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Abstract—Variability in single neuron responses presents a
challenge in establishing reliable representations of visual stimuli
essential for driving behavior. To enhance accuracy, integration
of responses from multiple neurons is imperative. This study
leverages simultaneous recordings from a large population (tens
of hundreds) of neurons, achieved through in vivo mesoscopic
2-photon calcium imaging of the primary visual cortex (V1)
in mice, under visual stimulus conditions as well as in resting
state (absence of stimulus). The visual stimulus consisted of
16 distinct randomly shuffled directions of motion presented to
the mice. We employed mutual information to identify neurons
that contain the most significant information about the stimulus
direction. As expected, neurons displaying high predictive power
(HPP) in stimulus decoding exhibit elevated firing event rates
during stimulus presentation. Furthermore, functional connec-
tivity among HPP neurons during visual stimulation is denser
and stronger compared to functional connectivity among other
visually responsive neurons. Functional connections among HPP
neurons appear to form independently of distance, suggesting
a distributed yet highly coordinated network. In contrast, HPP
neuronal activity and functional connectivity differed significantly
at resting state. Specifically, during the resting state, HPP neurons
exhibited lower event rates and functional connectivity structure
that was not significantly different from that of other visually
responsive neurons. This suggests that HPP neurons are less
susceptible to being driven simultaneously by internal brain states
in the absence of a stimulus. Finally, the tuning properties of
HPP neurons were unexpectedly diverse: while some were sharply
tuned, others conveyed a similar amount of mutual information,
despite exhibiting much weaker tuning. This study sheds light on
the organization of neuronal ensembles important for decoding
visual motion direction in mouse area V1, contributing to the
understanding of information processing in mouse visual cortex.

Index Terms—stimulus decoding, functional connectivity, neu-
ronal ensembles, area V1, direction of motion

I. INTRODUCTION

Although much is known about the properties of single neu-
ronal units, the rules by which neurons coordinate their activity

to represent information about visual stimuli remain elusive.
To understand why, one must consider that the responses
of single units are both noisy and ambiguous: responses
to the same stimulus vary considerably, and responses to
different stimuli can be the same. To achieve optimal real-
time performance, these ambiguities must be resolved at the
level of neuronal populations via the coordinated firing of
distinct neuronal ensembles. Reliable stimulus decoding in
the brain is essential for guiding behavior and has been the
subject of numerous studies [1]–[4]. Research in the area
has recently been intensified due to the advanced imaging
technologies, e.g., mesoscopic in vivo 2-photon calcium imag-
ing, that afford exceptionally large field of view, enabling
the acquisition of simultaneous responses across thousands
of neurons [5]–[8]. Studies used decoding [5], [9], [10] to
analyze how accurately visual features are represented in
the brain. Information is processed in the brain by neuronal
ensembles that fire synchronously, as they are likely to be
more efficient at relaying information to downstream targets
[11]. Recent studies demonstrate that correlations driven by
the similarity in tuning of individual neurons, their response to
stimuli, or higher-order correlations, affect population coding.
They also play a crucial role in shaping essential functions
of neural populations, such as generating codes across various
timescales and aiding the transmission of information to, and
interpretation by, downstream brain regions to guide behavior.
A nice overview of the work on this topic can be found in
[12].

Despite various efforts to uncover the underlying structures
that govern reliable sensory information decoding in the
brain, the functional connectivity properties of the neuronal
ensembles participating in the decoding process needs to be
understood better. Ensembles of neurons that fire in synchrony
are likely to be more efficient at relaying shared information to
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Fig. 1: Imaging Paradigm. A: Illustration of L4, L2, L3 fields of
view (FOVs) simultaneously acquired at 6Hz. L2/3: blue. L4: green.
B: Example FOV acquired in L2/3 at depth 210 µm. A: anterior, L:
lateral, P: posterior, M: medial. Bar = 75 µm. Color arrows indicate
3 example cell bodies whose traces are shown in color on the right.
dF/F: fractional fluorescence change. au: the relative probability of
firing in arbitrary units. Deconvolved firing probability traces shown
in black below were obtained using the CaImAn algorithm [30], then
thresholded to yield calcium “eventograms” that were analyzed. In
what follows, we chose the threshold yielding population calcium
event rates close to those reported in the literature [31], but results
were robust to the choice of threshold (see suppl. Fig. 1.1 [29]). Gray
traces at the bottom represent the thresholded, binarized, probability
that specific imaging frames contain a calcium event (0: no event; 1:
event).

downstream targets [13] and have been discussed in multiple
pioneering works in relation to spontaneous or to stimulus-
induced patterns of activity [3], [14]–[25]. In addition, it
has been suggested that this “vocabulary space” spanned by
spontaneous patterns of activity is shared with population
activity patterns elicited during sensory responses [26]–[28].
This rather strong interpretation remains a matter of debate
[29]. A question that drives this work is understanding how
the functional connectivity between the neurons that are infor-
mative in decoding under conditions of stimulation compares
to that in the resting state?

Our study leverages a rich set of data obtained in vivo using
mesoscopic 2-photon calcium imaging to record essentially
simultaneously from thousands of pyramidal neurons in three
cortical planes, corresponding to cortical laminae 2, 3 and 4
of mouse visual cortex (Fig. 1). Here we focus on the primary
visual cortex (V1). The paper employs information-theory
to identify groups of neurons with high predictive power
(i.e., HPP neurons) and assess how informative the neuronal

Fig. 2: Stimulus Presentation. A. Example frame of “Monet” video,
consisting of waves with 16 distinct randomly shuffled directions of
motion, presented to the mice (i.e., stimulus). The red arrow indicates
the direction of motion of the stimulus. B. Example of a sequence
of segments, each segment with a fixed stimulus direction.

activity is for decoding the visual stimulus.
We examined HPP neurons with respect to their event

rate, orientation preference, and functional connectivity (e.g.,
degree of connectivity and length of their connections). Specif-
ically, we used pairwise correlations based on STTC [32] to
identify the functional connectivity, applying the methodology
described in [29]. We found that most of the HPP neurons
exhibit elevated firing event rates during visual stimulation
and this pattern reverses at resting state. We found that the
architecture of the HPP to HPP neuron functional connectivity
under stimulation is denser and highly distributed compared
to the architecture among the control groups, e.g., orientation-
tuned neurons that are not HPP or visually-responsive but not
orientation-tuned neurons. Intriguingly, during resting state,
the functional connectivity between HPP neurons does not
exhibit significant differences from the functional connectivity
between the control populations.

The rest of this paper is structured as follows: Section
II overviews the experiments, the datasets, and the neural
population. In Section III, we focus on the identification
of neurons with high predictive power, and profile them.
Section IV analyzes the performance of decoding based on
the neuronal activity profile. In Section V, we characterize the
functional connectivity focusing on the HPP and the control
populations. Finally, Section VI discusses our main results and
future work plans.

II. EXPERIMENTS, DATA COLLECTION, AND
PRE-PROCESSING

This work focuses on data from the granular (L4) and
supragranular (L2/3) layers in the primary visual cortex1 of
five adult mice. For each mouse, we retain approximately
60-minute neuronal recordings, during which mice were pre-
sented with stimuli videos of smoothened Gaussian noise with
coherent orientation and motion (example frame in Fig. 2),
consisting of waves with 16 distinct randomly shuffled di-
rections of motion [33]. All 16 distinct directions of motion
were presented in random order in the course of a 15-sec
video. Each part of this video with a specific fixed stimulus

1V1 receives sensory inputs in layer 4 (L4) processed vertically through the
cortical column and laterally within each layer and then projected “forward”
to higher areas by V1 layers 2/3 (L2/3), and “backwards” as feedback to lower
areas by V1 L5/6.



direction is referred to as segment and lasts 937.5 ms. In
the following video, the 16 directions were presented in a
different order. 240 such videos were shown consecutively.
The 2-photon (2P) imaging recordings were preprocessed
for motion correction and underwent automatic segmentation,
deconvolution, and appropriate thresholding (see methods in
Appendix) to yield calcium “eventograms” that were analyzed.
The calcium eventogram of each neuron was subsequently
used to obtain the number of calcium event rate per segment
(ERPS) based on the 2P frames that coincide temporally with
each Monet segment.

While this paper focuses on layer 2/3 (L2/3) of V1, the
analysis was also performed in layer 4 (L4), where similar
trends were observed. Due to space constraints, we primarily
present the L2/3 results here; the full analysis, including
L4, will be included in the extended archival version (in
biorxiv.org).

III. IDENTIFICATION OF NEURONS WITH INFORMATION
ABOUT STIMULUS

Information theory has been instrumental in analyzing neu-
rophysiological data [34] and has been used to assess the
amount of information that the neuronal activity contains about
a stimulus (e.g., [35]) as well as the information transmission
across brain areas (e.g., [36]. To assess the amount of infor-
mation about the stimulus that the firing of a neuron contains,
we use the mutual information [34] between its event rate per
segment and the stimulus time series (that indicates the angle
being presented at each segment).

Normalized Mutual Information (nMI) The mutual
information (MI) between two random variables quantifies the
amount of information one variable contains about the other,
i.e., it measures the reduction in uncertainty about one variable
when the value of another one is known. Therefore, the mutual
information MI(X;Y ) between two jointly discrete random
variables X and Y , with individual states x ∈ X and y ∈ Y ,
respectively, can be defined as

MI(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
(1)

where p(x, y) is the joint probability density distribution
function of X and Y , and p(x) and p(y) are the marginal prob-
ability distributions of X and Y , respectively. Normalizing the
mutual information by the entropy of the stimulus facilitates
a more intuitive interpretation, allowing it to be understood as
the proportion of the stimulus entropy accounted for by the
activity of the neuron.

Thus, the normalized mutual information (nMI) between
two jointly discrete random variables X and Y is defined as:

nMI(X;Y ) =
MI(X;Y )

H(Y )
(2)

where MI(X;Y ) is the mutual information between variables
representing the event rate per segment of a neuron (X) and
the angle of motion of the segment (Y ), and H(Y ) is the
entropy of Y .

In our context, ERPS is treated as a discrete variable2. To
determine the significance of the nMI between a neuron’s
ERPS and the stimulus, we compare it with that obtained
from a control (null) distribution. More specifically, for each
neuron i, we randomly circularly shift its observed calcium
event rate per segment time series Xi and then estimate the
nMI with the stimulus time series S (i.e., nMI(X ′

i,k;S)), for
the k-th circularly shifted instance X ′

i,k of Xi. The above is
repeated K = 1000 times to obtain the control values of
neuron i (for k = 1, ...,K). We then compute the z-score
mutual information zMI(Xi) of neuron i as:

zMIi =
nMI(Xi;S)− µ′

i

σ′
i

(3)

where nMIi is the normalized mutual information between the
observed (actual) event rate per segment Xi of neuron i with
the stimulus time series S, µ′

i is the average normalized mutual
information of the K control values (i.e., nMI(X ′

i,k;S)),
and σi is their standard deviation.3 The histogram of the
entropy of the event rate per segment of L2/3 neurons and
the mutual information with the angle of the stimulus that is
presented during each segment are illustrated in Figs. 3A and
3B, respectively. The control group, based on the randomly
circularly shifted time series, has very low MI values with the
stimulus, e.g., mean 0.012 for L2/3 neurons. A “theoretical”
neuron with exclusive directional selectivity, which fires at all
frames during segments when the direction of the stimulus
is its “preferred angle”, while it remains silent at all frames
of all other segments (∼0.40 Hz) exhibits an MI equal to
∼0.34. An example (observed) orientation-tuned neuron with
a similar mean event rate (∼0.39 Hz) has an MI of ∼0.16. The
mutual information of the L2/3 neurons with the stimulus has
a skewed distribution with large tails, with a mean of 0.061
(Fig. 3B).

The visually responsive neurons are defined as those
that carry information about the stimulus. To do so, we used
statistical tests based on mutual information between neuronal
firing and stimulus. Note that this potentially excludes
neurons that significantly respond to the stimulus directions
homogeneously versus baseline. To adopt a more conservative
criterion for visual responsiveness, we additionally include
a control for each neuron based on the firing events per
segment estimated during the resting state (i.e., in the absence
of stimulus presentation). For each neuron, we then compute
a second control mutual information (MI) value between
the event rate per segment (ERPS) time series during the
resting state and the sequence of stimulus angles, following
the same methodology and number of repetitions as for the
control MI based on randomly shifted ERPS during stimulus
presentation. We define a neuron to be visually responsive,

2This is due to the discretization of the event rate per segment, which
results from the specific number of calcium events that can occur during each
segment.

3Due to space constraints, we do not present the linear relationships between
the mutual information of a neuron with the stimulus and its z-scored MI
(zMI), and FVE difference.
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Fig. 3: An overview of the mutual information between the event rate per segment (ERPS) of L2/3 neurons and the angle of
the stimulus being presented, across all visually responsive neurons, considering different subpopulations (e.g., OT, DT, OT-DT,
Rest). HPP neurons are those with the highest mutual information between their ERPS during visual stimulation and the angle of the
stimulus (included here but not explicitly shown). A: Histogram of the entropy of the ERPS of L2/3 neurons. B: Histogram of the mutual
information between the ERPS and the stimulus for all L2/3 neurons (blue) contrasted with that of the null (gray), which was computed
by randomly shuffling the ERPS time series of each neuron 1,000 times and computing the mean mutual information across iterations. C:
Histograms of the mutual information of the ERPS and the stimulus for orientation-tuned (OT; blue) and rest (Rest; black) L2/3 neurons.
D: Histograms of the distributions of normalized mutual information between the ERPS and the stimulus of L2/3 neurons using different
z-score thresholds (on their null MI distributions). E: Histogram of the ERPS for orientation-tuned L2/3 neurons during segments of a
specific offset ∆ω. The offset ∆ω denotes the difference between the orientation of the stimulus being presented during a segment and the
orientation preference ϕ0 of the neuron. To compute ∆ω, the orientation preferences of the neurons were binned with a bin size of 22.5°.
The event rate under resting state conditions is included for reference. We observe significantly higher event rates when neural preference
matches the stimulus direction (i.e., ∆ω = 0) and lower event rates when the presented stimulus is orthogonal to the cells’ preference.
F: The scatterplot reports for each neuron of an example mouse: its mutual information with the stimulus (x-axis), its FVE difference of
the von Mises fit (y-axis), color-coding the pvalue of its von Mises fit. G: Histogram of the peak ratio of orientation-tuned L2/3 neurons.
The peak ratio represents the ratio of the amplitudes of the higher and lower peaks, derived from the two-peak von Mises fit. A higher
peak ratio indicates increased direction selectivity. Inset: Percentage of direction-selective orientation-tuned neurons as a function of the
peak ratio threshold. In the following figures, a neuron is defined as direction-tuned (DT), if its peak ratio is above the threshold of 3. The
orientation-tuned cells that do not meet this criterion are labeled as OT-DT. H: Histogram of the ERPS (Hz) of L2/3 DT (blue) and OT-DT
(black) neurons as computed during the stimulus presentation period. When expressed as a percentage of spiking frames, the mean event rate
is ∼6%. I: Histogram of the mutual information with the stimulus angle of DT neurons (blue) and OT-DT (black) ones. DT neurons exhibit
slightly higher mutual information than OT-DT. Figs. J-L correspond to an example mouse. J: Scatterplot of the mutual information (x-axis)
and the event rate during the resting-state period (y-axis) of L2/3 orientation-tuned neurons. Blue represents direction-tuned (DT) neurons,
while black represents orientation-tuned (OT) neurons that are not DT. Inset: Same, but considering the event rate during the entire stimulus
presentation period. K: Scatterplot of the mutual information (x-axis) and the amplitude of the stronger of the two peaks in the von-Mises
fit (y-axis). The dashed red line indicates the threshold on the MI value for HPP neurons. L: Same as K, but for the weaker peak. HPP
neurons (i.e., the top 50 neurons with the highest mutual information of ERPS and the stimulus) exhibit a broad distribution of orientation
and direction tuning parameters; while some are strongly tuned to orientation, others show weaker tuning, yet still convey information about
the stimulus. The mean ± standard deviation of the sample means across mice (n=5) are reported in the histograms’ insets, while error bars
correspond to the standard error of the mean (SEM) across mice (n=5). P-values: “**”: < 0.01; “***”: < 0.001, and “n.s.”: non statistically
significant. The highest p-value obtained from the permutation of means, the Welch’s t-test, and the ANOVA F-test is considered for the
level-of-significance.



if its MI is above the 99.9% of both its corresponding
null distribution of MI values. The percentage of visually
responsive neurons appears consistent with that reported
in [7] (although their results were obtained using different
statistical tests). All plots in this paper focus exclusively on
visually responsive neurons.

Orientation- and Direction-Tuned Neurons The neu-
rons’ orientation and direction tuning were estimated as in
[37]. Briefly, responses to a dynamic stimulus of pink noise
with coherent orientation and motion (i.e., Monet video) were
fit with a two-peak von Mises function. Cells that satisfy a dual
threshold for the fraction of variance explained (FVE), namely,
the difference between the original fit FVE and the median
FVE across all 1000 shuffled fits >2.5% and significance
calculated by permutation p ≤ 0.001 (see Appendix for more
details) are defined orientation-tuned (OT). All FVE values
(one per neuron) that we report on the graphs of this work
correspond to this difference in fraction variable explained
between the original fit (FVE) and the median FVE in all
1000 shuffled fits. In our sample, for an example mouse, ∼58%
of L4-neurons (469 out of 805 visually responsive neurons)
and ∼58% (1,188 out of 2,032 visually responsive neurons)
of L2/3-neurons were orientation-tuned (OT) to the stimulus
using these criteria, consistent with [37]. All orientation-tuned
units were then sorted “cyclically” into 128 polar angle bins
according to the preferred direction of the larger amplitude
von Mises peak.

Note that statistically significant orientation-tuned (OT)
neurons (as defined here) contain some information about
directionality when the two peaks are not equal. A higher
peak indicates an increase in direction selectivity. For each
orientation-tuned neuron, the peak ratio was defined as the
ratio between the amplitudes of the higher and lower peaks
in its tuning curve. An OT neuron is defined as direction-
tuned (DT), if its peak ratio is above the threshold of 3.
Only orientation-tuned neurons, not direction-tuned ones, are
indicated by the “OT-DT” (i.e., OT minus DT).

Layer 4 Layer 2/3

DT 5% ± 1% (31 ± 7) 7% ± 1% (185 ± 15)

OT-DT 53% ± 11% (391 ± 179) 50% ± 4% (1,290 ± 399)

Rest 42% ± 11% (272 ± 92) 43% ± 4% (1,086 ± 242)

TABLE I: Percentages and absolute counts (in parentheses) of DT
(direction-tuned), OT-DT (orientation-tuned, but not direction-tuned)
and Rest neurons within layers L4 and L2/3 in V1. Only visually
responsive V1 neurons are considered. We report the mean and
standard deviation across five mice (n=5).

L2/3 neurons demonstrate greater direction selectivity com-
pared to L4 neurons (Table I). Across both layers, DT neurons
are significantly fewer than non direction-tuned OT neurons,
for any direction selectivity threshold set at 2 or higher, as
illustrated in Fig. 3G.

As expected, statistically significant orientation-tuned neu-
rons exhibit significantly higher MI than the rest (Fig. 3C). A

substantial percentage of neurons has statistically significant
normalized mutual information (Fig. 3D).
An exclusively direction-selective unit that always fires in
response to a specific direction and remains silent otherwise
exhibits lower mutual information with the stimulus (∼0.34)
compared to a “perfectly” orientation-selective unit (∼0.54).
However, when the firing of this theoretical orientation-
selective unit is adjusted to match that of the direction-
selective unit (1/16), by reducing its firing probability for the
preferred orientation to 1/2, the mutual information of this
unit decreases to ∼0.304, falling below that of the direction-
selective neuron. This is consistent with the experimental
results, which show that both the DT and OT-DT populations
exhibit an event rate of approximately 6%, when expressed
as a percentage of spiking frames (Fig. 3H), yet DT neu-
rons demonstrate slightly higher mutual information (Fig. 3I),
suggesting that direction-selective neurons may encode more
information about the stimulus at low firing event rates,
facilitating more efficient neural processing of the stimulus.

HPP neurons We examined the L2/3 neurons with re-
spect to their tuning characteristics, event rate, and MI (Fig. 3)
and focused on neurons with high MI. This distinction repre-
sents a continuum rather than a strict dichotomy (Figs. 3J, 3K,
3L). Neurons with high predictive power (HPP) with stimulus
are defined here as the neurons ranked highest in the layer,
in terms of their nMI with the angle of the presented stimulus.
To highlight the main trend, we selected the top 50 neurons
in terms of their MI (Fig. 3) and compared them with the
orientation-tuned neurons excluding the HPP (OT-HPP)
vs. the non-orientation-tuned ones (Rest). All identified HPP
neurons are orientation-tuned. HPP neurons exhibit a broad
distribution of orientation and direction tuning parameters;
while some are strongly tuned to orientation, others show
weaker tuning, yet still convey information about the stimulus
(Figs. 3K, 3L).

If we relax the threshold to include the top 10% of neurons
(corresponding to the start of the plateau in decoding perfor-
mance, Fig 4C), the trends observed below persist.

We found that HPP neurons exhibit higher event rates than
OT-HPP neurons, which, in turn, have higher event rates
than rest, as estimated throughout the period under stimulus
presentation (Fig. 6A). The distribution of the event rates per
segment during different periods is demonstrated in Fig. 3E.
For segments where the stimulus direction is approximately at
45 degrees away from the cell’s preferred direction, the mean
event rate is 0.38 Hz compared to 0.79 Hz for segments where
the stimulus direction matches the cell’s preference (Fig. 3E).
Moreover, the event rate per segment in response to orthogonal
stimuli can be low, sometimes even lower than during the
resting state, indicating inhibition of firing in the presence
of stimuli for neurons with orthogonal preferences for the
presented stimulus, consistent with previous studies [38].

IV. DECODING THE STIMULUS DIRECTION

The distributions of the MI of the ERPS of L2/3 and L4
neurons with the stimulus angle do not exhibit significant
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Fig. 4: Multi-class classification for predicting the angle of the stimulus. A: Histograms of the mutual information of L4 (L2/3) neurons,
presented in green (blue), respectively. The difference is non-significant (n.s.). B: Accuracy of Logistic Regression for predicting the angle
of the stimulus as a function of the percentage of neurons employed (features) for an example mouse. Specifically, all V1 neurons were
sorted by the normalized mutual information of their event rate per segment with the stimulus. The x-axis indicates the X% of neurons
selected for the prediction of the stimulus (in descending order of MI for the red line, in ascending order of MI for the brown line). The
input of the classifier were the event rates per segment of each selected neuron, standardized as to have a mean of 0 and a standard deviation
of 1. We performed 5-fold cross validation. We report the mean (solid lines) and SEM (shaded region) of the accuracy across folds for an
example mouse. For the null (gray line), neurons are selected in a random order. Note that the accuracy for highest MI neurons added first
(red line) plateaus for all mice after 20%, indicating that no significant information regarding the stimulus can be gained by adding more
neurons. C: Same as B, but using as features only L4 (L2/3) neurons, depicted in green (blue), respectively. Here, the x-axis indicates the
number of neurons selected. We report the accuracy in the case that we select neurons in descending (solid line) and ascending (dashed
line) order of MI. D: Accuracy of Logistic Regression in predicting the angle of the stimulus being presented during a segment using as
features the ERPS of different neuronal subpopulations: all neurons (solid), only OT neurons (dashed), and only Rest neurons (white). Red
indicates models using neurons from both L4 and L2/3; green and blue indicate models using only L4 or only L2/3 neurons, respectively.
We performed 5-fold cross validation and computed the mean accuracy across folds per mouse. The bars correspond to the mean and the
error bars to the SEM of the accuracy across mice (n=5). E: Accuracy of Logistic Regression (LR), Naı̈ve Bayes (NB), and Random Forest
(RF) models in predicting the angle of the stimulus using as features the ERPS of the OT L2/3 neurons.

differences (Fig. 4A). To examine the role of L4 and L2/3
V1 neurons in decoding the stimulus angle, we also used
various models for multi-class classification. Specifically, we
employed Logistic Regression under 5-fold cross-validation
and estimated the mean accuracy using as features the event
rate per segment of neurons (Fig. 4). We found that the 20%
highest ranking neurons in terms of MI with the stimulus are
enough to reach an accuracy of around 90% (Fig. 4B, red line).
This is observed in both L4 and L2/3 (Fig. 4C). Furthermore,
using L2/3 neurons as input yields better predictions than using
the same number of L4 neurons. Interestingly, when selecting
the lowest-ranking 80% of neurons, the performance does
not reach the same level (Fig. 4B, brown line). As expected,
when the entire neuronal population is utilized, the decoding
performance (on average) reaches its highest value (consistent
with previous findings [5], [6]). However, a nearly identical
accuracy is achieved using only the OT neurons (Fig. 4D,
average accuracy across mice) highlighting the redundancy in
firing activity. We employed the Naive Bayes classifier for the
same task–a decoder that assumes independence of the neurons
given the stimulus angle. We found that its performance
had considerably worse accuracy–approximately 10% lower
than Logistic Regression (Fig. 4E). This finding is consistent
with previous work [5] and suggests the potential impact
of the inter-neuronal dependencies on decoding the stimulus
direction. All classifiers were implemented using scikit-learn,
and default parameters were utilized. No additional hyperpa-
rameter tuning was performed. The dataset was preprocessed
using standard normalization techniques.

Fig. 5: Spike Time Tiling Coefficient (STTC) Diagram of the STTC
estimation, adapted from [32]. The temporal relationship between
calcium events of neurons A and B is analyzed within a time window
of ±∆T (here, ∆T = 0), capturing coincident calcium events. Vertical
lines denote the calcium events of neurons. The green bars mark the
calcium events of A that fall within ∆t (“tile”, blue bar) of calcium
events of B. See section V for more details.

V. FUNCTIONAL CONNECTIVITY

To identify functional connectivity patterns within and
across the recorded layers, we applied the Spike Time Tiling
Coefficient (STTC), a pairwise functional connectivity mea-
sure that exhibits several advantages over several other cor-
relation measures (e.g., depends less on the firing rate than
Pearson correlation) [32].

Estimation of pairwise temporal correlation To quantify
the temporal correlation between the firing events of a neuronal
pair A and B, we employed their calcium eventograms and
estimated the STTC weight as follows:

STTC =

(
PA − TB

1− PATB
+

PB − TA

1− PBTA

)



Stimulus Presentation Period
A B C D E F

Resting State Period
G H I J K L

Stimulus Noise
M N O P Q R

Fig. 6: Functional Connectivity Analysis. L2/3-HPP neurons have distinct functional structure under stimulus presentation (top and bottom
rows) compared to the structure under resting state (middle row). The first and third rows demonstrate the functional connectivity driven
by stimulus (top) vs. the functional connectivity based on the noise correlations (bottom). Even removing the main stimulus effect (tuning)
the stimulus correlation structure remains. A & G: Histograms of the event rates during the entire stimulus presentation and resting state
periods, respectively. HPP neurons exhibit higher event rates than the other two sub-populations under stimulus presentation, however,
the trend reverses during resting state conditions. B, H & N: Histograms of the correlation weight of statistically significant (z-score>4)
positive functional correlations in L2/3, among pairs of neurons that belong in the same category, computed using STTC on the eventograms
obtained during the stimulus presentation period (Fig. B), using STTC on the eventograms obtained at resting state (Fig. H), and using Pearson
correlation on the stimulus noise (Fig. N),. C, I & O: Histograms of the degree of functional connectivity. Considering here exclusively
the intra-group functional connectivity, i.e., between neurons of the same type, namely HPP, OT-HPP, and rest, we found that HPP neurons
exhibit a higher intra-group degree of connectivity compared to the other two populations during stimulus presentation. Interestingly, when
we consider exactly these three neuronal subpopulations and examine their functional connectivity within each subpopulation under resting
state conditions, there are no statistically significant differences. D, J & P: Percentage of statistically significant edges (z-score>4) as a
function of distance between neuronal pairs, plotted in bins of 100µm. The percentage is computed by taking as a denominator the number
of all possible edges that could form at that distance between neurons of the same category (namely, HPP, OT-HPP and Rest). Results from
all edges within each animal are averaged, marking the high predictive power (HPP) neurons in light blue, the OT-HPP in dark blue, and the
remaining in black. Bins with a single observed value were excluded. Error bars correspond to SEM across mice. E, K & Q: Histogram of
the difference in orientation preference among HPP (light blue) and OT-HPP (dark blue) neuronal pairs with statistically significant functional
correlations (z-score > 4). Orientation difference between neuronal pairs was estimated as the minimum absolute difference of their strongest
amplitude angles computed in the circular [0,180) space (zero identified to 180 degrees); the orientation-difference range is, therefore [0,
90] degrees. Error bars indicate the SEM across mice. F, L & R: Weight of the pairwise correlation of edges among HPP (light blue) and
OT-HPP (dark blue) neuronal pairs as a function of their absolute orientation difference. The correlations were computed with STTC during
stimulus presentation (Fig. F) and at resting state (Fig. L), while Pearson correlation was employed for the stimulus noise (Fig. R). Error bars
indicate the SEM across mice. M: Scatterplot of the z-score of the STTC as computed on the eventogram of the stimulus presentation period
(x-axis) and the z-score of the Pearson correlation computed on the noise signal of the stimulus presentation period (y-axis) of all intra-L2/3
neuronal pairs for an example mouse. P-values: “*”: < 0.05; “**”: < 0.01; “***”: < 0.001, and “n.s.”: non statistically significant. The
highest p-value obtained from the permutation of means, the Welch’s t-test, and the ANOVA F-test is considered for the level-of-significance.
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Fig. 7: A: Scatterplot of the z-score of the STTC as computed on
the eventogram of the resting state period (x-axis) and the z-score of
the Pearson correlation computed on the noise signal of the stimulus
presentation period (y-axis) of all intra-L2/3 neuronal pairs for an
example mouse. B: Percentage of statistically significant (z-score>4)
intra-L2/3 pairs when computed on the eventograms of the stimulus
presentation period with STTC (black), on the ERPS timeseries of the
stimulus presentation period using Pearson’s correlation (light blue)
and on the noise signal using Pearson’s correlation (dark blue).

where TA is the proportion of the recording duration that
corresponds to firing events of neuron A, PA the proportion of
firing events of neuron A synchronous (i.e., within the same
155ms frame) with firing events of neuron B, and likewise for
TB and PB . The STTC weight (correlation) takes values in [-
1, 1]. To determine whether there is a statistically significant
functional connection between two neurons, their STTC value
was compared to a null distribution of STTC values calculated
by circularly shifting their calcium eventogram time series by a
random number, 500 times, yielding a z-score that determines
the level of significance. We consider that two neurons are
functionally connected when their z-score is above 4.4 Note
that given the temporal kinetics of calcium imaging and the
frame duration in our datasets (≈158.7 ms), the duration of a
single frame is large compared to the neuron communication
time (few ms).

Considering exclusively the functional intra-layer connec-
tivity between neurons of the same type (e.g., only between
HPP neurons or between Rest neurons), in the same layer,
we found that, under visual stimulation, HPP neurons have
stronger statistically significant correlations (see Fig. 6B) and
exhibit a higher degree of connectivity within their HPP group
than members of the other two populations within their own
groups (see Fig. 6C). This is not surprising. Interestingly, even
removing the main stimulus effect (tuning), by subtracting
the mean firing, the stimulus correlation structure is not
eliminated completely, i.e., the functional connectivity driven
by stimulus is consistent with the functional connectivity
based on noise correlations (Fig. 6). Specifically, functional
connectivity based on noise correlations was identified as
follows: The stimulus noise time series was formed per neuron
by subtracting from the event rate per segment time series (at

4This is a conservative threshold. A sensitivity analysis for lower thresholds
is part of our ongoing research.

segment t) the average event rate computed using all segments
during which the stimulus was presented is the same as the
one at segment t. That is, if r̄i,s is the mean event rate of
neuron i during presentation of stimulus s, the stimulus noise
time series is ri(t) − r̄i,s, where ri(t) is the event rate of
neuron i during segment t and s the stimulus presented at
that segment (t). We then applied Pearson correlation to form
the functional connectivity based on noise correlations. Thus,
although stimulus-driven functional connections between HPP
neurons are relatively longer than intra-group connections
within OT-HPP and rest (e.g., during visual stimulation see
Fig. 6D), no significant differences in connection lengths
are observed among the three groups during resting state
(Fig. 6J). This discrepancy between the HPP vs. control groups
between conditions becomes evident also when examining the
correlation strength (Figs. 6H vs. 6N) and the degree of intra-
group connectivity within the specific subpopulations (Figs. 6I
vs. 6O). For example, HPP neurons exhibit a higher degree of
connectivity than the rest during visual stimulation, whereas all
three populations show similar connectivity patterns during the
resting state. This suggests that spontaneous activity patterns
do not consistently reflect those induced by external stimuli.

VI. DISCUSSION AND FUTURE WORK

We identified the visually responsive neurons and compar-
atively examined their overall event rate, tuning properties,
and predictive power about the angle of the stimulus (Fig.
3). The distinction reflects a continuum rather than a strict
dichotomy. HPP neurons display a wide range of orientation
and direction tuning properties; some are sharply tuned to
orientation, while others are more weakly tuned, yet still
carry information about the stimulus (Figs. 3K, 3L). HPP
neurons exhibit elevated calcium event rates during stimulus
presentation (Fig. 6A), as expected. However, interestingly,
during resting-state, this event rate pattern reverses (Figs. 6G).
This suggests that they are less strongly modulated by the
internal state. During stimulus presentation, the architecture
of functional connectivity among HPP neurons is highly
distributed and denser compared to connectivity between other
control groups (Fig. 6C). In contrast, during resting-state, their
connectivity does not differ significantly in structure from that
of the control groups (Figs. 6H-6L). Although HPP neurons
work together as a group under stimulus conditions, they do
not exhibit strong synchronization as measured by functional
connectivity under resting-state conditions. This suggests that
spontaneous patterns of activity do not always recapitulate
stimulus-induced activation patterns.

We also evaluated the decoding ability of various neuronal
populations using Logistic Regression, Naive Bayes, and Ran-
dom Forests. Relatively small sub-groups of HPP neurons in
the population carry most of the predictive power and alone
can reach the prediction accuracy demonstrated by the whole
population (Fig. 4B). Moreover, the observation that the top
L2/3 neurons, ranked by MI, exhibit higher predictive power
than an equal number of top-ranked L4 neurons, suggests that
V1 processing enhances stimulus detection (e.g., Figs. 4C,



4D), supporting the view of L2/3 as the “output” of V1, in
contrast to L4, which primarily functions as its “input” layer.

Our analysis is subject to certain limitations, including
the relatively low temporal resolution of the calcium signal
and the use of the Monet stimulus in place of naturalistic
stimuli. Despite these constraints, the findings reveal intriguing
patterns that merit further investigation. Several key questions
remain unanswered—chief among them, how dynamically
interacting neuronal populations coordinate to encode distinct
features of a stimulus, and what the precise relationship is
between spontaneous and stimulus-driven activity patterns. We
propose that the activity patterns emerging from architecturally
connected neuronal ensembles constitute a kind of “vocab-
ulary space”. Deciphering the functional architecture of the
cortex may help us understand how this “vocabulary space” is
organized and deployed across different stimulus conditions,
ultimately offering insights into the fundamental principles of
cortical information processing.
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APPENDIX

Mouse Lines and Surgery Five adult mice (10-12 weeks
of age), expressing GCaMP6s in excitatory neurons via
SLC17a7-Cre and Ai162 transgenic lines, were anesthetized
and a 5mm craniotomy was placed over visual cortex as
described [37]. Each mouse recovered for ∼2 weeks prior to
the first experimental imaging session.

Experimental Data Collection The animals underwent
mesoscopic two-photon imaging covering most of dorsal area

V1 and nearby extrastriate cortex, while being head-fixed on
a treadmill in quiet wakefulness. Images were acquired at
6.30072 Hz over a ∼ 1.2x1.2 mm2 field of view sampling
simultaneously across 4 planes corresponding to V1 layers
2 (80-210 mm), 3 (285-330 mm), 4 (400-450 mm) and 5
(500 mm). Images were preprocessed in standard fashion for
motion correction and underwent automatic segmentation and
deconvolution using the CNMF CaImAn algorithm [30]. The
deconvolved signal was thresholded appropriately to yield cal-
cium “eventograms” that were used for analysis. The threshold
yielding calcium event rates closer to those reported in the
literature [31] was selected. Neurons located less than 15mm
from the periphery of the field of view (FOV) were excluded
in order to avoid potential edge effects arising from incomplete
correction of motion artifacts.

Monitor Positioning and Retinotopy Visual stimuli were
presented to the left eye with a 31.1×55.3cm2 (h×w) monitor
(resolution of 1440×2560 pixels) positioned 15cm away from
the mouse eye. Pixelwise responses across a 2400×2400 µm2

to 3000×3000 µm2 region of interest (0.2 px/µm) at 200-
220µm depth from the cortical surface to drifting bar stimuli
were used to generate a sign map for delineating visual
areas [39]. The directional trial response was measured by
taking the difference in cumulative deconvolved activity at the
linearly interpolated trial onset and offset time points. Trial
responses per direction were modeled as a two-peak scaled
von Mises function (see [37]). The two peaks share a preferred
orientation, baseline, and width, but their amplitudes are fit
independently. This function was fitted to minimize the mean
squared error of all trial responses across 16 directions using
the L-BFGS-B optimization algorithm [40]. Significance and
goodness of fit were calculated by permutation. Trial direction
labels were randomly shuffled among all trials for 1000 refits.
The goodness of fit was calculated as the difference in fraction
variable explained (FVE) between the original fit FVE and
the median FVE across all 1000 shuffled fits. The p-value was
calculated as the fraction of shuffled fits with a higher FVE
than the original fit.

Normalized Degree of Connectivity For each neuron, we
estimate the fraction of neurons with statistically significant
functional connections (z-score > 4) to that neuron, per
layer case, which corresponds to the normalized degree of
connectivity in that layer. For example, a L4 neuron has
an intra-layer degree of connectivity of 0.1 if that neuron
is functionally connected with the 10% of the L4 neuronal
population.

Absolute Orientation Difference For each pair of neurons
(n1, n2), we estimate the absolute direction difference of
their strongest amplitude angle w1 and w2, respectively, ϕ
as follows:

ϕ = min{|w1− w2|, 360◦ − |w1− w2|}.

The corresponding absolute orientation difference ω of their
strongest amplitude is equal to ϕ, for ϕ equal or less than 90◦

otherwise, it is equal to 180◦ − ϕ.


