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Abstract

Humans have perfected the art of learning from multiple modalities through sensory
organs. Despite their impressive predictive performance on a single modality, neural
networks cannot reach human level accuracy with respect to multiple modalities.
This is a particularly challenging task due to variations in the structure of respective
modalities. Conditional Batch Normalization (CBN) is a popular method that was
proposed to learn contextual features to aid deep learning tasks. This technique uses
auxiliary data to improve representational power by learning affine transformations
for convolutional neural networks. Despite the boost in performance observed by
using CBN layers, our work reveals that the visual features learned by introducing
auxiliary data via CBN deteriorates. We perform comprehensive experiments
to evaluate the brittleness of CBN networks to various datasets, suggesting that
learning from visual features alone could often be superior for generalization. We
evaluate CBN models on natural images for bird classification and histology images
for cancer type classification. We observe that the CBN network learns close to
no visual features on the bird classification dataset and partial visual features on
the histology dataset. Our extensive experiments reveal that CBN may encourage
shortcut learning between the auxiliary data and labels.

1 Introduction

Learning about complex relationships between real-world variables has been the key to progression of
human kind [12]]. While some of these relationships are now intuitive to us, some are more complex
mathematical relationships. With advancement of deep learning in the field of computer vision [[14],
natural language processing [30], and speech recognition [2]], learning complex relationships across
modalities is still an open research question. Most of the current state-of-the-art algorithms, learn
from single modality [8} 23] which might limit the representation learnt by the model.

Processing data from multiple modalities can provide richer context to the respective modality[32].
For examples, video action recognition [, [10} 28] can be benefited by learning from the audio
along with the visual features[29]. Such factors motivate context-based learning, where auxiliary
features are used to enhance the primary feature representation. To learn such contextual information,
designing of methods that can learn from each individual modality along with their fusion is critical
but a challenging task. In computer vision, Conditional Batch Normalization (CBN) based models
that perform feature-wise affine transformations have shown to achieve strong visual reasoning[22].

CBN[7] relies on modulating the visual feature stream with auxiliary features in the intermediary
layers of a CNN. The normalized activations produced by auxiliary network has been considered as a
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popular method to compute contextual information. Recent works have shown unreliability of batch
normalization during distributional shifts, adversarial attacks and dependency on the dataset[[15} [11].
Lack of robustness of BN poses an immediate challenge for its conditional version, CBN. With
adoption of CBN in various applications][l1, 4} [22], it is important to study the quality of visual features
learnt in presence of auxiliary data.

In this work, we empirically and visually show that while CBN network which learns auxiliary data
may surpass the performance of standard Batch Normalization(BN) network, they often fail to learn
visual features altogether or partially. We devise a set of experiments to perform surgery into the
CBN network. We observe that the CBN network is brittle to the type and guality of the contextual
information and fails to generalize realistic scenarios by learning shortcuts.

2 Background

Since the introduction of Batch Normalization[[16], they have become an integral part of CNNs for
faster convergence. The intermediary convolutional layers stabilise the variation of activations by
normalising the input, x; characterised by the following equation:
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Batch normalization introduces learnable parameters, 3; and -y; for each normalised layer LY :
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Conditional batch normalization[7], aims to learn the learnable parameters from meta-data to "ground"
visual features. It directly predicts affine scaling parameter of the affine transformation from meta-data.
A shallow multi-layer perceptron, we call it auxiliary network, allows the meta-data to predict the 5’
and ' that shifts and scales the normalised batch features. Formally, for meta-data a; and auxiliary
network for H and O respectively for affine parameter prediction, H(a;) = 8’ and O(a;) = 7.

Bi = Bi + H(as) 3

i = v + O(a;) 4

These updated Bl and +; are used as parameters for batch normalization. Modulation of a neural
network activations using conditional information through CBN has been proven successful in multi-
modal setting [22]. While CBN is a computationally efficient method to fuse different modalities, the
robustness of this affine layer is unexplored. The addition of 3’ and ~/, might seemingly be small
yet showing a boost in performance of the task, we observe that it degrades in the quality of visual
features learnt.

3 Related Works

Batch normalization[|16] layers were introduced to alleviate the problem of internal covariate shift,
also leading to faster model convergence. However, [26] have argued that BN might not alleviate
the internal covariate shift. Recent studies [6, 34] have shown standard BN training is detrimental
to performance in domain shift task. CBN layer was introduced to provide contextual information
through affine transformation. [22]] uses CBN layer to modulate visual features to answer composi-
tional questions on CLEVR dataset[17]. Conditional Instance Normalization [9]] was introduced in
the context of style transfer. In reinforcement learning, [3]] used CBN layer to condition NMN and
LSTM to follow compositionality in a 2D grid world. In generative modeling, [4} 35] uses condition
biasing through image description. [21] used CBN layer to make input distribution features robust to
variations in few shot setting. While CBN has proved it efficacy through its acceptance in different
applications but a thorough analysis of its potency is yet to be learnt[20]. We make the first attempt
to uncover the potential risk of using CBN via a series of experiments.



4 Experiments

CBN is widely used for various applications such as multi-modal language acoustic learning|[/1], meta-
learning[24} 136] and image generation[4]. Due to its varied applications, we design our methodology
for a supervised image classification task with visual and auxiliary features allowing for an easier
surgery of the neural network. The aim of these experiments is to expose the potential pitfalls and
impacts of fusing meta-data with images using CBN.

4.1 Experimental Setup

We design our experiments to answer some fundamental questions posed by fusing of differently
structured auxiliary data via CBN. We design a small experiment for each question posed although
the major question, we aim to ask is - Does the addition of auxiliary data improve visual feature
representation?

CBN training - Baseline In this setting, auxiliary data is passed as the input to the shallow auxiliary
network that predicts the affine CBN parameters. This baseline experiment is mainly performed to
establish effectiveness of CBN for classification.

Effect on CBN in absence of test-time auxiliary data The additional features passing through
auxiliary network and its fusion with spatial features[22] has been reported to improve accuracy
across tasks. We aim to look at the neural network beyond final predictive accuracy with this
experiment. In medical applications, the meta-data collection differs across hospitals, and often
among different medical practitioners. We simulate this scenario by masking the attributes at test-time.
Due to masking, the auxiliary network is switched off and the network only relies on its own affine
transformation parameters. By reducing the dependence of network on auxiliary data, it is easier to
establish its independence from visual features during test-time. We eventually completely switch
off the auxiliary data stream and notice the difference in reliance of this auxiliary stream versus the
spatial stream.

Effect on CBN with masked train-time auxiliary data While in previous experiment, we at-
tempted to establish the independence of the visual stream, in this experiment, we aim to understand
the quality of visual features learnt in absence of meta-data. We mask the attributes randomly to aid
the network to learn and utilize visual features more. During masking, we essentially pass a flag that

prevents the addition of 7(a;) and O(a;) to 3; and 5; respectively.

Introduction of Supplementary network We hypothesize that the presence of auxiliary data
challenges the learning of visual features. Therefore we introduce a supplementary network to ground
and assist with the optimization of CBN network to learn visual features. The supplementary network
has same network architecture as the CBN network but uses standard batch normalization. We
optimize a loss consists of: cross-entropy loss of the CBN network, and distance between CBN
network and supplementary network distribution. More formally, let F represent the CBN network
that maps input z; to its label y; using subsidiary features, a; and G represent the BN network that
maps input z; to its label y;. Let the cross entropy loss of CBN network be represented by L&,
We define the total sum as follows:

Loss = m x LEPN (x;,4;) + (1 — m) * Dy (F||G) ©)

where m is a hyperparameter. It is important to note that the aim of supplementary network is to
simply assist in optimization and grounding the CBN network, therefore the weighting over the
distance between supplementary and CBN network is very small.

Removing data from the CBN network Datasets such as CUB-200-211[31] and Animals with
Attributes[33]] 2, which are popular in few-shot classification problem, have attributes which are
highly correlated with the images and label. We use these datasets to better study the learning
capability of visual features in isolation from auxiliary data.



4.2 Dataset

We use natural images and medical images to test the effectiveness of CBN using our proposed
training loss. We use [31]] dataset for the task of bird identification. It contains 11,788 images taken
from 200 different species of bird. Every image of the dataset contains 312 binary and continuous
concept labels. This dataset has been widely used in Few-Shot Classification and Conditional Image
Generation, making it suitable for our analysis. The auxiliary data comes from the attributes. In our
experiments we use binary attributes.

For medical images, Whole Slide Pathology images were used. The tumor-infiltrating lymphocytes
(TILs) [25] contains histological mappings based on each type of cancer. We use all 13 subsets of
TCGA dataset, therefore constituting 13 cancer types. Although the popular task for such a dataset
is necrosis classification [[19]] but since it is a binary classification task and is prone to overfitting
without truly emphasising the effectiveness of our analysis, we modify the task to be a classification
of different (here, thirteen) tumor types. The advantage of medical images is that their meta-data
is readily available from diagnosis. A doctor uses whole slide images along with the meta-data
for diagnostics indicating importance of fusion of different modalities. The meta-data includes
information such as origin of tumor, age, gender, and size of tumor cells.

4.3 Results and Analysis

In this section we evaluate the performance of networks that perform affine transformations using
CBN and standard Batch Normalization. Due to BN’s sensitivity to the batch size [18]], we perform
all our experiments on batch size of 64. We perform our experiments on ResNet-18 [13] backbone.
For CBN network, we modify the ResNet-18 architecture to replace batch normalization layers with
CBN layers. The auxiliary network that uses auxiliary data is a two layer MLP network to predict
the affine parameters for CBN networks. The experiments in this paper were carried out using the
V100SXM2 GPU. The results reported are averaged over 10 runs. Table[I|summarises the results on
test set and we breakdown the analysis according to the set of different experiments below.

CBN Baseline We train both CBN network and BN network to perform classification on the CUB
and TIL dataset. In principle we expect the CBN network to learn from the spatial feature along with
the features learnt from the other auxiliary modality. This suggests that, ideally, the representative
power of this baseline model is greater than the representation from the standard vision only model.
One may suspect that this should in turn lead to better generalization. From, FigurdI] we observe that
the validation accuracy of the CBN model is greater than the BN model by a great margin of 6.9% in
CUB and over 10% in TIL dataset. This proves the effectiveness of modulating visual features by the
auxiliary data. We interestingly also notice that the CBN network achieves convergence much faster
than the BN network. Although convergence is a desired property, it is worrisome if the network
converges in just 4 epochs achieving 100% accuracy in the case of CUB dataset! Although, the same
is not observed in TIL dataset, suggesting the difference in dataset and/or auxiliary data type. This
particularly motivates the upcoming experiments to make an attempt at uncovering the black-box of
conditional learning from auxiliary information stream.
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Figure 1: Validation accuracy versus epoch plotted for CUB dataset and TIL dataset respectively.
Models with CBN layer perform better



Dependence of CBN on test-time auxiliary data In a realistic scenario, due to data privacy and
differences in data acquisition, meta-data collected for each patient maybe varied. If we were to
leverage the CBN model in such a setting, it is likely that some of the auxiliary information is missing.
To test this we limit the auxiliary information during validation and test-time in increments from O to
1 (full CBN network) of 10% supplementary data. From Figure2] we observe that in the case of CUB,
with less than 20% of auxiliary data, the network performs as well as in the presence of all of the
auxiliary data. While in the case of TIL dataset, there is a sharp increase in the accuracy with greater
fraction of meta-data. We hypothesize that this is due to the difference in structure and diversity of
meta-data. Naturally histopathology data is very diverse suggestive of its difficulty in learning. In
addition it must be noted that in complete absence of auxiliary information during testing time, the
CBN network has very low accuracy, 0.5% in the case of CUB and 22.3% for TIL. This is suggestive
of the network not learning visual feature in the case of CUB dataset. While, simultaneously the
CBN network does achieve greater than random accuracy in TIL dataset, its performance deteriorates
highly in absence of the meta-data.
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Figure 2: Accuracy versus the fraction of auxiliary data masked during inference.

Masking of train-time auxiliary data From Figure [3] the dependence of accuracy on the auxiliary
features is apparent. We therefore attempt to establish the relationship between model’s performance
and the auxiliary data during training phase. In this experiment, we incrementally increase the
fraction of auxiliary data fed in to the CBN model. With no auxiliary data at train-time, the network
behaves similar to a BN model since auxiliary affine predictions are turned off, where as with all of
the meta-data at train-time, the network behaves and performs similar to the baseline CBN model. In
Figure 3] we observe the general trend of achieving higher accuracy in presence of higher auxiliary
data, although in the experiment with CUB dataset, the model converges much earlier with TIL data.
Intuitively Figure |3|also signifies the inverse change in dependency of visual feature representation
with increase in auxiliary data. It is observed that, with affine parameter prediction switches on, the
neural network attempts to use the auxiliary data for label prediction.
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Figure 3: Accuracy versus the fraction of auxiliary data masked during training.

Introduction of supplementary network We hypothesized that supplementary network may help
to ground and bring the CBN network closer to BN network, implying learning of visual features.
Hyperparamaters m equals 0.9. We observe that the hypothesis is proven incorrect and supplementary
network is not able to reduce the dependence of auxiliary data on CBN network. In Figurd6| we
observe that the accuracy curves for both CUB and TIL datasets are very similar to CBN curve,
although more stable. Due to ineffectiveness of the supplementary network on baseline experiment,
we perform all our experiments with CBN network.
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Figure 4: A visualization of GradCAM[27]| features for Horned Grebe class. Although the CBN
model achieve 100% accuracy, the feature of BN model are visually more descriptive.

Removing spatial data Table [I] present that even in the absence of image data, the network is
able to perform as well as the baseline CBN network for CUB dataset. This is highly suggestive of
presence of shortcuts in data and the visual features not contributing to the CBN model’s predictive
performance. On the contrary, CBN network on the TIL dataset learns some feature in absence of
visual features, therefore indicating partial learning of vision features.

Discussion From an exhaustive set of experiments, we observe that although the attenuating the
affine batch normalization parameter via a second modality leads is higher predictive performance
as compared to standard batch normalization training of vision modality, it leads to deterioration of
visual features. In the case of both TIL and CUB, there is an increased dependency on the auxiliary
data. This suggests that the affine parameters of CBN network allow for a shortcut learning of
auxiliary data leading to poor generalization. Visually we compare the features learnt by CBN
network with all attributes, CBN network with no attributes and BN network for both CUB and TIL
dataset. We observe that the features learnt in each of the cases are very different signifying the
potential difference in their respective minima. It is particularly interesting to note that in the absence
of visual features in CUB, the network has random predictive performance signified by #b] We
observe that the visual features presented in[da]is less explanatory of the bird features as compared to
4b
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Figure 5: A visualization of GradCAM[27] features for BLCA cancer type class.

Ablation study - Continuous vs Discrete attributes in CUB The CUB dataset contains continuous
attribute values between 0 and 1. We threshold the values greater than 50 to 1 and rest to 0. Although
in the case of continuous attributes, we observe from Figure[7]that the neural network converges within
2 epochs which suggests that the continuous attributes leads to memorization, highly undesirable for
generalization. Therefore we use binary attributes in all of our experiments.

5 Conclusion

In this work, we explored the efficacy of Conditional Batch Normalization to fuse an auxiliary
network with a vision only model. We observe that the CBN network motivates learning of highly
undesirable shortcuts learning between the auxiliary data and the label. This leads to a boost in



performance but a drop in visual features. We observed that the effectiveness of CBN is dependent
on the dataset. We hope that this work inspires research in the direction of learning generalizable
visual features while conditioning in presence of differently structured modality.
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Appendix
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Table 1: Summary of results
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Figure 6: Accuracy versus epoch for CBN hybrid in presence of supplementary network.
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Figure 7: Accuracy versus epoch for CBN network in presence of continuous and binary attributes.
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