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Abstract: Recent works have proposed a number of general-purpose robotic foun-
dation models that can control a variety of robotic platforms to perform a range
of different tasks, including in the domains of navigation and manipulation. How-
ever, such models are typically trained via imitation learning, which precludes the
ability to adapt autonomously through experience that the robot gathers on the job.
In this work, our aim is to train general-purpose robotic foundation models in the
domain of robotic navigation specifically with the aim of enabling autonomous
self-improvement. We show that a combination of pretraining with offline rein-
forcement learning and a complete system for continual autonomous operation
leads to a robotic learning framework that not only starts off with broad and di-
verse capabilities, but can further specialize and adapt those capabilities in the
course of carrying out navigational tasks in a given deployment location. To our
knowledge, this result demonstrates the first navigation robot foundation model to
continually learn via autonomous interaction in open-world settings.
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Figure 1: LiReN is a navigation foundation model that improves autonomously during deployment
via reinforcement learning. Offline RL pretraining provides broad generalization capabilities, while
lifelong fine-tuning allows the model to get better and better through deployment.

1 Introduction

Many recent developments in machine learning have been driven by the advent of large-scale foun-
dation models that leverage pretraining on large-scale Internet data. The same general recipe –
pretraining on diverse datasets and then adapting to new tasks via finetuning or in zero-shot – has
delivered impressive results on a wide variety of tasks in natural language processing [1, 2], com-
puter vision [3, 4], and other domains [5]. Analogously, robot foundation models – defined broadly
as policies trained on diverse robot data that can be further fine-tuned for downstream applications –
have shown promising results by training behavioral cloning policies on diverse multi-embodiment
robot datasets [6, 7]. The process of fine-tuning these models typically requires training on expen-
sive human demonstrations in the target environment.
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This paradigm cannot deliver models that improve or adapt without human data – for example, to
respond to changes in the target environment or wear and tear on the robot itself. Ideally, a robot
foundation model could instead continually improve via training on autonomous data collected while
deployed. Such a model could adapt on the job, becoming better and better the more it is used with-
out relying on human supervision. However, this requires a learning objective capable of learning
from suboptimal data. While reinforcement learning is a natural formulation for this problem, it
is nontrivial to directly fine-tune BC policies with RL. The sample-efficient RL algorithms that are
most practical for use in the real world [8, 9] require learning a critic Q(s, a), which requires differ-
ent feature-learning capabilities than BC [10].

In this paper we ask: how can we enable practical autonomous fine-tuning of generalist navi-
gation policies in the real world? We posit that continually improving generalist policies in the
real world requires two main ingredients: a scalable training objective that is able to successfully
incorporate suboptimal data, and a supervisor framework for proposing tasks, computing rewards,
and managing real-world deployment concerns at a level of abstraction above the policy itself.

We instantiate these components in the visual navigation setting with our approach, Lifelong
Reinforcement learning for Navigation (LiReN, Fig. 1). Like prior work in foundation models
for visual navigation, LiReN performs pretraining on a large, cross-embodiment visual navigation
dataset. However, unlike existing methods, LiReN is trained with offline reinforcement learning
to enable further training online. We wrap our foundation model with a framework to enable life-
long learning and show that LiReN is capable of autonomously improving its performance through
online interactions over long timescales, increasing goal-reaching performance in the downstream
environment from 40% to 75% without additional human data.

2 Related Work

Mobile robots and visual navigation. We study the visual navigation problem, where a mobile
robot navigates using only egocentric image observations to reach a goal pose, also specified by an
egocentric image [11]. The task must be done in minimal time without colliding with obstacles.
Previous work applied BC to visual navigation in both simulation [12, 13] and real-world environ-
ments [14]. Also related to our deployment setting is the CoBots system [15, 16, 17], a mobile robot
navigation system successfully deployed in real environments, although it does not include learn-
ing components or online improvement. However, to our knowledge, LiReN is the first generalist
navigation policy that can be continually improved during deployment with online RL.

Robot foundation models. Several recent works have proposed robot foundation models, defined
in this work as models trained on large-scale, diverse robot data (typically aggregated from many
embodiments). The RT- series of models propose training generalist robot manipulation models via
BC on single-embodiment (RT-1 [18], RT-2 [19]) and multi-embodiment (RT-X [20]) datasets. Sim-
ilarly, Octo [6] proposes an open-source BC model for manipulation based on a scalable diffusion-
based architecture. ViNT [7], the most relevant such model, trains a generalist policy on a broad
navigation dataset and deploys on several mobile robot embodiments. While BC enables a simple
learning objective, fine-tuning these models is challenging: further improvement requires expert tra-
jectories, and fine-tuning BC policies with online RL is difficult without reward-specific features
[10]. Pre-Training for Robotics [21] applies offline RL to diverse data and fine-tunes (also with
offline RL) on demonstration data. While we similarly pre-train with offline RL, we also include an
autonomous phase in which we fine-tune our offline foundation model with new online data.

Online reinforcement learning. Another approach to learning an end-to-end robot model starts
from scratch, learning a policy using only online RL. While traditional wisdom suggests training in
sim for data efficiency reasons [22], recent work has enabled sample-efficient RL operating directly
in the real world [9, 23]. Zhu et al. [24] further studies how to make such an online learning problem
autonomous. The closest navigation work, FastRLAP [10], learns a high-speed navigation policy
using an actor-critic algorithm applied to features from a RL-pretrained encoder. While this provides
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a strong prior in the form of relevant features, the policy is not initialized with any notion of collision
avoidance, goal-reaching, or other navigation behaviors. We instead train the entire policy and critic
on offline data, providing a strong behavioral prior upon which the RL algorithm can improve.

Autonomous improvement for robotics. RoboCat [25] achieves autonomous improvement in the
manipulation setting by collecting thousands of policy rollouts and then re-training the model from
scratch on this dataset, filtered for successes. Isele et al. [26] learns low-level controllers for mobile
robots in simulation. In contrast to these works – which consider a closed-world, instrumented
environment in order to enable autonomous learning – we study RL-based autonomous fine-tuning
in a real office building in the navigation setting, which is inherently open-world. We thus develop
a supervisory framework to enable autonomous learning for our online fine-tuning system.

3 Preliminaries

We begin by formalizing our problem statement and discussing several prior works upon which our
proposed framework builds:

Visual navigation. We formalize the visual navigation problem as a goal-conditioned partially-
observed Markov decision process in which observations are given by egocentric images from the
robot’s camera and actions correspond to linear and angular velocity commanded to the robot, or
the robot’s relative position K frames ahead for the offline data in which raw actions are not avail-
able [27]. We specify goals via a future observation from a pose we would like the robot to reach,
and consider a trajectory as a success when the robot is within a threshold ϵ of this pose.

Sample-efficient RL. To learn from sub-optimal data collected autonomously in the real world,
we turn to tools from reinforcement learning. We express our problem as a (goal-conditioned, par-
tially observed) Markov decision processM composed of observation and action spaces O,A and
goals G. We want to learn a policy π : S × G → A through interactions with the environment. In
visual navigation tasks we define the observation space as a single image frame of input and consider
goal-reaching tasks considered on observations taken from the desired state.

We use actor-critic methods for their ability to learn from off-policy data. These methods learn a
Q-function corresponding to the expected sum of discounted returns starting in a state-action pair,
and a policy π. In deep RL, Q and π are approximated with a neural network. The policy π is trained
to maximize Q(s, a), which is learned via approximate dynamic programming:

y ← Es′∼M,a′∼π(·|s′) [rt +Q(s′, a′)] ; minLQ = E
[
(Q(s, a)− y)

2
]
. (1)

Actor-critic methods require continuous online interaction to avoid catastrophic overestimation [28].
When the policy is held stationary or very slow-moving compared to data collection this can be
viable, but sample-efficiency typically increases with a high update-to-data (UTD) ratio between
gradient steps and environment steps. Stabilizing high-UTD RL requires regularization techniques
such as clipped double-Q [29], ensembling [8], entropy regularization [30], and critic normalization
[31]. In LiReN’s implementation, we use a combination of all four of these techniques (following
e.g. [10]), as well as several other techniques described in Sec. 4 and App. A. We consider a special
case (similar in spirit to hindsight relabeling [32]) such that some additional information about st
becomes knowable later and provide this privileged information to the critic (but not the actor).

Offline RL with conservative Q-learning. To provide a high-quality initialization for our off-
policy actor-critic algorithms, we require a pre-training method that is capable of learning both a
policy π and a critic function Q. One such choice of pretraining method is offline reinforcement
learning, which attempts to solve the same maximum-expected-reward problem as online RL but
with a static dataset rather than through online interaction. This requires even further regularization
to ensure the policy’s actions remain in the approximate support of the original dataset.
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Figure 2: Requirements for autonomous improvement. Autonomous improvement mechanisms
for proposing and evaluating goals, providing resets, and enabling safe operation. In our setting,
pseudo-resets are enabled by randomized perturbations after failures, and safe behavior corresponds
to avoiding designated zones and maintaining battery charge.

In particular, we apply conservative Q-learning [33], which proposes a conservative regularizer to
artificially depress the Q-values of out-of-distribution actions compared to dataset actions. CQL
adds the following term (blue) to the standard temporal-difference based Q-learning objective:

min
θ

Es,a∼D
[
(Qθ(s, a)− y)2 + Ea′∼π [Q(s, a′)]−Q(s, a)

]
. (2)

Autonomously improving robot foundation models. Training reinforcement learning algorithms
in the wild presents significant challenges not present in simulation. In the standard reinforcement
learning framework, we assume that we have access to episodic resets which occur at regular in-
tervals and ensure adequate state coverage, and each episode we are given a plausible task. Task
success is automatically verified and yields ground-truth rewards for the task we are attempting to
accomplish. In the real world, none these are true by default! Instead, we must implement them our-
selves, as well as any task-specific safety features that are necessary to avoid accidentally interfering
with humans or damaging the robot or the environment.

4 Autonomously Improving Navigation Foundation Models

We apply RL to train navigation foundation models end-to-end with the following recipe:

1. Apply offline RL to a large, multi-embodiment dataset of diverse navigation data, to get a
a goal-conditioned policy with broad generalization.

2. Use a navigation-specific “autonomy supervisor” to provide tasks, resets, and guardrails
for exploratory behavior during deployment.

3. Learn online with a sample-efficient actor-critic algorithm to fine-tune the model with au-
tonomous data from deployment to enable in-the-wild improvement.

See Fig. 3 for a detailed diagram explaining how all of the following components interact. We
provide an implementation of LiReN and our autonomy supervisor, along with sample data collected
during online RL deployment, in our supplementary material.

4.1 Training Setup

We perform both (offline) pretraining and (online) fine-tuning with reinforcement learning, meaning
that we can use the same RL objective throughout. We train using CQL [33] both online and offline;
all relevant hyperparameters are detailed in App. A.
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Reward objective. We penalize the final distance to the goal, at the end of a trajectory, with
terminal value function V (s) = −∥s− g∥. This could be accomplished with a single sparse reward
for goal-reaching, but we equivalently express it with a dense reward:

V (s) = −∥s− g∥ =
∑
t

(∥st − g∥ − ∥st+1 − g∥) ≈
∑
t

v⃗ · s⃗g
∥s− g∥

, (3)

where v is the velocity vector and s⃗g is the vector in the direction of the goal. This step reward
function r(s, a, s′, g) = ∥s− g∥ − ∥s′ − g∥ corresponds to the speed-made-good [10], maximizing
(long-term) speed towards the objective. Collisions are penalized with a negative reward rcrash.

Goal relabeling. In offline data, goals are selected from both future observations in the same tra-
jectory (positives, sampled from an exponential distribution) and observations from other trajectories
(negatives, sampled uniformly from other trajectories from the same robot embodiment), as in hind-
sight experience replay [32] or goal-conditioned supervised learning [34]. During online training,
we keep the initially commanded (“on-policy”) goals with 50% probability and otherwise relabel
with positive goals. When relabeling, rewards are recomputed with the new goal.

Privileged critic information. In actor-critic reinforcement learning, it is crucial to have accurate
critic values in order to learn a high-quality policy. We again make particular use of the problem
structure of goal-conditioned navigation. While at evaluation time the policy does not require a
ground-truth goal displacement vector, we can use this vector when training on a completed trajec-
tory by integrating locally-accurate odometry measurements. We take advantage of this property by
supplying the critic network (but not the actor) with relative goal vectors s⃗g.

Dataset. Single-embodiment robot models train on a relatively small dataset, collected specifically
for the downstream task and environment. However, including diverse data tends to improve gener-
alization and robustness [21]. Following ViNT [7], we train on the GNM dataset [27], a compilation
of several robot navigation datasets in distinct environments and embodiments. This allows LiReN
to benefit from diverse data on which to train its initial policy and learn generalizable features.

In the online phase, we continue to train on the offline dataset but draw half of each batch from the
online replay buffer. This ensures that we do not experience catastrophic forgetting of behaviors
learned from the original dataset, and generally stabilizes training.

4.2 Deployment and Autonomous Fine-tuning

We further fine-tune LiReN “on-the-job” during online deployment. In this phase, we equip LiReN
with several components to propose goals, avoid getting stuck, and ensure stable operation.

Proposing and evaluating goals. To propose goals (represented by images) and evaluate when
they are completed, we make use of the spatial structure of navigation. Prior to deployment we map
the area to create a graph where nodes represent states (image observations) and edges represent
environment transitions. During deployment, when a goal is reached, a future goal image can be
selected randomly from its successors in the graph. We typically select goals 10-20 meters into the
future according to an exponential distribution. We keep a static goal grpah, though if desired the
graph can be updated online as in Shah et al. [11].

Recovery behavior. If the robot becomes stuck in a small area without exploring the rest of the
environment, continuing to train on the new data will not increase overall performance. We avoid
getting caught in short “goal loops” by biasing the goal graph’s construction away from short cycles.
Additionally, to avoid the case when the robot is unable to reach any goal because it is stuck or in
collision with an object, we inject pseudo-resets [10, 24] to perturb the state when the robot collides
with an object (detected by the robot’s bumper). When it does not reach its goal for a set period T ,
it is considered “stuck” and a new goal is selected from the graph.
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Figure 3: System diagram of LiReN. We use an offline dataset to train a generalist policy and Q-
function on a broad array of navigation data. During fine-tuning the robot continually accepts new
network weights from the training process and sends back data, while deciding whether to run the
policy, recovery behavior, or docking fallbacks depending on the state of the robot. Goal selection
is accomplished by sampling nearby goals from a pre-recorded goal graph.

Keepout zones. While exploring the state space, there are some zones in the environment the robot
cannot enter for a variety of reasons. To protect privacy, ensure robot safety, and maintain reasonable
localization, we mark areas such as bathrooms. When the robot detects that it is in a keepout zone,
it triggers a pseudo-reset.

Calling for help. If the robot is unable to exit its current state (as measured by repeatedly becoming
stuck or crashing at least ten times in a row) it will “call for help” by messaging a human over the
internet. While this capability is necessary for truly lifelong learning, we find that it is triggered
extraordinarily rarely (e.g. it is physically stuck); typically the combination of pseudo-resets and
reward-guided exploration is enough for the robot to escape any local minimum.

Battery charge monitoring. To enable indefinite operation for lifelong learning, we continuously
monitor the battery’s charge. We place charging stations in the deployment environment; if the
battery level drops below a set threshold, it will dock for charging the next time it passes a station.

Robot hardware. We use an iRobot Create 3 with an inexpensive fisheye camera. Inference is
performed with a Jetson Orin NX at 3Hz. We also equip our robot with a LiDAR sensor and a map
of the environment for localization, though we emphasize that this is an artifact of our goal selection
mechanism, is not used by the policy, and could be avoided with a different choice of training task.

Asynchronous training system design. During fine-tuning, training is handled asynchronously
by a server (a single Google TPUv4 node) which receives data from the robot in real time and
continously updates the robot’s model parameters over the network. The training server is robust to
unstable network conditions, allowing gracefully recovery from disconnects.

5 Experiments

We design our experiments to answer the following questions:

Q1. Does our combination of offline pretraining with autonomous online fine-tuning yield signif-
icant improvements in quantitative and qualitative navigation behavior?

Q2. Is offline RL necessary? That is, can we achieve similar autonomous fine-tuning with goal-
conditioned behavior cloning (GCBC) or via online RL from scratch?

Q3. How performant is the offline policy learned by offline RL, in comparison with existing state-
of-the-art foundation models for navigation?
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Figure 4: Lifelong learning with LiReN. Our
model continues to train successfully without human
interventions or demonstrations, improving from less
than 40% initial goal-reaching performance to 75%
after a few hours of autonomous online training.

Figure 5: Qualitative improvement dur-
ing online fine-tuning. The pre-trained
model cannot differentiate the out-of-
distribution white obstacle from the walls.
Encountering the obstacle later during fine-
tuning, LiReN has learned from its experi-
ences and successfully avoids it.

5.1 Evaluating Online Learning

We deploy LiReN with our autonomous improvement framework in a real-world office building.
Operating in this regime, the robot must contend with diverse scenes, significant changes in lighting,
and people working in the space and reconfiguring it as one might expect in an office building. We
track two key metrics: (i) success rate, the percentage of goals successfully reached as a moving
average over a window of T = 12 minutes (corresponding to roughly the time taken to traverse
the whole environment) and (ii) coverage, the percentage of free space that has been explored:
1

|F| |∪t{p ∈ F : ∥pt − p∥ ≤ r}|, where F is free space. It is important to consider both of these
metrics, as a policy that cannot escape an “easy” region may have high success rate but low coverage.

Using our fine-tuning framework leads to significant quantitative improvements in policy perfor-
mance during online deployment: LiReN trained online significantly outperforms the base policy.
Figure 4 shows a steady increase in policy performance throughout the course of training.

We also see specific qualitative improvements during training. Figure 5 shows one such challenging
case: the white obstacle is difficult to distinguish from the white walls, and the base model fails to
navigate the situation when it is encountered for the first time. However, after a period of online
fine-tuning, LiReN successfully recognizes and avoids the obstacle.

5.2 Should we really fine-tune with RL?

LiReN GCBC RLPD

Figure 6: Locations visited during online fine-
tuning. LiReN is explores the entire environment
successfully. Iterated GCBC also exhibits reason-
able coverage. Without a generalist policy initial-
ization, RLPD becomes stuck in the initial region
and cannot reach long-horizon goals.

Why not GCBC? Interestingly, this im-
provement is not mirrored by attempts to fine-
tune GCBC models [34]. In this setting,
we train a policy (via BC) to reach relabeled
goals [32], chosen from future observations
from the same trajectory. We find that perform-
ing this “iterated GCBC”, in which the policy
is trained to match its own successful output,
causes the policy’s performance to degrade over
time as shown in Fig. 7. We hypothesize that
this is due in part to distribution shift between
the goals on which the policy is trained (from future states) and the “real” goals provided to the
policy, which come from the fixed goal graph collected in different circumstances (e.g. lighting).

Why not online RL? We also consider the other end of the spectrum: applying online RL with a
random initial policy. In this setting, we initialize a random policy and apply RL with Prior Data [31]
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Figure 7: GCBC fine-tuning. While GCBC
gives reasonable initial performance, it cannot
improve over time and performance eventually
collapses. Metrics averaged over 12 minutes.

Method Time Success % Coverage %
LiReN 0h 32% –

GCBC [34] 1h 11% 63%
RLPD [31] 1h 46% 27%

LiReN 1h 61% 95%
LiReN 3h 75% 100%

Table 1: Online Fine-Tuning. LiReN can be
fine-tuned with autonomous data to great effect.
Within a few hours of online training to adapt to a
new environment, LiReN’s performance on goal-
reaching tasks doubles that of the original policy.

(RLPD), which trains a SAC-like policy on a mixture of offline and online data. While RLPD learns
surprisingly good collision avoidance behavior in a small section of the environment, we find that it
strongly overfits to the initial location and is unable to generalize. This is reflected in the coverage
metrics shown in Table 1 and in the maps visualized in Figure 6.

5.3 Measuring Offline Performance
Indoor Outdoor Avg.Method Env. A B C D

LiReN 34% 97% 98% 93% 81%
LiReN

(fine-tuned) 78% 78% 91% 93% 84%

GCBC 68% 61% 30% 20% 46%
ViNT [7] 71% 38% 23% 52% 46%

Table 2: Offline Performance. LiReN delivers
strong zero-shot visual navigation performance,
comparable to state-of-the-art models [7].

We adopt a methodology similar to prior work
[27, 7, 35] to compare the quality of the offline
policy with existing models along small, con-
trolled sequences of goals (rather than the open-
world performance reflected by the first row of
Tab. 1). For each environment in which we eval-
uate offline performance, we collect a fixed se-
quence of 4-5 short term goals, following evaluations in Shah et al. [27]. We measure each model’s
progress from a consistent starting point, computed as a percent of the total distance traveled and
averaged over ten trials. In addition to indoor experiments, we also provide experiments using the
Clearpath Jackal operating in an outdoor setting, demonstrating LiReN’s cross-embodiment capa-
bilities. We include diagrams of each environment in App. B.

While improving pure offline performance is not the focus of this work, we nevertheless find that
LiReN achieves strong empirical performance with offline RL in comparison to state-of-the-art mod-
els as highlighted in Table 2.

6 Discussion and Limitations

We presented LiReN, a navigation foundation models that can learn autonomously in a lifelong
setting while deployed. By pre-training with offline RL on diverse navigation data, we get a vi-
sual navigation foundation model comparable to state-of-the-art models. By pairing LiReN with an
autonomous improvement framework for navigation including goal selection and verification, recov-
ery/reset procedures, and guardrails to ensure continuous operation, we can fine-tune our foundation
model to continuously adapt to the target environment, learning to handle changes in the downstream
environment without requiring additional human-collected data. We hope that LiReN will lay the
groundwork for further study into methods for autonomously fine-tuning robot foundation models.

Limitations and future work: our current autonomous improvement framework does have several
limits: our goal selection procedure currently requires a notion of localization to find and verify
nearby locations on the goal graph, and we currently only support a single fine-tuning task. Ad-
ditionally, while the robot we used for deployment and online improvement was not itself in the
dataset, we did not explore concurrently fine-tuning RL models with multiple new embodiments at
once; we expect that this might raise its own challenges.
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Appendix A Network Architecture and Hyperparameters

Model Architecture

Encoder
Structure ResNet18
Pooling spatial softmax, 8 blocks

Critic
Structure MLP+repeat action conditioning [21]

Normalization LayerNorm
Hidden dims (256, 256)

Actor Structure MLP
Hidden dims (256, 256)

Training

CQL

Discount 0.97
Target entropy -1.0

Temperature init 0.1
DR3 regularization 1e-3

Alpha 0.3

Optimizer

Batch size 256
Optimizer type adamw
Weight decay 1e-4

Agent LR 0.0001
Critic LR 0.0003
Temp LR 0.0003

Data

Image transforms
Image size 64x64

Augmentations random brightness/contrast/hue,
random flip, random crop

Offline dataset goal sampling
Positive probability 0.75
Negative probability 0.25
Sampling distribution Exponential(20)

Online dataset goal sampling

Original goal probability 0.5
Positive probability 0.375
Negative probability 0.125
Data before training 1500

Autonomy

Goals
Goal reach distance 0.75 meters

Goal reach angle error 45 degrees
Sampling distribution Exponential(5)

Error handling Max failures in a row 10
Low battery threshold 25%

Table 3: Model Architecture and Training Parameters
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Appendix B Offline Testing Environment Layouts

Figure 8: Small environments for evaluation of offline policies. Goal trajectories are depicted, along
which 4-5 goal waypoints are placed. When a goal is achieved in the offline evaluation setting, we
advance the goal deterministically to the next waypoint.
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