covering the true ground-truth distribution with high probability
while comparing the efficiency of different nonconformity functions. Together with experiments
on CIFAR10-H [35]—a variant of the CIFAR10 test set containing class distributions from human
annotations—we demonstrate how these credal sets enable practical quantification of aleatoric and
epistemic uncertainty. We further complement this study with controlled experiments on synthetic
data, specifically investigating the performance of credal set prediction in the presence of noisy data.

2 Background

2.1 Supervised Learning and Predictive Uncertainty

We consider the setting of (polychotomous) classification with label space Y = {1, . . . ,K} and
an instance space X . As usual, we assume an underlying data-generating process in the form of
a probability distribution P on X × Y , so that observations (X,Y ) are i.i.d. samples from P . We
denote by λx = (λx

1 , . . . , λ
x
K)⊤ ∈ ∆K the conditional probability distribution P (· |X = x), which

we also consider as an element of the (K − 1)-simplex ∆K . Thus, the probability to observe Y = k
as an outcome for x ∈ X is given by λx

k .
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Since the dependency between instances X and outcomes Y is non-deterministic, the prediction of
Y given X = x is necessarily afflicted with uncertainty, even if the ground-truth distribution λx

is known. As already said, this uncertainty is commonly referred to as aleatoric [22]. Intuitively,
the closer λx to the uniform distribution puni = (1/K, . . . , 1/K)⊤, the higher the uncertainty, and
the closer it is to a degenerate (Dirac) distribution assigning all probability mass to a single class (a
corner point in ∆K), the lower the uncertainty.

Instead of assuming λx to be known, suppose now that only a prediction λ̂
x

of this distribution is
available. Epistemic uncertainty refers to the uncertainty about how well the latter approximates the
former, and hence to the additional uncertainty in the prediction of outcome Y that is caused by the
discrepancy between λ̂

x
and the ground-truth λx. We seek to capture this discrepancy by means

of credal sets Q ∈ QK ⊂ ∆K , with the idea that Q ∋ λx holds with high probability. Typically,
credal sets are assumed to be convex, and further restrictions might be imposed on QK for practical
and computational reasons, for example, a restriction to convex polygons (with a finite number of
extreme points).

2.2 Conformal Prediction

Conformal prediction provides a general framework for producing set-valued predictions with a
certain guarantee of validity. In a supervised setting, consider data points of the form Z = (X,U) ∈
X × U , and the task is to predict U given X = x. We assume the space Z = X × U to be equipped
with a nonconformity measure f : Z −→ R that quantifies the “strangeness” of z, i.e., the higher
f(z), the less normal or expected the data point. Let Dcalib ⊂ Z be a (randomly generated) set
of data points, called calibration data, and Z another data point that remains unobserved. Under
the assumption of exchangeability, i.e., that the calibration data and the query point Z have been
generated by an exchangeable process, we seek a so-called confidence set C ⊆ U that guarantees
coverage:

P(U ∈ C) ≥ 1− α. (1)

By a simple combinatorial argument [57], the confidence set C can be constructed as

C(x) :=
{
u ∈ U | f(x, u) ≤ q(E , α′)

}
, (2)

where E := {f(z) : z ∈ Dcalib} is the set of nonconformity scores, α′ = |E|−1⌈(1 + |E|)(1− α)⌉,
and q(E ;α′) denotes the α′-quantile of E . Importantly, the guarantee (1) holds regardless of the
nonconformity function f(·), which, however, has an influence on the efficiency of the prediction:
The more appropriate the function, the smaller the prediction set C tends to be. Normally, f(·) is not
predefined but constructed in a data-driven way using training data Dtrain. For example, a common
approach is to train a predictor π : X −→ U and then define f(x, u) in terms of d(u, π(x)), where
d(·, ·) is an appropriate distance function on U . Replacing the point-prediction π(x) ∈ U by the
prediction set C(x) ⊂ U can then be seen as “conformalizing” the predictor π.

3 Conformal Credal Set Prediction

Our goal is to learn a credal set predictor h : X −→ QK , that is, a model that makes predictions in
the form of credal sets, thereby representing both aleatoric and epistemic uncertainty. To this end, we
assume access to first-order data, i.e., probabilistic training data of the form

D =
{(

x1,λ
x1
)
, . . . ,

(
xN ,λxN

)}
⊂ X ×∆K . (3)

The model h should be able to predict the (probabilistic) outcomes for new query instances in a
reliable way. More specifically, suppose that xnew is a new query instance (following the same
distribution as the training data) for which a prediction is sought. To correctly represent epistemic
and aleatoric uncertainty, we want the credal prediction Q = h(xnew) to be valid, meaning Q ∋ λxnew

with high probability, while at the same time being informative such that the (epistemic) uncertainty
reflected by Q is as small as possible.

We aim to construct the credal set predictor h by means of conformal prediction. Following the
conformalization recipe outlined in Section 2.2, we partition D into Dtrain and Dcalib, using the former
for model training and the latter for calibration.
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Algorithm 1 Conformal Credal Set Prediction
Input:

Data D; error rate α; query instance xnew.
Process:

Partition D into Dtrain and Dcalib.
Train a first-order (i = 1) or a second-order (i = 2) predictor using Dtrain.
Choose a nonconformity function fi as in (5) or (8) that suits the trained predictor to obtain the set
of scores Ei.
Set α′ = |Ei|−1⌈(1 + |Ei|)(1− α)⌉.

Output:
hi(xnew) =

{
λ ∈ ∆K | fi(xnew,λ) ≤ q(Ei, α

′)
}
.

Regarding the training step, we explore two learning strategies connected with two ways of defining
a nonconformity function, which is pivotal in the calibration step. The first approach is based on
training a standard (first-order) probability predictor, i.e., a probabilistic classifier g : X −→ ∆K that
maps instances to the (first-order) probability distribution on Y . This can be achieved, for example,
by minimizing the cross-entropy loss between the ground truth and the predicted distributions, i.e.,

g = argmin
ḡ∈H

∑
(xi,λxi )∈Dtrain

−
K∑

k=1

λxi

k log(ḡ(xi)k), (4)

where H is a hypothesis space. Given a predictor g(·) of this kind, nonconformity is naturally defined
in terms of a distance:

f1(x,λ
x) := d(λx, g(x)) , (5)

where d(·, ·) is a suitable distance function on ∆K , such as total variation, Wasserstein distance, etc.

An alternative approach is motivated by recent work on (epistemic) uncertainty representation via
second-order probability distributions [16, 25, 44]. A second-order learner G : X −→ P(∆K) maps
each input x to a distribution over ∆K . Given the training data of the form (3), meaningful learning
in this context can be accomplished, for instance, by parameterizing the second-order distributions
using Dirichlet distributions. Specifically, one can assume that each x is associated with a Dirichlet
distribution characterized by the parameter vector θx ∈ RK

≥1 with the probability density function

P (λ |θx) =
1

B(θx)

K∏
k=1

λ
θx
k−1

k , (6)

where B(·) is the multivariate beta function. This way, λx can be thought of as a sample from that
distribution, i.e., λx ∼ Dir(θx). The model aims to find parameter vectors θxs that minimize the
negative log-likelihood loss∑

(xi,λxi )∈Dtrain

(
log(B(θxi))−

K∑
k=1

(θxi

k − 1) log(λxi

k )

)
. (7)

Given a second-order predictor θx, nonconformity can be defined as a decreasing function of
likelihood, e.g., as 1 minus relative likelihood:

f2(x,λ
x) = 1− P (λx |θx)

maxλ∈∆K P (λ |θx)
. (8)

Using the nonconformity function fi(·) (i ∈ {1, 2}), we obtain the set of nonconformity scores by

Ei :=
{
fi(xj ,λ

xj ) | (xj ,λ
xj ) ∈ Dcalib

}
. (9)

Accordingly, the credal set can be defined as

hi(xnew) :=
{
λ ∈ ∆K | fi(xnew,λ) ≤ q(Ei, α′)

}
. (10)

Algorithm 1 outlines a summary of the proposed methods. In the following theorem, we state the
validity of the predicted set, that is, the restatement of the conformal coverage guarantee [57] adjusted
to our setting.
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Theorem 3.1 (Validty Gaurantee). Let P denote the joint probability distribution on (X,Λ) ∈
X × ∆K . If data points in Dcalib and (xnew,λ

xnew) are drawn exchangeably from P , then the
conformal credal sets in (10) are valid, i.e.,

P
(
λxnew ∈ hi(xnew)

)
≥ 1− α , for i ∈ {1, 2}.

It is worth mentioning that both predictors can also be trained using zero-order data. A first-order
predictor can be achieved through standard training with a cross-entropy loss function, while a
second-order predictor can be achieved, for instance, through the means of evidential learning [44].
Hence, it is sufficient to have probabilistic calibration data in order to have a reasonable judgment of
the predictors’ performances and be able to conformalize them.

Moreover, while these two approaches can be compared in various ways, one immediate observation is
that training a second-order predictor poses greater challenges. However, credal sets constructed using
the second-order predictor exhibit a natural and superior adaptivity compared to those constructed by
the first-order predictor. This is because, with the first-order predictor, once the quantile is determined
during calibration, all distributions within a certain distance are included in the set for any given point
at prediction time. On the other hand, with the second-order predictor, the resulting set depends on
the calculated quantile as well as the skewness of the predicted distribution.

3.1 Generalization to Imprecise First-Order Data

So far, we (implicitly) assumed that ground-truth probability distributions λxi will be provided as
calibration (and training) data. Needless to say, this assumption will rarely hold true in practice.
Instead, observations will rather be noisy versions λ̃

xi of the true probabilities. Notably, such
datasets emerge in scenarios where each data instance x is annotated by multiple human experts,
which recently have attracted a lot of attention in the context of machine learning [10, 31, 35, 43, 63]
and also conformal prediction [24, 52]. In this context, λ̃

x
denotes the distribution derived from

aggregating annotator disagreements concerning the label of instance x. Of course, conformal
prediction can still be applied to noisy data of that kind, but the coverage guarantee will then only
hold w.r.t. noisy labeling, i.e., P(λ̃

xnew ∈ h(xnew)) ≥ 1− α.

Practically, one may expect that the guarantees will hold for the ground truth as well, simply because
calibration on noisy instead of clean data will tend to make prediction regions larger and hence more
conservative. Moreover, since nonconformity is derived from a predictive model g(·) that seeks to
recover ground-truth probabilities, the latter should conform at least as well as noisy distributions.
Of course, this intuition is not a formal guarantee. In order to provide such a guarantee for the
ground-truth probabilities, one obviously needs to make some assumptions. Concretely, let us make
the following bounded noise assumption for the labeling process: The labeling noise is (stochastically)
bounded in the sense that, given the nonconformity function f and a (small) probability δ > 0, there
exists a tolerance ϵ > 0 such that the following holds all x ∈ X :

P
(
|f(x,λx)− f(x, λ̃

x
)| < ϵ

)
≥ 1− δ. (11)

Theorem 3.2. Let α > 0 be any miscoverage rate, and suppose the bounded noise assumption holds.
Let q = q(E , α̃) be the critical threshold on the noisy calibration data Dcalib for miscoverage rate
α̃ = (α− δ)/(1− δ). Then, for any new query xnew ∈ X ,

P
(
f(xnew,λ

xnew) < q + ϵ
)
≥ 1− α .

The proof is deferred to Appendix B. As a consequence of this result, a conformal predictor learned on
the noisy data with modified miscoverage rate α̃ can be turned into a valid predictor (with miscoverage
rate α) for the ground-truth data by increasing the learned rejection threshold by ϵ, provided the
bounded noise property (11) can be ascertained. Thus, if we denote the corresponding credal set
predictor by hϵ, we can guarantee that P

(
λxnew ∈ hϵ(xnew)

)
≥ 1− α . For a comprehensive study of

handling noisy data in conformal prediction, we refer to [19].

4 Experiments

For the sake of comparison, we examine different nonconformity functions in our experiments.
When utilizing a first-order predictor, besides total variation (TV) and the First Wasserstein (WS)
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Premise: A man in a bar drinks from a
pitcher while a man in a green hat looks
on and a woman in a black shirt drink from
a glass.
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Premise: The streets are busy and people
contemplate their futures.
Hypothesis: People are screaming
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Premise: A photographer snaps a midair
action shot of a snowboarder.
Hypothesis: The midair shot snaps at a
boarder of snow.
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Figure 2: Various credal sets obtained for three instances from ChaosNLI dataset. The ground
truth distributions are denoted by orange squares. Black circles indicate model predictions in
cases employing a first-order learner (first four columns). For the last column, utilizing a second-
order learner, the predicted second-order distributions are represented through contour plots. The
miscoverage rate is α = 0.2, and the efficiency of each credal set is depicted below it.

distance, we also investigate the Kullback–Leibler (KL) divergence and 1 minus the inner product
(Inner) as nonconformity functions. For the second-order predictor, we consider 1 minus the relative
likelihood (SO) as defined in (8). Furthermore, we demonstrate how our credal sets allow uncertainty
quantification and the disentanglement of total uncertainty into epistemic and aleatoric components.
We focus on a measure proposed by Abellán et al. [2], which regards the upper Shannon entropy H1

of a given credal set Q as total uncertainty, the lower Shannon entropy as aleatoric, and the difference
between upper and lower entropy as epistemic:

H∗(Q)︸ ︷︷ ︸
total

= H∗(Q)︸ ︷︷ ︸
aleatoric

+(H∗(Q)−H∗(Q))︸ ︷︷ ︸
epistemic

with H∗(Q) := max
λ∈Q

H(λ), H∗(Q) := min
λ∈Q

H(λ). (12)

We refer to [23] for other measures, along with a discussion of their corresponding strengths and
weaknesses. Interestingly enough, the interval [H∗(Q), H∗(Q)] ⊆ [0, 1] can be seen as an alternative
characterization of the credal set Q, which helps address the challenge of visualization for K > 3.

In this section, we focus on experiments on two real-world datasets. Further information on these
datasets and details about the learning models can be found in Appendix C. Additional experiments
on synthetic data, including an illustrative example showing how the resulting credal sets change
as epistemic uncertainty decreases, and experiments on the impact of imprecise first-order data,
are provided in Appendix E. All implementations and experiments can be found on our GitHub
repository.2

ChaosNLI Dataset. We start our experiments with a highly ambiguous dataset, ChaosNLI [31],
where the task is to classify the textual entailment of a premise-hypothesis pair into three classes:
entailment, contradiction, and neutral. We train both first-order and second-order predictors using
this data and construct credal sets with all five nonconformity functions to facilitate a comprehen-
sive comparison of these methods. In Figure 2, we compare the resulting credal sets of different
nonconformity functions for three specific instances. As expected, even though CP should work
regardless of the choice of nonconformity score function, this choice affects the size and geometry of
the prediction set. To compare the prediction set size, aka efficiency, across different nonconformity
functions, we discretize the simplex using a fine grid. The efficiency is gauged by considering the
fraction of all distributions that lie within the predicted credal sets. We perform training, calibration,
and testing using 10 different random seeds and depict the average coverage and efficiency results of
each credal set predictor under different miscoverage rates (α) in Figure 3. Notably, the mean of the

1H(λ) := −
∑K

k=1 λk logK(λk) with 0 log 0 = 0 by definition.
2The link to the code: https://github.com/alireza-javanmardi/conformal-credal-sets
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Figure 3: Coverage and efficiency results of different nonconformity functions applied on the
ChaosNLI dataset. The horizontal dashed lines indicate the nominal coverage levels.
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Figure 4: Scatter plots of aleatoric versus epistemic uncertainty using various credal set predictors for
the ChaosNLI dataset with α = 0.2. The colors indicate the entropy of the ground truth distribution.
The three cases numbered 1 to 3, correspond to the first to third rows of instances shown in Figure 5.

average coverage over the test data across various random seeds aligns with or exceeds the nominal
value, consistent with the conformal prediction guarantee.

We calculate the uncertainty intervals as in (12) for all (test) instances. Figure 4 provides scatter
plots of quantified AU vs. EU for different credal set predictors, with colors indicating the entropy
of the ground-truth distribution. These plots serve as an evaluation of uncertainty quantification
performance. Generally, given access to the first-order distribution, we expect the following: if the
EU is low, the AU should align closely with the entropy of the ground-truth first-order distribution.
However, when the EU is high, the quantified AU may vary, appearing either close to or far from
this entropy. In contrast, with only standard zero-order data available, such direct evaluation isn’t
feasible, which is why indirect evaluation methods like OOD detection or accuracy-rejection curves
are preferred.

Premise Hypothesis Q [H∗(Q), H∗(Q)]
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ton’s The Man Nobody
Knows , a best seller in
1925-26, portrays Jesus
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ple of Jesus as the ulti-
mate businessman.
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leather jacket passes be-
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The man is passing by
on his way to the store.
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cti
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Figure 5: Different uncertainty situations given the predicted credal sets generated by SO method for
the ChaosNLI dataset with α = 0.2.
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Figure 6: Scatter plots of aleatoric versus epistemic uncertainty using various credal set predictors for
the CIFAR10-H dataset with α = 0.2. The colors indicate the entropy of the ground truth distribution.
The three cases numbered 1 to 3, correspond to the first to third rows of instances shown in Figure 7.
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Figure 7: Different uncertainty situations given the predicted credal sets generated by KL method for
the CIFAR10-H dataset with α = 0.2.

For the SO method, three uncertainty cases are chosen from the results: high EU, low EU with high
AU, and low EU with low AU as shown in Figure 5. When visualizing the uncertainty intervals,
we display the entropy of the ground truth distribution in orange and the predicted entropy for the
first-order predictor or the mean of the Dirichlet distribution for the second-order predictor in black.
However, note that covering the entropy of a distribution with the uncertainty interval does not equate
to covering the distribution itself with the credal set.

CIFAR-10H Dataset. We also apply our methods to the CIFAR-10H dataset [35], which contains
the distributions on the classes for the CIFAR-10 test set derived from human annotations. This
time, we simply use a first-order predictor pre-trained on the CIFAR-10 training set (i.e., standard
zero-order training data) and only use CIFAR-10H for calibration and testing. Since the visualization
of credal sets is no longer possible for this dataset, we limit our attention to uncertainty quantification
analysis. Figure 6 illustrates scatter plots of quantified AU versus EU for different credal set predictors.
Three uncertainty cases are chosen from the results and shown in Figure 7. For instance, in the
first row, the model’s predicted distribution (g(x)) heavily favors "cat" over "dog", while human-
derived distributions assign nearly equal probabilities to both classes. This relatively high epistemic
uncertainty is effectively captured by the uncertainty interval.

Further Discussions. Given a model and a data point, different methods may exhibit different be-
haviors in terms of uncertainty representation, stemming from their distinct approaches to generating
the sets. For instance, it has been observed that KL tends to limit the set’s expansion towards high
entropy regions compared to other methods. The Inner method, on the other hand, tends to construct

8



credal sets by incorporating corners (degenerate distributions), thereby setting the lower entropy to
zero. Consequently, it may fail to effectively represent different uncertainty components in a reliable
manner. Moreover, this method has the potential to yield empty credal sets, meaning that even the
prediction of the first-order predictor may be excluded from the credal set.

From an uncertainty quantification perspective and considering the measure in (12), it becomes
apparent that set size may not always accurately reflect epistemic uncertainty. In fact, a credal set of
a certain size positioned in the middle of simplex may contain less epistemic uncertainty than the
same set located around a corner.

The observed dependency between quantified aleatoric and epistemic uncertainty in Figures 4 and 6
is partly due to the chosen measure in (12): Generally, higher epistemic uncertainty implies a larger
uncertainty interval, resulting in a lower value for aleatoric uncertainty. Thus, this dependency is
inevitable in the high EU region. Another unintended behavior observed in the TV, KL, and WS
approaches is that low epistemic uncertainty coincides solely with high aleatoric uncertainty. This
issue arises mainly from the lack of adaptivity in the credal sets constructed by first-order predictors.
In Appendix D, we propose a method to enhance the adaptivity of these approaches using the concept
of normalized nonconformity functions [33].

5 Limitations

The methods we propose are promising but still subject to certain limitations. For instance, for
our methods to perform effectively, we require first-order data, at least for calibration. While such
data is becoming increasingly available in practice, it is not accessible for all datasets and domains.
Besides, for our generalization to the case of imprecise first-order data, practical implementation
depends on a meaningful choice of the hyperparameters ϵ and δ to ensure inference that is both valid
and efficient. When labels are based on relative frequencies (as in the case of multiple annotators),
classical statistical methods might apply. However, determining an appropriate choice of ϵ and δ for
broader practical problems remains an open issue. Another challenge lies in representing credal sets
as subsets of the probability simplex. Although the credal sets can always be precisely described by
equation (10), for the nonconformity functions used in this work, there are no closed-form equations
for the resulting credal sets. Instead, the sets are represented implicitly through the nonconformity
threshold. Numerical approximation is feasible but generally limited to scenarios with a small
number of classes. The representation issue is also connected to computing uncertainty measures
for quantifying epistemic and aleatoric uncertainty in a credal set that involves the computation of
specific set characteristics [26, 41].

6 Conclusion and Future Work

Conformal credal set prediction connects machine learning with imprecise probability theory and
offers a novel data-driven approach to constructing predictions that effectively capture both aleatoric
and epistemic uncertainty. Thereby, it provides the basis of a new approach to reliable, uncertainty-
aware machine learning. Leveraging the inherent validity of the conformal prediction framework, our
conformalized credal sets are assured to cover the ground truth distributions with high probability.
We have explored different nonconformity functions within this novel setting and evaluated their
performance through numerical experiments.

There are several promising directions for future work. One avenue is to extend our method to
standard (zero-order) data. While it has been shown that learning a second-order predictor from
such data is challenging [8, 9], whether similar problems apply to credal predictors constructed
from such data is not yet fully clear. Additionally, exploring other nonconformity functions that
lead to closed-form solutions for credal sets or enhance efficiency and reduce uncertainty is worth
considering. Finally, constructing a set of labels from our proposed credal sets presents an intriguing
opportunity for further research, especially as such sets can provide more information compared to
standard conformal prediction sets.

The broader impact of our work is the advancement of Machine Learning models towards better
uncertainty-aware predictions, and we do not foresee any negative societal impacts.
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Appendix A: Extended Related Work

Credal sets are widely used as models for representing uncertainty, notably within the domain of
imprecise probabilities [58]. As already mentioned, they can represent both types of uncertainty,
aleatoric and epistemic. In the context of data analysis and statistical inference, credal sets are often
used as robust models of prior information, namely for modeling imprecise information about the
prior in Bayesian inference [59].

In machine learning, credal sets have been used for generalizing some of the standard methods,
including naive Bayes [14, 62], Bayesian networks [15], and decision trees [1]. Typically, these
approaches generalize simple frequentist inference to robust Bayesian inference, making use of an
imprecise version of the Dirichlet model (a conjugate prior for the multinomial distribution). Com-
pared to our approach, these methods are learning on standard (zero-order) training data. Moreover,
despite representing uncertainty in predictions, they do not provide any formal guarantees.

Conformal prediction [57], briefly introduced in Section 2.2, has recently gained attention for
various applications in machine learning, especially for classification tasks [4, 20, 38, 40, 50]. These
methods mostly focus on split conformal prediction using a held-out calibration set [32], overcoming
computational limitations of earlier transductive or bagging approaches [7, 30, 49, 55, 57]. While
tackling classification tasks, our method for constructing conformal credal sets has more similarity
with conformal regression [37, 45], particularly in multivariate settings [17], as we essentially
conformalize the simplex space of categorical distributions. Our nonconformity scores differ, however,
in that they are specific for distributions rather than considering general multivariate spaces. This
work also relates to work on appropriate measures of inefficiency [56] as measuring the inefficiency of
our conformal credal sets is non-trivial. Most closely related to our work is the recent work by Stutz
et al. [52], who consider conformal prediction in settings with high aleatoric uncertainty. However,
we explicitly target the construction of conformal credal sets, while Stutz et al. [52] mainly focus on
constructing confidence sets of classes. The connection between CP and credal sets has also been
explored by Cella and Martin [13] and Lienen et al. [29]. However, their emphasis lies on standard
(zero-order) data, which fails to represent uncertainty truthfully. Furthermore, the sets generated by
their methods are consistently confined to the simplex corners (around degenerate distributions) and
display notably conservative behavior.

First-order data. In settings with high aleatoric uncertainty, labeling each example with a single,
unique class is clearly insufficient. In practice, this is typically captured by high disagreement among
annotators – a problem particularly common in natural language tasks [3, 5, 6, 18, 34, 36, 39, 42] or
even in computer vision [10, 31, 35, 43, 63]. Handling this disagreement has received considerable
attention lately [54] as it offers to go beyond this zero-order information. For example, recent
work on evaluation with disagreeing annotators [51] argues the use of these annotations to get
approximate first-order information for evaluation. This approach is becoming more and more viable
with crowdsourcing tools [27, 47, 48] being an integral component of the benchmark, making multiple
annotations per data instance more accessible. We follow a similar approach in our construction of
conformal credal sets.

Appendix B: Proof of Theorem 3.2

Proof. Let A denote the event f(xnew,λ
xnew) < q + ϵ and Ã the event f(xnew, λ̃

xnew
) < q. We have

P (A) ≥ P (A ∧ Ã)

= P (Ã) · P (A | Ã)

= P (Ã) · (1− P (¬A | Ã))

Since ¬A means that f(xnew,λ
xnew) ≥ q + ϵ, the conditional event ¬A |B implies a violation of the

closeness condition in (11), wherefore the probability P (¬A |B) is upper-bounded by δ according to
(11). Therefore, noting that P (Ã) ≥ 1− α̃ is the standard guarantee by CP,

P (A) ≥ P (Ã) · (1− P (¬A | Ã))

≥ (1− α̃) · (1− δ)

= 1− α .
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Appendix C: Real-World Datasets and Models Overview
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Figure 8: General overview of real-world datasets.

ChaosNLI [31] (License: CC BY-NC 4.0 DEED) is an English Natural Language Inference (NLI)
dataset that captures the inherent variability in human judgments of textual entailment. Here, the
classes are entailment, neutral, and contradiction for each premise-hypothesis pair. Instances in this
dataset are selected from the development sets of SNLI [12], MNLI [60], and AbductiveNLI [11], for
which the majority vote was less than three among the five human annotators. These instances were
then given to 100 independent humans for annotation, given strict annotation guidelines. We combine
the chaos-SNLI and chaos-MNLI subsets, resulting in a dataset of 3113 datapoints. For model
training, we leverage a language model from the Hugging Face transformers library [61], initially
trained on SNLI and MultiNLI datasets for classification tasks3. We utilize the last hidden layer output
of this model to embed the premise-hypothesis pairs from all 3113 instances into 768-dimensional
vectors, serving as inputs for the learning model. To split the data, we randomly select 500 instances
for calibration, 500 for testing, and the remaining for training.

As for the learner, we employ a deep neural network consisting of three hidden layers with 256, 64,
and 16 units, utilizing ReLU as the activation function. Prior to the output layer, a dropout layer
with a rate of 0.3 is incorporated. The same model architecture serves both first- and second-order
predictors, differing only in the activation functions of the output layers. For the first-order predictor,
softmax is used, while for the second-order predictor, ReLU is employed. Learning is facilitated
using the Adam optimizer with a learning rate of 10−4, utilizing cross-entropy as the loss function
for the first-order predictor and negative log-likelihood for the second-order predictor.

CIFAR10-H [35] (License: CC BY-NC-SA 4.0 DEED) is a dataset of soft labels that capture human
perceptual uncertainty for the 10000 images of CIFAR-10 test set [28]. A total of 511, 400 human
classifications were gathered via Amazon Mechanical Turk, excluding participants who performed
poorly on obvious images. On average, each image received 51 judgments, with the number of
judgments per image ranging from 47 to 63. As shown in Figure 8, the histogram of the entropies
of CIFAR-10H distributions shows that this dataset is less ambiguous compared to ChaosNLI. For
this dataset, we don’t perform any model training and instead use a model pre-trained on the CIFAR-
10 training images4. We utilize the model’s predicted distributions along with the CIFAR-10H
distributions to construct credal sets, focusing solely on first-order approaches. We randomly select
1000 instances for testing and the rest for calibration.

Appendix D: Enhancing Adaptivity in First-Order Predictor Credal Sets

As mentioned earlier, with methods based on the first-order predictor, once the quantile is determined
during calibration, all distributions within a certain distance are included in the set for any given
point at prediction time. This indicates that these methods lack adaptivity and do not account for
the local heterogeneity of the data. Given the uncertainty measure in (12), for a given quantile or

3The model can be found at https://huggingface.co/cross-encoder/nli-deberta-base with
Apache License 2.0

4The pre-trained model can be found at https://github.com/huyvnphan/PyTorch_CIFAR10 with MIT
license.
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Figure 9: Scatter plots of calibration scores versus the entropy of the first-order predictor’s output for
different nonconformity scores for the ChaosNLI dataset.

set size, when the model’s predicted distribution is near the simplex corner, the difference between
the highest and lowest entropies is much greater than when the predicted distribution is located in
the middle. That is why, in Figure 4, small epistemic uncertainty is observed only for high aleatoric
cases for methods based on the first-order predictor. To handle this issue, one approach involves
utilizing the normalized nonconformity score by dividing the score of each point by (a measure of) its
dispersion at that point [33]. As depicted in Figure 9, we’ve noticed a direct correlation between the
score’s dispersion and the entropy of the predicted distributions for the ChaosNLI dataset; specifically,
higher entropy corresponds to greater variability in the scores. Therefore, we propose the following
normalized score:

f̃1(x,λ
x) :=

f1(x,λ
x)

H(λ̂
x
) + τ

, (13)

where H(λ̂
x
) denotes the entropy of the predicted distribution at point x and τ is a hyperparameter

that prevents division by zero and controls the influence of H(λ̂
x
) on the scores (the higher the τ ,

the lower the influence). The credal set for xnew will be constructed as{
λ ∈ ∆K | f1(xnew,λ) ≤ q(Ẽ1, α′)(H(λ̂

xnew
) + τ)

}
,

where Ẽ1 is the set of normalized nonconformity scores. Figure 10 compares the scatter plots of AU
versus EU for all first-predictor-based models with their adaptive counterparts with τ = 0.1. The
adaptive approach decreases the average epistemic uncertainty. For example, the positions of the
three instances of Figure 5 moved closer to their corresponding values of the SO method.
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Figure 10: Scatter plots of aleatoric versus epistemic uncertainty using various credal set predictors for
the ChaosNLI dataset with α = 0.2. The colors indicate the entropy of the ground truth distribution.
The three cases numbered 1 to 3, correspond to the first to third rows of instances shown in Figure 5.
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Appendix E: Synthetic Data

Throughout this paper, we generate synthetic data for a K-class classification task as follows: we
consider d-dimensional features X ∈ Rd, where X1, . . . , Xd are independent standard normal
random variables. Subsequently, we generate a random matrix β ∈ Rd×K , with its elements drawn
independently from the standard normal distribution. To define the ground truth probability over the
classes for object X , we use the following formulation:

λx
k := P(Y = k|x) = Zk(x)∑

j Zj(x)
, (14)

where Z(x) := exp(x⊤β). As for the learner (both first-order and second-order predictors), in the
subsequent experiments, we utilize the same deep neural network described in Appendix C for the
ChaosNLI dataset, with the input layer adopting the d-dimensional feature vector.

E.1 Illustrative Example

To illustrate the primary concept of credal sets and uncertainty decomposition, we present a straight-
forward yet intuitive example. Given the data-generating process in (14), we generate 3000 samples
with d = 10 and K = 3 solely to facilitate the visualization of the credal sets, splitting them equally
between training, calibration, and testing datasets. Initially, we train a model with only 10 points,
gradually increasing to 50, 100, 500 and 1000. At each stage, we calibrate the model using all the
calibration data points and evaluate its performance on the test points. From the test data, we select
three examples characterized by high entropy (almost uniform distribution), relatively high entropy
(uniform across two classes), and low entropy (almost a Dirac distribution). We then plot their credal
sets alongside lower and upper entropies for varying numbers of training data points.

Figure 11 provides intriguing insights! As evident in the first column, where the model was trained
with only 10 data points, there exists a significant epistemic uncertainty across all three cases. This
indicates that none of the predictions are reliable, and it’s challenging to predict a single label for any
of the given examples. Moving to the third column, we observe a significant reduction in epistemic
uncertainties. In the second example (second row), it indicates that the total uncertainty is primarily
due to epistemic uncertainty, whereas for the other two cases, it’s a result of high aleatoric uncertainty
with some epistemic uncertainty. This suggests that gathering more data (and reducing the total
uncertainty) may not significantly enhance the capability to predict a single label for the latter cases.
Figure 12 illustrates the evolution of scatter plots of AU versus EU for all first-predictor methods as
the number of training data increases.

E.2 Experiments with Imprecise First-Order Data

We considered another set of experiments with synthetic data to illustrate the impact of imprecise
first-order data, particularly to showcase the behavior of the proposed credal sets when we only have
access to an approximation of the ground truth distributions. Our experiment revolves around a
K-class classification task with K ∈ {3, 4, 6, 8, 10}. For each K, we generate N = 1500 samples
with d = 10 using (14) to construct the datasets DK = {(xi,λ

xi)}Ni=1. To obtain imprecise versions
of DK , we employ a sampling approach. Specifically, we independently sample each distribution λxi

m times and utilize relative frequencies to create its noisy counterpart λ̃
xi

m . We represent the resulting
dataset as DK

m = {(xi, λ̃
xi

m )}Ni=1. We repeat this process four times with m ∈ {1, 5, 10, 100}.

Given each dataset DK
m , we randomly partition data points into 1300 training, 100 calibration, and

100 test instances and perform the proposed methodologies accordingly. Again, we repeat this process
ten times with different random seeds for each dataset DK

m . Due to the computational complexity in
calculating efficiency for cases with K > 3, we utilize the quantile of the calibration nonconformity
scores as an efficiency metric. In Figure 13, we represent the overall result under different K and
m values. It can be observed that the coverage is fulfilled across almost all scenarios, including
m = 1 with degenerate distributions. This observed behavior is somewhat intuitive. The model
endeavors to learn the underlying probabilistic relationship between X and Y , even given the noisy
data 5. Consequently, during calibration with noisy instances, the nonconformity scores of noise-free

5Of course, this holds under some reasonable assumptions on noise.
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Figure 11: Credal sets generated by the KL method for three examples of illustrative synthetic data
with α = 0.1. Each row represents one of three examples, with columns illustrating the evolution
of the predicted credal set based on varying numbers of training data points. The lower and upper
entropy of each credal set is displayed below it.

instances are mostly upper-bounded by the scores of their noisy counterparts, resulting in more
conservative sets that effectively cover the ground-truth distributions. It can also be seen that the
quantile of the nonconformity scores shrinks as m increases. In Figure 14, we illustrate the evolution
of the credal sets as m changes from 1 to 100 for different nonconformity functions when K = 3.
For this case, the full comparison of efficiency and coverage across various nonconformity functions
is provided in Figure 15.

Appendix F: Experiments Compute Resources

For all experiments, we used an Intel(R) Core(TM) i7-11800H CPU with 16.0 GB of RAM. Model
training and calibration steps are quite fast and take only a few minutes to run. In constructing the
credal sets, we use high-resolution simplex discretization and determine whether each distribution
from the discretized simplex belongs to the credal set via exhaustive search. For the WS method, this
process can take up to a few seconds per data instance, while for all other methods, it takes less than
a second. The uncertainty quantification was also completed in less than a second.
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Figure 12: Scatter plots of aleatoric versus epistemic uncertainty using various credal set predictors
given different numbers of training data for illustrative synthetic data with α = 0.1. The colors
indicate the entropy of the ground truth distribution. The three cases, numbered 1 to 3, correspond to
the first to third rows of instances shown in Figure 11.
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Figure 13: Coverage and quantile results for synthetic data with imprecise first-order distributions,
where the ground truth distributions are approximated by observing m samples from them. The
horizontal dashed lines indicate the nominal coverage level 1− α = 0.9.
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Figure 14: Credal sets derived using various credal set predictors for an example from synthetic
data with imprecise first-order distributions. Rows correspond to the number of samples utilized for
distribution estimation. The ground truth distribution is marked by an orange square, and its noisy
versions are denoted by red squares. In cases employing a first-order learner (first four columns),
model predictions are denoted by black circles. The predicted second-order distributions are illustrated
via contour plots in the last column, where a second-order learner is employed. The miscoverage rate
is α = 0.05, and the efficiency of each credal set is indicated below it.
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(d) m = 100.

Figure 15: Coverage and efficiency results of different nonconformity functions applied on the
synthetic data with imprecise first-order distributions (K = 3). The horizontal dashed lines indicate
the nominal coverage levels.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contribution:
Providing a data-driven method to construct credal sets using conformal prediction, assuming
access to probabilistically labeled data.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please see Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The proof for Theorem 3.1 is not provided, as it is essentially a restatement of
the conformal prediction validity theorem adjusted to our setting with the reference provided.
As for Theorem 3.2, its proof can be found in Appendix B. All assumptions have been
stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All experiment details, including models, data, etc., are provided in the paper
or its Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Please see https://github.com/alireza-javanmardi/
conformal-credal-sets.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are provided in the paper or its Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Where applicable, we do so. For instance, see Figure 3.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We provide a broader impact statement in the conclusion of our work.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our methods do not pose a risk of misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We provide licenses and citations to all used datasets, models, and libraries.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [No]
Justification: We do not introduce any new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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