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Abstract

Large language models (LLMs) exhibit re-001
markable text-generation capabilities, yet strug-002
gle with factual consistency, motivating grow-003
ing interest in factuality verification. Exist-004
ing factuality verification methods typically005
follow a Decompose-Then-Verify paradigm,006
which improves granularity but suffers from007
poor scalability and efficiency. We propose a008
novel Decompose-Embed-Interact paradigm009
that shifts factuality verification from costly010
text-level reasoning to efficient alignment in011
embedding space, effectively mitigating the012
scalability bottlenecks and computational inef-013
ficiencies inherent to prior approaches. While014
the proposed paradigm promises scalable verifi-015
cation, its implementation faces three practical016
challenges: efficient decomposition, factually017
faithful embedding, and accurate verification018
in embedding space. To address these chal-019
lenges, we introduce E-Verify, a lightweight020
framework that resolves them through three021
specially designed modules, each aligned with022
a specific stage of the paradigm and designed023
to preserve scalability and efficiency. Experi-024
ments demonstrate that E-Verify significantly025
improves both decomposition and verification026
efficiency while maintaining competitive accu-027
racy. These results confirm that the proposed028
paradigm enables scalable and fine-grained fac-029
tuality verification with minimal performance030
trade-offs.031

1 Introduction032

Large language models (LLMs) have demonstrated033

remarkable capabilities in text generation tasks034

(Mann et al., 2020; Li et al., 2024; Iqbal et al.,035

2024). Nonetheless, LLMs often generate content036

with hallucinations, including incorrect dates, nu-037

merical errors, and fabricated relationships, which038

can mislead decision-making and exacerbate mis-039

information spread (Ji et al., 2023; Bang et al.,040

2023; Sadasivan et al., 2023). This raises an urgent041

need for factuality verification systems that can042

NLI model
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Figure 1: The top half shows the traditional Decompose-
Then-Verify approach with costly pairwise NLI in-
ference. The bottom half presents our proposed
Decompose-Embed-Interact paradigm, which performs
efficient verification via alignment in embedding space.

evaluate the factual consistency of LLM-generated 043

content, especially in knowledge-intensive scenar- 044

ios (Panchendrarajan and Zubiaga, 2024; Si et al., 045

2024; Atanasova, 2024). 046

A dominant line of research in factuality verifica- 047

tion adopts the Decompose-Then-Verify paradigm, 048

shown in Figure 1 (top half), which decomposes 049

generated text into atomic facts and verifies them 050

against reference sources using LLMs or natu- 051

ral language inference (NLI) models (Zhang and 052

Bansal, 2021; Chern et al., 2023; Zhao et al., 2023; 053

Tang et al., 2024). While this paradigm enhances 054

granularity and interpretability, the inherent pair- 055

wise verification—where each fact must be individ- 056

ually compared to all reference segments—leads to 057

quadratic computational overhead, which quickly 058

becomes prohibitively expensive for long genera- 059

tions, posing a critical obstacle to scalability. 060

We begin with the observation that atomic facts 061

are typically short and structurally simple, making 062

them well-suited for semantic embedding. This 063

insight motivates a shift in verification strategy: 064

instead of performing pairwise reasoning at the 065

text level, we shift verification to alignment in 066

embedding space. To this end, we propose the 067

Decompose-Embed-Interact paradigm, shown in 068
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Figure 1 (bottom half), which reframes factuality069

verification as a modular process of atomic decom-070

position, independent embedding, and lightweight071

interaction. By encoding facts into dense vectors072

and verifying them efficiently in embedding space,073

this paradigm eliminates the need for costly LLM074

or NLI-based cross-encoding, enabling scalable075

and fine-grained consistency assessment.076

While the proposed paradigm theoretically en-077

ables scalable factuality verification, its practical078

implementation poses several concrete challenges:079

how to decompose long-form text efficiently, how080

to preserve factual precision in embeddings, and081

how to conduct accurate verification in embedding082

space. To address these issues, we introduce E-083

Verify—an Efficient and Embedding-based Factu-084

ality Verification framework for LLMs. E-Verify085

operationalizes the proposed paradigm through086

three carefully designed modules: (1) A sentence-087

level atomic decomposer based on a fine-tuned088

small language model (SLM) improves decom-089

position efficiency for long-form text; (2) A Bi-090

Encoder embedder augmented with Pooling-based091

Multi-Head Attention enhances the factual fidelity092

of atomic fact embeddings beyond simple pooling;093

(3) A lightweight Multi-Feature Interaction Module094

verifies consistency through efficient embedding-095

level alignment, capturing both surface-level match-096

ing and directional factual discrepancy.097

Experimental results confirm the effectiveness098

of our framework, demonstrating substantial gains099

in decomposition and verification efficiency while100

maintaining competitive accuracy. Importantly, our101

study reveals a key insight: embedding models,102

when paired with structured atomic decomposition103

and lightweight interaction modules, can deliver104

fine-grained factual verification performance pre-105

viously thought to require deep cross-encoding—106

highlighting the potential of E-Verify as a scalable107

alternative to traditional NLI-based pipelines.108

Our contributions can be summarized as:109

• We introduce a novel Decompose-Embed-110

Interact paradigm that reframes factuality ver-111

ification as an embedding-native task, trans-112

forming costly pairwise verification into effi-113

cient embedding-space alignment.114

• We instantiate this paradigm in E-Verify, a115

lightweight and scalable framework that oper-116

ationalizes embedding-native verification and117

overcomes key practical challenges, enabling118

efficient process.119

• Experiments demonstrate that E-Verify sub- 120

stantially improves verification efficiency 121

while maintaining strong accuracy, validating 122

the paradigm’s practical value. 123

2 Related Works 124

2.1 Hallucinations in LLMs 125

Hallucinations in LLMs, where models generate 126

non-factual content such as temporal inconsisten- 127

cies, numerical errors, or fabricated relationships, 128

pose significant challenges to their reliability, par- 129

ticularly in knowledge-intensive tasks (Huang et al., 130

2023). Current strategies to mitigate hallucinations 131

include training-phase interventions (e.g., knowl- 132

edge distillation) (Gekhman et al., 2024; Abbas 133

et al., 2023; McDonald et al., 2024; Huang et al., 134

2022), retrieval-augmented generation (RAG) ap- 135

proaches that integrate external knowledge dur- 136

ing inference (Ram et al., 2023; Gao et al., 2022; 137

Lewis et al., 2020), and post-hoc verification meth- 138

ods to assess factual consistency after text gen- 139

eration (Manakul et al., 2023; Dhuliawala et al., 140

2023; Maynez et al., 2020). While these meth- 141

ods aim to reduce hallucinations from various per- 142

spectives, another direction centers on factuality 143

verification through explicit consistency checking 144

against trusted reference sources. 145

2.2 Factuality Verification 146

Factuality verification, also referred to as fact- 147

checking, typically involves comparing generated 148

content with a trusted reference source. FactScore 149

(Min et al., 2023) proposed a two-stage method 150

that was later abstracted into the widely adopted 151

Decompose-Then-Verify paradigm: first decompos- 152

ing the generated text into atomic facts and then 153

verifying each fact against references. An atomic 154

fact refers to a minimal, self-contained unit that 155

expresses a single verifiable proposition. Recent 156

methods have extended this paradigm in various di- 157

rections. FGLR (Stacey et al., 2024) enhances NLI- 158

based reasoning by generating auxiliary premise 159

facts, while FineSumFact (Oh et al., 2025) uses 160

fine-grained LLM feedback to supervise factuality 161

in summarization. While this paradigm improves 162

granularity, it suffers from poor scalability due to 163

reliance on costly LLM APIs and quadratic com- 164

plexity in pairwise verification between facts and 165

references. MiniCheck (Tang et al., 2024) explores 166

a more efficient solution by training a small NLI 167

verifier on synthetic data, significantly reducing 168
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inference cost. While it eliminates dependency on169

LLM APIs, it still performs pairwise verification170

between facts and references, which restricts scala-171

bility when processing long outputs.172

3 Decompose-Embed-Interact Paradigm173

We begin with a central observation: atomic facts174

are structurally simple and semantically compact,175

typically taking the form of short declarative sen-176

tences expressing a single verifiable proposition177

(see Figure 2, Stage 1). This localized, context-178

independent structure aligns well with modern sen-179

tence embedding models, which are designed to180

encode bounded propositions into fixed-length vec-181

tors. Such simplicity allows atomic facts to be182

faithfully compressed into embeddings with min-183

imal semantic loss, making factuality verification184

possible through lightweight embedding-level inter-185

actions. Crucially, this enables scalable verification186

by avoiding the quadratic cost of cross-encoding187

each reference-fact pair.188

Motivated by this observation, we propose189

the Decompose-Embed-Interact paradigm, which190

reframes factuality verification as a modular,191

embedding-native process. Given generated con-192

tent G and reference material R, the process un-193

folds in three stages:194

Decompose: Decompose G and R into atomic fact195

sets,196

FG = {fG
1 , . . . , fG

KG
} = Decompose(G),197

FR = {fR
1 , . . . , fR

KR
} = Decompose(R),198

where fG
i and fR

j denote the i-th and j-th atomic199

fact extracted from G and R, respectively, and KG,200

KR are the total number of facts from each source.201

Embed: Independently encode each atomic fact202

into a dense semantic embedding,203

hG
i = Embed(fG

i ), hR
j = Embed(fR

j ),204

where hG
i ∈ Rd and hR

j ∈ Rd represent the d-205

dimensional embeddings of the i-th generated fact206

and the j-th reference fact, respectively.207

Interact: Assess factual consistency through oper-208

ations in the embedding space,209

FactScorej,i = Interact(hR
j ,h

G
i ),210

where FactScorej,i ∈ (0, 1) indicates the degree to211

which the generated fact fG
i is supported by the212

reference fact fR
j .213

4 E-Verify 214

While the proposed paradigm provides a concep- 215

tual blueprint for efficient verification in embed- 216

ding space, its practical implementation poses three 217

key challenges: (1) achieving efficient decompo- 218

sition of long-form text, (2) preserving factual fi- 219

delity during embedding, and (3) verifying factual 220

consistency via accurate embedding-level interac- 221

tions. We present E-Verify, addressing these chal- 222

lenges through three carefully designed modules, 223

as illustrated in Figure 2. We provide detailed de- 224

scriptions of each component below, with imple- 225

mentation settings provided in Appendix A. 226

4.1 Decomposer: Sentence-Level Atomic Fact 227

Extraction 228

The use of SLMs to replace LLMs has become a 229

common practice across many NLP tasks to im- 230

prove efficiency. However, we find that applying 231

SLMs directly to factual decomposition, especially 232

on long-form text, often leads to incomplete ex- 233

traction or hallucinated facts. To mitigate this, 234

we adopt a sentence-level decomposition strategy 235

that reduces contextual hallucination and improves 236

atomic fact fidelity. 237

We segment the input text (generated content 238

and reference material) into sentences using Stanza 239

(Qi et al., 2020), denoted as S = {s1, s2, ..., sn}, 240

where n is the total number of sentences. Each 241

sentence sj ∈ S is individually processed by the 242

SLM to extract atomic facts Fj , and these are ag- 243

gregated into a unified fact set F =
⋃n

j=1 Fj = 244

{f1, f2, . . . , fK}, where K is the total number of 245

atomic facts. 246

4.2 Embedder: Context Encoding with 247

Token-Level Attention Pooling 248

The Embedder encodes atomic facts into dense 249

vector representations to enable efficient factuality 250

verification. Traditional BERT-based sentence em- 251

bedding methods, such as using the [CLS] token 252

or mean pooling (Reimers, 2019), often fail to cap- 253

ture fine-grained semantic nuances that are crucial 254

for distinguishing subtle factual differences. To 255

address this, we adopt a Pooling-based Multi-Head 256

Attention (PMA) mechanism (Liao et al., 2024; 257

Lee et al., 2019) built on top of the BERT encoder 258

to enhance factuality-oriented embeddings. 259

Given an atomic fact set F = {f1, f2, . . . , fK}, 260

K is the total number of atomic facts, each fact 261

fi ∈ F is tokenized and encoded by BERT into 262
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Figure 2: Overview of the E-Verify framework for factuality verification. The system follows a three-stage process:
Decompose, Embed, and Interact. In the Decompose stage, the LLM-generated text and the corresponding
reference text from Wikipedia are processed using a SLM decomposer. In the Embed stage, these atomic facts are
encoded using a Bi-Encoder, with the use of PMA to capture different embedding features. In the Interact stage,
the embeddings undergo multi-feature interactions through feature-based processing, producing fact scores to assess
the factuality of the content.

token embeddings Ti = {t1, t2, . . . , tl}, where l is263

the number of tokens in fi. Each token tk ∈ Ti264

is a d-dimensional vector. The PMA module then265

aggregates Ti to produce a multi-view sentence266

embedding:267

h = LN(MHA(q, Ti, Ti) + q),268

Hi = LN(h+ FFN(h)),269

where LN denotes Layer Normalization, MHA is270

Multi-Head Attention, and q is a learnable query271

vector dynamically aggregating token-level infor-272

mation. We use two learnable queries within273

PMA to produce multi-view embeddings, denoted274

as Hi[0] and Hi[1], that preserve richer contex-275

tual information. These embeddings are later as-276

signed distinct roles during factuality verification,277

enabling fine-grained modeling of factual align-278

ment and discrepancy signals.279

4.3 MFIM: Embedding-Space Interaction for280

Factuality Verification281

Traditional sentence similarity models often rely282

on cosine similarity between embeddings. How-283

ever, cosine similarity is symmetric and fails to284

capture the directional nature of factual entailment,285

which is essential for distinguishing support and286

non-support in factuality verification. To address287

this, we design the Multi-Feature Interaction Mod- 288

ule (MFIM) as a lightweight verifier that produces a 289

scalar fact score directly from embedding represen- 290

tations. This design aligns with our paradigm-level 291

goal of replacing expensive pairwise verification 292

with scalable vector operations. 293

We observe two major error types in factual con- 294

sistency: (1) surface-level mismatches (e.g., entity 295

names, numbers, dates), and (2) subtle factual addi- 296

tions or omissions requiring directional reasoning 297

to determine whether generated content is suffi- 298

ciently supported by the reference. While simple 299

pairwise alignment in embedding space (e.g., con- 300

catenation) effectively addresses type (1), it fails to 301

capture the strong directional factual entailment be- 302

havior observed in NLI tasks. To close this gap, we 303

draw inspiration from difference-based signal pro- 304

cessing, where subtractive operations emphasize 305

residual discrepancies by eliminating shared com- 306

ponents. Accordingly, we explicitly introduce a dis- 307

crepancy feature to model directional differences 308

between reference and generated embeddings. 309

Thus, we define two features: the Pairwise Fea- 310

ture P and the Discrepancy Feature D: 311

P = MLPP (Concat(Hr[0], Hg[0])), 312

D = MLPD(Hr[1]−Hg[1]), 313
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where Hr and Hg are multi-view embeddings of314

the reference and generated atomic fact.315

The final fact score is computed by fisrt concate-316

nating these features and then passing the fused317

vector through a lightweight linear layer with Sig-318

moid activation:319

FactScore = Sigmoid(Linear([P ;D])) ∈ (0, 1).320

Our ablation studies (Section 5.5) further confirm321

that both features offer complementary signals and322

are critical to optimal verification performance.323

4.4 Computational Complexity Analysis324

In this section, we theoretically analyze the com-325

putational efficiency of the E-Verify framework.326

We divide the analysis into two main components:327

the Decomposer, which is responsible for atomic328

fact extraction, and the Checker, which handles329

embedding and interaction.330

4.4.1 Decomposer Complexity Analysis331

E-Verify utilizes a supervised fine-tuned SLM to332

perform atomic fact decomposition at the sentence333

level. The primary computational cost lies in apply-334

ing the decomposer to each sentence, as sentence335

segmentation itself is negligible.336

Given that the input sequence of T tokens is337

partitioned into N sentences, language models em-338

ploying self-attention mechanisms (Vaswani, 2017)339

incur quadratic computational complexity O(T 2).340

E-Verify addresses this challenge through sentence-341

level decomposition. By constraining attention342

computations to individual sentences with aver-343

age length t̄ = T
N ≪ T , the overall complexity344

reduces to O(Nt̄2). This design drastically re-345

duces global attention costs by restricting atten-346

tion computations to shorter text segments, making347

E-Verify substantially more efficient than conven-348

tional passage-level LLM processing.349

4.4.2 Checker Complexity Analysis350

The Checker module consists of the Embedder and351

the MFIM, and its computational complexity is352

determined by two main components: embedding353

computation and factuality verification computa-354

tion. We denote Kg and Kr as the numbers of355

atomic facts extracted from the generated content356

and the reference material, respectively.357

Embedding Computation. Embedder employs358

a Bi-Encoder structure, enabling independent en-359

coding of atomic facts before interaction. Assum-360

ing the BERT encoder has a computational com-361

plexity of O(B) per atomic fact, the total embed- 362

ding complexity is O((Kg +Kr)B). 363

Factuality Verification Computation. The 364

MFIM performs lightweight pairwise interactions 365

between atomic fact embeddings in the embedding 366

space. Each generated atomic fact is compared 367

against all reference atomic facts, with verification 368

complexity of O(KgKrM), where M denotes the 369

computational complexity of the MLP. 370

Thus, the overall computational complexity of 371

the Checker module is O((Kg+Kr)B+KgKrM). 372

For a standard NLI-based model, each generated 373

atomic fact is compared against reference material 374

using cross-encoding. Assuming the computational 375

complexity per cross-encoding is O(B), the total 376

complexity becomes O(KgKrB). 377

Key Insight. While NLI models incur quadratic 378

complexity at the transformer computation level, 379

E-Verify shifts the costly inferences to lightweight 380

MLP operations. Since MLPs are substantially 381

more efficient than transformer encoders, E-Verify 382

significantly reduces computational overhead. 383

5 Experiments 384

To evaluate the effectiveness of the E-Verify frame- 385

work, we conduct experiments across four key di- 386

mensions: Decomposition Quality: Compare var- 387

ious models to identify the most effective atomic 388

fact decomposer. Factuality Verification: Assess 389

the Checker module and the end-to-end E-Verify 390

framework against strong baselines. Efficiency: 391

Analyze runtime and memory efficiency across all 392

stages of the E-Verify pipeline. Ablation Study: 393

Examine the contributions of core components 394

such as PMA and MFIM. The detailed experiment 395

settings are provided in Appendix B. 396

5.1 Datasets 397

wiki-en-sentences: A sentence-level factuality de- 398

tection dataset containing pairs of independent 399

Wikipedia sentences. 400

wiki-bio-hallu (Manakul et al., 2023): A halluci- 401

nation detection dataset for biography generation, 402

consisting of a generated biography and its corre- 403

sponding Wikipedia source. The dataset includes 404

a simple subset, which contains controlled factual 405

errors in numbers, time, entities, or events; and 406

a hard subset, in which errors naturally occur in 407

LLM-generated biographies. 408

CNN (Tang et al., 2024): A fact verification dataset 409

based on CNN news articles. Each instance in- 410
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cludes a reference article and a generated summary411

that may contain factual errors.412

Reveal (Tang et al., 2024): A dataset adapted from413

REVEAL (Jacovi et al., 2024), originally designed414

for evaluating reasoning chains in open-domain415

QA, which we use in our setting as (passage, fact)416

pairs with binary factuality labels.417

5.2 Decomposition Capability Evaluation418

We evaluate the decomposition performance of419

GPT-4o with several open-source models, Qwen2-420

7B (Bai et al., 2023), Qwen2.5-0.5B (Yang et al.,421

2024) and Flan-T5 (Chung et al., 2022), on the422

wiki-bio-hallu dataset. The evaluation metrics in-423

clude Precision, Recall, and F1 Score. Precision424

measures the factual correctness of the extracted425

facts. Specifically, for each fact output by the de-426

composer, we check whether it is semantically sup-427

ported by the original content. Recall measures428

the completeness of the decomposition. For each429

ground-truth fact, we check whether it is semanti-430

cally entailed by any of the extracted facts. This431

reflects how much of the original factual content is432

successfully recovered. F1 Score is computed as433

the harmonic mean of Precision and Recall.434

Model Granularity F1 Precision Recall

GPT-4o* Passage 0.9910 0.9830 0.9991
Qwen2-7B Sentence 0.9797 0.9799 0.9795
Qwen2-7B Passage 0.9703 0.9875 0.9536
Qwen2.5-0.5B Sentence 0.9676 0.9628 0.9725
Flan-T5 Sentence 0.9486 0.9512 0.9460
Qwen2.5-0.5B Passage 0.8837 0.8920 0.8754

Table 1: Performance comparison of different de-
composers under different decomposition granularities.
*GPT-4o was evaluated using few-shot prompting, while
other open-source models were supervised fine-tuned
using synthetic data generated by GPT-4o.

As shown in Table 1, GPT-4o achieves near-435

perfect results under few-shot prompting, serving436

as an upper bound for accuracy. Among fine-tuned437

open-source models, sentence-level decomposition438

consistently yields higher recall than passage-level439

variants, highlighting its advantage in recovering440

comprehensive factual content. Notably, Qwen2-441

7B exhibits strong performance but suffers a recall442

drop on longer inputs, indicating potential limi-443

tations in long-context handling. Qwen2.5-0.5B444

achieves a favorable balance between quality and445

efficiency at the sentence level, making it the most446

suitable choice for E-Verify’s decomposition mod-447

ule in large-scale scenarios.448

5.3 Factuality Verification Performance 449

Assessment 450

In this section, we validate the factuality verifica- 451

tion ability of E-Verify through two experiments. 452

The first experiment focuses on assessing the effec- 453

tiveness of the Checker. The second experiment 454

evaluates the full E-Verify framework, incorporat- 455

ing both the Decomposer and Checker. A detailed 456

case study is provided in Appendix D. 457

5.3.1 Experiment on Checker 458

To evaluate the performance of the Checker mod- 459

ule, we compare E-Verify against several non-LLM 460

baselines, including NLI-based and Bi-Encoder 461

models. We conduct experiments on three in- 462

domain datasets (wiki-en-sentences, wiki-bio- 463

hallu (simple), and wiki-bio-hallu (hard)) and 464

two out-of-domain (OOD) datasets (CNN and Re- 465

veal). E-Verify is trained on a Wikipedia-style 466

dataset, making the former the primary benchmark 467

for in-domain evaluation, while the latter assesses 468

generalization under OOD cases. 469

As shown in Table 2, E-Verify achieves the 470

strongest performance among all non-LLM base- 471

lines on the in-domain datasets, attaining the high- 472

est accuracy and Macro-F1 Scores, particularly 473

on the simpler factuality sets. On more challeng- 474

ing datasets, such as wiki-bio-hallu (hard) and 475

the OOD cases, E-Verify remains competitive— 476

slightly trailing MiniCheck in overall accuracy 477

but outperforming traditional NLI and Bi-Encoder 478

models in Macro-F1, indicating stronger handling 479

of class imbalance and fine-grained distinctions. 480

Notably, Bi-Encoder models exhibit acceptable ac- 481

curacy but consistently lower Macro-F1, suggest- 482

ing difficulty in capturing subtle factual discrep- 483

ancies. While LLMs such as GPT-4o maintain 484

consistently high performance across all datasets, 485

they incur substantial computational overhead (e.g., 486

GPT-4o consumed 5.03M tokens, costing $18.86 487

USD), making them less suitable for scalable or 488

cost-sensitive verification scenarios. 489

5.3.2 Experiment on E-Verify 490

In this section, we assess the end-to-end reliabil- 491

ity of E-Verify in factuality scoring, using the 492

wiki-bio-hallu (hard) dataset comprising LLM- 493

generated biographies with human-annotated factu- 494

ality scores. We evaluate various combinations of 495

decomposers and checkers, and compute alignment 496

with ground-truth using Pearson Correlation and 497

Mean Absolute Error (MAE). 498
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Types Models
wiki-en-sentences wiki-bio-hallu

(simple)
wiki-bio-hallu

(hard) CNN* Reveal*

Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1 Acc Macro-F1

Random 0.4956 0.4929 0.5101 0.4997 0.5011 0.5011 0.5107 0.4769 0.5483 0.5197

L
GPT-4o 0.9772 0.9768 0.9974 0.9972 0.9480 0.9480 0.9240 0.9010 0.8889 0.8705
Qwen2-7B 0.9866 0.9862 0.9257 0.9143 0.7974 0.7920 0.8551 0.7871 0.8527 0.8425

X
DeBERTa-mnli-fever-anli 0.9028 0.8962 0.7787 0.6985 0.5959 0.5375 0.7340 0.4841 0.6280 0.6271
nli-deberta-v3-base 0.9324 0.9289 0.8199 0.7846 0.6939 0.6877 0.7197 0.4699 0.7705 0.7604
MiniCheck-DeBERTa 0.9160 0.9155 0.7697 0.7678 0.7289 0.7151 0.7743 0.7435 0.8937 0.8809

B

BERTScore 0.5776 0.3661 0.6519 0.3946 0.4904 0.3291 0.7173 0.4177 0.3068 0.2348
BGE-en-base-v1.5 0.6562 0.5422 0.6519 0.3946 0.4934 0.3354 0.7173 0.4177 0.3092 0.2387

Ours 0.9706 0.9697 0.8655 0.8480 0.6631 0.6581 0.7197 0.6945 0.8188 0.8007

Table 2: Performance comparison of various models across different datasets. The table presents Accuracy, Macro
F1 Score for different models, including random, LLM-based models, Cross-Encoders, Bi-Encoders, and our
proposed method. The best results are marked in bold, and the next best results are underlined. L stands for LLM,
X stands for Cross-Encoder, and B stands for Bi-Encoder. Datasets marked with * are considered out-of-distribution
(OOD) with respect to our method. Details of baseline models are provided in Appendix B.2.

Decomposer Checker Pearson ↑ MAE ↓

GPT-4o

GPT-4o 0.9650 0.0783
Qwen2-7B 0.9524 0.1040
DeBERTa-mnli-fever-anli 0.6528 0.3498
nli-deberta-v3-base 0.7394 0.1692
MiniCheck-DeBERTa 0.8100 0.2132
BGE-en-base-v1.5 0.1739 0.6220
Ours 0.7452 0.1792

Ours
Qwen2-7B 0.9171 0.1319
Ours 0.7386 0.1646

Table 3: Performance of different decomposers and
checkers on the wiki-bio-hallu (hard) dataset. Pearson
Correlation and Mean Absolute Error (MAE) serve
as evaluation metrics. Bold indicates the best results,
and underlined indicates the next best results.

As shown in Table 3, LLM-based pipelines (e.g.,499

GPT-4o and Qwen2-7B) unsurprisingly achieve the500

strongest overall performance, but at substantial501

computational cost—serving primarily as upper502

bounds in efficiency-constrained scenarios.503

Among non-LLM models, MiniCheck-504

DeBERTa obtains the highest Pearson score,505

while our E-Verify checker achieves the lowest506

MAE across all non-LLM settings, demonstrating507

higher precision in capturing factual consistency.508

Importantly, E-Verify maintains stable perfor-509

mance regardless of whether it is paired with a510

high-resource decomposer (GPT-4o) or its own511

lightweight decomposer, demonstrating both512

robustness and modular adaptability. Compared to513

traditional NLI models and embedding-based base-514

lines (e.g., BGE), E-Verify consistently achieves515

better correlation and lower error, confirming its516

stronger sensitivity to subtle factual discrepancies517
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Figure 3: Computational efficiency comparison. The
left plot shows the total decomposition time, while the
right plot presents the total factuality verification time.
All times reflect GPU wall-clock inference time, except
GPT-4o which reflects external API latency. Our method
achieves the lowest computation time in both stages.

and more reliable factuality assessment—serving 518

as a scalable alternative to NLI-based pipelines. 519

5.4 Computational Efficiency Analysis 520

In this section, we analyze the computational effi- 521

ciency of E-Verify. The experiment is conducted 522

on the wiki-bio-hallu (hard) dataset. 523

Efficient Atomic Fact Extraction in Sentence- 524

Level. As shown in Figure 3 (left), E-Verify 525

achieves a significant 60× speedup over GPT-4o 526

API calls and a 3.21× speedup over Qwen2-7B in 527

total decomposition time. This gain is not solely 528

attributable to model downsizing, but of the finer- 529

grained decomposition strategy. By performing 530

sentence-level atomic decomposition with a fine- 531

tuned SLM, E-Verify avoids the need for global 532

attention over long-form text and enables parallel, 533

lightweight processing of individual sentences. 534
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Figure 4: Overall time as the number of generated ar-
ticles to verify increases, assuming a fixed reference
article. E-Verify yields the lowest overall cost after
amortizing the initial reference encoding cost, even prior
to completing the first verification.

Lightweight Verification in Embedding Space.535

As shown in Figure 3 (right), E-Verify completes536

factuality verification in just 15.8 seconds—a 22×537

speedup over nli-deberta and 46× over MiniCheck-538

DeBERTa. Unlike previous methods that rely539

on cross-encoding every reference-fact pair, our540

framework performs lightweight, embedding-space541

inference with fixed-size vector inputs and fully542

reusable reference representations. Notably, 98.4%543

of the verification time stems from embedding com-544

putation, which is amenable to precomputation and545

caching. The actual interaction takes only 0.25 sec-546

onds, illustrating how our decoupled design trans-547

forms factuality verification from a high-cost infer-548

ence into an efficient embedding interaction.549

Scalability Advantage under Real-World Verifi-550

cation Scenarios. We further evaluate E-Verify551

under a realistic verification workload, where a552

static reference article is used to verify a growing553

number of generated articles. This setup reflects554

real-world scenarios where the reference source is555

typically static and trusted, while LLM-generated556

content varies dynamically. As shown in Figure 4,557

our method exhibits the lowest growth rate in to-558

tal computation time, growing only 20% as fast as559

Qwen2-7B+nli-deberta. Although our method in-560

curs a small initial cost from reference processing,561

this cost is quickly amortized; E-Verify becomes562

the most efficient system even before completing563

the first article and maintains this advantage as564

the number of verifications grows. These results565

demonstrate that E-Verify is practically efficient566

and deployable in time-sensitive applications. A567

detailed cost breakdown is provided in Appendix C.568

5.5 Ablation Studies569

We conduct ablation studies on the Checker module570

to evaluate the effect of the Pooling-based Multi-571

wiki-en-sentences wiki-bio-hallu
(simple)

Acc Macro-F1 Acc Macro-F1

E-Verify 0.9706 0.9697 0.8655 0.8480

-PMA+Pool 0.9058 0.9004 0.7783 0.7149
-MFIM+Cosine 0.8190 0.8119 0.7482 0.6503
-PMA-MFIM 0.6562 0.5422 0.6519 0.3946
MFIM(only P) 0.9520 0.9504 0.8492 0.8309
MFIM(only D) 0.9546 0.9530 0.8642 0.8463

Table 4: Ablation study results comparing different con-
figurations for factuality verification across two datasets.

Head Attention (PMA) and the Multi-Feature Inter- 572

action Module (MFIM). 573

As shown in Table 4, replacing PMA with global 574

pooling methods resultes in a significant drop in 575

accuracy and F1 Score, indicating the critical role 576

of attention-based token aggregation in preserv- 577

ing fine-grained semantic information. Replacing 578

the MFIM with cosine similarity causes a notable 579

decline in performance, particularly in Macro-F1, 580

which reflects degraded ability to handle nuanced 581

factual inconsistencies. This suggests that sim- 582

ple similarity metrics are insufficient for modeling 583

entailment-style relations. Eliminating both PMA 584

and MFIM yields the weakest overall performance, 585

confirming that their combination is essential for 586

robust factuality verification. We further evaluate 587

the impact of the MFIM’s internal features: the 588

pairwise feature P and the discrepancy feature D. 589

While D alone performs closest to the full model, 590

the best results are achieved when both P and D are 591

used together, highlighting their complementary 592

roles in factuality verification. This underscores 593

the importance of explicit discrepancy modeling in 594

capturing subtle fact-level mismatches that may be 595

missed by direct embedding alignment alone. 596

6 Conclusion 597

We propose E-Verify, a lightweight framework that 598

redefines factuality verification through a novel 599

Decompose-Embed-Interact paradigm. By decou- 600

pling decomposition, embedding, and interaction, 601

E-Verify replaces costly cross-encoding with ef- 602

ficient embedding-space alignment. Experiments 603

show that E-Verify significantly improves computa- 604

tional efficiency while maintaining competitive ac- 605

curacy. These results validate the paradigm’s practi- 606

cal value and highlight the potential of embedding- 607

native verification as a scalable solution for real- 608

world factuality verification tasks. 609

8



Limitations610

Despite the strong empirical performance of the611

E-Verify framework on factuality verification tasks,612

several limitations remain:613

Inference Limitation: E-Verify employs a Bi-614

Encoder-based design that prioritizes efficiency615

by independently encoding the generated content616

and reference materials. While this architecture617

greatly accelerates verification, it inevitably intro-618

duces semantic compression, where subtle factual619

nuances may be lost during fixed-length embed-620

ding. E-Verify may struggle with complex rea-621

soning tasks such as causal inference, temporal622

reasoning, or conditional relationships, where cap-623

turing rich token-level interactions is critical. Such624

deep reasoning capabilities are better modeled by625

Cross-Encoder architectures, which allow joint rep-626

resentation learning.627

Granularity Limitation: E-Verify verifies fac-628

tual consistency at the atomic fact level by de-629

composing text into discrete factual units. While630

atomic-level verification ensures interpretability,631

it inherently abstracts away broader discourse de-632

pendencies. These include implicit relationships633

among multiple facts, or factual consistency that634

depends on paragraph-level context. Handling such635

inter-fact dependencies or hierarchical factual struc-636

tures remains an open challenge for future work.637
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Appendix816

A Framework Implementation Details817

A.1 Decomposer Training Settings818

Our decomposer is based on Qwen/Qwen2.5-0.5B-819

Instruct1. The base model undergoes supervised820

fine-tuning on all model parameters using the llama-821

factory framework2, with a learning rate of 2.0e-5,822

batch size of 4, and trained for 3 epochs.823

The training data is sourced from michae-824

lauli/wiki_bio3, from which 5,000 samples are ran-825

domly selected as the foundational dataset. The826

Wiki paragraphs are first split into sentences using827

Stanza, and each sentence is then decomposed by828

GPT-4o to generate the training set.829

A.2 Checker Training Settings830

We conduct end-to-end joint training of the Embed-831

der and Multi-Feature Interaction Module (MFIM).832

The Embedder is responsible for generating high-833

quality sentence embeddings using the BERT834

model bge-base-en-v1.54. The MFIM then com-835

putes fact scores based on these embeddings.836

We employ two loss functions: Triplet Loss837

and Binary Cross-Entropy Loss. The objective838

of Triplet Loss is to optimize fact scores through839

supervised learning of triplets, ensuring that the840

factual score of the anchor sentence is higher when841

paired with a highly factual positive sentence while842

being lower when paired with a negative sample.843

Ltriplet = max(0, α+ FactScore(Hanc, Hneg)844

−FactScore(Hanc, Hpos))845

where α denotes the margin, set to 0.5. Hanc,846

Hpos, and Hneg represent the embeddings of the847

anchor, positive, and negative samples, respectively,848

with fact scores computed via the MFIM.849

Simultaneously, BCE Loss is employed for su-850

pervised training. The FactScore output by the851

MFIM is a value in the range (0, 1), indicating the852

degree of alignment between the generated content853

G and the reference content R. The objective is854

to minimize the difference between the predicted855

score and the ground-truth label y ∈ {0, 1}:856

1https://huggingface.co/Qwen/Qwen2.5-0.
5B-Instruct

2https://github.com/hiyouga/LLaMA-Factory
3https://huggingface.co/datasets/michaelauli/

wiki_bio
4https://huggingface.co/BAAI/bge-base-en-v1.5

Lbce = − 1

N

N∑
i=1

[yi · log(FactScorei)+ 857

(1− yi) · log(1− FactScorei)] 858

The overall joint training objective function is 859

formulated as the sum of Triplet Loss and BCE 860

Loss: 861

L = Ltriplet + Lbce 862

The training process is conducted in two phases. 863

In the first phase, the parameters of the BERT 864

model are frozen, and only the PMA module within 865

the Embedder and the MFIM are updated. During 866

this phase, the learning rate is set to 5e-5, the batch 867

size is 32, and the model is trained for 8 epochs. In 868

the second phase, we unfreeze the BERT model and 869

apply LoRA to train the final two layers of BERT 870

jointly with the PMA and MFIM modules. The 871

learning rate remains at 5e-5, and the batch size 872

stays at 32. This phase further fine-tunes the model 873

to improve performance. The training dataset is 874

wiki-en-sentences (see Appendix B.1). 875

B Experiment Settings 876

Our experiments are conducted on a system run- 877

ning Ubuntu 22.04, equipped with an NVIDIA 878

RTX 4090 GPU, an AMD Ryzen 9 9950X CPU, 879

128GB RAM, and software dependencies, includ- 880

ing CUDA 12.4, pytorch 2.4.1, transformers 4.49.0 881

and vllm 0.6.6.post1. 882

B.1 Datasets 883

wiki-en-sentences: A large-scale factuality detec- 884

tion dataset constructed from 500,000 Wikipedia 885

sentences selected from wikipedia-en-sentences5. 886

We employ Qwen2-7B to generate both positive 887

and negative samples via prompting. The final 888

training set consists of 2,749,030 triplets, with 889

50,000 sentence pairs used for validation and 5,000 890

for testing. We train our E-Verify model on this 891

dataset. 892

wiki-bio-hallu (Manakul et al., 2023): A dataset 893

for evaluating hallucinations in LLM-generated bi- 894

ographies, containing 238 Wikipedia biography ar- 895

ticles. We expanded this dataset with both sim- 896

ple and hard subset to enhance its applicability 897

in factuality verification. The simple subset con- 898

sists of controlled factual hallucinations generated 899

5https://huggingface.co/datasets/
sentence-transformers/wikipedia-en-sentences
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by GPT-4o (Hurst et al., 2024), with errors pri-900

marily focused on four categories: numbers, time,901

entities, or events. These controlled errors allow902

for targeted testing of factuality verification mod-903

els. In contrast, the hard subset is sourced from904

real-world LLM-generated biographies, which are905

more diverse and naturally prone to factual incon-906

sistencies. This dataset includes biographies pro-907

duced by a mix of closed-source models, such as908

GPT-3.5-Turbo, GPT-4o, Claude-3.5-Haiku, and909

Claude-3.5-Sonnet, as well as open-source mod-910

els, including Llama-2-7b, Llama-2-13b (Touvron911

et al., 2023), Qwen2-7B (Bai et al., 2023), and912

Qwen2.5-0.5B (Yang et al., 2024). The inclusion913

of diverse sources in the hard subset makes it more914

challenging and reflective of real-world factual dis-915

crepancies, compared to the simple subset. Each916

biography is also decomposed into atomic facts us-917

ing GPT-4o, with each fact being manually labeled918

for factual accuracy based on the corresponding919

Wikipedia biography of the individual.920

CNN (Tang et al., 2024): A fact verification dataset921

based on CNN news articles. It consists of 116922

CNN news articles, each paired with a correspond-923

ing summary that may contain factual errors. We924

prompt GPT-4o to perform atomic fact decomposi-925

tion on them, breaking down each fact into smaller,926

verifiable facts. Each atomic fact is then manually927

annotated to determine its factual accuracy.928

Reveal(Tang et al., 2024): A dataset adapted from929

REVEAL (Jacovi et al., 2024), originally designed930

for evaluating reasoning chains in open-domain931

QA, and used in our setting as (passage, fact) pairs932

with binary factuality labels. The dataset consists933

of 300 pairs of passages and corresponding facts.934

We decompose each fact and passage into atomic935

facts using GPT-4o, and each atomic fact is manu-936

ally labeled for factual accuracy.937

B.2 Baseline Models938

GPT-4o: A proprietary instruction-tuned large939

language model developed by OpenAI, designed940

for general-purpose reasoning, generation, and941

factuality-sensitive tasks. It is accessed via the942

OpenAI API.943

Qwen2-7B6: A 7B-parameter open-source LLM944

developed by Alibaba’s Qwen team. It is945

instruction-tuned for general-purpose alignment.946

DeBERTa-mnli-fever-anli7: A cross-encoder947

6https://huggingface.co/Qwen/
Qwen2-7B-Instruct

7https://huggingface.co/MoritzLaurer/

model fine-tuned from Microsoft’s DeBERTa-v3- 948

base on multiple datasets including MNLI, FEVER, 949

and ANLI. It is optimized for NLI and fact verifica- 950

tion tasks, serving as a strong baseline for sentence- 951

level factuality checking. 952

nli-deberta-v3-base8: A cross-encoder model fine- 953

tuned for NLI using datasets such as MNLI, SNLI, 954

and ANLI. It is used as a strong NLI-based factual- 955

ity checker baseline in our experiments. 956

MiniCheck-DeBERTa9 (Tang et al., 2024): A 957

DeBERTa-based model specifically fine-tuned for 958

long-form factuality verification, using annotated 959

hallucination datasets. It serves as a task-specific 960

cross-encoder baseline. 961

BGE-en-base-v1.510: A Bi-Encoder embedding 962

model from BAAI, pre-trained for text retrieval and 963

sentence similarity tasks. We use it as a semantic 964

similarity baseline to compute vector-based scores 965

between facts and references. 966

BERTScore(Zhang et al., 2019): A reference- 967

based evaluation metric that computes token-level 968

semantic similarity between candidate and ref- 969

erence texts using contextual embeddings from 970

BERT. It is widely used in generation evaluation. In 971

our setting, it serves as a lightweight, embedding- 972

based factuality checker baseline. 973

B.3 Decomposition Capability Evaluation 974

Settings 975

For ground-truth decomposition, we use GPT-4o to 976

produce atomic facts, which are then manually veri- 977

fied for factual accuracy. We further use Qwen2-7B 978

to assist in factuality judgment via prompted en- 979

tailment classification. GPT-4o’s decomposition 980

is done via few-shot prompting through API calls, 981

while other open-source models are fine-tuned us- 982

ing supervised fine-tuning (SFT). 983

Both sentence-level and passage-level training 984

datasets are generated by prompting GPT-4o. The 985

sentence-level training set contains 10,986 in- 986

stances, while the passage-level training set con- 987

tains 986 instances. 988

Due to context length limitations (512 tokens), 989

Flan-T5 is only trained for sentence-level decom- 990

position tasks. Qwen2.5-0.5B and Flan-T5 are fine- 991

tuned with full parameters, while Qwen2-7B is fine- 992

tuned using LoRA. The training uses a learning rate 993

DeBERTa-v3-base-mnli-fever-anli
8https://huggingface.co/cross-encoder/

nli-deberta-v3-base
9https://huggingface.co/lytang/

MiniCheck-DeBERTa-v3-Large
10https://huggingface.co/BAAI/bge-base-en-v1.5

12

https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/Qwen/Qwen2-7B-Instruct
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-base-mnli-fever-anli
https://huggingface.co/cross-encoder/nli-deberta-v3-base
https://huggingface.co/cross-encoder/nli-deberta-v3-base
https://huggingface.co/lytang/MiniCheck-DeBERTa-v3-Large
https://huggingface.co/lytang/MiniCheck-DeBERTa-v3-Large
https://huggingface.co/BAAI/bge-base-en-v1.5


of 2.0e-5 and runs for 3 epochs by llama-factory.994

B.4 Factuality Verification Performance995

Assessment Settings996

For long-context factuality verification, LLM-997

based approaches are provided with the entire refer-998

ence content as the premise input. Cross-Encoder999

models process the reference in overlapping chunks1000

of 500 characters with a 100-character stride to1001

handle length constraints. In contrast, Bi-Encoder-1002

based methods, including ours, use atomic facts1003

extracted from the reference as premise inputs. In1004

all setups, the hypothesis input consists of atomic1005

facts extracted from the generated content, ensur-1006

ing a consistent and fact-level comparison across1007

all model types.1008

B.5 Computational Efficiency Analysis1009

Settings1010

For the decomposition efficiency experiments,1011

GPT-4o is accessed via API calls, while both1012

Qwen2-7B and our decomposer model are exe-1013

cuted using vLLM (Kwon et al., 2023) for infer-1014

ence acceleration, configured with a GPU memory1015

utilization ratio of 0.9.1016

In the checker efficiency experiments, GPT-4o1017

is also evaluated through API access. Qwen2-7B1018

is accelerated using vLLM, while the other base-1019

lines, MiniCheck-DeBERTa, nli-deberta, and our1020

checker, are run using the transformers and pytorch1021

for inference.1022

C Efficiency Analysis1023

We begin by analyzing the decomposition and veri-1024

fication time per article or article pair based on ex-1025

perimental measurements from the wiki-bio-hallu1026

(hard) dataset. The decomposition time per article1027

is 0.2882 seconds for Qwen2-7B and 0.0897 sec-1028

onds for Qwen2.5-0.5B (Ours). For our method,1029

embedding takes 0.0073 seconds per article, and1030

interaction requires only 0.00013 seconds per arti-1031

cle pair. In contrast, the verification time per arti-1032

cle pair is 1.1037 seconds for Qwen2-7B, 0.38031033

seconds for MiniCheck-DeBERTa, and 0.1821 sec-1034

onds for nli-deberta.1035

Assuming a fixed reference article and x newly1036

generated articles, the overall verification time for1037

different Decomposer+Checker combinations is1038

provided in Table 5. For our framework that re-1039

quires decomposing and embedding the reference1040

content, the total time includes a one-time cost asso-1041

ciated with the single reference document, reflected1042

as an additional +1 term in the formulas. 1043

Compared to Qwen2-7B+NLI, our method 1044

Ours+Ours achieves a 4.84× reduction in per- 1045

article verification cost. Even when paired with 1046

a standard NLI verifier (Ours+NLI), our decom- 1047

position and embedding pipeline still provides a 1048

2.80× cost reduction. 1049

It is important to note that our method introduces 1050

a small initialization cost due to the need to decom- 1051

pose and embed the reference material. However, 1052

in most real-world factuality verification scenar- 1053

ios, the reference corpus is typically static, con- 1054

sisting of a fixed collection of trusted sources such 1055

as Wikipedia articles, curated news reports, scien- 1056

tific papers, or legal documents. These reference 1057

materials are stable and do not change with each 1058

generation request. As a result, both the decom- 1059

position outputs and embeddings for the reference 1060

content can be precomputed and cached offline, sig- 1061

nificantly reducing the online computational cost 1062

to only processing the newly generated content. 1063

Furthermore, under the wiki-bio-hallu dataset 1064

setup, the factuality verification task involves fixed 1065

one-to-one article comparisons. In NLI-based veri- 1066

fication methods, the generated content is decom- 1067

posed into atomic facts, while the reference con- 1068

tent is segmented into overlapping chunks (approx- 1069

imately 500 characters each with a 100-character 1070

overlap). Each atomic fact is then individually 1071

matched against all reference chunks to assess fac- 1072

tual consistency. On average, each generated biog- 1073

raphy contains 26 atomic facts, and each reference 1074

biography consists of around 4 chunks, resulting in 1075

approximately 108 fact-chunk pairs per article pair. 1076

This controlled setting maintains a moderate and 1077

fixed number of reference-fact pairs, and thus does 1078

not fully expose the quadratic complexity growth 1079

typically associated with NLI-based verification 1080

under large-scale or dense-generation scenarios. 1081

Nevertheless, even in this relatively mild verifi- 1082

cation setting, our lightweight decoupled architec- 1083

ture demonstrates substantial computational advan- 1084

tages, achieving significant efficiency gains over 1085

traditional NLI-based baselines. This highlights 1086

the scalability and robustness of E-Verify, suggest- 1087

ing even greater benefits when applied to larger, 1088

more complex fact-checking tasks where tradi- 1089

tional methods would suffer from severe pairwise 1090

verification explosion. 1091
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Decomposer+Check Decompose Time (s) Verification Time (s) Total Time (s)

Qwen2-7B + Qwen2-7B 0.2882x 1.1037x 1.3919x

Qwen2-7B + MiniCheck-DeBERTa 0.2882x 0.3803x 0.6685x

Qwen2-7B + nli-deberta 0.2882x 0.1821x 0.4703x

Ours + nli-deberta 0.0897x 0.1821x 0.2718x

Ours + Ours 0.0897(x+ 1) 0.0073(x+ 1) + 0.00013x 0.0970x+ 0.0969

Table 5: Verification time formulas for different Decomposer + Checker combinations under a fixed reference
setting. Here, x denotes the number of newly generated articles to be verified, and the reference article is fixed to a
single document. The table decomposes the total time into decomposition and verification components for each
method.

D Case Study: Fact-to-Fact Alignment and1092

Interpretability1093

To further illustrate the interpretability of E-Verify,1094

we present a case study using an example from the1095

wiki-bio-hallu dataset. Figure 5 shows the atomic1096

facts extracted from the generated content (left)1097

and the reference content (right). Each line rep-1098

resents the highest-scoring fact-to-fact alignment1099

between a generated fact and a reference fact, with1100

the predicted FactScore shown alongside. We use1101

color-coding to visualize the verification outcomes:1102

• Green lines indicate correctly verified facts1103

with high FactScore values (e.g., Bill Quinn1104

was born on May 6, 1912. with a score of1105

0.9889).1106

• Red lines connect hallucinated or factually in-1107

correct statements to unrelated reference facts1108

with FactScore values close to 0 (e.g., Bill1109

Quinn concluded his career on ’All in the Fam-1110

ily’ in 1990 matched against Bill Quinn’s last1111

acting role was in 1989 in ’All in the Family’,1112

score = 4.30× 10−7).1113

• Yellow lines highlight an incorrect high-1114

confidence prediction (false positive). In this1115

example, Bill Quinn appeared in ’Star Trek.’1116

was mistakenly linked to Bill Quinn was an1117

American actor with a relatively high score of1118

0.5278, despite lacking supporting evidence.1119

The yellow case (Bill Quinn appeared in ’Star1120

Trek.’ matched to Bill Quinn was an American ac-1121

tor, score = 0.5278) illustrates a known challenge1122

in embedding-based verification systems. We at-1123

tribute this misalignment to multiple factors: (1)1124

representation bias, where pre-trained embedding1125

models tend to map semantically or contextually1126

related entities (e.g., Star Trek and actor) to nearby1127

regions in the embedding space, even when they are 1128

factually unrelated; (2) insufficient hard negative 1129

examples in the training data, limiting the model’s 1130

ability to disambiguate rare or long-tail facts. This 1131

case highlights a potential limitation of our current 1132

framework and points to promising future research 1133

directions such as hard negative mining. 1134

Overall, this example demonstrates that our 1135

framework provides an interpretable and structured 1136

reasoning path by explicitly aligning generated 1137

atomic facts to reference facts. The low scores as- 1138

signed to unsupported or incorrect facts showcase 1139

the system’s ability to filter factual inconsistencies, 1140

while the incorrect prediction offers insight into 1141

current limitations and highlights potential direc- 1142

tions for future improvement. 1143
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Bill Quinn was born on May 6, 1912.
Bill Quinn died on April 29, 1994.
Bill Quinn was an American actor.
Bill Quinn appeared in more than 150 acting roles.
Bill Quinn's acting career spanned over seven decades.
Bill Quinn started acting in the 1920s in silent films.
Bill Quinn's last acting role was in 1989 in 'All in the Family'.
Bill Quinn is best remembered as Mr. Van Ranseleer in 'All in the Family'.
Bill Quinn was a regular in 'Archie Bunker's Place'.
Bill Quinn played Dr. Melnitz in 'The Odd Couple'.
Bill Quinn played Sweeney, the bartender, in 'The Rifleman'.
Bill Quinn appeared in 'Mchale's Navy'.
Bill Quinn played Mary's father in 'The Mary Tyler Moore Show'.
In 1971, Bill Quinn was featured in the Universal Pictures movie 'How to Frame a Figg'.
'How to Frame a Figg' starred Don Knotts.
Bill Quinn was the father-in-law of Bob Newhart.
Bill Quinn was the father of Virginia Quinn Newhart.
Bill Quinn died at the age of 81.
Bill Quinn died in Camarillo, California.
Bill Quinn died of natural causes.

Bill Quinn was born on May 6, 1912.
Bill Quinn died on April 29, 1994.
Bill Quinn was an accomplished American actor.
Bill Quinn had over 150 roles.
Bill Quinn started his acting career in the 1930s with silent films.
Bill Quinn concluded his career on 'All in the Family' in 1990.
Bill Quinn was known for his role as Mr. Van Ranseleer.
Bill Quinn appeared in 'Star Trek.'
Bill Quinn was the father-in-law of comedian Don Knotts.

0.9889
0.8674

0.9968
0.9990

4.30e-7
3.26e-5

0.9956
0.5278

3.21e-5

Atomic Generated Content Atomic Reference Content

Figure 5: Fact-to-fact alignment case study. Green = correct matches; Red = unsupported/hallucinated facts; Yellow
= false positive error.
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