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Abstract

Large language models (LLMs) exhibit re-
markable text-generation capabilities, yet strug-
gle with factual consistency, motivating grow-
ing interest in factuality verification. Exist-
ing factuality verification methods typically
follow a Decompose-Then-Verify paradigm,
which improves granularity but suffers from
poor scalability and efficiency. We propose a
novel Decompose-Embed-Interact paradigm
that shifts factuality verification from costly
text-level reasoning to efficient alignment in
embedding space, effectively mitigating the
scalability bottlenecks and computational inef-
ficiencies inherent to prior approaches. While
the proposed paradigm promises scalable verifi-
cation, its implementation faces three practical
challenges: efficient decomposition, factually
faithful embedding, and accurate verification
in embedding space. To address these chal-
lenges, we introduce E-Verify, a lightweight
framework that resolves them through three
specially designed modules, each aligned with
a specific stage of the paradigm and designed
to preserve scalability and efficiency. Experi-
ments demonstrate that E-Verify significantly
improves both decomposition and verification
efficiency while maintaining competitive accu-
racy. These results confirm that the proposed
paradigm enables scalable and fine-grained fac-
tuality verification with minimal performance
trade-offs.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable capabilities in text generation tasks
(Mann et al., 2020; Li et al., 2024; Igbal et al.,
2024). Nonetheless, LLMs often generate content
with hallucinations, including incorrect dates, nu-
merical errors, and fabricated relationships, which
can mislead decision-making and exacerbate mis-
information spread (Ji et al., 2023; Bang et al.,
2023; Sadasivan et al., 2023). This raises an urgent
need for factuality verification systems that can
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Figure 1: The top half shows the traditional Decompose-
Then-Verify approach with costly pairwise NLI in-
ference. The bottom half presents our proposed
Decompose-Embed-Interact paradigm, which performs
efficient verification via alignment in embedding space.

evaluate the factual consistency of LLM-generated
content, especially in knowledge-intensive scenar-
ios (Panchendrarajan and Zubiaga, 2024; Si et al.,
2024; Atanasova, 2024).

A dominant line of research in factuality verifica-
tion adopts the Decompose-Then-Verify paradigm,
shown in Figure 1 (top half), which decomposes
generated text into atomic facts and verifies them
against reference sources using LLMs or natu-
ral language inference (NLI) models (Zhang and
Bansal, 2021; Chern et al., 2023; Zhao et al., 2023;
Tang et al., 2024). While this paradigm enhances
granularity and interpretability, the inherent pair-
wise verification—where each fact must be individ-
ually compared to all reference segments—Ieads to
quadratic computational overhead, which quickly
becomes prohibitively expensive for long genera-
tions, posing a critical obstacle to scalability.

We begin with the observation that atomic facts
are typically short and structurally simple, making
them well-suited for semantic embedding. This
insight motivates a shift in verification strategy:
instead of performing pairwise reasoning at the
text level, we shift verification to alignment in
embedding space. To this end, we propose the
Decompose-Embed-Interact paradigm, shown in



Figure 1 (bottom half), which reframes factuality
verification as a modular process of atomic decom-
position, independent embedding, and lightweight
interaction. By encoding facts into dense vectors
and verifying them efficiently in embedding space,
this paradigm eliminates the need for costly LLM
or NLI-based cross-encoding, enabling scalable
and fine-grained consistency assessment.

While the proposed paradigm theoretically en-
ables scalable factuality verification, its practical
implementation poses several concrete challenges:
how to decompose long-form text efficiently, how
to preserve factual precision in embeddings, and
how to conduct accurate verification in embedding
space. To address these issues, we introduce E-
Verify—an Efficient and Embedding-based Factu-
ality Verification framework for LLMs. E-Verify
operationalizes the proposed paradigm through
three carefully designed modules: (1) A sentence-
level atomic decomposer based on a fine-tuned
small language model (SLM) improves decom-
position efficiency for long-form text; (2) A Bi-
Encoder embedder augmented with Pooling-based
Multi-Head Attention enhances the factual fidelity
of atomic fact embeddings beyond simple pooling;
(3) A lightweight Multi-Feature Interaction Module
verifies consistency through efficient embedding-
level alignment, capturing both surface-level match-
ing and directional factual discrepancy.

Experimental results confirm the effectiveness
of our framework, demonstrating substantial gains
in decomposition and verification efficiency while
maintaining competitive accuracy. Importantly, our
study reveals a key insight: embedding models,
when paired with structured atomic decomposition
and lightweight interaction modules, can deliver
fine-grained factual verification performance pre-
viously thought to require deep cross-encoding—
highlighting the potential of E-Verify as a scalable
alternative to traditional NLI-based pipelines.

Our contributions can be summarized as:

¢ We introduce a novel Decompose-Embed-
Interact paradigm that reframes factuality ver-
ification as an embedding-native task, trans-
forming costly pairwise verification into effi-
cient embedding-space alignment.

* We instantiate this paradigm in E-Verify, a
lightweight and scalable framework that oper-
ationalizes embedding-native verification and
overcomes key practical challenges, enabling
efficient process.

* Experiments demonstrate that E-Verify sub-
stantially improves verification efficiency
while maintaining strong accuracy, validating
the paradigm’s practical value.

2 Related Works
2.1 Hallucinations in LLMs

Hallucinations in LLMs, where models generate
non-factual content such as temporal inconsisten-
cies, numerical errors, or fabricated relationships,
pose significant challenges to their reliability, par-
ticularly in knowledge-intensive tasks (Huang et al.,
2023). Current strategies to mitigate hallucinations
include training-phase interventions (e.g., knowl-
edge distillation) (Gekhman et al., 2024; Abbas
et al., 2023; McDonald et al., 2024; Huang et al.,
2022), retrieval-augmented generation (RAG) ap-
proaches that integrate external knowledge dur-
ing inference (Ram et al., 2023; Gao et al., 2022;
Lewis et al., 2020), and post-hoc verification meth-
ods to assess factual consistency after text gen-
eration (Manakul et al., 2023; Dhuliawala et al.,
2023; Maynez et al., 2020). While these meth-
ods aim to reduce hallucinations from various per-
spectives, another direction centers on factuality
verification through explicit consistency checking
against trusted reference sources.

2.2 Factuality Verification

Factuality verification, also referred to as fact-
checking, typically involves comparing generated
content with a trusted reference source. FactScore
(Min et al., 2023) proposed a two-stage method
that was later abstracted into the widely adopted
Decompose-Then-Verify paradigm: first decompos-
ing the generated text into atomic facts and then
verifying each fact against references. An atomic
fact refers to a minimal, self-contained unit that
expresses a single verifiable proposition. Recent
methods have extended this paradigm in various di-
rections. FGLR (Stacey et al., 2024) enhances NLI-
based reasoning by generating auxiliary premise
facts, while FineSumFact (Oh et al., 2025) uses
fine-grained LLM feedback to supervise factuality
in summarization. While this paradigm improves
granularity, it suffers from poor scalability due to
reliance on costly LLM APIs and quadratic com-
plexity in pairwise verification between facts and
references. MiniCheck (Tang et al., 2024) explores
a more efficient solution by training a small NLI
verifier on synthetic data, significantly reducing



inference cost. While it eliminates dependency on
LLM APIs, it still performs pairwise verification
between facts and references, which restricts scala-
bility when processing long outputs.

3 Decompose-Embed-Interact Paradigm

We begin with a central observation: atomic facts
are structurally simple and semantically compact,
typically taking the form of short declarative sen-
tences expressing a single verifiable proposition
(see Figure 2, Stage 1). This localized, context-
independent structure aligns well with modern sen-
tence embedding models, which are designed to
encode bounded propositions into fixed-length vec-
tors. Such simplicity allows atomic facts to be
faithfully compressed into embeddings with min-
imal semantic loss, making factuality verification
possible through lightweight embedding-level inter-
actions. Crucially, this enables scalable verification
by avoiding the quadratic cost of cross-encoding
each reference-fact pair.

Motivated by this observation, we propose
the Decompose-Embed-Interact paradigm, which
reframes factuality verification as a modular,
embedding-native process. Given generated con-
tent G and reference material R, the process un-
folds in three stages:

Decompose: Decompose GG and R into atomic fact
sets,

Fag={fC ...
Fr={fl'...

, fgc} = Decompose(G),
,f}?R} = Decompose(R),

where fiG and fJR denote the i-th and j-th atomic
fact extracted from G and R, respectively, and K,
K g are the total number of facts from each source.
Embed: Independently encode each atomic fact
into a dense semantic embedding,

h{ = Embed(f), h} = Embed(f/),

where h¢ € R? and hf € R? represent the d-
dimensional embeddings of the ¢-th generated fact
and the j-th reference fact, respectively.

Interact: Assess factual consistency through oper-
ations in the embedding space,

FactScore;; = Interact(hf7 hé),

where FactScore;; € (0, 1) indicates the degree to
which the generated fact fiG is supported by the
reference fact f]R.

4 E-Verify

While the proposed paradigm provides a concep-
tual blueprint for efficient verification in embed-
ding space, its practical implementation poses three
key challenges: (1) achieving efficient decompo-
sition of long-form text, (2) preserving factual fi-
delity during embedding, and (3) verifying factual
consistency via accurate embedding-level interac-
tions. We present E-Verify, addressing these chal-
lenges through three carefully designed modules,
as illustrated in Figure 2. We provide detailed de-
scriptions of each component below, with imple-
mentation settings provided in Appendix A.

4.1 Decomposer: Sentence-Level Atomic Fact
Extraction

The use of SLMs to replace LLMs has become a
common practice across many NLP tasks to im-
prove efficiency. However, we find that applying
SLMs directly to factual decomposition, especially
on long-form text, often leads to incomplete ex-
traction or hallucinated facts. To mitigate this,
we adopt a sentence-level decomposition strategy
that reduces contextual hallucination and improves
atomic fact fidelity.

We segment the input text (generated content
and reference material) into sentences using Stanza
(Qi et al., 2020), denoted as S = {s1, 2, ..., Sn }»
where n is the total number of sentences. Each
sentence s; € S is individually processed by the
SLM to extract atomic facts F;, and these are ag-
gregated into a unified fact set F' = U?Zl F; =
{f1, f2,..., fx}, where K is the total number of
atomic facts.

4.2 Embedder: Context Encoding with
Token-Level Attention Pooling

The Embedder encodes atomic facts into dense
vector representations to enable efficient factuality
verification. Traditional BERT-based sentence em-
bedding methods, such as using the [CLS] token
or mean pooling (Reimers, 2019), often fail to cap-
ture fine-grained semantic nuances that are crucial
for distinguishing subtle factual differences. To
address this, we adopt a Pooling-based Multi-Head
Attention (PMA) mechanism (Liao et al., 2024;
Lee et al., 2019) built on top of the BERT encoder
to enhance factuality-oriented embeddings.

Given an atomic fact set F' = { f1, fo,..., fx},
K is the total number of atomic facts, each fact
fi € F is tokenized and encoded by BERT into
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Figure 2: Overview of the E-Verify framework for factuality verification. The system follows a three-stage process:
Decompose, Embed, and Interact. In the Decompose stage, the LLM-generated text and the corresponding
reference text from Wikipedia are processed using a SLM decomposer. In the Embed stage, these atomic facts are
encoded using a Bi-Encoder, with the use of PMA to capture different embedding features. In the Interact stage,
the embeddings undergo multi-feature interactions through feature-based processing, producing fact scores to assess

the factuality of the content.

token embeddings T; = {t1,t2,...,t;}, where [ is
the number of tokens in f;. Each token t; € T;
is a d-dimensional vector. The PMA module then
aggregates I; to produce a multi-view sentence
embedding:

H; = LN(h + FEN(h)),

where LN denotes Layer Normalization, MHA is
Multi-Head Attention, and ¢ is a learnable query
vector dynamically aggregating token-level infor-
mation. We use two learnable queries within
PMA to produce multi-view embeddings, denoted
as H;[0] and H;[1], that preserve richer contex-
tual information. These embeddings are later as-
signed distinct roles during factuality verification,
enabling fine-grained modeling of factual align-
ment and discrepancy signals.

4.3 MFIM: Embedding-Space Interaction for
Factuality Verification

Traditional sentence similarity models often rely
on cosine similarity between embeddings. How-
ever, cosine similarity is symmetric and fails to
capture the directional nature of factual entailment,
which is essential for distinguishing support and
non-support in factuality verification. To address

this, we design the Multi-Feature Interaction Mod-
ule (MFIM) as a lightweight verifier that produces a
scalar fact score directly from embedding represen-
tations. This design aligns with our paradigm-level
goal of replacing expensive pairwise verification
with scalable vector operations.

We observe two major error types in factual con-
sistency: (1) surface-level mismatches (e.g., entity
names, numbers, dates), and (2) subtle factual addi-
tions or omissions requiring directional reasoning
to determine whether generated content is suffi-
ciently supported by the reference. While simple
pairwise alignment in embedding space (e.g., con-
catenation) effectively addresses type (1), it fails to
capture the strong directional factual entailment be-
havior observed in NLI tasks. To close this gap, we
draw inspiration from difference-based signal pro-
cessing, where subtractive operations emphasize
residual discrepancies by eliminating shared com-
ponents. Accordingly, we explicitly introduce a dis-
crepancy feature to model directional differences
between reference and generated embeddings.

Thus, we define two features: the Pairwise Fea-
ture P and the Discrepancy Feature D:

P = MLPp(Concat(H,[0], Hy[0])),
D =MLPp(H,[1] — H,[1]),



where H, and H, are multi-view embeddings of
the reference and generated atomic fact.

The final fact score is computed by fisrt concate-
nating these features and then passing the fused
vector through a lightweight linear layer with Sig-
moid activation:

FactScore = Sigmoid(Linear([P; D])) € (0, 1).

Our ablation studies (Section 5.5) further confirm
that both features offer complementary signals and
are critical to optimal verification performance.

4.4 Computational Complexity Analysis

In this section, we theoretically analyze the com-
putational efficiency of the E-Verify framework.
We divide the analysis into two main components:
the Decomposer, which is responsible for atomic
fact extraction, and the Checker, which handles
embedding and interaction.

4.4.1 Decomposer Complexity Analysis

E-Verify utilizes a supervised fine-tuned SLM to
perform atomic fact decomposition at the sentence
level. The primary computational cost lies in apply-
ing the decomposer to each sentence, as sentence
segmentation itself is negligible.

Given that the input sequence of T tokens is
partitioned into N sentences, language models em-
ploying self-attention mechanisms (Vaswani, 2017)
incur quadratic computational complexity O(T?).
E-Verify addresses this challenge through sentence-
level decomposition. By constraining attention
computations to individual sentences with aver-
age length t = % < T, the overall complexity
reduces to O(Nt?). This design drastically re-
duces global attention costs by restricting atten-
tion computations to shorter text segments, making
E-Verify substantially more efficient than conven-
tional passage-level LLM processing.

4.4.2 Checker Complexity Analysis

The Checker module consists of the Embedder and
the MFIM, and its computational complexity is
determined by two main components: embedding
computation and factuality verification computa-
tion. We denote K, and K, as the numbers of
atomic facts extracted from the generated content
and the reference material, respectively.
Embedding Computation. Embedder employs
a Bi-Encoder structure, enabling independent en-
coding of atomic facts before interaction. Assum-
ing the BERT encoder has a computational com-

plexity of O(B) per atomic fact, the total embed-
ding complexity is O((K, + K,)B).

Factuality Verification Computation. The
MFIM performs lightweight pairwise interactions
between atomic fact embeddings in the embedding
space. Each generated atomic fact is compared
against all reference atomic facts, with verification
complexity of O(K K, M), where M denotes the
computational complexity of the MLP.

Thus, the overall computational complexity of
the Checker module is O((Ky+ K, ) B+ K K, M).
For a standard NLI-based model, each generated
atomic fact is compared against reference material
using cross-encoding. Assuming the computational
complexity per cross-encoding is O(B), the total
complexity becomes O(K K, B).

Key Insight. While NLI models incur quadratic
complexity at the transformer computation level,
E-Verify shifts the costly inferences to lightweight
MLP operations. Since MLPs are substantially
more efficient than transformer encoders, E-Verify
significantly reduces computational overhead.

S Experiments

To evaluate the effectiveness of the E-Verify frame-
work, we conduct experiments across four key di-
mensions: Decomposition Quality: Compare var-
ious models to identify the most effective atomic
fact decomposer. Factuality Verification: Assess
the Checker module and the end-to-end E-Verify
framework against strong baselines. Efficiency:
Analyze runtime and memory efficiency across all
stages of the E-Verify pipeline. Ablation Study:
Examine the contributions of core components
such as PMA and MFIM. The detailed experiment
settings are provided in Appendix B.

5.1 Datasets

wiki-en-sentences: A sentence-level factuality de-
tection dataset containing pairs of independent
Wikipedia sentences.

wiki-bio-hallu (Manakul et al., 2023): A halluci-
nation detection dataset for biography generation,
consisting of a generated biography and its corre-
sponding Wikipedia source. The dataset includes
a simple subset, which contains controlled factual
errors in numbers, time, entities, or events; and
a hard subset, in which errors naturally occur in
LLM-generated biographies.

CNN (Tang et al., 2024): A fact verification dataset
based on CNN news articles. Each instance in-



cludes a reference article and a generated summary
that may contain factual errors.

Reveal (Tang et al., 2024): A dataset adapted from
REVEAL (Jacovi et al., 2024), originally designed
for evaluating reasoning chains in open-domain
QA, which we use in our setting as (passage, fact)
pairs with binary factuality labels.

5.2 Decomposition Capability Evaluation

We evaluate the decomposition performance of
GPT-40 with several open-source models, Qwen2-
7B (Bai et al., 2023), Qwen2.5-0.5B (Yang et al.,
2024) and Flan-T5 (Chung et al., 2022), on the
wiki-bio-hallu dataset. The evaluation metrics in-
clude Precision, Recall, and F1 Score. Precision
measures the factual correctness of the extracted
facts. Specifically, for each fact output by the de-
composer, we check whether it is semantically sup-
ported by the original content. Recall measures
the completeness of the decomposition. For each
ground-truth fact, we check whether it is semanti-
cally entailed by any of the extracted facts. This
reflects how much of the original factual content is
successfully recovered. F1 Score is computed as
the harmonic mean of Precision and Recall.

Model Granularity F1 Precision Recall
GPT-40" Passage 0.9910 09830  0.9991
Qwen2-7B Sentence 0.9797 0.9799 0.9795
Qwen2-7B Passage 0.9703  0.9875  0.9536
Qwen2.5-0.5B Sentence  0.9676  0.9628  0.9725
Flan-T5 Sentence 0.9486 09512  0.9460
Qwen2.5-0.5B Passage 0.8837  0.8920  0.8754
Table 1: Performance comparison of different de-

composers under different decomposition granularities.
“GPT-40 was evaluated using few-shot prompting, while
other open-source models were supervised fine-tuned
using synthetic data generated by GPT-4o.

As shown in Table 1, GPT-40 achieves near-
perfect results under few-shot prompting, serving
as an upper bound for accuracy. Among fine-tuned
open-source models, sentence-level decomposition
consistently yields higher recall than passage-level
variants, highlighting its advantage in recovering
comprehensive factual content. Notably, Qwen2-
7B exhibits strong performance but suffers a recall
drop on longer inputs, indicating potential limi-
tations in long-context handling. Qwen2.5-0.5B
achieves a favorable balance between quality and
efficiency at the sentence level, making it the most
suitable choice for E-Verify’s decomposition mod-
ule in large-scale scenarios.

5.3 Factuality Verification Performance
Assessment

In this section, we validate the factuality verifica-
tion ability of E-Verify through two experiments.
The first experiment focuses on assessing the effec-
tiveness of the Checker. The second experiment
evaluates the full E-Verify framework, incorporat-
ing both the Decomposer and Checker. A detailed
case study is provided in Appendix D.

5.3.1 Experiment on Checker

To evaluate the performance of the Checker mod-
ule, we compare E-Verify against several non-LLM
baselines, including NLI-based and Bi-Encoder
models. We conduct experiments on three in-
domain datasets (wiki-en-sentences, wiki-bio-
hallu (simple), and wiki-bio-hallu (hard)) and
two out-of-domain (OOD) datasets (CNN and Re-
veal). E-Verify is trained on a Wikipedia-style
dataset, making the former the primary benchmark
for in-domain evaluation, while the latter assesses
generalization under OOD cases.

As shown in Table 2, E-Verify achieves the
strongest performance among all non-LLM base-
lines on the in-domain datasets, attaining the high-
est accuracy and Macro-F1 Scores, particularly
on the simpler factuality sets. On more challeng-
ing datasets, such as wiki-bio-hallu (hard) and
the OOD cases, E-Verify remains competitive—
slightly trailing MiniCheck in overall accuracy
but outperforming traditional NLI and Bi-Encoder
models in Macro-F1, indicating stronger handling
of class imbalance and fine-grained distinctions.
Notably, Bi-Encoder models exhibit acceptable ac-
curacy but consistently lower Macro-F1, suggest-
ing difficulty in capturing subtle factual discrep-
ancies. While LLMs such as GPT-40 maintain
consistently high performance across all datasets,
they incur substantial computational overhead (e.g.,
GPT-40 consumed 5.03M tokens, costing $18.86
USD), making them less suitable for scalable or
cost-sensitive verification scenarios.

5.3.2 Experiment on E-Verify

In this section, we assess the end-to-end reliabil-
ity of E-Verify in factuality scoring, using the
wiki-bio-hallu (hard) dataset comprising LLM-
generated biographies with human-annotated factu-
ality scores. We evaluate various combinations of
decomposers and checkers, and compute alignment
with ground-truth using Pearson Correlation and
Mean Absolute Error (MAE).



wiki-bio-hallu

wiki-bio-hallu

Types Models wiki-en-sentences (simple) (hard) CNN Reveal
Acc  Macro-F1  Acc  Macro-F1  Acc  Macro-F1 ~ Acc  Macro-F1 ~ Acc  Macro-F1
Random 0.4956 04929 0.5101 04997 0.5011 0.5011 0.5107 0.4769 0.5483 0.5197
L GPT-40 09772 09768 0.9974 0.9972 09480 0.9480 0.9240 0.9010 0.8889 0.8705
Qwen2-7B 0.9866 0.9862 0.9257 09143 0.7974 0.7920 0.8551 0.7871 0.8527 0.8425
DeBERTa-mnli-fever-anli 0.9028  0.8962  0.7787 0.6985 0.5959 0.5375 0.7340 0.4841 0.6280 0.6271
X nli-deberta-v3-base 0.9324 09289 0.8199 0.7846 0.6939 0.6877 0.7197 0.4699 0.7705 0.7604
MiniCheck-DeBERTa 09160 0.9155 0.7697 0.7678 0.7289 0.7151 0.7743  0.7435 0.8937 0.8809
BERTScore 0.5776  0.3661 0.6519 0.3946 0.4904 0.3291 0.7173 0.4177 03068 0.2348
B BGE-en-base-v1.5 0.6562 0.5422 0.6519 0.3946 0.4934 0.3354 0.7173 04177 0.3092 0.2387
Ours 0.9706 0.9697 0.8655 0.8480 0.6631 0.6581 0.7197 0.6945 0.8188 0.8007

Table 2: Performance comparison of various models across different datasets. The table presents Accuracy, Macro
F1 Score for different models, including random, LLM-based models, Cross-Encoders, Bi-Encoders, and our
proposed method. The best results are marked in bold, and the next best results are underlined. L stands for LLM,
X stands for Cross-Encoder, and B stands for Bi-Encoder. Datasets marked with * are considered out-of-distribution
(OOD) with respect to our method. Details of baseline models are provided in Appendix B.2.

Decomposer Checker Pearson T MAE |
GPT-40 0.9650 0.0783
Qwen2-7B 0.9524 0.1040
DeBERTa-mnli-fever-anli 0.6528 0.3498
GPT-40 nli-deberta-v3-base 0.7394 0.1692
MiniCheck-DeBERTa 0.8100 0.2132
BGE-en-base-v1.5 0.1739 0.6220
Ours 0.7452 0.1792
Qwen2-7B 09171 0.1319

(0]
" Ours 07386 0.1646

Table 3: Performance of different decomposers and
checkers on the wiki-bio-hallu (hard) dataset. Pearson
Correlation and Mean Absolute Error (MAE) serve
as evaluation metrics. Bold indicates the best results,
and underlined indicates the next best results.

As shown in Table 3, LLM-based pipelines (e.g.,
GPT-40 and Qwen2-7B) unsurprisingly achieve the
strongest overall performance, but at substantial
computational cost—serving primarily as upper
bounds in efficiency-constrained scenarios.

Among non-LLM models, MiniCheck-
DeBERTa obtains the highest Pearson score,
while our E-Verify checker achieves the lowest
MAE across all non-LLM settings, demonstrating
higher precision in capturing factual consistency.
Importantly, E-Verify maintains stable perfor-
mance regardless of whether it is paired with a
high-resource decomposer (GPT-40) or its own
lightweight decomposer, demonstrating both
robustness and modular adaptability. Compared to
traditional NLI models and embedding-based base-
lines (e.g., BGE), E-Verify consistently achieves
better correlation and lower error, confirming its
stronger sensitivity to subtle factual discrepancies
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Figure 3: Computational efficiency comparison. The
left plot shows the total decomposition time, while the
right plot presents the total factuality verification time.
All times reflect GPU wall-clock inference time, except
GPT-40 which reflects external API latency. Our method
achieves the lowest computation time in both stages.

and more reliable factuality assessment—serving
as a scalable alternative to NLI-based pipelines.

5.4 Computational Efficiency Analysis

In this section, we analyze the computational effi-
ciency of E-Verify. The experiment is conducted
on the wiki-bio-hallu (hard) dataset.

Efficient Atomic Fact Extraction in Sentence-
Level.  As shown in Figure 3 (left), E-Verify
achieves a significant 60x speedup over GPT-40
API calls and a 3.21 x speedup over Qwen2-7B in
total decomposition time. This gain is not solely
attributable to model downsizing, but of the finer-
grained decomposition strategy. By performing
sentence-level atomic decomposition with a fine-
tuned SLM, E-Verify avoids the need for global
attention over long-form text and enables parallel,
lightweight processing of individual sentences.
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Figure 4: Overall time as the number of generated ar-
ticles to verify increases, assuming a fixed reference
article. E-Verify yields the lowest overall cost after
amortizing the initial reference encoding cost, even prior
to completing the first verification.

Lightweight Verification in Embedding Space.
As shown in Figure 3 (right), E-Verify completes
factuality verification in just 15.8 seconds—a 22 x
speedup over nli-deberta and 46 x over MiniCheck-
DeBERTa. Unlike previous methods that rely
on cross-encoding every reference-fact pair, our
framework performs lightweight, embedding-space
inference with fixed-size vector inputs and fully
reusable reference representations. Notably, 98.4%
of the verification time stems from embedding com-
putation, which is amenable to precomputation and
caching. The actual interaction takes only 0.25 sec-
onds, illustrating how our decoupled design trans-
forms factuality verification from a high-cost infer-
ence into an efficient embedding interaction.

Scalability Advantage under Real-World Verifi-
cation Scenarios. We further evaluate E-Verify
under a realistic verification workload, where a
static reference article is used to verify a growing
number of generated articles. This setup reflects
real-world scenarios where the reference source is
typically static and trusted, while LLM-generated
content varies dynamically. As shown in Figure 4,
our method exhibits the lowest growth rate in to-
tal computation time, growing only 20% as fast as
Qwen2-7B+nli-deberta. Although our method in-
curs a small initial cost from reference processing,
this cost is quickly amortized; E-Verify becomes
the most efficient system even before completing
the first article and maintains this advantage as
the number of verifications grows. These results
demonstrate that E-Verify is practically efficient
and deployable in time-sensitive applications. A
detailed cost breakdown is provided in Appendix C.

5.5 Ablation Studies

We conduct ablation studies on the Checker module
to evaluate the effect of the Pooling-based Multi-

s wiki-bio-hallu
wiki-en-sentences

(simple)
Acc Macro-F1 Acc Macro-F1
E-Verify 0.9706 0.9697 0.8655 0.8480
-PMA+Pool 0.9058 0.9004 0.7783 0.7149
-MFIM+Cosine 0.8190 0.8119 0.7482 0.6503
-PMA-MFIM 0.6562 0.5422 0.6519 0.3946
MFIM(only P)  0.9520 0.9504 0.8492 0.8309
MFIM(only D)  0.9546 0.9530 0.8642 0.8463

Table 4: Ablation study results comparing different con-
figurations for factuality verification across two datasets.

Head Attention (PMA) and the Multi-Feature Inter-
action Module (MFIM).

As shown in Table 4, replacing PMA with global
pooling methods resultes in a significant drop in
accuracy and F1 Score, indicating the critical role
of attention-based token aggregation in preserv-
ing fine-grained semantic information. Replacing
the MFIM with cosine similarity causes a notable
decline in performance, particularly in Macro-F1,
which reflects degraded ability to handle nuanced
factual inconsistencies. This suggests that sim-
ple similarity metrics are insufficient for modeling
entailment-style relations. Eliminating both PMA
and MFIM yields the weakest overall performance,
confirming that their combination is essential for
robust factuality verification. We further evaluate
the impact of the MFIM’s internal features: the
pairwise feature P and the discrepancy feature D.
While D alone performs closest to the full model,
the best results are achieved when both P and D are
used together, highlighting their complementary
roles in factuality verification. This underscores
the importance of explicit discrepancy modeling in
capturing subtle fact-level mismatches that may be
missed by direct embedding alignment alone.

6 Conclusion

We propose E-Verify, a lightweight framework that
redefines factuality verification through a novel
Decompose-Embed-Interact paradigm. By decou-
pling decomposition, embedding, and interaction,
E-Verify replaces costly cross-encoding with ef-
ficient embedding-space alignment. Experiments
show that E-Verify significantly improves computa-
tional efficiency while maintaining competitive ac-
curacy. These results validate the paradigm’s practi-
cal value and highlight the potential of embedding-
native verification as a scalable solution for real-
world factuality verification tasks.



Limitations

Despite the strong empirical performance of the
E-Verify framework on factuality verification tasks,
several limitations remain:

Inference Limitation: E-Verify employs a Bi-
Encoder-based design that prioritizes efficiency
by independently encoding the generated content
and reference materials. While this architecture
greatly accelerates verification, it inevitably intro-
duces semantic compression, where subtle factual
nuances may be lost during fixed-length embed-
ding. E-Verify may struggle with complex rea-
soning tasks such as causal inference, temporal
reasoning, or conditional relationships, where cap-
turing rich token-level interactions is critical. Such
deep reasoning capabilities are better modeled by
Cross-Encoder architectures, which allow joint rep-
resentation learning.

Granularity Limitation: E-Verify verifies fac-
tual consistency at the atomic fact level by de-
composing text into discrete factual units. While
atomic-level verification ensures interpretability,
it inherently abstracts away broader discourse de-
pendencies. These include implicit relationships
among multiple facts, or factual consistency that
depends on paragraph-level context. Handling such
inter-fact dependencies or hierarchical factual struc-
tures remains an open challenge for future work.
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Appendix

A Framework Implementation Details
A.1 Decomposer Training Settings

Our decomposer is based on Qwen/Qwen2.5-0.5B-
Instruct'. The base model undergoes supervised
fine-tuning on all model parameters using the llama-
factory framework?, with a learning rate of 2.0e-5,
batch size of 4, and trained for 3 epochs.

The training data is sourced from michae-
lauli/wiki_bio?, from which 5,000 samples are ran-
domly selected as the foundational dataset. The
Wiki paragraphs are first split into sentences using
Stanza, and each sentence is then decomposed by
GPT-4o0 to generate the training set.

A.2  Checker Training Settings

We conduct end-to-end joint training of the Embed-
der and Multi-Feature Interaction Module (MFIM).
The Embedder is responsible for generating high-
quality sentence embeddings using the BERT
model bge-base-en-v1.5*. The MFIM then com-
putes fact scores based on these embeddings.

We employ two loss functions: Triplet Loss
and Binary Cross-Entropy Loss. The objective
of Triplet Loss is to optimize fact scores through
supervised learning of triplets, ensuring that the
factual score of the anchor sentence is higher when
paired with a highly factual positive sentence while
being lower when paired with a negative sample.

»Ctriplet = maX(O, o+ FactScore(Hanc, Hneg)
—FactScore(Hane, Hpos))

where « denotes the margin, set to 0.5. Hgpe,
Hps, and Hy,e4 represent the embeddings of the
anchor, positive, and negative samples, respectively,
with fact scores computed via the MFIM.

Simultaneously, BCE Loss is employed for su-
pervised training. The FactScore output by the
MFIM is a value in the range (0, 1), indicating the
degree of alignment between the generated content
G and the reference content R. The objective is
to minimize the difference between the predicted
score and the ground-truth label y € {0, 1}:

1https://huggingface.co/Qwen/QwenZ.5—0.
5B-Instruct
Zhttps://github.com/hiyouga/LLaMA-Factory
3https://huggingface.co/datasets/michaelauli/
wiki_bio
*https://huggingface.co/BAAI/bge-base-en-v1.5
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N
ﬁbce = - Z[yz . log(FactScorei)—i—
=1

1
N
(1 — y;) - log(1 — FactScore;)]

The overall joint training objective function is
formulated as the sum of Triplet Loss and BCE
Loss:

L= ﬁtriplet + ﬁbce

The training process is conducted in two phases.
In the first phase, the parameters of the BERT
model are frozen, and only the PMA module within
the Embedder and the MFIM are updated. During
this phase, the learning rate is set to 5e-5, the batch
size is 32, and the model is trained for 8 epochs. In
the second phase, we unfreeze the BERT model and
apply LoRA to train the final two layers of BERT
jointly with the PMA and MFIM modules. The
learning rate remains at 5e-5, and the batch size
stays at 32. This phase further fine-tunes the model
to improve performance. The training dataset is
wiki-en-sentences (see Appendix B.1).

B Experiment Settings

Our experiments are conducted on a system run-
ning Ubuntu 22.04, equipped with an NVIDIA
RTX 4090 GPU, an AMD Ryzen 9 9950X CPU,
128GB RAM, and software dependencies, includ-
ing CUDA 12.4, pytorch 2.4.1, transformers 4.49.0
and vllm 0.6.6.post1.

B.1 Datasets

wiki-en-sentences: A large-scale factuality detec-
tion dataset constructed from 500,000 Wikipedia
sentences selected from wikipedia-en-sentences”.
We employ Qwen2-7B to generate both positive
and negative samples via prompting. The final
training set consists of 2,749,030 triplets, with
50,000 sentence pairs used for validation and 5,000
for testing. We train our E-Verify model on this
dataset.

wiki-bio-hallu (Manakul et al., 2023): A dataset
for evaluating hallucinations in LLM-generated bi-
ographies, containing 238 Wikipedia biography ar-
ticles. We expanded this dataset with both sim-
ple and hard subset to enhance its applicability
in factuality verification. The simple subset con-
sists of controlled factual hallucinations generated

5https://huggingface.co/datasets/
sentence-transformers/wikipedia-en-sentences


https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct
https://github.com/hiyouga/LLaMA-Factory
https://huggingface.co/datasets/michaelauli/wiki_bio
https://huggingface.co/datasets/michaelauli/wiki_bio
https://huggingface.co/BAAI/bge-base-en-v1.5
https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences
https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences

by GPT-4o0 (Hurst et al., 2024), with errors pri-
marily focused on four categories: numbers, time,
entities, or events. These controlled errors allow
for targeted testing of factuality verification mod-
els. In contrast, the hard subset is sourced from
real-world LLM-generated biographies, which are
more diverse and naturally prone to factual incon-
sistencies. This dataset includes biographies pro-
duced by a mix of closed-source models, such as
GPT-3.5-Turbo, GPT-40, Claude-3.5-Haiku, and
Claude-3.5-Sonnet, as well as open-source mod-
els, including Llama-2-7b, Llama-2-13b (Touvron
et al., 2023), Qwen2-7B (Bai et al., 2023), and
Qwen2.5-0.5B (Yang et al., 2024). The inclusion
of diverse sources in the hard subset makes it more
challenging and reflective of real-world factual dis-
crepancies, compared to the simple subset. Each
biography is also decomposed into atomic facts us-
ing GPT-40, with each fact being manually labeled
for factual accuracy based on the corresponding
Wikipedia biography of the individual.

CNN (Tang et al., 2024): A fact verification dataset
based on CNN news articles. It consists of 116
CNN news articles, each paired with a correspond-
ing summary that may contain factual errors. We
prompt GPT-40 to perform atomic fact decomposi-
tion on them, breaking down each fact into smaller,
verifiable facts. Each atomic fact is then manually
annotated to determine its factual accuracy.
Reveal(Tang et al., 2024): A dataset adapted from
REVEAL (Jacovi et al., 2024), originally designed
for evaluating reasoning chains in open-domain
QA, and used in our setting as (passage, fact) pairs
with binary factuality labels. The dataset consists
of 300 pairs of passages and corresponding facts.
We decompose each fact and passage into atomic
facts using GPT-40, and each atomic fact is manu-
ally labeled for factual accuracy.

B.2 Baseline Models

GPT-40: A proprietary instruction-tuned large
language model developed by OpenAl, designed
for general-purpose reasoning, generation, and
factuality-sensitive tasks. It is accessed via the
OpenAl APL

Qwen2-7B®: A 7B-parameter open-source LLM
developed by Alibaba’s Qwen team. It is
instruction-tuned for general-purpose alignment.
DeBERTa-mnli-fever-anli’: A cross-encoder

https://huggingface.co/Qwen/
Qwen2-7B-Instruct
"https://huggingface.co/MoritzLaurer/
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model fine-tuned from Microsoft’s DeBERTa-v3-
base on multiple datasets including MNLI, FEVER,
and ANLI. It is optimized for NLI and fact verifica-
tion tasks, serving as a strong baseline for sentence-
level factuality checking.

nli-deberta-v3-base®: A cross-encoder model fine-
tuned for NLI using datasets such as MNLI, SNLI,
and ANLI. It is used as a strong NLI-based factual-
ity checker baseline in our experiments.
MiniCheck-DeBERTa’ (Tang et al., 2024): A
DeBERTa-based model specifically fine-tuned for
long-form factuality verification, using annotated
hallucination datasets. It serves as a task-specific
cross-encoder baseline.

BGE-en-base-v1.5'%: A Bi-Encoder embedding
model from BAAI, pre-trained for text retrieval and
sentence similarity tasks. We use it as a semantic
similarity baseline to compute vector-based scores
between facts and references.

BERTScore(Zhang et al., 2019): A reference-
based evaluation metric that computes token-level
semantic similarity between candidate and ref-
erence texts using contextual embeddings from
BERT. It is widely used in generation evaluation. In
our setting, it serves as a lightweight, embedding-
based factuality checker baseline.

B.3 Decomposition Capability Evaluation
Settings

For ground-truth decomposition, we use GPT-40 to
produce atomic facts, which are then manually veri-
fied for factual accuracy. We further use Qwen2-7B
to assist in factuality judgment via prompted en-
tailment classification. GPT-40’s decomposition
is done via few-shot prompting through API calls,
while other open-source models are fine-tuned us-
ing supervised fine-tuning (SFT).

Both sentence-level and passage-level training
datasets are generated by prompting GPT-40. The
sentence-level training set contains 10,986 in-
stances, while the passage-level training set con-
tains 986 instances.

Due to context length limitations (512 tokens),
Flan-TS5 is only trained for sentence-level decom-
position tasks. Qwen2.5-0.5B and Flan-T5 are fine-
tuned with full parameters, while Qwen2-7B is fine-
tuned using LoRA. The training uses a learning rate

DeBERTa-v3-base-mnli-fever-anli
8https://huggingface.co/cross—encoder/
nli-deberta-v3-base
“https://huggingface.co/lytang/
MiniCheck-DeBERTa-v3-Large
Yhttps://huggingface.co/BAAI/bge-base-en-v1.5
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of 2.0e-5 and runs for 3 epochs by llama-factory.

B.4 Factuality Verification Performance
Assessment Settings

For long-context factuality verification, LLM-
based approaches are provided with the entire refer-
ence content as the premise input. Cross-Encoder
models process the reference in overlapping chunks
of 500 characters with a 100-character stride to
handle length constraints. In contrast, Bi-Encoder-
based methods, including ours, use atomic facts
extracted from the reference as premise inputs. In
all setups, the hypothesis input consists of atomic
facts extracted from the generated content, ensur-
ing a consistent and fact-level comparison across
all model types.

B.5 Computational Efficiency Analysis
Settings

For the decomposition efficiency experiments,
GPT-40 is accessed via API calls, while both
Qwen2-7B and our decomposer model are exe-
cuted using vLLM (Kwon et al., 2023) for infer-
ence acceleration, configured with a GPU memory
utilization ratio of 0.9.

In the checker efficiency experiments, GPT-40
is also evaluated through API access. Qwen2-7B
is accelerated using vLLM, while the other base-
lines, MiniCheck-DeBERTa, nli-deberta, and our
checker, are run using the transformers and pytorch
for inference.

C Efficiency Analysis

We begin by analyzing the decomposition and veri-
fication time per article or article pair based on ex-
perimental measurements from the wiki-bio-hallu
(hard) dataset. The decomposition time per article
is 0.2882 seconds for Qwen2-7B and 0.0897 sec-
onds for Qwen2.5-0.5B (Ours). For our method,
embedding takes 0.0073 seconds per article, and
interaction requires only 0.00013 seconds per arti-
cle pair. In contrast, the verification time per arti-
cle pair is 1.1037 seconds for Qwen2-7B, 0.3803
seconds for MiniCheck-DeBERTa, and 0.1821 sec-
onds for nli-deberta.

Assuming a fixed reference article and x newly
generated articles, the overall verification time for
different Decomposer+Checker combinations is
provided in Table 5. For our framework that re-
quires decomposing and embedding the reference
content, the total time includes a one-time cost asso-
ciated with the single reference document, reflected
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as an additional +1 term in the formulas.

Compared to Qwen2-7B+NLI, our method
Ours+0urs achieves a 4.84x reduction in per-
article verification cost. Even when paired with
a standard NLI verifier (Ours+NLI), our decom-
position and embedding pipeline still provides a
2.80x cost reduction.

It is important to note that our method introduces
a small initialization cost due to the need to decom-
pose and embed the reference material. However,
in most real-world factuality verification scenar-
ios, the reference corpus is typically static, con-
sisting of a fixed collection of trusted sources such
as Wikipedia articles, curated news reports, scien-
tific papers, or legal documents. These reference
materials are stable and do not change with each
generation request. As a result, both the decom-
position outputs and embeddings for the reference
content can be precomputed and cached offline, sig-
nificantly reducing the online computational cost
to only processing the newly generated content.

Furthermore, under the wiki-bio-hallu dataset
setup, the factuality verification task involves fixed
one-to-one article comparisons. In NLI-based veri-
fication methods, the generated content is decom-
posed into atomic facts, while the reference con-
tent is segmented into overlapping chunks (approx-
imately 500 characters each with a 100-character
overlap). Each atomic fact is then individually
matched against all reference chunks to assess fac-
tual consistency. On average, each generated biog-
raphy contains 26 atomic facts, and each reference
biography consists of around 4 chunks, resulting in
approximately 108 fact-chunk pairs per article pair.
This controlled setting maintains a moderate and
fixed number of reference-fact pairs, and thus does
not fully expose the quadratic complexity growth
typically associated with NLI-based verification
under large-scale or dense-generation scenarios.

Nevertheless, even in this relatively mild verifi-
cation setting, our lightweight decoupled architec-
ture demonstrates substantial computational advan-
tages, achieving significant efficiency gains over
traditional NLI-based baselines. This highlights
the scalability and robustness of E-Verify, suggest-
ing even greater benefits when applied to larger,
more complex fact-checking tasks where tradi-
tional methods would suffer from severe pairwise
verification explosion.



Decomposer+Check

Decompose Time (s) Verification Time (s)

Total Time (s)

Qwen2-7B + Qwen2-7B 0.2882x
Qwen2-7B + MiniCheck-DeBERTa 0.2882x
Qwen2-7B + nli-deberta 0.2882x
Ours + nli-deberta 0.0897x

Ours + Ours 0.0897(z + 1)

1.1037z 1.3919z
0.3803x 0.6685x
0.1821z 0.4703z
0.1821x 0.2718z

0.0073(x + 1) + 0.00013z 0.0970x + 0.0969

Table 5: Verification time formulas for different Decomposer + Checker combinations under a fixed reference
setting. Here, x denotes the number of newly generated articles to be verified, and the reference article is fixed to a
single document. The table decomposes the total time into decomposition and verification components for each

method.

D Case Study: Fact-to-Fact Alignment and
Interpretability

To further illustrate the interpretability of E-Verify,
we present a case study using an example from the
wiki-bio-hallu dataset. Figure 5 shows the atomic
facts extracted from the generated content (left)
and the reference content (right). Each line rep-
resents the highest-scoring fact-to-fact alignment
between a generated fact and a reference fact, with
the predicted FactScore shown alongside. We use
color-coding to visualize the verification outcomes:

* Green lines indicate correctly verified facts
with high FactScore values (e.g., Bill Quinn
was born on May 6, 1912. with a score of
0.9889).

Red lines connect hallucinated or factually in-
correct statements to unrelated reference facts
with FactScore values close to 0 (e.g., Bill
Quinn concluded his career on ’All in the Fam-
ily’ in 1990 matched against Bill Quinn’s last
acting role was in 1989 in "All in the Family’,
score = 4.30 x 1077).

Yellow lines highlight an incorrect high-
confidence prediction (false positive). In this
example, Bill Quinn appeared in 'Star Trek.
was mistakenly linked to Bill Quinn was an
American actor with a relatively high score of
0.5278, despite lacking supporting evidence.

The yellow case (Bill Quinn appeared in ’Star
Trek.” matched to Bill Quinn was an American ac-
tor, score = 0.5278) illustrates a known challenge
in embedding-based verification systems. We at-
tribute this misalignment to multiple factors: (1)
representation bias, where pre-trained embedding
models tend to map semantically or contextually
related entities (e.g., Star Trek and actor) to nearby
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regions in the embedding space, even when they are
factually unrelated; (2) insufficient hard negative
examples in the training data, limiting the model’s
ability to disambiguate rare or long-tail facts. This
case highlights a potential limitation of our current
framework and points to promising future research
directions such as hard negative mining.

Overall, this example demonstrates that our
framework provides an interpretable and structured
reasoning path by explicitly aligning generated
atomic facts to reference facts. The low scores as-
signed to unsupported or incorrect facts showcase
the system’s ability to filter factual inconsistencies,
while the incorrect prediction offers insight into
current limitations and highlights potential direc-
tions for future improvement.



Atomic Generated Content Atomic Reference Content

Bill Quinn was born on May 6, 1912. ()’?889 Bill Quinn was born on May 6, 1912.

Bill Quinn died on April 29, 1994. DH6H Bill Quinn died on April 29, 1994.

Bill Quinn was an accomplished American actor. . 0.9968 Bill Quinn was an American actor.

Bill Quinn had over 150 roles. 0.9990 Bill Quinn appeared in more than 150 acting roles.

Bill Quinn started his acting career in the 1930s with silent films. 4.30e-7 Bill Quinn's acting career spanned over seven decades.
3.26¢-5

Bill Quinn concluded his career on 'All in the Family' in 1990. Bill Quinn started acting in the 1920s in silent films.

Bill Quinn was known for his role as Mr. Van Ranseleer. W Bill Quinn's last acting role was in 1989 in 'All in the Family'.

Bill Quinn appeared in 'Star Trek.' \ Bill Quinn is best remembered as Mr. Van Ranseleer in 'All in the Family'.
Bill Quinn was a regular in 'Archie Bunker's Place'.
Bill Quinn played Dr. Melnitz in 'The Odd Couple'.

35 Bill Quinn played Sweeney, the bartender, in 'The Rifleman'.

< /Laj Bill Quinn appeared in 'Mchale's Navy'.

Bill Quinn played Mary's father in 'The Mary Tyler Moore Show'.

In 1971, Bill Quinn was featured in the Universal Pictures movie 'How to Frame a Figg'.

'How to Frame a Figg' starred Don Knotts.

Bill Quinn was the father-in-law of Bob Newhart.

Bill Quinn was the father of Virginia Quinn Newhart.

Bill Quinn died at the age of 81.

Bill Quinn died in Camarillo, California.

Bill Quinn died of natural causes.

Bill Quinn was the father-in-law of comedian Don Knotts.

Figure 5: Fact-to-fact alignment case study. Green = correct matches; Red = unsupported/hallucinated facts; Yellow
= false positive error.
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