
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Continuous Chain of Thought Enables
Parallel Exploration and Reasoning

Anonymous Authors1

Abstract
Current language models generate chain-of-
thought traces by autoregressively sampling to-
kens from a finite vocabulary. While this dis-
crete sampling has achieved remarkable success,
conducting chain-of-thought with continuously-
valued tokens (CoT2) offers a richer and more
expressive alternative. Our work examines the
benefits of CoT2 through logical reasoning tasks
that inherently require search capabilities and pro-
vide optimization and exploration methods for
CoT2. Theoretically, we show that CoT2 allows
the model to track multiple traces in parallel and
quantify its benefits for inference efficiency. No-
tably, one layer transformer equipped with CoT2
can provably solve the combinatorial "subset sum
problem" given sufficient embedding dimension.
These insights lead to a novel and effective su-
pervision strategy where we match the softmax
outputs to the empirical token distributions of a
set of target traces. Complementing this, we in-
troduce sampling strategies that unlock policy op-
timization and self-improvement for CoT2. Our
first strategy samples and composes K discrete
tokens at each decoding step to control the level
of parallelism, and reduces to standard CoT when
K = 1. Our second strategy relies on continuous
exploration over the probability simplex. Experi-
ments confirm that policy optimization with CoT2
indeed improves the performance of the model be-
yond its initial discrete or continuous supervision.

1. Introduction
Chain-of-thought (CoT) strategies (Wei et al., 2022), when
paired with strong base models, have achieved immense
success and facilitated progress in remarkably challenging

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

tasks, such as solving AIME or IOI problems (Guo et al.,
2025; Jaech et al., 2024). In essence, CoT boosts the ex-
pressive capability of the base model through autoregressive
generation, a principle that also underlies the recent efforts
on test-time compute scaling (Snell et al., 2024). Despite
these advances, modern language model architectures may
not fully utilize their potential for a few reasons. First is
their discrete sampling of tokens—selecting a single token
at each decoding step from a vocabulary of v tokens. This
limits the model to emitting at most log2(v) bits per sample,
or more specifically, the Shannon entropy of the softmax out-
put. This contrasts with the O(d) bits each token embedding
can store, where d is the embedding dimension. Secondly,
discrete sampling can cause the model to commit to certain
solutions and avoid exploring alternatives (Yao et al., 2023).
A practical method to address this is sampling multiple CoT
traces and aggregating them, either through consistency
(Wang et al., 2022) or best-of-N decoding (Ouyang et al.,
2022) through more test-time computation.

In this work, we propose and investigate the use of CoT
with Continuous Tokens (CoT2) to address these challenges,
building on COCONUT (Hao et al., 2024). The fundamen-
tal idea in our CoT2 proposal is that rather than the model
sampling a single token from the vocabulary, it samples
or deterministically selects a continuous superposition of
tokens according to the softmax output. Intuitively, this
capability—effectively selecting multiple tokens simultane-
ously through a continuous superposition—would allow the
model to pack more information within each token embed-
ding and also enable it to track multiple reasoning paths in
parallel—potentially emulating self-consistency or best-of-
N decoding with a single trace. Toward this vision, we make
the following technical contributions:

• Mechanistic and theoretical study of CoT2: We quan-
tify the benefits of CoT2 along two directions. First, we
examine the problem of Minimum Non-Negative Sum
(MNNS) as a generalization of the classical Subset Sum
problem. These problems, as well as related tasks like
ProntoQA (Saparov & He, 2022), inherently benefit from
parallel search capability. We show that a single layer
transformer can solve MNNS using CoT2, showcasing
the capability of transformers to track and expand multi-

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

2 1 4

2

-2

3

1

-1

-3

7
-1

5
-3

3
-5

1
-7

+ + + +

𝒆𝒆𝟐𝟐 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒 𝒛𝒛𝟏𝟏∗ =
𝒆𝒆𝟐𝟐 + 𝒆𝒆−𝟐𝟐

𝟐𝟐
𝒛𝒛𝟐𝟐∗ =

𝒆𝒆−𝟑𝟑 + 𝒆𝒆−𝟏𝟏 + 𝒆𝒆𝟏𝟏 + 𝒆𝒆𝟑𝟑
𝟒𝟒

𝒛𝒛𝟑𝟑∗ = 𝒆𝒆𝟏𝟏

Input Reasoning Steps
𝑡𝑡 = 1 𝑡𝑡 = 2 𝑡𝑡 = 3

C
ha

in
 o

f T
ho

ug
ht

 w
ith

C

on
tin

uo
us

 To
ke

ns
 (C

oT
2)

D
is

cr
et

e
C

oT

𝒆𝒆𝟐𝟐 𝒆𝒆𝟏𝟏 𝒆𝒆𝟒𝟒

𝒛𝒛𝟏𝟏∗ = 𝒆𝒆−𝟐𝟐 𝒛𝒛𝟐𝟐∗ = 𝒆𝒆−𝟑𝟑 𝒛𝒛𝟑𝟑∗ = 𝒆𝒆𝟏𝟏

Input

Reasoning Steps

-2 -1 +4

Figure 1: Illustration of CoT2 and discrete CoT for Minimum Non-Negative Sum (MNNS) task with m = 3. The input
numbers are 2, 1, 4, and the correct path for this task (−2, −3, 1) is highlighted with yellow arrows and corresponds to the
discrete CoT supervision. CoT2 supervision for the reasoning steps t ∈ {1, . . . , m − 1} is the average of embeddings of
reachable states, and for t = m is the embedding corresponding to the answer.

ple reasoning traces in latent space. Complementing this,
under a certain trajectory decoupling assumption, we pro-
vide a theoretical study of CoT2 decoding methods

– Base CoT2: deterministic inference which creates
and feeds continuous tokens using full softmax out-
put at each step (Sec. 2&3);

– CoT2-MTS (multi-token sampling): our method
which samples K discrete tokens from softmax and
averages them to form a continuous token (Sec. 4);

and standard CoT which is a special case of CoT2-MTS
with K = 1. We show that base CoT2 tracks and ag-
gregates all reasoning paths whereas CoT2-MTS strictly
generalizes CoT by tracking K paths; and establish the
sample complexity benefits of the CoT2 methods.

• Supervision and reinforcement for CoT2: We intro-
duce the continuous supervision strategy CSFT for CoT2
models to explicitly track multiple teacher traces in par-
allel by fitting a target softmax map of the empirical
distribution of tokens within the trace. Our method also
reveals fundamental tradeoffs between the CoT2 accuracy
and the embedding dimension. Complementing this, we
introduce policy optimization methods for CoT2 (Section
4). We propose MTS as our primary strategy, which sam-
ples and composes K discrete tokens at each forward pass
to control the level of parallelism. We also introduce a
purely continuous sampling scheme over the probability
simplex. Experiments on the MNNS, ProntoQA, and
ProsQA tasks demonstrate that GRPO-based RL with
CoT2 further improves the accuracy over SFT or CSFT
(see Section 4.3). This demonstrates that the RL phase
helps the model better prioritize relevant reasoning traces

and unlocks a promising strategy for training CoT2-based
language models.

Ultimately, our results and methods underscore the strong
potential of CoT2 and encourage further research. The rest
of the paper is organized as follows: Section 2 introduces
the technical setup, Section 3 describes our continuous su-
pervision strategy as well as the MNNS, ProntoQA, and
ProsQA tasks. Section 4 describes our sampling strategies
and the resulting GRPO-based policy optimization meth-
ods. Section 5 provides theoretical guarantees and Section
6 concludes with a discussion.

1.1. Related Work

The efficacy of eliciting reasoning in LLMs through chain-
of-thought (CoT) prompting has been well-established (Nye
et al., 2021; Wei et al., 2022; Kojima et al., 2022; Suzgun
et al., 2023; Guo et al., 2025). CoT prompting provides
a convenient way to increase inference-time compute and
computational depth, both of which have been found to be
independently useful (Pfau et al., 2024; Goyal et al., 2024;
Feng et al., 2023; Merrill & Sabharwal, 2024). However,
the discrete nature of CoT tokens forces sequential explo-
ration of reasoning paths, resulting in longer reasoning paths
and consequently increased inference-time compute. Fur-
thermore, restricting reasoning to natural language can be
inefficient, as groups of tokens can often be more effectively
represented by a single continuous token. Thus, CoT2 offers
an alternative strategy for compute-efficient reasoning and
complements methods that aim to shorten/control the trace
length of CoT (Aggarwal & Welleck, 2025; Zhang et al.,
2025; Sui et al., 2025).

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

One way to address these challenges is by leveraging the
implicit reasoning capabilities of transformers (Yang et al.,
2024; Shalev et al., 2024). Works such as (Deng et al., 2023;
2024; Yu et al., 2024) use various techniques to obtain mod-
els that can perform reasoning internally without emitting
CoT tokens. Another line of work has found looped trans-
formers to be effective on reasoning problems (Giannou
et al., 2023; Geiping et al., 2025), notably being able to
mimic CoT (Saunshi et al., 2025) with a sufficient number
of iterations. Our work is similar to this line of work in that
continuous representations are used to perform reasoning.

Our work is most related to a recent body of work intro-
ducing LLMs capable of reasoning with explicit continuous
tokens decoded autoregressively. In particular, recently pro-
posed COCONUT (Hao et al., 2024) autoregressively feeds
the last token’s final-layer representation as input to the next
step. Given labeled CoT data, COCONUT is trained to pro-
gressively replace discrete tokens with continuous tokens
(from left to right). Shen et al. (2025) propose CODI, where
an LLM with continuous CoT is supervised to produce the
correct answer, while also aligning its hidden representation
on the last reasoning token to that of a discrete CoT model
that shares the same backbone. Cheng & Van Durme (2024)
propose CCOT, where an auxiliary module is first trained
to decode autoregressively a compressed representation of
a discrete CoT trace, and later the main LLM is fine-tuned
to produce correct answers by additionally conditioning on
the generated continuous tokens. While COCONUT, CODI,
CCOT, and our CoT2 all aim to reason in continuous space,
we propose distinct algorithmic approaches that also address
the exploration challenge. Key differences include: (1) Our
continuous tokens are simplex-weighted compositions of
vocabulary tokens. (2) Our supervision method is novel and
explicitly targets implicit parallelism. (3) CoT2 does not
initialize from, nor attempt to mimic, discrete CoT. (4) By
introducing sampling strategies and associated GRPO varia-
tions, we realize the "Supervised Training→ Reinforcement
Learning" paradigm in the context of CoT2. We provide
further discussion of literature on multi-token prediction
and reinforcement learning in Appendix A.

2. Problem Setup
Notation. For an integer n ≥ 1, we use the shorthand
[n] = {1, . . . , n}. Throughout, we denote vectors by bold
lowercase letters (e.g. x) and matrices by bold uppercase
letters (e.g. X). For a vector x ∈ Rn, the component xi refers
to its i-th entry. The zero vector in Rn is written as 0n, and
the zero matrix in Rm×n is 0m×n. Finally, we let ∆v−1 denote
the standard v − 1 simplex in Rv.

Assume that we are given an input context X ∈ Rn×d, where
each of the n rows is a d-dimensional embedding vector.
Our objective is to output m tokens given the context X with

mth output token being the final answer that is evaluated
under some performance metric (e.g. accuracy or reward).
For the first m−1 steps, the model outputs continuous tokens
{zt}t∈[m−1], which are thought tokens that enable a reasoning
process. At the final step t = m, the model outputs a discrete
token zm from a vocabulary of size v. In the remainder of
this paper, we investigate strategies for training this system
in a way that improves final performance over standard
discrete next-token prediction.

Formally, let E = [e1, . . . , ev]⊤ ∈ Rv×d be the embedding
matrix corresponding to the vocabulary of v tokens, where
ei ∈ R

d represents the embedding of the ith token. We define
the next-token prediction model LMθ parameterized by θ
that assigns, at each step t, a probability distribution over
possible next tokens given the prefix z<t and context X. Con-
cretely, for 1 ≤ t ≤ m − 1, the model outputs the following
probability distribution over the v vocabulary entries via a
softmax operation:

LMθ(· | z<t, X) :=αt where

αt =
[
αt,1, . . . , αt,v

]
∈ ∆v−1, i.e. αt,i ≥ 0 and

v∑
i=1

αt,i = 1

We then form the continuous token as the convex combina-
tion of all tokens in the vocabulary:

zt = E⊤αt ∈ R
d, ∀1 ≤ t ≤ m − 1

Hence each continuous token zt is a linear combination of
the vocabulary embeddings. At the final step t = m, the
model samples a discrete token zm ∈ {e1, . . . , ev} from its
policy distribution LMθ (· | z<m, X) = αm. Finally, we note
that we assume that the answer depends only on the final
discrete token zm merely for simplicity; the same framework
naturally extends to decoding multiple final discrete tokens
after continuous ones. We refer to this decoding strategy
as base CoT2 and observe that it results in a deterministic
reasoning chain because the continuous tokens are precisely
determined by the softmax map. In Section 4, we will
introduce stochastic alternatives, such as CoT2-MTS, to
facilitate generative reasoning.

3. CSFT: A Supervised Training Method for
CoT2

In this section, we present our method of continuous su-
pervised training to learn intermediate thought tokens as
"soft" targets rather than "hard" target tokens, as described
in Section 2. Specifically, we provide the model with convex
combinations of vocabulary embeddings, which allows the
model flexibility in those reasoning steps. Such an approach
is particularly suitable when the task accuracy depends only
on the final token or token distribution. Formally, at each
reasoning step t = 1, . . . ,m − 1, the supervision specifies a

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

0 2 4 6 8 10 12 14
k (number of samples)

30

40

50

60

70

80

90

Pa
ss

@
k

ac
cu

ra
cy

 (
%

)

Temp=0.0
Temp=0.4
Temp=0.8
Temp=1.0
Continuous SFT

(a) Continuous vs. discrete SFT (Pass@k)
accuracies for different temperatures on
MNNS task.

0 200 400 600 800 1000
Epoch

0

20

40

60

80

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Continuous SFT, Emb 16
Discrete SFT, Emb 16
Continuous SFT, Emb 24
Discrete SFT, Emb 24
Continuous SFT, Emb 32
Discrete SFT, Emb 32

(b) Training performance vs. embedding di-
mension for continuous and discrete SFT on
MNNS task.

0 200 400 600 800 1000 1200 1400
Epoch

0

20

40

60

80

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Continuous SFT, Emb 24
Discrete SFT, Emb 24
Continuous SFT, Emb 32
Discrete SFT, Emb 32
Continuous SFT, Emb 40
Discrete SFT, Emb 40

(c) Training performance vs. embedding di-
mension for continuous and discrete models
on ProsQA.

Figure 2: The teacher distribution for the continuous model is derived from a search algorithm. (a): The figure illustrates that the discrete
model requires multiple samplings (Pass@k) to match the single-sample performance of the continuous model on MNNS (10-run average).
Setting: 4 input digits in 1 − 9; 1-layer, 1-head GPT2 with d = 24. (b-c): The figures reveal that above a certain embedding dimension
threshold, the continuous model is superior to discrete in tasks involving search, like MNNS and ProsQA. Setting (b): 4 input digits in
1 − 9; 2-layer, 2-head GPT2 with d ∈ {16, 24, 32}. (c): 4-layer, 4-head GPT2 with d ∈ {24, 32, 40}.

target probability distribution

α∗t =
[
α∗t,1, . . . , α

∗
t,v

]
∈ ∆v−1,

where α∗t,i ≥ 0 and
∑v

i=1 α
∗
t,i= 1. We train the model to align

its predicted distribution αt to the supervision distribution
α∗t rather than one-hot labels, with the help of a divergence-
based loss:

Lcont(θ; X, t) = D
(
α∗t

∥∥∥αt

)
,

where D (·∥·) is the cross-entropy (or equivalently KL di-
vergence) between two distributions. This approach can
also be viewed as token-level knowledge-distillation, where
the teacher distribution α∗t may be obtained through a
logic/search algorithm. At the final step t = m, we typ-
ically have a discrete target z∗m ∈ {e1, . . . , ev}, so that α∗m
is one-hot distribution placing probability 1 on that target
token and 0 elsewhere. This is equivalent to employing a
standard cross-entropy loss − log LMθ

(
z∗m | z<m, X

)
at the

final step. Hence, for each training example, the total loss
for the proposed continuous supervised training is the sum
of the continuous-token divergence losses:

LCSFT(θ; X) =
m∑

t=1

Lcont(θ; X, t) (1)

By minimizing LCSFT(θ), we teach the model to learn the
soft targets α∗t at each step and to predict the correct final
discrete token. In the above training procedure, inspired by
the discussions in Bachmann & Nagarajan (2024); Bengio
et al. (2015), we consider two ways of providing prefixes to
the language model:

1. Teacher forcing: Each step t is conditioned on the
ground-truth prefix z∗<t, meaning that the model has ac-
cess to all ground-truth previous tokens during prediction.
Concretely, for each step t′ < t, the corresponding input
z∗t′ = E⊤α∗t′ is a convex combination of all vocabulary
tokens.

2. Self-feeding: Each step t autoregressively uses the
model’s previously generated outputs, z<t, during train-
ing. In particular, as described in Section 2, the continu-
ous output token zt = E⊤αt, is a convex combination
of vocabulary embeddings, which is then fed back to the
model as part of the prefix.

It is also worth noting that one may apply temperature scal-
ing or thresholding to αt before forming zt in order to filter
the model’s predictions. In our experiments, we find that
teacher forcing leads to superior performance for CSFT,
even though at inference time, the model runs in an autore-
gressive manner, as discussed below. See Appendix C for
further discussion.

Inference. At inference time, the model does not rely on
the ground-truth distributions α∗t . Instead, at each contin-
uous step t < m, the model autoregressively uses its own
output distribution αt by converting that distribution to a
continuous token zt = E⊤αt and adds it to the prefix for
the prediction in the next step. At the final step, the model
generates a discrete sample from αm = LMθ(· | z<m, X).

Discrete baseline. In this case, we use teacher-forced train-
ing where the next token prediction is performed condi-
tioned on the previous ground-truth tokens with standard
cross-entropy loss. Discrete baseline enforces z∗t to be a
token in vocabulary {e1, . . . , ev}, which means that it is a
special case of CSFT where the α∗t are one-hot vectors rather
than an arbitrary element of ∆v−1. The model minimizes the
following objective, which is obtained by summing over all
steps of teacher-forced next-token prediction:

LSFT(θ; X) =
m∑

t=1

− log LMθ
(
z∗t | z

∗
<t, X

)
. (2)

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

3.1. Tasks Requiring Exploration over States

In the next two subsections, we illustrate the CSFT training
described in (1) on tasks that require exploration over multi-
ple states. Consider that the vocabulary is sufficiently large
that each state g of the task can be assigned a unique embed-
ding. Then, we let Γt be the set of all states that could result
from building upon step (t − 1), where Γ0 = {g0} for the
initial state g0. For each element g ∈ Γt, we assign a prob-
ability α∗t,g that reflects how many times that state occurs
under a search process. Then, α∗t is formed by normalizing
these probabilities into a distribution on Γt:

α∗t,g =
countt(g)∑

h∈Γt
countt(h)

, (3)

where countt(g) is the number of times state g appears
among all expansions at step t. At the final step t = m,
we select exactly one correct state from Γm, so that α∗m is a
one-hot vector:

α∗m,g =

1, if g is the correct final state,
0, otherwise.

Remark. While we focus on search-based tasks MNNS and
ProntoQA in the next two sections, one can also extend to
training with continuous tokens in the language-model con-
text. The distributions {α∗t } at each step can be collected by
(1) running a beam or best-first search to generate multiple
partial trajectories; (2) scoring these trajectories with a re-
ward function; and (3) curating them into a distribution that
assigns higher mass to states that leads to higher rewards.
This construction of α∗t replaces one-hot supervision with
soft supervision for intermediate reasoning steps.

3.1.1. Minimum Non-Negative Sum Task

We now introduce the Minimum Non-Negative Sum (MNNS)
task, where the goal is to assign signs to a list of num-
bers so that their sum is as small as possible while be-
ing nonnegative. The MNNS task can be viewed as par-
titioning a set of numbers into two subsets with a mini-
mal difference, which makes it closely related to the sub-
set sum problems explored in Dziri et al. (2023); Thomm
et al. (2024). Formally, we are given m integers d1, . . . , dm,
and the task is to assign signs σi ∈ {+1,−1} such that
s = σ1 d1 + · · · + σm dm ≥ 0 and s is minimized. Let
σopt = (σopt

1 , . . . , σ
opt
m) denote the optimal assignment that

achieves the minimal nonnegative sum sopt out of 2m pos-
sible sign assignments. Here, every possible partial sum
σ1d1 + · · · + σtdt ∈ Γt is assigned a unique embedding
eϕ(σ1d1+···+σtdt), where ϕ(·) maps each sum to a distinct id in
[v]. We now describe the two modes of supervision, where
the input digits are processed one by one by accumulating
partial sums, as illustrated in Figure 1:

• Supervision for CoT2 model: At step t, there are |Γt | = 2t

partial sums of length t, and accordingly, we provide the
following target distribution α∗t :

α∗t,i =

countt(i)

2t , if token i appears countt(i) times
as a partial sum of length t;

0, otherwise.

At the final step t = m, the distribution α∗m assigns proba-
bility 1 to the correct sum eϕ(σopt

1 d1+···+σ
opt
m dm) and 0 to all

others.

• Supervision for discrete model: We supervise the discrete
model along the correct chain of partial sums by providing
eϕ(σopt

1 d1+···+σ
opt
t dt) for 1 ≤ t ≤ m as target tokens, and train

following the standard cross-entropy objective described
in (2).

While constructing the dataset, we split the training and
validation sets by ensuring that any permutation of num-
bers appears in exactly one split. The aim behind this is
to prevent memorization and make a fair evaluation. We
also encode input and output numbers with separate to-
kens in our vocabulary. As an example, an input appears
as ⟨BOS⟩ d1 d2 . . . →, and the corresponding output as
s1 s2 . . . sopt ⟨EOS⟩, where sopt is the minimal nonnegative
sum for {d1, . . . , dm}. For the model, we use the GPT2 ar-
chitecture (Radford et al., 2019) with different head, layer,
and embedding dimension configurations, and train it from
scratch. Please refer to Appendix B for more experimental
details.

3.1.2. ProntoQA and ProsQA Datasets

Other datasets we explore in our investigation of the CSFT
approach are the ProntoQA (Saparov & He, 2022) and
ProsQA (Hao et al., 2024) datasets, which are logical rea-
soning tasks that require exploration over multiple possible
paths. Specifically, each question in ProntoQA asks whether
a certain target word (node) B is reachable from a root word
(node) A within a fixed number of hops, while for ProsQA
it asks which of the target words B or C is reachable. We
use 5-hop questions and present the graph in a structured
format. In particular, for each problem, we represent nodes
and edges using embeddings, which we use as the model
input rather than text input. The detailed structured format
and examples are provided in Appendix B.2.

The graph structure of the ProntoQA and ProsQA datasets
naturally obeys the supervision in (3), so that we determine
the words that can be reached using t edges from A and
supervise intermediate tokens on the resulting distribution.
At the final reasoning step m, the supervision assigns proba-
bility 1 to the correct label: yes or no for ProntoQA, and
B or C for ProsQA. For the standard discrete model, we
provide an explicit chain of nodes from A to the target node

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

(B or C) as the target path at each step. We direct readers to
Appendix B.2 for additional details on the supervision.

3.2. Results and Discussion of CoT2 Supervision

In our experiments on the MNNS, ProsQA, and ProntoQA
tasks, we observe that CSFT significantly outperforms dis-
crete baseline once the embedding dimension exceeds a
moderate threshold, as shown in Figures 2b and 2c. We
also note that continuous tokens allow for a faster conver-
gence above this threshold, as illustrated by Figures 2b
and 2c. Through continuous tokens, the model gains the
capacity to represent multiple partial expansions in parallel,
enabling a ’search-like’ ability that results in higher accu-
racy. We also demonstrate in Figure 2a that the discrete
model requires multiple sampling (pass@k) to approach
the performance achieved by a single attempt of the CoT2
model. This indicates that continuous tokens effectively
hedge against early mistakes, as there’s no accumulating
error. This argument aligns with the previous “snowballing
errors” discussions for discrete autoregressive generation
in (Bachmann & Nagarajan, 2024). Moreover, although
the continuous approach needs more embedding capacity
to allow its distributional representations at each step, it
can then achieve strong performance with fewer layers and
heads compared to the discrete model, as further demon-
strated by the results in Appendix C.1. We also provide
experiments on ProntoQA in Appendix C.1, which confirm
similar findings to results on ProsQA.

We also evaluated the performance of the discrete model
under more sparse supervision scenarios, such as providing
only a subset of the correct partial sums or, more extremely,
only the final answer. In these experiments, we observed
that denser supervision improved the discrete CoT model’s
performance; see Appendix C.1 for further details.

4. Reinforcement Learning Methods for CoT2
In this section, we describe how to apply RL with continuous
output tokens. Specifically, we explore GRPO training on
top of continuous or discrete models that are supervised
trained based on Section 3 for the MNNS, ProntoQA, and
ProsQA tasks. By illustrating two sampling methods for
GRPO, we demonstrate how a model trained with discrete
SFT can be adapted to produce continuous outputs. We
assume a sparse reward setting where the reward is 1 for a
correct final answer and 0 otherwise.

In our setup, a language model LMθ acts as a policy
over tokens. Let {Z(i)}Gi=1 be a group of G trajectories
sampled from old policy LMθold such that each trajectory
Z(i) =

(
z(i)

1 , . . . , z
(i)
m

)
contains m output tokens given a fixed

input X. We denote by Âi,t the advantage estimate at step
t in trajectory i and note that Âi,t = Âi is identical across

Algorithm 1 Multi-Token Sampling GRPO for Continuous
Token Generation
Input: Initial policy LMθinit ;hyperparameters K,G,m, ϵ, β.
1: LMθ,LMθref ← LMθinit
2: for iteration = 1, 2, . . . , I and for step = 1, 2, . . . , S do
3: Sample a batch of inputs {X(b)}Bb=1
4: Update LMθold ← LMθ
5: for each input X in the batch and for each trajectory i =

1, . . . ,G from that X do
6: for each token step t = 1, . . . ,m do
7: if t < m then
8: Sample K tokens {ei1 , . . . , eiK } from α(i), old

t to create
continuous token zt ←

1
K

∑K
r=1 eir .

9: Policy ratio rt(θ)←
(∏K

r=1 α
(i)
t,ir
/
∏K

r=1 α
(i), old
t,ir

) 1
K .

10: else
11: Sample zm = e j from α(i), old

m .
12: Policy ratio for discrete token rm(θ)← α(i)

m, j/α
(i), old
m, j .

13: end if
14: end for
15: Obtain advantage estimates Âi,t for each token t in each

trajectory Z(i) and calculate objective.
16: end for
17: Update θ to minimize LGRPO(θ).
18: end for
Output: LMθ

all steps of a trajectory under sparse reward setting. To
quantify how the new policy LMθ differs from the old one
on token z(i)

t from ith trajectory, we define the policy ratio

r(i)
t (θ) =

LMθ
(
z(i)

t |z
(i)
<t ,X

)
LMθold

(
z(i)

t |z
(i)
<t ,X

) . We update the model parameters θ

by minimizing the clipped surrogate objective (Shao et al.,
2024; Yu et al., 2025):

LGRPO(θ) = −
1∑G

i=1 |Z(i)|

G∑
i=1

|Z(i) |∑
t=1

[
min

(
r(i)

t (θ) Âi,t,

clip
(
r(i)

t (θ), 1−ϵ, 1+ϵ
)

Âi,t

)
− βDKL

[
LMθ∥LMθref

]]
.

As the output length is fixed in our setting, we have |Z(i)| =

m for each trajectory. Here, ϵ is a clipping parameter that
bounds the ratio rt(θ), and β controls the strength of KL-
divergence from a reference policy LMθref which is the SFT-
initialized policy. We set the number of GRPO iterations
µ = 1 and estimate the KL divergence with the Schulman
Approximator as in Shao et al. (2024).

4.1. Multi-Token Sampling

We emulate the rollout of a continuous token by sampling a
fixed number of K ≤ v discrete tokens and averaging them
at steps t = 1, . . . ,m − 1. We refer to this hybrid method
as CoT2-MTS (multi-token sampling). For the GRPO ob-
jective, we propose the following method to calculate the
policy ratio for continuous tokens. Specifically, assume at
step t we sample discrete tokens ei1 , . . . , eiK with probabili-
ties αt,i1 , . . . , αt,iK under the current policy and probabilities
αold

t,i1
, . . . , αold

t,iK
under the old policy. We define the policy ra-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Table 1: Validation accuracy and token-level entropy of CoT2-MTS sampling GRPO on the discrete model under different
rollout sizes K for MNNS task. We use 4 input digits in 1-9 with 1-layer, 1-head GPT2 at embedding dimensions 24 and 32,
with SFT accuracies of 39.76% and 43.50%, respectively.

K
Val. Accuracy (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

24

1
39.76

49.01 0.3218→ 0.0314 0.5858→ 0.0712 0.5499→ 0.1576 0.4786→ 0.1718
3 52.60 0.3717→ 0.0647 0.7461→ 0.2120 0.8006→ 0.3312 0.5338→ 0.1529
6 49.69 0.4524→ 0.1242 0.7738→ 0.3361 0.8364→ 0.6615 0.5134→ 0.2159

32

1
43.50

51.61 0.3618→ 0.0143 0.6331→ 0.0395 0.3518→ 0.2631 0.1962→ 0.1182
3 55.66 0.3886→ 0.0412 0.7101→ 0.0904 0.5447→ 0.5757 0.2863→ 0.1734
6 50.38 0.4224→ 0.0632 0.7915→ 0.2161 0.6077→ 0.8481 0.2780→ 0.1514

tio for these continuous steps by dividing geometric means:

rt(θ) =
LMθ (zt | z<t, X)

LMθold (zt | z<t, X)
=

 αt,i1 · · ·αt,iK

αold
t,i1
· · ·αold

t,iK

1/K

, (4)

for t = 1, . . . ,m − 1. The geometric mean ensures that the
ratio for each continuous step remains on the same scale as
the final discrete token’s ratio and, thus, helps avoid overly
large or small updates in the GRPO objective and provides
more stable training compared to the direct multiplication of
probabilities. Once this ratio is computed, we then average
the K sampled tokens to form zt, which is fed to the model
as the query for the next prediction step. At the final step
t = m, where the token zm = e j is discrete with j ∈ [v]
denoting its index, the policy ratio is simply the probability
ratio of selecting that token:

rm(θ) =
LMθ (zm | z<m, X)

LMθold (zm | z<m, X)
=
αm, j

αold
m, j

. (5)

Inference. During inference after GRPO training, we apply
the same multi-token sampling procedure at each of the first
m − 1 steps to form the continuous token via the average of
K sampled embeddings.

Remark. An alternative to the normalization of ratios given
by (4) is to directly scale down the logits by 1/K before
applying softmax. However, using this approach during
inference leads to a distribution shift relative to the SFT-
trained model and ultimately degrades performance.

4.2. Dirichlet Sampling

In this section, we present another method for generating
continuous tokens at each step by interpreting the model’s
output distribution αt ∈ ∆

v−1 as concentration parameters of
a Dirichlet distribution over the v− 1 simplex. We introduce
a scaling hyperparameter γ > 0 and define the Dirichlet
distribution with the parameters γαt =

(
γαt,1, . . . , γαt,v

)
.

Without this scaling, directly using αt as parameters often

causes training instability, particularly when many αt,i val-
ues are small. We then sample a point α̂t ∈ ∆

v−1 from the
resulting distribution Dir (αt). After sampling, we form the
continuous token by mapping zt = E⊤α̂t ∈ R

d, which be-
comes the query for the next step. We denote the Dirichlet
densities induced by current and old policies as fθ(zt) and
fθold (zt), respectively. Accordingly, we define the policy
ratio at a continuous step t < m as:

rt(θ) =
LMθ(zt | z<t, X)

LMθold (zt | z<t, X)
=

fθ(zt)
fθold (zt)

,

The above definition parallels how we compute probability
ratios for discrete actions but replace the categorical pmf
with continuous Dirichlet pdf. At the final step t = m, we
sample a discrete token zm ∈ {e1, . . . , ev} from αm, and use
the standard policy ratio given by (5). At inference, we
follow the autoregressive procedure in Section 3 by creating
a convex combination of vocabulary tokens.

4.3. Results and Discussion of Policy Optimization for
CoT2

MNNS evaluation: Table 1 provides our results for the
MNNS task and demonstrates that, for each K ∈ {1, 3, 6},
CoT2-MTS significantly improves validation accuracy rela-
tive to the discrete SFT baseline (39.76%), with moderate
K yielding the best final performance. We also observe that
smaller K-values correspond to larger reductions in token-
level entropies, suggesting that the model becomes more
confident at each intermediate step by learning to commit
to fewer tokens. This suggests a curriculum on K—starting
small and gradually increasing—could potentially further
improve the training on the MNNS task. Interestingly, the
third token’s entropy remains relatively high, which might
indicate that the model continues to hedge among several
partial expansions at that step, which may help preserve use-
ful diversity of reasoning. Therefore, CoT2-MTS enables
a model trained with discrete SFT to produce continuous
outputs and helps it achieve better performance. Finally, Ap-

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Table 2: Validation accuracies on ProsQA and ProntoQA
for CoT2 and Discrete CoT, evaluated at K = 6, 8, 12 us-
ing CoT2-MTS sampling GRPO. All models use a 4-layer,
4-head GPT2 with embedding dimension 32. The SFT val-
ues are constant as they represent initial accuracies before
GRPO. Remarkably, GRPO with our multi-token sampling
scheme results in consistent improvements.

ProsQA ProntoQA

SFT SFT+GRPO SFT SFT+GRPO

K
=

6 CoT2 93.37 93.83 75.36 76.15
Discrete CoT 68.50 68.24 59.58 62.28

K
=

8 CoT2 93.37 94.09 75.36 76.66
Discrete CoT 68.50 71.58 59.58 71.53

K
=

12 CoT2 93.37 94.21 75.36 77.64
Discrete CoT 68.50 72.76 59.58 74.03

pendix C.2 shows that the CoT2 model with CSFT achieves
a strong performance once the embedding dimension is
sufficiently large (compared to the results in Table 1), how-
ever, it can be further improved with GRPO with Dirichlet
Sampling.

ProsQA and ProntoQA evaluation: Table 2 provides an
evaluation of the benefits of GRPO with CoT2-MTS on mod-
els trained with discrete or continuous SFT. Remarkably,
we observe that both CoT2 and discrete CoT models con-
sistently improve across all rollout sizes (K = 6, 8, 12),
with larger K values yielding better final accuracies by pro-
moting more exploration. Notably, the discrete CoT model
benefits relatively more from reinforcement learning com-
pared to CoT2, likely because the CoT2 model already
incorporates exploration implicitly through continuous su-
pervision (CSFT). Aligning with this, we observe that for
the ProntoQA dataset, the final performance of discrete CoT
approaches that of the CoT2 model. Finally, we expect that,
the performance gain of the MNNS task could be more lim-
ited compared to ProsQA and ProntoQA due to the highly
structured nature of the MNNS task which makes CSFT
supervision a natural choice and difficult to improve over.

5. Theoretical Analysis
In this section, we first present the construction of a single-
layer transformer that solves the MNNS task using an atten-
tion layer followed by a mixture-of-experts MLP layer. We
then provide a theoretical comparison between base CoT2,
CoT2-MTS, and discrete CoT models.

5.1. Solving the Minimum Non-Negative Sum Task

Proposition 1 (Solving MNNS). There exists a 1-layer
transformer architecture with a mixture-of-experts MLP
layer that solves the MNNS task using CoT2 by storing (sine,

cosine) embeddings of all 2k states at the k-th iteration in a
non-overlapping manner.

The above construction utilizes trigonometric embeddings,
inspired by the mechanistic insights given by Nanda et al.
(2023). Our approach leverages these trigonometric em-
beddings to provide a theoretical guarantee that the trans-
former can track and add/subtract multiple numbers
in parallel by benefiting from the embedding capacity and
reading off the minimum non-negative number at the final
step. An important observation regarding our construction is
that the trajectories at each intermediate reasoning step are
truly decoupled as it stores each state using non-overlapping
(sine, cosine) representations. This is similar to the left side
of Figure 1, but we also utilize rotations/shifts to ensure
distinct states are orthogonal and are easy to read out.

5.2. Understanding and Formalizing the Benefits of
CoT2 and Comparison to CoT

To proceed, we argue that CoT2 equips the model with
the ability to track multiple paths in parallel which can be
formalized through Assumption 1 below. Building on this
condition, we will provide a formal comparison of CoT2
and discrete CoT models in the remainder of this section.
Assumption 1. Recall the model LMθ in Section 2. For
any step t and prefix tokens z≤t, we assume (i) the next
token probabilities depend only on the last token zt and
the query X and (ii) if the last token is zt =

∑v
j=1 αt, j e j so

that
∑v

j=1 αt, j = 1, the output distribution αt+1 decouples as
follows:

LM(t)
θ (· | zt, X)

(i)
= LM(t)

θ (· | z≤t, X)
(ii)
=

v∑
j=1

αt, j LM(t)
θ (· | e j, X).

Under Assumption 1, the token distribution αt+1 = LM(t)
θ (· |

zt, X) evolves with the equation αt+1 = αt Mt(zt; X), starting
from α1 = LM(0)

θ (· | X) until αm. Here, Mt(zt; X) ∈ Rv×v

is a Markov transition matrix that is allowed to depend on
the input X and the last token zt (see (Ildiz et al., 2024) for
related discussion). To keep exposition cleaner, we omit zt

and X in the notation of Mt(zt; X), and use Mt instead. We
first observe the following regarding base CoT2, standard
discrete CoT, and CoT2-MTS inference strategies.

• Base CoT2: At each step t = 1, . . . ,m, the model outputs
the continuous token zt = E⊤αt and uses it as the query
for the next step.
Interpretation: Base CoT2 keeps track of all possible
traces simultaneously. Over m steps, it tracks and aggre-
gates all vm traces where the trace (it)m

t=1 has a weight of∏m
i=1 αt,it .

• Discrete CoT: At each step 1 ≤ t ≤ m, the model samples
exactly one token zt = eit from αt, and uses it as the query

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

for the next step.
Interpretation: Discrete CoT samples a single trace out
of vm traces with a likelihood of

∏m
i=1 αt,it for trace (it)m

t=1.

• CoT2-MTS (multi-token sampling): At each step 1 ≤ t ≤
m, i.i.d. sample K tokens ei1 , . . . , eiK from to αt, average
these tokens to form zt =

1
K

∑K
r=1 eir , which it uses as

query for the next step.
Interpretation: CoT2-MTS tracks K traces in parallel
according to their discrete CoT likelihoods. However,
these traces are not statistically independent.

With these three inference methods defined, we present the
following result on the statistical consistency of the final
outputs of these methods.

Proposition 2 (Consistency of CoT and CoT2 inference).
Under Assumption 1 and given X, the output of base CoT2
is zm =

∑v
j=1 αm, j e j where αm = α1

∏m−1
t=1 Mt. Discrete

CoT and CoT2-MTS have the same output once we take the
expectation over their stochastic sampling.

Remark: Please note that αm represents a distribution over
the vocabulary. The proposition above shows that as the
number of samples approaches infinity, the empirical dis-
tribution α̂m obtained from CoT2-MTS (or discrete CoT)
traces converge in probability to the deterministic distri-
bution αm of the base CoT2 model. αm is computed in a
sampling-free fashion and thus, is not a random variable.

Overall Proposition 2 establishes the statistical consistency
of all three inference methods as they all estimate the same
distribution αm over the vocabulary. However, they differ in
how many samples are needed to approximate that distribu-
tion with repeated samplings. In particular, the base CoT2
model outputs the entire probability distribution over tokens
at every intermediate step, thereby, implicitly tracking all
possible trajectories in parallel as continuous embeddings.
Consequently, it directly computes the exact final token dis-
tribution in one forward pass without repeated sampling. In
contrast, due to stochasticity, discrete CoT or CoT2-MTS
needs multiple i.i.d. samples to approximate this distribu-
tion. This observation motivates us to study and contrast the
sample complexities of discrete CoT and CoT2-MTS. Our
next proposition establishes our distribution approximation
guarantee with respect to the total variation distance and
shows that CoT2-MTS reduces the sample complexity of
estimation compared to discrete CoT by a factor of K.

Proposition 3. Let αm be the final expected output distribu-
tion after m steps of CoT according to Proposition 2. Let α̂m

be the distribution resulting from averaging the outputs of
i.i.d. CoT2-MTS traces with parallelism K. Then, to guaran-
tee ∥α̂m − αm∥1 ≤ ϵ with high probability, the total number
of samples (traces) required scales as Θ

(
v

K ϵ2

)
.

Recall that CoT2-MTS generalizes discrete CoT (K = 1).

For K = 1, which corresponds to the discrete CoT model,
the above proposition reduces to the known Θ(v

ϵ2
) sample

complexity of approximating a v-category distribution in ℓ1

distance (Kamath et al., 2015). Note that as K → ∞, CoT2-
MTS converges to the base CoT2, and the above proposition
recovers the one-shot performance of base CoT2. Thus,
although the three models yield the same final distribution,
the discrete model requires substantially more rollouts for
accurate approximation due to inherent noise from single-
token sampling. In contrast, the base CoT2 model carries
the entire mixture of partial expansions at each step and
computes the distribution in one shot, while the CoT2-MTS
model captures multiple partial expansions in each step
and proportionally reduces the sample complexity. This
theoretical intuition aligns with our empirical findings in the
Pass@k experiments in Section 3, where we observe that
the base CoT2 approach achieves comparable performance
to discrete CoT while requiring substantially fewer samples.

6. Limitations
One limitation of CoT2 is that it may require larger em-
bedding dimensions to represent multiple parallel reasoning
traces in more complex tasks. As a broader impact, while
CoT2 can increase performance by searching more reason-
ing paths in parallel, this representation shadows the model’s
intermediate decision process, and might potentially reduce
the interpretability of the model.

References
Aggarwal, P. and Welleck, S. L1: Controlling how long

a reasoning model thinks with reinforcement learning.
arXiv preprint arXiv:2503.04697, 2025.

Bachmann, G. and Nagarajan, V. The pitfalls of next-token
prediction. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.
net/forum?id=76zq8Wkl6Z.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. Sched-
uled sampling for sequence prediction with recurrent neu-
ral networks, 2015. URL https://arxiv.org/abs/
1506.03099.

Blei, D. M., Ng, A. Y., and Jordan, M. I. Latent dirichlet al-
location. J. Mach. Learn. Res., 3(null):993–1022, March
2003. ISSN 1532-4435.

Cheng, J. and Van Durme, B. Compressed chain of thought:
Efficient reasoning through dense representations. arXiv
preprint arXiv:2412.13171, 2024.

Deng, Y., Prasad, K., Fernandez, R., Smolensky, P., Chaud-
hary, V., and Shieber, S. Implicit chain of thought

9

https://openreview.net/forum?id=76zq8Wkl6Z
https://openreview.net/forum?id=76zq8Wkl6Z
https://arxiv.org/abs/1506.03099
https://arxiv.org/abs/1506.03099

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

reasoning via knowledge distillation. arXiv preprint
arXiv:2311.01460, 2023.

Deng, Y., Choi, Y., and Shieber, S. From explicit cot to
implicit cot: Learning to internalize cot step by step.
arXiv preprint arXiv:2405.14838, 2024.

Dziri, N., Lu, X., Sclar, M., Li, X. L., Jiang, L., Lin, B. Y.,
West, P., Bhagavatula, C., Bras, R. L., Hwang, J. D.,
Sanyal, S., Welleck, S., Ren, X., Ettinger, A., Harchaoui,
Z., and Choi, Y. Faith and fate: Limits of transformers
on compositionality, 2023. URL https://arxiv.org/
abs/2305.18654.

Feng, G., Zhang, B., Gu, Y., Ye, H., He, D., and Wang, L.
Towards revealing the mystery behind chain of thought:
A theoretical perspective. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=qHrADgAdYu.

Geiping, J., McLeish, S., Jain, N., Kirchenbauer, J., Singh,
S., Bartoldson, B. R., Kailkhura, B., Bhatele, A., and
Goldstein, T. Scaling up test-time compute with latent
reasoning: A recurrent depth approach. arXiv preprint
arXiv:2502.05171, 2025.

Giannou, A., Rajput, S., Sohn, J.-Y., Lee, K., Lee, J. D.,
and Papailiopoulos, D. Looped transformers as pro-
grammable computers. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 11398–11442. PMLR, 23–29
Jul 2023. URL https://proceedings.mlr.press/
v202/giannou23a.html.

Gloeckle, F., Idrissi, B. Y., Rozière, B., Lopez-Paz, D., and
Synnaeve, G. Better & faster large language models via
multi-token prediction. In Proceedings of the 41st In-
ternational Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Goyal, S., Ji, Z., Rawat, A. S., Menon, A. K., Kumar, S., and
Nagarajan, V. Think before you speak: Training language
models with pause tokens. In The Twelfth International
Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=ph04CRkPdC.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

Hao, S., Sukhbaatar, S., Su, D., Li, X., Hu, Z., Weston,
J., and Tian, Y. Training large language models to
reason in a continuous latent space. arXiv preprint
arXiv:2412.06769, 2024.

Ildiz, M. E., Huang, Y., Li, Y., Rawat, A. S., and Oymak,
S. From self-attention to markov models: Unveiling
the dynamics of generative transformers, 2024. URL
https://arxiv.org/abs/2402.13512.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Kamath, S., Orlitsky, A., Pichapati, D., and Suresh, A. T.
On learning distributions from their samples. In Grün-
wald, P., Hazan, E., and Kale, S. (eds.), Proceedings of
The 28th Conference on Learning Theory, volume 40 of
Proceedings of Machine Learning Research, pp. 1066–
1100, Paris, France, 03–06 Jul 2015. PMLR. URL https:
//proceedings.mlr.press/v40/Kamath15.html.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao,
C., Deng, C., Zhang, C., Ruan, C., et al. Deepseek-v3
technical report. arXiv preprint arXiv:2412.19437, 2024.

Merrill, W. and Sabharwal, A. The expressive power of
transformers with chain of thought. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=
NjNGlPh8Wh.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability, 2023. URL https://arxiv.org/abs/
2301.05217.

Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski,
H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A.,
Bosma, M., Luan, D., et al. Show your work: Scratch-
pads for intermediate computation with language models.
arXiv:2112.00114, 2021.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C.,
Mishkin, P., Zhang, C., Agarwal, S., Slama, K., Ray, A.,
et al. Training language models to follow instructions
with human feedback. Advances in neural information
processing systems, 35:27730–27744, 2022.

Pfau, J., Merrill, W., and Bowman, S. R. Let’s think dot by
dot: Hidden computation in transformer language models.
In First Conference on Language Modeling, 2024. URL
https://openreview.net/forum?id=NikbrdtYvG.

Radford, A., Wu, J., Child, R., Luan, D., Amodei,
D., and Sutskever, I. Language models are un-
supervised multitask learners. OpenAI Technical

10

https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://openreview.net/forum?id=qHrADgAdYu
https://proceedings.mlr.press/v202/giannou23a.html
https://proceedings.mlr.press/v202/giannou23a.html
https://openreview.net/forum?id=ph04CRkPdC
https://arxiv.org/abs/2402.13512
https://proceedings.mlr.press/v40/Kamath15.html
https://proceedings.mlr.press/v40/Kamath15.html
https://openreview.net/forum?id=NjNGlPh8Wh
https://openreview.net/forum?id=NjNGlPh8Wh
https://arxiv.org/abs/2301.05217
https://arxiv.org/abs/2301.05217
https://openreview.net/forum?id=NikbrdtYvG

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Report, 2019. URL https://cdn.openai.com/
better-language-models/language_models_
are_unsupervised_multitask_learners.pdf.

Saparov, A. and He, H. Language models are greedy rea-
soners: A systematic formal analysis of chain-of-thought.
arXiv preprint arXiv:2210.01240, 2022.

Saunshi, N., Dikkala, N., Li, Z., Kumar, S., and Reddi,
S. J. Reasoning with latent thoughts: On the power of
looped transformers. In The Thirteenth International
Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=din0lGfZFd.

Shalev, Y., Feder, A., and Goldstein, A. Distributional
reasoning in llms: Parallel reasoning processes in multi-
hop reasoning. arXiv preprint arXiv:2406.13858, 2024.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X.,
Zhang, H., Zhang, M., Li, Y. K., Wu, Y., and Guo,
D. Deepseekmath: Pushing the limits of mathemat-
ical reasoning in open language models, 2024. URL
https://arxiv.org/abs/2402.03300.

Shazeer, N. Glu variants improve transformer. arXiv
preprint arXiv:2002.05202, 2020.

Shen, Z., Yan, H., Zhang, L., Hu, Z., Du, Y., and He, Y. Codi:
Compressing chain-of-thought into continuous space via
self-distillation. arXiv preprint arXiv:2502.21074, 2025.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., and et al. Mastering the game of go with-
out human knowledge. Nature, 550(7676):354–359, Oct
2017. doi: 10.1038/nature24270.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Stiennon, N., Ouyang, L., Wu, J., Ziegler, D. M., Lowe,
R., Voss, C., Radford, A., Amodei, D., and Christiano,
P. Learning to summarize from human feedback, 2022.
URL https://arxiv.org/abs/2009.01325.

Sui, Y., Chuang, Y.-N., Wang, G., Zhang, J., Zhang, T.,
Yuan, J., Liu, H., Wen, A., Zhong, S., Chen, H., et al.
Stop overthinking: A survey on efficient reasoning for
large language models. arXiv preprint arXiv:2503.16419,
2025.

Suzgun, M., Scales, N., Schärli, N., Gehrmann, S., Tay, Y.,
Chung, H. W., Chowdhery, A., Le, Q., Chi, E., Zhou, D.,
and Wei, J. Challenging BIG-bench tasks and whether
chain-of-thought can solve them. In Rogers, A., Boyd-
Graber, J., and Okazaki, N. (eds.), Findings of the As-
sociation for Computational Linguistics: ACL 2023, pp.

13003–13051, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023.
findings-acl.824. URL https://aclanthology.org/
2023.findings-acl.824/.

Thomm, J., Camposampiero, G., Terzic, A., Hersche, M.,
Schölkopf, B., and Rahimi, A. Limits of transformer lan-
guage models on learning to compose algorithms, 2024.
URL https://arxiv.org/abs/2402.05785.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Xiong, Z., Cai, Z., Cooper, J., Ge, A., Papageorgiou, V.,
Sifakis, Z., Giannou, A., Lin, Z., Yang, L., Agarwal, S.,
Chrysos, G. G., Oymak, S., Lee, K., and Papailiopoulos,
D. Everything everywhere all at once: Llms can in-
context learn multiple tasks in superposition, 2024. URL
https://arxiv.org/abs/2410.05603.

Yang, S., Gribovskaya, E., Kassner, N., Geva, M., and
Riedel, S. Do large language models latently per-
form multi-hop reasoning? In Ku, L.-W., Mar-
tins, A., and Srikumar, V. (eds.), Proceedings of the
62nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 10210–
10229, Bangkok, Thailand, August 2024. Association
for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.550. URL https://aclanthology.org/
2024.acl-long.550/.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in neural
information processing systems, 36:11809–11822, 2023.

Yu, P., Xu, J., Weston, J., and Kulikov, I. Distilling system
2 into system 1. arXiv preprint arXiv:2407.06023, 2024.

Yu, Q., Zhang, Z., Zhu, R., Yuan, Y., Zuo, X., Yue, Y., Fan,
T., Liu, G., Liu, L., Liu, X., Lin, H., Lin, Z., Ma, B.,
Sheng, G., Tong, Y., Zhang, C., Zhang, M., Zhang, W.,
Zhu, H., Zhu, J., Chen, J., Chen, J., Wang, C., Yu, H., Dai,
W., Song, Y., Wei, X., Zhou, H., Liu, J., Ma, W.-Y., Zhang,
Y.-Q., Yan, L., Qiao, M., Wu, Y., and Wang, M. Dapo: An
open-source llm reinforcement learning system at scale,
2025. URL https://arxiv.org/abs/2503.14476.

11

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openreview.net/forum?id=din0lGfZFd
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2009.01325
https://aclanthology.org/2023.findings-acl.824/
https://aclanthology.org/2023.findings-acl.824/
https://arxiv.org/abs/2402.05785
https://arxiv.org/abs/2410.05603
https://aclanthology.org/2024.acl-long.550/
https://aclanthology.org/2024.acl-long.550/
https://arxiv.org/abs/2503.14476

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Zhang, X., Huang, Z., Ni, C., Xiong, Z., Chen, J., and
Oymak, S. Making small language models efficient rea-
soners: Intervention, supervision, reinforcement. arXiv
preprint arXiv:2505.07961, 2025.

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Appendix
We discuss additional related work in Appendix A. We provide further implementation details in Appendix B, including those
for the MNNS task (Appendix B.1), the ProntoQA/ProsQA datasets (Appendix B.2), and GRPO training (Appendix B.3).
We present additional experimental results in Appendix C, and we offer details on continuous supervised training and GRPO
in Appendix C.1 and Appendix C.2, respectively. Finally, we include the proofs of Propositions 1, 2, and 3 in Appendix D.

A. Further Related Work
The proposed CoT2 approach simultaneously tracks all possible trajectories and superposes them within continuous tokens.
This approach is similar to that of Xiong et al. (2024), who superpose multiple candidate outputs into a single final token. Our
approach also shares similarities with decoding algorithms like self-consistency (Wang et al., 2022) and Best-of-N-Sampling
(Stiennon et al., 2022), which generate multiple trajectories by running inference multiple times and then select a final
answer based on the aggregate statistics. In contrast, our algorithm performs a single inference, superposing different
trajectories all at once and determining the final answer in one pass. Furthermore, our Dirichlet sampling approach for
generating multiple rollouts in GRPO training draws connections to previous works such as Latent Dirichlet Allocation
(LDA) (Blei et al., 2003), which introduces Dirichlet priors within a hierarchical Bayesian framework, and AlphaGo (Silver
et al., 2017), which injects Dirichlet noise to encourage exploration.

Our work also tangentially relates to research on multi-token prediction (Bachmann & Nagarajan, 2024; Liu et al., 2024;
Gloeckle et al., 2024), which aims to improve the efficiency and quality of generation by predicting multiple tokens at once.
It is hypothesized that effective future prediction necessitates the exploration of many possible continuations, which is
similar to our CoT2 approach.

B. Implementation Details
Computational Resources: All experiments were run on a Slurm-managed cluster using L40S GPUs with 48GB of memory.
Each experiment fits on a single GPU. In the case of 4 input digits, the SFT or CSFT training takes approximately 3 hours
on a single GPU. For 5-digit inputs, the dataset size increases by roughly a factor of 10, and the training time increases
proportionally. The entire codebase was implemented in PyTorch.

B.1. Implementation Details of Experiments on MNNS Task

Dataset Details: For the MNNS task, the vocabulary consists of a range of numbers from [−S , S] for some positive integer
S , together with <BOS>,<EOS>, and→ special tokens. The integer S is chosen so that all possible partial sums of the
selected input digits lie within [−S , S]. For example, when the input digits lie in the range 1–10, we set S = 36, whereas for
digits in 5–14, we set S = 40. We performed our experiments on the 4 and 5 input digit scenarios. A sample input line with
m numbers is:

<BOS>D1 D2 . . . Dm →

Accordingly, the output will be m sum tokens, where the final token corresponds to the answer, followed by <EOS> token:

S 1 S 2 . . . S m <EOS>

As a concrete example, consider the input 2, 1, 4 (m = 3), following Figure 1. In this case, the solution for the MNNS task is
−2 − 1 + 4 = 1. Therefore, for the discrete model, the input is <BOS>D2 D1 D4 → and we supervise it along the trajectory
of correct output tokens S −2 S −3, S 1<EOS>, as illustrated in Figure 1. On the other hand, the continuous supervision at
the first step holds S 2 and S −2 as possibilities. Then, for the next step, we add 1 or -1 to these numbers, and the resulting
possibilities are S 3, S 1, S −1, S −3. Finally, at the last step, the model is supervised to pick the correct answer S 1 as the token.

We split the datasets by ensuring that each permutation of a set of numbers is exactly in one of the train and validation
datasets, as the answer to the question is permutation-invariant. This way, we prevent the models from memorizing the
answer and make a fair comparison. We also use 0.8-0.2 split for train-val datasets.

Model and Hyperparameters: We use the GPT2 model, with 1 layer 1 head, 2 layer 2 head, and 4 layer 4 head as the
configurations. For each configuration, we experiment with embedding dimensions of 16, 24, or 32. We train with a learning
rate of lr = 10−4 and use AdamW (no weight decay). The batch size is 16 for 4-digit inputs and 64 for 5-digit inputs.

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Evaluation of the models: To make a proper comparison, we only check the final answer of the models, as checking the
correctness of the full path of the discrete model would be unfair.

Pass@k Experiment: We perform our experiments for temperatures 0, 0.4, 0.8, and 1 by repeating the evaluation 10 times
for each k value where k changes from 1 to 14.

B.2. Implementation Details of Experiments on ProntoQA/ProsQA Datasets

Dataset Details: Different from the original ProntoQA/ProsQA datasets which described the structured ontology in natural
language as a set of known conditions, we use a more structured format through a token-level representation. An example
prompt is shown below.

Description of the structured ontology: Each component of the ontology and associated questions is represented through
discrete tokens with their own learned embeddings, rather than as raw textual input. Specifically, we use the GPT-2
architecture and encode the ontology’s structural components. Below are two examples demonstrating how natural-language
assertions are mapped to our tokenized format:

Brimpuses are not luminous → ’A’ ’not in’ ’B’ ’.’.

Shumpuses are amenable; Each yumpus is a lorpu; Every lorpus is floral → ’C’ ’in’ ’D’ ’.’.

Below, we have the ProntoQA and ProsQA datasets’ input-output format.

The structure of ProntoQA:

Input:’Description’ ’{’ ’A’ ’not in’ ’B’ ’.’ ... ’C’ ’in’ ’D’ ’.’ ’}’ ’Question’ ’{’ ’C’
’not in’ ’F’ ’.’ ’}’

Output:’Steps’ { ’C’ ’in’ ’D’ ’.’ ... ’D’ ’in’ ’E’ ’.’ ’}’ ’Answer’ ’{’ ’False’ ’}’

The structure of ProsQA:

Input:’Description’ ’{’ ’A’ ’in’ ’B’ ’.’ ... ’C’ ’in’ ’D’ ’.’ ’}’ ’Question’ ’{’ ’C’ ’in’ ’F’
’or’ ’E’ ’}’

Output:’Steps’ { ’C’ ’in’ ’D’ ’.’ ... ’D’ in ’E’ ’.’ ’}’ ’Answer’ ’{’ ’F’ ’}’

Each distinct component or relation (e.g., ’A’, ’in’, ’not in’) is treated as a unique token, and singular/plural variants
(such as ’lempus’ and ’lempuses’) are collapsed into a single token to simplify the vocabulary. Alongside these concept
tokens, special structural tokens (’Description’, ’’, ’’, ’.’, ’or’, etc.) are also included, which results in a vocabulary
size of 31 tokens. To avoid biases, we balance the dataset. In ProntoQA, “yes” and “no” each appear with 50% probability,
and in ProsQA, the correct answer is randomly permuted at the first or second position. For all the other experimental and
training settings, we follow (Hao et al., 2024).

Model and Hyperparameters: We use the GPT2 model, with 2 layer 2 head, and 4 layer 4 head as the configurations. We
tested embedding dimensions 24, 32, 40 with these configurations. We set batch size 64. We train with a learning rate of
10−4 and use AdamW (no weight decay).

Maj@k Experiment: We use majority voting for evaluation instead of Pass@k, because both ProntoQA and ProsQA are
binary questions. We perform our experiments for temperatures 0, 0.4, 0.8, and 1 by repeating the evaluation 10 times for
each k value where k changes from 1 to 21. If two or more answers end up with the same top vote, we pick one randomly.

B.3. Implementation Details of GRPO Training

In (Hao et al., 2024), the reference model is updated by LMθref ← LMθ in each iteration (epoch). This approach is reasonable
for their setting with a large dataset and a small number of epochs over it. For our setting, however, we set the reference
model to the initial model and never update it through iterations as we have a smaller dataset. Meanwhile, we update the old
model before every batch LMθold ← LMθ.

In our experiments, we use G = 8 trajectories per input data point, use clipping parameter ϵ = 0.1, and set the KL-divergence
coefficient β = 0 in most cases (with β = 0.1 in a few). For the CoT2 model with MTS sampling, we change the number
of tokens to sample K from 1 to 12. In the MNNS task, the 5-digit case has about ten times more data than the 4-digit

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

case, so we typically focus on 4-digit MNNS because of computational considerations and use a batch size of 16 in those
experiments.

Learning rates differ by model and setting. We use lr = 5 × 10−5 for CoT2-MTS sampling (figures in the main text),
lr = 1× 10−5 for discrete CoT with Dirichlet sampling, and lr = 1× 10−6 for CoT2 with Dirichlet sampling. For ProntoQA
and ProsQA experiments, we perform a grid search over learning rates ranging from 1 × 10−4 to 1 × 10−8 and select and
report results using the best-performing configuration. For most settings, we find lr = 1 × 10−5 optimal; however, for CoT2
and discrete CoT models with K = 6, we set lr = 1 × 10−6.We also use AdamW with a weight-decay of 0.01. For Dirichlet
experiments on the MNNS task, we try various scale parameters γ, but we find γ = 20 to work best in most settings. Unless
stated otherwise, we report the best validation accuracy found during training for each setting.

C. Experimental Results
C.1. Continuous Supervised Training Results

Teacher Forcing and Self-feeding Comparison: As described in Section 3, we tested two approaches of providing prefixes
during training the CoT2 model with CSFT. Although the model autoregressively generates at inference time, teacher forcing
yields better performance than self-feeding during CSFT training. Our results demonstrate that, We also tested curriculum
settings, where we switch to self-feeding after a pre-determined number of epochs in the training. Still, the accuracies didn’t
improve beyond pure teacher-forcing training. The results are illustrated in Figure 4, where we refer to teacher-forcing as
"hard-teacher" and refer to self-feeding as "soft-teacher".

Sparse Supervision for Discrete Baseline: We also tested providing a subset of the correct path to the discrete model. We
observed that a sparsely supervised discrete model can achieve better performance than the fully supervised discrete model
when the distribution is "easier" to handle by the model. As an example, we tested the case when we have 5 input digits from
the range of 11 to 19. In this case, in nearly all of the cases, the answer to our MNNS game is (sum of minimum 3 numbers)
- (sum of maximum 2 numbers) out of the 5 input numbers. In this case, when only 1 token from the correct path is provided
to the discrete model, it’s better than 3 and 5 token cases. However, when we change the distribution to a range of numbers
from 5 to 13, which makes the question reasonably harder, the discrete model with 1 token supervision performs worse than
the other two, and the discrete model with full supervision performs best. The results are demonstrated in Figure 3.

Further Results on CoT2 vs Discrete CoT: The results in Figure 5 also indicate that above an embedding dimension
threshold, the CoT2 model has superior performance and trains significantly faster than the discrete CoT model. Moreover,
combining the results of Figure 5 with Figure 2c, we see that the CoT2 model with one layer and one head GPT2 model
performs better than discrete CoT model with two layers and two heads at embeddings 24 and 32. While the continuous
approach requires greater embedding capacity to support its distributional representations at each step, it can outperform
the discrete model using fewer layers and attention heads. Supporting the findings in Figure 2, Figure 6 illustrates that on
the ProntoQA task, CoT2 consistently outperforms the discrete CoT baseline when the embedding dimension is above a
threshold. Likewise, as depicted in Figure 7 and Figure 8, the discrete CoT model requires multiple samplings (Maj@k)
to match the single-shot performance of CoT2 on both ProntoQA and ProsQA, which indicates that CoT2 model is more
sample-efficient.

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

0 100 200 300 400 500 600 700
Epoch

30

40

50

60

70

80

90

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Continuous
Discrete, 5 tokens
Discrete, 3 tokens
Discrete, 1 token

Figure 3: The figure illustrates that when the range of digits makes the question non-trivial on an MNNS task, the discrete
CoT model trained with full token supervision outperforms sparse supervisions; in particular, single token supervision yields
the worst performance. Setting: 5 input digits in 5 − 13; 2-layer, 2-head GPT2 with d = 32.

0 250 500 750 1000 1250 1500 1750 2000
Epoch

20

30

40

50

60

70

80

90

100

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Hard Teacher, Emb 16
Soft Teacher, Emb 16
Hard Teacher, Emb 24
Soft Teacher, Emb 24
Hard Teacher, Emb 32
Soft Teacher, Emb 32

Figure 4: The comparison between the hard and soft teachers for different embedding dimensions. The figure illustrates that
the hard teacher is superior to the soft teacher. Setting: 4 input digits in 1 − 9; 4-layer, 4-head GPT2 with d ∈ {16, 24, 32}.

0 200 400 600 800 1000
Epoch

0

20

40

60

80

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Continuous, Emb 16
Discrete, Emb 16
Continuous, Emb 24
Discrete, Emb 24
Continuous, Emb 32
Discrete, Emb 32

Figure 5: Comparison between CoT2 and discrete CoT2 model for different embedding dimensions. The figure demonstrates
that above a certain embedding dimension threshold, the CoT2 model outperforms the discrete CoT model in the MNNS
task. Setting: 4 input digits in 1 − 9; 1-layer, 1-head GPT2 with d ∈ {16, 24, 32}.

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

0 200 400 600 800 1000 1200 1400
Epoch

0

20

40

60

80

Va
lid

at
io

n
A

cc
ur

ac
y

(%
)

Continuous, Emb 24
Discrete, Emb 24
Continuous, Emb 32
Discrete, Emb 32
Continuous, Emb 40
Discrete, Emb 40

Figure 6: Comparison between CoT2 and discrete CoT2 model for different embedding dimensions in ProntoQA task. The
figure shows that above an embedding dimension threshold, the CoT2 model outperforms the discrete CoT model. Setting:
4 input digits in 1 − 9; 4-layer, 4-head GPT2 with d ∈ {24, 32, 30}.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k (number of samples)

50

55

60

65

70

75

M
aj

@
k

ac
cu

ra
cy

 (
%

)

Temp=0.0
Temp=0.4
Temp=0.8
Temp=1.0
Continuous SFT

Figure 7: The figure illustrates that the discrete CoT2 model requires multiple samplings (Maj@k) to match the single-shot
performance of the CoT2 model on ProntoQA (10-run average). Setting: 4-layer, 4-head GPT2 with d = 32.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
k (number of samples)

65

70

75

80

85

90

95

M
aj

@
k

ac
cu

ra
cy

 (
%

)

Temp=0.0
Temp=0.4
Temp=0.8
Temp=1.0
Continuous SFT

Figure 8: The figure illustrates that the discrete CoT2 model requires multiple samplings (Maj@k) to match the single-shot
performance of the CoT2 model on ProsQA (10-run average). Setting: 4-layer, 4-head GPT2 with d = 32.

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

C.2. GRPO Results

Discussion on ProntoQA/ProsQA Datasets: Table 2 illustrates that GRPO training using CoT2-MTS sampling consistently
improves discrete CoT and CoT2 models over their initial SFT accuracy. Moreover, we observe that the improvement in the
discrete CoT model is greater, which might indicate that the CoT2 model already gains an RL-like exploration mechanism
through CSFT training. We observe that while increasing K initially increases the accuracy by sampling more tokens at each
step, beyond some K, the improvements diminish. This observation is consistent with Table 1, where we see that a moderate
K value offers the best final performance. One possible explanation is that while higher K promotes better exploration, it
also raises the chance of sampling unhelpful tokens that disrupt the averaged token representation. Indeed, for larger K, we
observe that the RL objective saturates to near zero which suggests that most rollouts fail once the averaged token contains
too many distracting tokens.

Discussion on Dirichlet Sampling: We also investigate the effects of Dirichlet sampling in GRPO training discrete CoT
and CoT2 models. The results in Table 3 indicates that applying Dirichlet sampling (γ = 20) in GRPO training of discrete
CoT model consistently improves over the initial SFT training accuracies. Similar to the CoT2 +MTS sampling results
in Table 1, we observe that the entropy at the third token remains relatively high, which suggests a beneficial diversity in
model’s predictions for that token. Moreover, the Table 4 demonstrates that Dirichlet sampling also improves the CoT2
model’s SFT accuracy, even though it has a high initial SFT accuracy. As illustrated in Table 4, we find there is an optimal
value for the scale parameter γ, since larger γ typically yields more uniform sampling distributions, whereas smaller γ
concentrates the distribution more sharply. Thus, adjusting γ provides a balance between exploration and stability in GRPO
training.

Table 3: Discrete CoT models trained with GRPO after SFT using Dirichlet sampling (γ = 20) and a learning rate of
1 × 10−5. We show validation accuracy (%) and token-level entropy (SFT→ SFT+GRPO) for each (Layers, Heads) setting,
with an embedding dimension of 24 for GPT2 model.

Layers Heads Val. Accuracy (%) Val. Entropy (SFT→ SFT+GRPO)

SFT SFT+GRPO token1 token2 token3 token4

1 1 39.76 46.25 0.4851→ 0.1701 0.5165→ 0.6380 0.3243→ 0.6590 0.1597→ 0.4878
2 2 70.26 75.84 0.4851→ 0.4027 0.5165→ 0.4413 0.3243→ 0.2907 0.1597→ 0.1386

Table 4: Validation accuracies GRPO training with CoT2 models using different Dirichlet sampling scales (γ) with learning
rate of 1 × 10−6. We show the baseline SFT accuracy (87.84%) and final performance after GRPO.

Dirichlet Scale (γ) SFT Val. Acc (%) SFT + GRPO Val. Acc (%)

10
87.84

89.76
20 90.75
40 90.37

D. Theoretical Details
Justification for Assumption 1: The Assumption 1 holds for tasks where the next-token distribution depends solely on the
current token and the input tokens rather than the full history of output tokens. This is satisfied by many reasoning tasks,
where the aim is to keep track of an intermediate state (e.g., the current sum) and update this state based only on the current
state and the input, independently of the earlier trajectory.

For example, in the MNNS task, the model generates a token representing the current partial sum at each step. To compute
the distribution over the next possible sums, the model adds or subtracts the selected number from the input context X to the
current sum, without needing to remember the sequence of previous sums explicitly. Thus, the next-state distribution at each
step is only determined by the current state and it naturally satisfies the Assumption 1.

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Proposition 2 (Consistency of CoT and CoT2 inference). Under Assumption 1 and given X, the output of base CoT2 is
zm =

∑v
j=1 αm, j e j where αm = α1

∏m−1
t=1 Mt. Discrete CoT and CoT2-MTS have the same output once we take the expectation

over their stochastic sampling.

Proof. Let α̂(disc)
t , α̂(MTS)

t denote the empirical output token distributions at step t under one trajectory obtained by the
discrete CoT, and CoT2 with MTS models, respectively. We define α(disc)

t = E
[
α̂(disc)

t

]
and α(MTS)

t = E
[
α̂(MTS)

t

]
to be

corresponding expected distributions. The discrete CoT model at each step picks exactly 1 token from αt. On the other hand,
CoT2-MTS samples K i.i.d. tokens at every step independently according to their probabilities from α̂t. We denote them
i1, . . . , iK , and average their embeddings to produce a single query.

We will use induction in our argument. For the base case, all models start with the same initial distribution, so we trivially
have α(disc)

1 = α(MTS)
1 = α(CoT2)

1 . For the inductive step, assume that we have α(disc)
t−1 = α

(MTS)
t−1 = α(CoT2)

t−1 . We will show that
α(disc)

t = α(MTS)
t = α(CoT2)

t . On the other, for the discrete CoT model, the model samples one token eit+1 from the row of Mt

for a token it+1. Therefore, we need to condition on the token at step t. We have:

E
[
α̂(disc)

t+1

]
=

v∑
j=1

P(zt = e j)E
[
α̂(disc)

t+1 | zt = e j

]
=

v∑
j=1

P(zt = e j) LM(t)
θ (· | e j, X)

v∑
j=1

α(disc)
t, j LM(t)

θ (· | e j, X)

(a)
=

v∑
j=1

α(CoT2)
t, j LM(t)

θ (· | e j, X)

(b)
= α(CoT2)

t+1 (6)

where (a) follows from the induction argument and (b) follows from Assumption 1. Therefore, we obtain α(disc)
t+1 = E

[
α̂(disc)

t+1

]
=

α(CoT2)
t+1 . For the CoT2-MTS model, the argument will be similar. Using the decoupling of trajectories by Assumption 1, the

next distribution is:

LM(t)
θ

· | 1
K

K∑
r=1

eir , X
 = 1

K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

Therefore, we write:

E
[
α̂(MTS)

t+1

]
=

∑
(i1,...,iK) ∈ [v]K

P(ei1 , . . . , eiK)E
[
α̂(MTS)

t+1 | ei1 , . . . , eiK

]
=

∑
(i1,...,iK) ∈ [v]K

P(ei1 , . . . , eiK) LM(t)
θ

· | 1
K

K∑
r=1

eir , X

=
∑

(i1,...,iK) ∈ [v]K

P(ei1 , . . . , eiK)
1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

∑
(i1,...,iK) ∈ [v]K

 K∏
r=1

P(eir)

 1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

∑
(i1,...,iK) ∈ [v]K

 K∏
r=1

α(MTS)
t,ir

 1
K

K∑
r=1

LM(t)
θ

(
· | eir , X

)
=

1
K

K∑
r=1

v∑
j=1

LM(t)
θ (· | e j, X)

∑
(i1,...,ir−1,ir+1,...,iK)∈[v]K−1

α(MTS)
t, j

K∏
s=1
s,r

α(MTS)
t,is

=
1
K

K∑
r=1

v∑
j=1

α(MTS)
t, j LM(t)

θ (· | e j, X)
∑

(i1,...,ir−1,ir+1,...,iK)∈[v]K−1

K∏
s=1
s,r

α(MTS)
t,is

=

K∑
r=1

1
K

v∑
j=1

α(MTS)
t, j LM(t)

θ

(
· | e j, X

)
=

v∑
j=1

α(MTS)
t, j LM(t)

θ

(
· | e j, X

)
=

v∑
j=1

α(CoT2)
t, j LM(t)

θ

(
· | e j, X

)
= α(CoT2)

t+1 . (7)

Thus, combining (6), and (7) completes the induction and our argument:

α(disc)
t+1 = E

[
α̂(disc)

t+1

]
= α(CoT2)

t+1 = E
[
α̂(MTS)

t+1

]
= α(MTS)

t+1 .

□

Proposition 3. Let αm be the final expected output distribution after m steps of CoT according to Proposition 2. Let α̂m

be the distribution resulting from averaging the outputs of i.i.d. CoT2-MTS traces with parallelism K. Then, to guarantee
∥α̂m − αm∥1 ≤ ϵ with high probability, the total number of samples (traces) required scales as Θ

(
v

K ϵ2

)
.

Proof. We will utilize the empirical distributions α̂(disc)
t , α̂(MTS)

t that are defined in the proof of Proposition 3 and show
that i.i.d. sampling K discrete CoT trajectories and averaging their results at the last step is distributionally equivalent to
CoT2-MTS using K tokens, under Assumption 1. We will first argue the results for m = 2 and then we will show it for
any m = t + 1. As discussed in the previous proposition, using the decoupling of trajectories by Assumption 1, the next
distribution α̂(MTS)

1 when ei1 , . . . , eiK are drawn from α1 is:

α̂(MTS)
2 = LM(1)

θ

· | 1
K

K∑
r=1

eir , X

=
1
K

K∑
r=1

LM(1)
θ

(
· | eir , X

)
=

∑K
r=1 LM(1)

θ

(
· | eir , X

)
K

=

∑K
r=1 α̂

(disc)
2,r

K
, (8)

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

which is the empirical mean of K i.i.d. discrete CoT draws. Thus, under our assumption, drawing K tokens with the MTS
approach is distributionally equivalent to combining outcomes of K independent discrete CoT draws. Now, for any t, we
know by Assumption 1 that output at step t + 1 does not depend on the previous history of tokens. Because of this, we only
focus on the tokens ei1 , . . . , eiK drawn at step t from α(MTS)

t , where α(MTS)
t = α(disc)

t according to Proposition 2. Following the
same steps as in (8), we obtain that:

α̂(MTS)
t+1 =

∑K
r=1 LM(t)

θ

(
· | eir , X

)
K

=

∑K
r=1 α̂

(disc)
t+1,r

K
,

which is again the empirical mean of K i.i.d. discrete CoT trajectory output token distributions. To finish our argument,
we will benefit from a standard result in multinomial estimation that Θ

(
v
ϵ2

)
i.i.d. samples are necessary and sufficient to

learn a v-category distribution in ∥ · ∥1-distance ≤ ϵ (Kamath et al., 2015). In our MTS setting, each sample uses K i.i.d.
draws internally. This reduces the variance by a factor of K and achieves the same estimation guarantee with Θ

(
v

K ϵ2

)
aggregated samples. Hence the total sample complexity in terms of MTS samplings is Θ

(
v

K ϵ2

)
, as claimed. This completes

the argument. □

D.1. Construction for Minimum Non-Negative Sum (MNNS) Task

We describe a single-layer transformer with an attention block followed by a mixture-of-experts (MoE) feed-forward block.
Let n be the length of the input sequence of integer tokens. Denote the tokenized input numbers as z1, z2, . . . , zn; and let
the arrow (→) token be denoted as zn+1. We also have a dummy input token zn+2, which is the embedding corresponding
to number 0, so that we have n + 2 tokens initially. We will construct the transformer with n + 1 MLPs in the mixture of
experts layer, where the first n are partial-sum MLPs and the last one is the MLP that reads off the answer from among the
all stored partial sums after m steps. We start with the following assumption on the structure of the tokens.

Assumption 2. Let d = de + dp be the embedding size where de = 2n+1 and dp = n + 2. The token embeddings are on the
first de coordinates, while the positional encodings are on the last dp coordinates and are one-hot encoded. where each

zi =

(
ei

pi

)
∈ Rde+dp is formed by vertically concatenating a content embedding ei ∈ R

de and a positional encoding pi ∈ R
dp .

We assume each pi is a one-hot vector in Rdp , so that p⊤i pj = 0 for i , j, and ∥pi∥ = 1.

We now state the following proposition, which helps us to attend and select the input tokens z1, . . . , zn+1 one by one by the
attention block.

Proposition 4. Suppose we have n + 2 tokens {z1, z2, . . . , zn+2} in Rd, each of the form zi =

(
ei

pi

)
, where ei ∈ R

de , pi ∈

Rdp , d = de + dp. Let p1, p2, . . . , pn+2 ∈ R
dp be orthonormal set of positional vectors according to Assumption 2. Then, there

exists a rotation matrix R ∈ Rdp×dp satisfying Rp j = p j−1 mod (n+2) for all j ∈ [n + 2], and the block matrices

W =
0 de×de 0 de×dp

0 dp×de c · R

 ∈ Rd×d and Wv =

 Ide 0 de×dp

0 dp×de Idp

 ∈ Rd×d

with c→ ∞, ensure that the attention block

Attn(z, Z) = S
(
z⊤WZ⊤

)
ZWv,

performs a cyclic next-index selection: if the query is zi, it selects column j∗ ≡ (i + 1) (mod n + 2) from Z and returns z j∗ .

Proof. Definition of Matrix W. We will first construct a rotation matrix. We have n + 2 orthonormal position vectors
p1, . . . , pn+2 ∈ R

dp . Then, R is the following (n + 2) × (n + 2) permutation matrix

R =

0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 1
0 0 0 · · · 0 0

,

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

which cyclically shifts the basis vectors pj backward by one index, i.e., Rpj = pj−1 mod (n+2). Then, we specify

W =
(
0 de×de 0 de×dp

0 dp×de c · R

)
∈ Rd×d.

Hence for zi = (ei; pi), we have
(
e⊤i , p

⊤
i

)
W =

(
0, p⊤i R

)
. Thus the dot-product with z j is

(
0 p⊤i R

) (e j

pj

)
= p⊤i Rpj.

Since positional encodings are orthogonal, we know that:

p⊤i Rpj =

1, j ≡ i + 1(mod(n + 2)),
0, else.

So row-wise softmax S
(
x⊤WX⊤

)
places all probability mass at column j∗ ≡ i + 1(mod(n + 2)) by saturating softmax at

position j as c→ ∞.

Definition of Matrix Wv. In this case, we simply set Wv = Id, and thus, once the row-wise softmax selects column j∗ with
probability 1, we have

z⊤j∗Wv = z j∗ ,

so the final output is precisely the chosen z j∗ . This completes the construction. □

Having defined the attention block, we state the following proposition that helps selecting different MLPs for the tokens
z1, . . . , zn+1 outputted by the attention block.

Having defined the attention block, we now show how a mixture-of-experts layer can exclusively select MLPi for each token
zi, i = 1, . . . , n + 1 outputted by the attention block.
Proposition 5. Let MLP1, . . . ,MLPn+1 be n + 1 experts in a mixture-of-experts (MoE) module. Suppose we have n + 1 fixed
token embeddings {z1, z2, . . . , zn+1} ⊂ R

d, where each token is formed according to Assumption 2. Given routing parameters
W = [w1 . . . wn+1]⊤, define the MoE feed-forward block as

MoEBlock(z) =
n+1∑
j=1

[
Softmax(Wz) j ·MLP j(z)

]
,

where

Softmax(W z) j =
exp

(
w⊤j z

)
∑n+1

k=1 exp
(
w⊤k z

) , j = 1, . . . , n + 1.

There exist routing matrix W ∈ R(n+1)×d such that the distribution Softmax(c ·W zi) as c→ ∞ assigns a weight of 1 on MLPi

when zi is given as input.

Proof. We partition w j to ignore the content embedding ei and match the positional block pj. Concretely, write w j =

(
0de

pj

)
.

Then, for each token zi = (ei; pi),

w⊤j zi =
(
0⊤de

p⊤j
) (ei

pi

)
= p⊤j pi.

Since p⊤j pi = δi j, we have w⊤j zi = δi j. Therefore, the softmax evaluates to

lim
c→∞

Softmax(c ·W zi) j →
exp(δi j)∑n+1

k=1 exp(δik)
= δi j.

In other words, Softmax(c ·W zi) places all mass on expert j = i. Thus each token zi (for i = 1, . . . , n + 1) deterministically
selects the i-th expert MLPi. □

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

In the next proposition, we show how to iteratively expand the partial sums by adding and subtracting the digit obtained
from the attention block and write each resulting sum to a distinct spot in the output vector.

Proposition 6 (Partial-Sum MLPs). Suppose that the embedding dimension d satisfies d ≥ 2 j+1 + dp. Let zprev contain the
2 j−1 partial sums sk each encoded by a pair (cos(ωsk), sin(ωsk)) of coordinates such that:

zprev =
[
cos(ωs1) sin(ωs1) . . . cos(ωs2 j−1) sin(ωs2 j−1) 0 . . . 0

]⊤
∈ Rd,

and let zcurr contain the input digit d j encoded in the first two coordinates:

zcurr =
[
cos(ωd j) sin(ωd j) 0 . . . 0

]⊤
∈ Rd.

Then, for any 1 ≤ j ≤ n, there exist MLP j : Rd × Rd → Rd such that when (zprev, zcurr) is given as input, it outputs the vector
zout ∈ R

d so that its first 2 j coordinate-pairs store the trigonometric encodings of (sk + d j), and the next 2 j coordinate-pairs
store those of (sk − d j). Formally, first 2 j coordinates are [cos(ω(sk + d j)), sin(ω(sk + d j))] for all partial sums sk, and the
next 2 j coordinates are [cos(ω(sk − d j)), sin(ω(sk − d j))] for all partial sums sk, with any remaining coordinates set to zero.

Proof. Each expert MLP j (for 1 ≤ j ≤ n) adds j-th integer d j in both its positive and negative form to all previously
computed partial sums. For simplicity, let’s say that j-th integer to add is d j. By trigonometric identities, we know that

cos(ω(sk + d j)) = cos(ωsk) cos(ωd j) − sin(ωsk) sin(ωd j),
sin(ω(sk + d j)) = sin(ωsk) cos(ωd j) + cos(ωsk) sin(ωd j),

and similarly,

cos(ω(sk − d j)) = cos(ωsk) cos(ωd j) + sin(ωsk) sin(ωd j),
sin(ω(sk − d j)) = sin(ωsk) cos(ωd j) − cos(ωsk) sin(ωd j).

Using the above identities, we will obtain the sum by introducing matrices that do shift/swap operations. Concretely, for

k = 1, . . . , 2m, the k-th 2 × 2 block acts on
(
cos(ωsk)
sin(ωsk)

)
in zprev. We define:

W+
sin = diag

0 −1

1 0

 , . . . , 0 −1

1 0

︸ ︷︷ ︸
2 j−1 blocks

, 0, . . . , 0

 ,

W−
sin = diag

 0 1

−1 0

 , . . . , 0 1

−1 0

︸ ︷︷ ︸
2 j−1 blocks

, 0, . . . , 0

 .
The above constructions of W+

sin and W−
sin satisfy,

W+
sin zprev =

[
− sin(ωs1) cos(ωs1) · · · − sin(ωs2 j−1) cos(ωs2 j−1) 0 . . . 0

]⊤
∈ Rd

and

W−
sin zprev =

[
sin(ωs1) − cos(ωs1) . . . sin(ωs2 j−1) − cos(ωs2 j−1) 0 . . . 0

]⊤
∈ Rd.

Each of these act blockwise on the first 2 j coordinates of zprev and zeroes out everything else in dimension d. We also have
zcurr ∈ R

d with two designated coordinates zcurr,1 = cos(ωd j), and zcurr,2 = sin(ωd j), with all other coordinates being zero.
We multiply zprev by cos(ωd j) and sin(ωd j) elementwise. Formally, the sum

zcurr,1 · zprev + zcurr,2 · (M+sin zprev)

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

gives the 2 j−1 partial sums {sk + d j}
2 j−1

k=1 stored in the coordinates from 1 to 2 j. We define Wshift ∈ R
d×d in a block form with

three row blocks and two column blocks:

Wshift =

 02 j×2 j 02 j×(d−2 j)
I2 j 02 j×(d−2 j)

0 (d−2 j+1)×2 j 0 (d−2 j+1)×(d−2 j)

 .
When applied, the above matrix shifts the first 2 j entries of zprev by 2 j coordinates. Now, also define

zcurr,2 ·
(
WshiftW−

sin zprev

)
+ zcurr,1 ·

(
Wshift zprev

)
.

This way, the above sum gives us the 2 j−1 partial sums {sk − d j}
2 j−1

k=1 stored in the coordinates from 2 j + 1 to 2 j+1 encoded in
trigonometric format. Then, we normalize this output of the model by 1/2 and obtain the following output:(

zcurr,1 · zold + zcurr,2 ·
(
M+sin zold

)
+ zcurr,2 ·

(
WshiftW−

sin zprev

)
+ zcurr,1 ·

(
Wshift zprev

))
=

[
cos

(
ω (s1 + d j)

)
, sin

(
ω (s1 + d j)

)
, . . . , cos

(
ω (s2 j−1 + d j)

)
, sin

(
ω (s2 j−1 + d j)

)
,

cos
(
ω (s1 − d j)

)
, sin

(
ω (s1 − d j)

)
, . . . , cos

(
ω (s2 j−1 − d j)

)
, sin

(
ω (s2 j−1 − d j)

)
,

0, . . . , 0]⊤ ∈ Rd.

Thus, this is exactly the representation of 2 j partial sums. This completes the argument. We should remark that, the above
argument utilizes a gated MLP which explicitly multiplies the elements of the input features, namely, zcurr with the partial
sums zprev. On the other hand, we don’t require any nonlinear activation function, so our MLP constructions have the form
MLP(z) =W3(W1 z ⊙W2 z) for suitable choices of W1,W2,W3 where ⊙ denotes the Hadamard product. The use of gated
MLPs is a standard practice in transformer architectures (Shazeer, 2020). □

Proposition 7 (Read-OffMLP). Suppose that every partial sum sk is in the range [−S , S] and let ω < π/2S . Assume that
the vector

z = [cos(ωs1), sin(ωs1), . . . , cos(ωs2n), sin(ωs2n), 0, . . . , 0]⊤ ∈ Rd,

contains 2n partial sums {s1, . . . , s2n } encoded in trigonometric form, where d = 2n+1 + n + 2. Then there exists a single
feed-forward network MLPn+1 : Rd → Rd such that, given input z, it selects the smallest nonnegative sℓ from {s1, . . . , s2n }

and outputs the embedding esℓ ∈ R
d, where sℓ is that minimal nonnegative partial sum.

Remark: Our construction relies on gated MLP, rather than standard MLP, as in Proposition 6.

Proof. We know that the input embedding z represents 2n pairs, each pair (cos(ωsi), sin(ωsi)) stored consecutively. That is,

z = [cos(ωs1), sin(ωs1), . . . , cos(ωs2n), sin(ωs2n), 0, . . . , 0]⊤ ∈ Rd,

We will identify the smallest sℓ ≥ 0 and output an embedding e sℓ denoting that integer. We are given that ω is small enough
such that when sℓ ∈ [0, S], we ensure Sω < π/2. This guarantees sin(ωsℓ) ≥ 0 if and only if sℓ ≥ 0. First, we wish to
collapse z into a single vector of size 2n, keeping cos(ωsℓ) only when sin(ωsℓ) ≥ 0 and zeroing it out otherwise. We define
two matrices Wcos,Wsin ∈ R

d×d by

(Wcos)i, (2i−1) = 1, (Wcos)i, j = 0 for j , 2i − 1,
(Wsin)i, (2i) = 1, (Wsin)i, j = 0 for j , 2i.

for 1 ≤ i ≤ 2n and all other rows/columns of Wsin,Wcos are zero. Hence each matrix picks out alternate coordinates:

zcos =Wcos z =

cos(ωs1)
cos(ωs2)
...

cos(ωs2n)
0
...
0

∈ Rd, zsin =Wsin z =

sin(ωs1)
sin(ωs2)
...

sin(ωs2n)
0
...
0

∈ Rd.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Continuous Chain of Thought Enables Parallel Exploration and Reasoning

In order to find the minimum non-negative number, we need to find the number s such that it maximizes cos(ωs) and satisfies
sin(ωs) ≥ 0. For this, we utilize a sigmoid activation function in the following way:

zfilter = zcos ⊙ σ (c zsin) ,

where σ(x) = 1
1+exp(−x) is element-wise sigmoid function, and c→ ∞ is a large constant. With this choice of c, the sigmoid

output will be 1 when sℓ ≥ 0 and 0 otherwise. Therefore, the resulting vector zfilter contains cos(ωs) values at indices where
sin(ωs) is positive. Now, for 0 ≤ sℓ ≤ S with Sω ≤ π2 , the ordering of sℓ from smallest to largest is the same as the ordering
of cos(ωsℓ) from largest to smallest. Thus, to find the minimum nonnegative sum, we find the partial sum ℓ∗ that maximizes
cos(ωsℓ). Utilizing another gating, we calculate

Softmax (c zfilter)⊤ zfilter

as c→ ∞. The softmax vector will be one-hot with 1 at index ℓ∗ that has the largest cos(ωsℓ). A second multiplication with
zfilter will return this cos(ωsℓ∗). Therefore, Softmax (c zfilter)⊤ zfilter = cos(ωsℓ∗). Next, we retrieve the corresponding sine
entry of sℓ∗ by applying the same one-hot selection to zsin. Formally,

Softmax (c zfilter)⊤ zsin = sin (ωsℓ∗) ,

as c → ∞. Hence, from these two selected coordinates, [cos(ωsℓ∗), sin(ωsℓ∗)], we produce the final embedding in Rd by
placing them in the first two coordinates and zeros elsewhere:

esℓ∗ = [cos(ωsℓ∗), sin(ωsℓ∗), 0, . . . , 0]⊤ ,

where sℓ∗ is the minimal nonnegative sum. This completes the argument. □

Proposition 1 (Solving MNNS). There exists a 1-layer transformer architecture with a mixture-of-experts MLP layer
that solves the MNNS task using CoT2 by storing (sine, cosine) embeddings of all 2k states at the k-th iteration in a
non-overlapping manner.

Proof. We will argue that by combining Propositions 5 to 7, we obtain a single-layer transformer that is formed by an
attention block followed by an MoE feed-forward block, which solves the Minimum Non-Negative Sum (MNNS) task.

Suppose that we have n input integers d1, . . . , dn, encoded as z1, . . . , zn, plus an arrow (→) token zn+1 and a dummy token
zn+2 corresponding to the integer 0. In this case, we will output the tokens representing the ground-truth sums s1, . . . , sn,
therefore, the number of output tokens is m = n in MNNS setting. We assume that the inputs are encoded according to
Assumption 2. By Proposition 6, there exist MLP1, . . . ,MLPn that perform the following: whenever MLP j is selected with
input (zprev, zcurr) such that zprev stores 2 j−1 partial sums and zcurr stores the digit d j, it adds and subtracts d j to all previously
stored partial sums and stores the resulting 2 j partial sums in zout. The dummy token zn+2 that corresponds to the integer 0
allows us to initialize the partial sums from zero. If the query token is zn+2, we produce the first partial sums by combining
this dummy 0 with d1, which are (+d1) and (−d1) encoded in an output token.

We assign positional encodings cyclically to output tokens. That means, the first n+ 2 input tokens have positional encodings
from p1 to pn+2, and the output tokens have p1, p2, . . . , as their positional encodings, in this exact order. This way, by
Proposition 4, Attn(z, Z) attends and selects the input digit tokens z1, z2, . . . , zn and finally arrow zn+1 one by one and feeds
to MoEBlock(·).

By Proposition 5, there’s a MoEBlock(z) such that if the input is z j (for j ≤ n), MLP j is selected with probability 1, and if
the input is arrow token zn+1, MLPn+1 is selected with probability 1, which is the MLP to read-off the final answer. In the
input tokens z1, . . . , zn, the first two coordinates store the trigonometric representation of d1, . . . , dn. To allow outputting
the final answer by MLPn+1, the partial sums obtained in the intermediate steps need to be written to separate coordinates.
Therefore, MLP j takes a vector filled in the first 2 j coordinates, adds d j and writes to the first 2 j coordinates, subtracts
d j and writes to the next 2 j coordinates, and finally divides the entire representation by 2 to maintain consistent scaling
since the number of partial sums is doubled. In other words, the first n MLPs have some repeated behavior. Finally, by
Proposition 7, MLPn+1 receives a vector that encodes all 2n possible partial sums in cos/sin form in 2n+1 coordinates and
extracts the embedding of smallest nonnegative number among them.

Altogether, this single-layer transformer with an attention module to pass the tokens to the mixture-of-experts MLP solves
the Minimum Non-Negative Sum task by following CSFT described in 3. □

25

