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Abstract001

Formal methods—such as symbolic002
proofs—offer a principled way to force003
Large Language Models (LLMs) to reason004
more reliably. However it is unclear whether005
LLMs can actually use these proofs to generate006
faithful, and yet human understandable007
explanations? We introduce ProofTeller,008
a new benchmark to evaluate this capabil-009
ity. On a new dataset with over 68,000010
human-annotated tokens, we evaluate several011
LLMs on three tasks: identifying key proof012
steps, summarizing the proofs, and creating013
a user-targeted message. Across tasks and014
settings, both automated metrics and human015
evaluation reveal a critical reliability gap:016
LLMs over-emphasize steps near the final017
conclusion, while humans draw on evidence018
distributed throughout the proof. These019
findings expose a fundamental mismatch020
between the reasoning strategies of current021
LLMs and those of humans, underscoring022
the need for approaches that enable LLMs023
to employ formal proof methods reliably024
while faithfully generating a comprehensible025
reasoning chain.026

1 Introduction027

Deploying large language models (LLMs) in028

real-world critical domains from medical appli-029

cations (Bang et al., 2025) to autonomous vehi-030

cles (Cui et al., 2024) to critical network infras-031

tructure (Manocchio et al., 2024) warrants ensur-032

ing reliable and consistent outputs. In-context033

learning (Brown et al., 2020) provides LLMs with034

remarkable abilities to solve tasks explained in035

natural language, and subsequent developments036

like retrieval-augmented generation (RAG) (Lewis037

et al., 2020), have further enhanced their util-038

ity. However, LLMs outputs are not always re-039

liable (Abbasi Yadkori et al., 2024). They can040

produce inconsistent answers if information is pre-041

sented in slightly different ways (Sclar et al., 2024;042

Elazar et al., 2021) and are threfore prone to gen- 043

erating plausible but unfaithful explanations that 044

do not reflect the true drivers of their predictions 045

(Turpin et al., 2023). 046

In the past year, various “thinking” LLMs such 047

as DeepSeek-R1 (Guo et al., 2025), Qwen3 (Yang 048

et al., 2025), Gemini-2.5 (Comanici et al., 2025) 049

have shown better reasoning capabilities empiri- 050

cally. However even these reasoning models fail to 051

use explicit algorithms, generating inconsistent out- 052

puts (Shojaee et al., 2025). This leads to unwanted 053

hallucinations and presents a significant barrier to 054

LLM usage in applications where accuracy and 055

reliability are paramount. 056

To mitigate these consistency issues and reduce 057

hallucinations, one promising approach is to use 058

formal methods to inject reliability in LLMs, such 059

as by providing symbolic proofs as input context. 060

Such hybrid systems can leverage the rigorous and 061

verifiable nature of formal logic, combined with 062

the fluency of LLMs (Kassner et al., 2021). How- 063

ever, as Turpin et al. (2023) highlights the nature 064

of faithfulness in modern LLMs continues to be 065

brittle and sensitive to the given input, and thus 066

their reasoning can be swayed by biasing features 067

in the input. Furthermore, symbolic proofs some- 068

times do not contain all the necessary information 069

to explain a scenario perfectly (Mondorf and Plank, 070

2024). In such cases, LLMs has to infer the miss- 071

ing components by relying on knowledge gleaned 072

during pretraining. This can lead to hallucinations 073

if this “knowledge” is not aligned with the given 074

input (Sun et al., 2025; Xie et al., 2024). 075

These observations point to a concrete question: 076

Can LLMs reliably parse a formal proof, 077

distill the key reasoning steps, and re- 078

state them faithfully for a non-expert? 079

Answering this question lets us probe—within a 080

single, controlled setting— all failure modes iden- 081

tified above. If a model misunderstands or omits 082
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Drone Rotor Damage and Imbalance  

"finalConclusion": "warninglvl(d,5)@[0,0]",



   "conclusion": "warninglvl(d,5)@[0,0]",

   "ruleName": "inclusion",

   "premises": ["warninglvl(d,5)@[-2,0]"],



   "conclusion": "warninglvl(d,5)@[-2,0]",

   "ruleName": "warninglvl(X,5):-warning(X)",

   "premises": ["warning(d)@[-2,0]"],



   "conclusion": "warning(d)@[-2,0]",

   "ruleName": "warning(X):-warningofdronedamage(X)",

   "premises": ["warningofdronedamage(d)@[-2,0]"],



   "conclusion": "warningofdronedamage(d)@[-2,0]",

   "ruleName": "warningofdronedamage(Y):-rotordamage(Y,X),      

                riskofphysicaldamage(Y)",

   "premises": ["rotordamage(d,p1)@[-2,+inf)",

                "riskofphysicaldamage(d)@[-2,0]"],



   "conclusion": "rotordamage(d,p1)@[-2,+inf)",

   "ruleName": "rotordamage(Y,X):-haspart(Y,X), drone(Y),   

                damage(X), rotor(X)",

   "premises": ["haspart(d,p1)@[-300,+inf)",

                "drone(d)@[-300,+inf)", ...]

   ...

Find steps with key 
contributions

Summarize the 
proof

Short message for 
the target user

Warning! Propeller p1 has detached 
and drone d is unbalanced! 
  


(human)

The drone 'd' was flagged as warning of 
drone damage due to 

'warningofdronedamage(d)', which 
triggered a warning level 5 due to 

'warning(d)' and inclusion of 
'warninglvl(d,5)@[-2,0]'.  

(smollm3-3b)

The final conclusion 'warninglvl(d,5)@[0,0]' is derived 
by first including 'warninglvl(d,5)@[-2,0]' (Rule: 
inclusion).... (Rule: warninglvl(X,5):-warning(X)). 

Finally, 'warning(d)@[-2,0]' is obtained from 
'warningofdronedamage(d)@[-2,0]' (Rule: 
warning(X):-warningofdronedamage(X)). 


(smollm3-3b)

The proof concludes that the drone 'd' has a warning 
level 5 at time 0. This conclusion was reached by first 
establishing that there is a warning of drone damage 

due to rotor damage combined with a risk of  ... The risk 
of physical damage was deduced by identifying an 

imbalance in the drone, linked to a low balance score, 
confirming a hazardous physical condition. 


(human* & gpt-4.1-mini-2025-04-14)

"conclusion": "warningofdronedamage(d)@[-2,0]",

"premises": ["rotordamage(d,p1)@[-2,+inf)", 
"riskofphysicaldamage(d)@[-2,0]"] 


"conclusion": "rotordamage(d,p1)@[-2,+inf)",

"premises": ["haspart(d,p1)@[-300,+inf)", 
"drone(d)@[-300,+inf)",

 "damage(p1)@[-2,+inf)", "rotor(p1)@[-300,+inf)"]



             (human & gpt-4.1-mini-2025-04-14)

"conclusion": "warninglvl(d,5)@[0,0]",

"premises": ["warninglvl(d,5)@[-2,0]"]



"conclusion": "warninglvl(d,5)@[-2,0]",

"premises": ["warning(d)@[-2,0]"]



             (gpt-4o-mini-2024-07-18 & others)

� non-informative step�
� missing key steps � includes formal languag�

� missing key information

� too long (>20 words�
� includes formal languag�
� not informative: no mention of cause 

of warning

Figure 1: An example datapoint showcasing limitations of LLMs on our benchmark tasks

critical deductive steps we identify the lack of cor-083

rectness, if it over or under-states what the proof084

entails we can identify hallucination or inconsis-085

tency and finally if it cannot translate the outcome086

to the user, we witness a breakdown in faithfulness.087

We introduce ProofTeller, a benchmark ex-088

pressly designed to stress-test these capabilities.089

Concretely, each instance in ProofTeller asks090

an LLM to091

1. Highlight the key steps that contribute the092

most to the final verdict of the proof,093

2. Summarize long symbolic proofs faithfully,094

3. Explain the result in a concise message tai-095

lored to a layman end user.096

We provide a rigorous evaluation of 9 LLMs, in-097

cluding 7 open weights and 2 proprietary LLMs.098

Additionally, we also conduct numerous human099

evaluations studies to further showcase the gaps be-100

tween human and LLM abilities. With this bench-101

mark and our evaluation framework grounded in102

realistic scenarios, we aim to establish a princi-103

pled yardstick for measuring and ultimately im-104

proving the reliability and consistency of LLMs in105

real world critical domains.106

2 Related Work107

Symbolic Text Understanding Many recent works108

evaluate the symbolic reasoning of LLMs. For ex-109

ample, (Shalyt et al., 2025) tests LLM’s abilities110

for mathematical problem-solving using symbolic111

perturbations, (Kulkarni et al., 2025) makes use of112

SQL for robust tabular reasoning, and (Vo et al.,113

2025) evaluates LLMs for an abstract causal dis- 114

covery task from natural language text. While these 115

works focus on solving or discovering symbolic re- 116

lationships using LLMs, our benchmark focuses on 117

evaluating LLM’s ability to explain formal proofs. 118

Data-To-Text Generation Our work also shares 119

similarity with data-to-text (D2T) generation since 120

we also generate natural language text from struc- 121

tured data (i.e., JSON proofs). In D2T literature, 122

ToTTo (Parikh et al., 2020) benchmark emphasizes 123

the faithful generation of text from tables. An- 124

other such benchmark is DART (Nan et al., 2021), 125

which focuses on generating text from complex 126

RDF triples. Our work introduces a different struc- 127

tured input (i.e., logic proofs), which requires mod- 128

els to understand logical operators to create a sum- 129

mary and a user-targeted message. 130

Explaining Logical Proofs We find our work di- 131

rectly contributing to the field of explaining logical 132

proofs. We find (Colombo et al., 2025) to be the 133

most related to our work as it has a similar input 134

format of formal proofs and output contains sum- 135

maries. It uses LLMs to fill in templates to explain 136

Datalog inferences in the financial domain. In con- 137

trast, our benchmark evaluates LLMs on multiple 138

tasks including summarization. 139

3 Benchmark Creation 140

We start by generating different types of description 141

logic (DL) proofs for all three domains. Our proof 142

data come from three distinct domains: (1) Biology, 143

(2) Food & Recipes, and (3) Critical Situations 144

in Drones. For conciseness purposes, we refer to 145

these domains as (1) Biology, (2) Recipe, and (3) 146

Drone throughout the remainder of the text. For 147
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this benchmark, we explore real-world scenarios148

and user groups that are different for each domain.149

For each target domain, we randomly sample 50150

proofs for annotation. In this section, we describe151

our benchmark creation process step by step.152

3.1 Generating DL proofs153

Table 1 provides quantitative information about the154

domains and the extracted proofs. Although crit-155

ical situations in drones are formally specified in156

DatalogMTL rather than DL, we adopt DL termi-157

nology throughout this work for consistency—for158

instance, referring to rules as axioms. Proof size is159

the number of inference steps, see “steps” in the160

proof in Figure 1. A full-sized example proof for161

each of these domains is provided in Appendix B.162

Biology. Our first domain is based on the Cell163

Line Ontology1, a community-driven ontology de-164

veloped to standardize and integrate cell line infor-165

mation and support computer-assisted reasoning.166

Recipe. We created a food and recipe ontology2,167

a formal semantic model to represent and reason168

about culinary recipes, dietary restrictions, and al-169

lergen content. This ontology builds upon estab-170

lished recipe and food ontologies (Qi et al., 2018;171

Dooley et al., 2018), with the extracted proofs172

specifically related to the added recipes.173

Drone. The drone ontology2 models complex sit-174

uations occurring during a drone flight. It uses met-175

ric temporal operators as well as numerical predi-176

cates. The associated proofs incorporate different177

urgency levels to prioritize critical situations.178

3.2 Target User Group and Scenarios179

Biology: a 10th-grade student learning about the180

characteristics of various cells.181

Recipe: a 6th-grade student learning about food182

allergens and classification of ingredients into ve-183

gan, vegetarian and non-vegetarian.184

Drone: a drone pilot monitoring an autonomous185

drone, who needs help in understanding current or186

future critical situations.187

3.3 Task Annotation188

To annotate these proofs for all three tasks, we189

recruited two graduate-level students. We divide190

1https://obofoundry.org/ontology/clo.
html

2available in the supplementary material

the task-specific annotation into two phases: Pilot 191

and Main. In the pilot phase, we gave each human 192

annotator 10 proofs per domain and asked them 193

to annotate the generated proofs for the following 194

tasks: (i) identify the key contributing steps to the 195

conclusion from the proof (maximum up to 3 steps), 196

(ii) summarize proofs, and (iii) generate a short 197

user-targeted message. 198

At the end of the pilot phase, we asked our ex- 199

pert annotator to review the pilot annotations from 200

both our annotators and share detailed feedback 201

on their annotations. We then asked our student 202

annotators to incorporate the feedback. This feed- 203

back particularly helped align the most contributing 204

steps between the student annotators. Finally, we 205

divided the remaining 120 proofs equally among 206

them for individual annotations. Throughout the 207

annotation process, the student annotators were 208

prohibited from using any AI tools for annotation 209

purposes. By the end of this annotation process, 210

we collected over 68,000 human-annotated tokens3 211

across domains and tasks. We provide detailed 212

annotation statistics in Table 2. 213

We provide the final version of our annotation 214

guidelines in the Appendix G. We plan to release 215

our full benchmark dataset and code with the 216

camera-ready version of this work. 217

4 Experiments 218

In this section, we describe our experimental setup 219

for benchmarking LLM performance. We provide 220

an LLM with proofs and task-specific prompts to 221

generate answers for each task. Given the con- 222

nected nature of tasks (i.e., providing contributing 223

steps in the context may help summarize the proof), 224

it is important to test LLMs with and without pro- 225

viding the output of all the previous tasks as part of 226

the context. 227

4.1 Prompting strategy 228

Our prompting setup contains 4 prompt variants as 229

shown in Table 3. We write all our prompts to be 230

clear and task-specific, following the principles of 231

effective prompt engineering to elicit structured, 232

reliable outputs (Levy et al., 2024). The exact 233

prompts used for each experimental condition are 234

detailed in Appendix C. 235

Our baseline prompting setup varies along two 236

axes: the number of examples provided to the 237

3We use GPT-4.1-mini tokenizer to count the number of
tokens throughout our work.

3
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Ontology Proofs

Domain #Predicates (Arity) #Axioms #Proofs (DL) Proof Size

Biology 43, 327 (unary), 249 (binary) 72, 830 2, 429 (EL) 4–100
Recipe 35, 369 (unary), 195 (binary) 52, 248 74 (EL), 12 (ALC) 4–100
Drone 201 (of maximal arity 4) 332 50 (DatalogMTL) 9–59

Table 1: Metrics of Ontologies and Logical Proofs. EL is a lightweight Description Logic and ALC is a more
complex Description Logic. More details on these description logics are available in Appendix A.

Domain Steps
(in tokens)

Steps
(in words)

Summary
(in tokens)

Summary
(in words)

Target User Msg
(in tokens)

Target User Msg
(in words)

Biology 13331 5530 5691 4674 900 698
Drone 14320 1315 4080 3326 878 688
Recipe 24488 10352 3858 3254 903 649
Total 52139 17197 13629 11254 2681 2035

Table 2: Token and word statistics for human-annotated proofs, summaries, and target user messages.

Strategy Task
Examples

Context
Trail

Zero-shot atomic No No
Zero-shot chained No Yes
One-shot atomic Yes No
One-shot chained Yes Yes

Table 3: Baseline prompting strategies

model (i.e., zero-shot vs. one-shot) and the con-238

versational structure of the interaction (i.e., atomic239

single-turn vs. chained multi-turn). This design240

allows us to systematically investigate the effec-241

tiveness of in-context learning and conversational242

history on task performance.243

While in the atomic single-turn setup the order244

of tasks may not matter, it might matter in the multi-245

turn setup. We tried multiple different task orders246

and found that the following order performed better247

empirically: (1) find the most contributing steps,248

(2) summarize the proof and (3) provide a short249

message for the target user. We note that finding the250

most contributing steps is the first step in the chain251

and we also do not provide any examples for this252

task. For the same, the output of this task remains253

the same across all our prompting strategies.254

In the chained prompting variants, the overall255

input length can become much longer as the con-256

versational history grows. Hence, we limit our ex-257

periments to one-shot prompting for the practical258

given the longer input size (refer to Table 5).259

4.2 LLM Coverage 260

We test a range of recent LLMs, including state-of- 261

the-art proprietary models and several open-source 262

models of varying sizes (refer to Table 4). 263

Model Open Thinking
GPT-4.1-mini No No
GPT-4o-mini No No
SmolLM3-3B Yes No4

Llama-3.1-8B Yes No
Mistral-3.2-24B Yes No
Llama-3.3-70B Yes No
Qwen3-8B Yes Yes
Magistral-24B Yes Yes
Qwen3-32B Yes Yes

Table 4: Information about the LLMs used

Here, LLMs such as qwen3-8b, 264

magistral-24b and qwen3-32b inher- 265

ently perform CoT reasoning via thinking tokens, 266

effectively serving as implicit CoT baselines. 267

4.3 Implementation Details 268

We use vLLM (Kwon et al., 2023) to perform infer- 269

ence on all open-source models in their native pre- 270

cision (i.e., fp16/bf16). For each model, we use 271

the recommended inference parameters (refer to 272

the Appendix D) provided in their model card. We 273

use 4x H100 GPUs to perform all our experiments 274

with open-source models. For the closed-source 275

4We use the non-thinking variant here.
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Domain Minimum
Tokens

Maximum
Tokens

Average
Tokens

Biology 296 2612 1180
Drone 466 3267 1307
Recipe 1272 4058 2021

Table 5: Number of tokens in proofs per domain

models, we use OpenAI hosted API services. For276

both open and closed-source models, we prompt277

LLMs to generate a JSON response and use a fixed278

seed value for reproducible outputs.279

4.4 Metrics280

Steps similarity To quantitatively evaluate the281

similarity in choosing the most contributing steps,282

we measure the average depth of the selected proof283

steps within the reference proof. We represent each284

proof as a Directed Acyclic Graph (DAG), G =285

(V,E), where vertices v ∈ V are the inferences286

and a directed edge (u, v) ∈ E indicates that the287

conclusion of v is a premise for u.288

The depth of a step v, denoted d(v), is the length
of the longest path from the proof’s final conclusion
(vroot) to v. To standardize this measure across
different proofs, we compute a normalized depth,
d̂(v), as:

d̂(v) =
d(v)

maxu∈V d(u)

This ensures that d̂(v) ∈ [0, 1], where 0 corre-
sponds to the root (final conclusion) and 1 to the
deepest leaf nodes (asserted conditions). For a
given explanation consisting of a set of selected
steps S = {s1, . . . , sk}, we calculate the mean
normalized depth d̄(S):

d̄(S) =
1

k

k∑
i=1

d̂(si)

By analyzing the distributions of d̄(S) for each289

LLM and human annotators, we can identify biases290

in their selection preferences and measure their291

alignment with human reasoning patterns.292

Summary & Target User Message We evalu-293

ate similarity between the LLM-generated text and294

the human annotations using the following stan-295

dard metrics, such as BLEU (Papineni et al., 2002),296

ROUGE-L (Lin, 2004), chrF++ (Popović, 2017),297

and BERTScore (Zhang et al., 2020).298

5 Results 299

Key steps similarity Figure 2 presents the distri- 300

butions of the mean normalized step depth for most 301

contributing steps identified by humans and LLMs 302

across all domains. This result remains the same 303

across all four baseline strategies, since it is the 304

first step in the chain, and we also do not provide 305

any examples for this task. 306

Human
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4.1-m

ini

GPT-
4o-m

ini

Lla
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Figure 2: Most contributing steps distribution (averaged
across domains)

Human-identified steps exhibit the highest mean 307

step depth (≈ 0.4) and the widest distribution, cov- 308

ering nearly the entire normalized range. This in- 309

dicates that humans do not adhere to a single fixed 310

strategy. Instead, they flexibly select steps from all 311

levels of the proof graph, from high-level conclu- 312

sions to foundational premises. In contrast, most 313

LLMs display a strong and consistent bias toward 314

low-depth steps, indicating a preference for infer- 315

ences that are structurally close to the final conclu- 316

sion. We also observe that no model successfully 317

replicates the human distribution. 318

For this task, SmolLM3-3B comes closest to 319

the human average mean depth, outperforming 320

even larger models such as Magistral-24B and 321

GPT-4.1-mini, which rank second and third on 322

this task, respectively. One major limitation we 323

observe in SmolLM3-3B, GPT-4o-mini, and 324

Llama-3.1-8B is that they sometimes pick the 325

final conclusion step itself as the most contribut- 326

ing step. We then dive deeper to evaluate if these 327

patterns are consistent across domains. 328

We observe clear differences in distribution pat- 329

terns across domains. In the Biology domain (Fig- 330

ure 3), human-identified steps have a lower mean 331

depth compared to other domains, indicating a pref- 332

erence for steps closer to the final conclusion, while 333
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Figure 3: Most contributing steps distribution (Biology)

still maintaining a wide distribution. Among the334

LLMs, SmolLM3-3B again exhibits a mean depth335

closest to the human average in this specific do-336

main.337
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Figure 4: Most contributing steps distribution (Drone)

In the Drone domain, as shown in Figure 4,338

human-selected steps have the highest mean depth339

across all domains (≥ 0.5) and a broader distribu-340

tion. On the contrary, all LLMs exhibit a strong341

preference for low-depth steps, creating the most342

significant gap between human and model distribu-343

tions observed in our study. While SmolLM3-3B344

remains the best-performing model in terms of345

matching the mean, it also at times picks the fi-346

nal conclusion step as the most contributing one.347

Figure 5 shows the distributions for the Recipe348

domain. The human distribution is similar to the349

cross-domain average, with a mean depth of ≈ 0.4350

and noticeable variance. Most LLMs again grav-351

itate towards steps structurally close to the con-352

clusion. In this domain, Magistral-24B out-353

performs SmolLM3-3B, though all the LLMs fall354
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Figure 5: Most contributing steps distribution (Recipe)

short of replicating the breadth and average depth 355

of human-selected steps. 356

In conclusion, the normalized step depth metric 357

reveals a fundamental difference between human 358

flexibility and LLM bias. While humans select key 359

contributing steps from all levels of a reasoning 360

chain, LLMs consistently favor low-depth steps 361

near the final conclusion. This opens up another 362

future research opportunity in developing LLMs 363

that can replicate human understanding, leading 364

to a more human-aligned identification of pivotal 365

reasoning steps. 366

Summary & Target User Msg similarity 367

We evaluate the LLMs’ performance against 368

human-written references using BLEU, ROUGE-L, 369

chrF++, and BERTScore. The performance un- 370

der the one-shot atomic strategy is nearly identi- 371

cal, with the chained context providing a marginal 372

overall improvement. The results for the rest three 373

prompting strategies are available in Appendix E. 374

The results for the one-shot chained strat- 375

egy are presented in Figure 6. These re- 376

sults suggest that, for the summary task, 377

Llama-3.1-8B and Mistral-3.2-24B con- 378

sistently achieve the highest scores across all four 379

metrics. However, for the more constrained tar- 380

get user message task, GPT-4o-mini emerges 381

as one of the top-performing LLMs along with 382

Mistral-3.2-24B. In contrast, LLMs like 383

GPT-4.1-mini and SmolLM3-3B generally 384

rank lower on these generation tasks compared to 385

their performance on the step selection task. 386

6 Human Evaluation 387

While automated metrics like BLEU, ROUGE, and 388

BERTScore offer scalable evaluation, they are lim- 389
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Figure 6: Automated metrics of the best performing strategy (One-shot chained)

Summary criteria Target Message criteria
Model Name Conciseness Coverage Faithfulness Readability Appropriateness Coverage Faithfulness

Llama-3.1-8B 4.07 3.65 3.76 4.05 3.54 3.69 3.67
Mistral-3.2-24B 4.01 4.63 3.86 3.83 3.85 4.19 4.11
GPT-4.1-mini 3.79 4.60 4.00 3.57 3.89 4.33 4.24
Llama-3.3-70B 4.14 3.84 4.00 3.84 3.62 3.46 4.44
Human 4.55 4.80 4.80 4.35 4.59 4.47 4.96

Table 6: Averaged human evaluation scores across all domains and annotators

ited in their ability to assess critical qualitative390

aspects of text generation. These metrics often391

fail to capture nuances of faithfulness, readabil-392

ity, and appropriateness, which are vital for user-393

facing summaries and messages. The results in394

Figure 6 show that top-performing models, such395

as Llama-3.1-8B and Mistral-3.2-24B,396

achieve very similar scores. Automated metrics397

alone make it difficult to determine if these small398

numerical differences translate into meaningful im-399

provements in quality or to verify if the generated400

content is factually correct and truly useful.401

To address these limitations and provide a402

more robust assessment, we conduct a human403

evaluation study. We select a diverse set of404

models for comparison against a Human base-405

line: the two top performers according to406

automated metrics (Mistral-3.2-24B and407

Llama-3.1-8B), a larger model from the same408

family (Llama-3.3-70B), and a recent propri- 409

etary model (GPT-4.1-mini). This selection 410

allows us to validate whether the top automated 411

scores correspond to actual qualitative improve- 412

ments, and to explore the performance differences 413

between various model types and sizes. To carry 414

out the evaluation, we recruit five human annota- 415

tors to rate the outputs for both tasks, using the 416

following task-specific criteria.5 417

Summary Criteria The evaluators rate the sum- 418

mary based on the following aspects: 419

Faithfulness - assesses the degree to which the 420

reference proof factually supports every statement 421

in the summary. 422

Readability - judges the summary based on its 423

clarity, grammar, and ease of comprehension. 424

Conciseness assesses if the summary only contains 425

essential information or not. 426

5The human evaluation guide is available in Appendix G.
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Coverage determines if the summary captures all427

key reasoning steps and the main conclusion.428

Target Message Criteria The evaluators rate the429

target user message based on the following aspects.430

Faithfulness assesses the degree to which the ref-431

erence proof factually supports the target message.432

Appropriateness judges the overall suitability of433

the message for its target audience, combining as-434

pects of faithfulness, clarity, and conciseness.435

Coverage determines if the summary target mes-436

sage contains the main conclusion and at least one437

main reason.438

6.1 Results439

The human evaluation statistics are presented in440

Table 6. These indicate qualitative differences be-441

tween the LLMs and Human annotators. Based442

on this evaluation, GPT-4.1-mini and Mistral-3.2-443

24B are the best-performing LLMs overall and they444

score higher compared to the Llama family LLMs.445

For the summary task, GPT-4.1-mini and Mistral-446

3.2-24B obtained the highest scores for the Cover-447

age criteria, but they fall short on the Conciseness448

criteria. This indicate the verbose nature of these449

LLMs. We confirm this by plotting average sum-450

mary and target message lengths for all the LLMs.451

The plots are available in Appendix F. In the Target452

Message task, GPT-4.1-mini achieves the highest453

scores across all three criteria: Appropriateness,454

Coverage, and Faithfulness.455

These findings diverge from the automated eval-456

uation results shown in Figure 6. While auto-457

mated metrics ranked Llama-3.1-8B and Mistral-458

3.2-24B as having similar top-tier performance,459

human annotators rated Llama-3.1-8B lower than460

both Mistral-3.2-24B and GPT-4.1-mini. This sug-461

gests a limitation of automated metrics in capturing462

nuanced aspects of text quality and demonstrates463

the utility of human judgment for such assessments.464

We finally assess the reliability of the human465

evaluation by calculating inter-annotator agreement466

using Fleiss’ Kappa (κ). The results indicate that467

the five annotators reached a substantial level of468

agreement, which supports the reliability of our469

findings. For the Summary criteria, annotators470

achieved almost perfect agreement for Faithfulness471

(κ = 0.813), and substantial agreement for Read-472

ability (κ = 0.677) and Conciseness (κ = 0.721).473

Agreement for Coverage (κ = 0.442) was mod-474

erate, suggesting a higher degree of subjectivity475

for this criterion. For the Target Message cri-476

teria, all three aspects showed substantial agree- 477

ment: Faithfulness (κ = 0.774), Appropriateness 478

(κ = 0.678), and Coverage (κ = 0.656). These 479

agreement scores demonstrate that annotators ap- 480

plied the evaluation criteria consistently and that 481

the criteria themselves were well defined. 482

6.2 Error Analysis 483

In order to understand the ratings a bit better, we 484

asked our human evaluators to provide us with the 485

reasoning for the scores for 5 low-scoring samples 486

per domain per LLM. We present our findings here. 487

Summary We observe that almost all the models 488

use some technical terms from the proof verbatim, 489

especially Mistral-3.2-24B and GPT-4.1-mini. This 490

leads to lower readability scores in general. For 491

llama-3.1-8b, we observed a consistent pattern of 492

incorrectly using the term “equivalent" when the 493

proof demonstrates a subclass relationship. This 494

recurring issue indicates a potential weakness in 495

understanding logical operators. 496

Target user message We observed that for the 497

GPT-4.1-mini uses left-branching sentence struc- 498

ture, which increases memory load and scores 499

lower on the appropriateness criteria. An example 500

target message showcasing this issue is – Because 501

saucy shepherd pie has carrots as ingredients, it 502

needs special allergen labels about carrots. Llama- 503

3.1-8B suffers again from its inability to under- 504

stand logical operators. Interestingly, Llama-3.3- 505

70B produces very short target messages (i.e., Cell 506

derivation from Mus musculus) and achieves lower 507

ratings for coverage criteria. This observation is 508

also supported by Figure 21 in the Appendix. 509

7 Conclusion 510

We introduce ProofTeller, a benchmark to 511

evaluate LLM reliability in explaining formal 512

proofs via key step identification, summarization, 513

and user messaging. Our experiments with nine 514

LLMs reveal reliability gaps. We find that LLMs 515

consistently favor low-depth steps near the conclu- 516

sion, whereas humans select steps from all over the 517

proof. This suggests LLMs lack a holistic under- 518

standing of the reasoning chain. Further, our hu- 519

man evaluation of summarization tasks highlights 520

qualitative deficiencies in faithfulness and concise- 521

ness not captured by automated metrics. These find- 522

ings demonstrate that even modern LLMs struggle 523

to faithfully interpret and communicate the essence 524

of a formal proof reliably. 525
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Limitations526

Experimental limitations While we took a sys-527

tematic approach, our exploration of the vast528

prompt engineering space was limited. We did our529

initial testing with three distinct seed variations,530

which may not fully capture the possible variability531

in output. Furthermore, we restricted prompt varia-532

tions for each task to five, potentially overlooking533

other effective phrasings or structures that could534

yield superior performance. Finally, we confined535

the initial evaluation of the system prompt’s influ-536

ence to three language models before finalizing537

the one used for this work, meaning findings may538

not be consistent across all possibly suited system539

prompts.540

Scope limitation Our work is limited to three541

domains within DL and DatalogMTL formalisms.542

Moreover, to maintain the original notations,543

the proof syntax employs logic-specific Unicode544

symbols (e.g. ⊑, ⊞) and specialized terminol-545

ogy (e.g. “eliminate” and “Intersection546

Composition”) requiring LLMs to first recog-547

nize their semantic meaning before interpreting the548

logical implications.549

Evaluation Subjectivity Evaluation of explana-550

tion quality can be inherently subjective, especially551

with respect to aspects such as appropriateness and552

faithfulness. Different annotators may interpret the553

relevance and accuracy of an explanation in diverse554

ways, leading to potential variability in the assigned555

scores. To mitigate this, we provided clear guide-556

lines and examples, but acknowledge that some557

level of subjectivity is unavoidable in human evalu-558

ations of natural language explanations.559

Ethics Statement560

All annotators involved in the evaluation process561

are either co-authors of this paper or were fairly562

compensated for their time, receiving above the563

minimum wage of 14.5 EUR per hour. This en-564

sures ethical standards in data annotation and helps565

maintain the quality and reliability of the evaluation566

results.567
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A Preliminaries821

A.1 DL Proofs822

The proofs in our benchmark are based on the823

two description logics (DLs) EL and ALC (Baader824

et al., 2017) as well as DatalogMTL (Brandt et al.,825

2018), an extension of Datalog with metric tempo-826

ral operators for querying temporal data.827

The syntax of DLs is based on disjoint, countably828

infinite sets NC and NR of concept names A, B,829

. . . and role names r, s, . . . , respectively. In EL,830

concepts are built from concept names by applying831

the constructors ⊤ (top), C ⊓D (conjunction), and832

∃r.C (existential restriction for a role name r). A833

general concept inclusion (GCs) is of the form C ⊑834

D, where C and D are EL concepts, and a finite set835

of GCIs is called a TBox or ontology. The DL ALC836

extends EL by the concept constructors ⊥ (bottom),837

C ⊔D (disjunction), ∀r.C (value restriction), and838

¬C (negation). For the semantics, in particular839

when a GCI η is entailed by a TBox T (written840

T |= η), we refer the reader to (Baader et al., 2017).841

In contrast to EL and ALC, temporal reasoning842

in DatalogMTL also takes facts about constants843

into account. A (function-free first-order) atom has844

the form P (τ) with P a predicate of some arity n845

and τ an n-ary tuple consisting of constants and846

variables. A literal (or metric atom) A takes one847

of the following forms, where ϱ is a non-empty848

positive rational interval:849

A := ⊤ | ⊥ | P (τ) | �
ϱA | ⊠ϱA | ⊟ϱA |850

⊞ϱA | ASϱA | AUϱA851

A rule with body literals A1, . . . , An, n ≥ 1, and
head literal B is of the form:

B : – A1 ∧ ... ∧An,

with B not containing the operators �, ⊠, S or852

U . If an atom, literal or rule contains no variable,853

we call it ground. A fact F is defined as an expres-854

sion of the form A@ϱ where A is a ground atom855

and ϱ a rational interval. Moreover, we call a fi-856

nite set D of facts a dataset and a finite set Π of857

rules a program. In this context, entailments are of858

the form Π,D |= F . However, for simplicity, we859

now denote entailments in DLs and DatalogMTL860

uniformly by T |= η.861

Our goal is to explain a logical consequence862

T |= η, where T is either a TBox or a program to-863

gether with a dataset, and η is a GCI or a fact,864

respectively. Following (Alrabbaa et al., 2020,865

2022b), proofs of T |= η are finite, acyclic, di- 866

rected hypergraphs, where vertices v are labeled 867

with GCIs or facts ℓ(v) and hyperedges are of the 868

form (S, d), with S a tuple of vertices and d a 869

vertex such that {ℓ(v) | v ∈ S} |= ℓ(d); the leafs 870

of a proof must be labeled by elements of T and 871

the unique sink vertex by η. In addition, an edge 872

labeling function (see labels without boxes in Fig- 873

ures 8,12,10) indicates which logical rule derived 874

a conclusion ℓ(d) from the premises. The size of a 875

proof is the number of its vertices. 876

For this benchmark, EL proofs were generated 877

using the reasoner ELK (Kazakov et al., 2014; 878

Kazakov and Klinov, 2014), while for ALC, we 879

employed the forgetting tool LETHE (Koopmann, 880

2020; Alrabbaa et al., 2020). For DatalogMTL, we 881

extended the Metric Temporal Reasoner (MeTeoR) 882

(Wang et al., 2022) to trace the applied reasoning 883

steps (Borgwardt et al., 2024). We also used EVEE 884

(EVincing Expressive Entailments) (Alrabbaa et al., 885

2022a), a Java library that can extract size-minimal 886

proofs from the output of a reasoner. 887

B Proof Examples 888

Biology Example In Figures 7 and 8, one can 889

see an example of a proof that RMUG-S is an im- 890

mortal human cell line cell (IhCL for short). An 891

immortal cell line (ICL) is expected to be capa- 892

ble of an unlimited number of divisions, and is 893

thus able to support indefinite propagation in vitro. 894

RMUG-S is a human (lat. Homo sapiens) ovarian 895

adenocarcinoma cell line originated from a 62 year 896

old Japanese female. 897

Food & Recipes example In Figures 9 and 10 898

one can see an example of a vegan bread recipe. 899

Critical Situations in Drone example The proof 900

in Figure 12 show a temporal proof for the drone 901

probably having internal damage at time point 0 by 902

detecting an internal temperature above the thresh- 903

old temperature. 904

C Prompts 905

We provide all the prompts verbatim in Figures 13, 906

15, 14, 16. 907

D Inference details 908

For the open weights LLMs, we use the exact same 909

inference parameters mentioned in the LLM model 910

card on their respective HuggingFace model page. 911
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finalConclusion: RMUG-S ⊑ IhCL,
inferences: [ {

conclusion: RMUG-S ⊑ IhCL,
ruleName: Class Hierarchy,
premises: [ RMUG-S ⊑

(∃dF.∃pOf.Homo sapiens ⊓
ICL),
(∃dF.∃pOf.Homo sapiens ⊓

ICL) ⊑ IhCL ]
},{

conclusion: RMUG-S ⊑
(∃dF.∃pOf.Homo sapiens ⊓
ICL),

ruleName: Intersection
Composition,

premises: [ RMUG-S ⊑ ICL,
RMUG-S ⊑ ∃dF.∃pOf.Homo

sapiens ]
},{

conclusion: RMUG-S ⊑ ICL,
ruleName: Asserted Conclusion

},{
conclusion: RMUG-S ⊑

∃dF.∃pOf.Homo sapiens,
ruleName: Asserted Conclusion

},{
conclusion: (∃dF.∃pOf.Homo

sapiens ⊓ ICL) ⊑ IhCL,
ruleName: Equivalent Classes

Decomposition,
premises: [ IhCL ≡

(∃dF.∃pOf.Homo sapiens ⊓
ICL) ]

},{
conclusion: IhCL ≡

(∃dF.∃pOf.Homo sapiens ⊓
ICL),

ruleName: Asserted Conclusion }
]

Figure 7: Biology Proof JSON (we abbreviated ’derives
from’ and ’part of’ as dF and pOf correspondingly)

E Additional Results on Summary & 912

Target User Message similarity 913

automated metrics 914

The results in Figure 6 and 17 show that providing 915

the context trail leads to a slight but consistent im- 916

provement across all models and metrics for both 917

the summary and target user message tasks. For in- 918

stance, the ROUGE-L score for Llama-3.1-8B 919

on the summary task improves from approximately 920

44.5 to 45.0 when the context trail is included. Sim- 921

ilarly, the BERTScore for GPT-4o-mini on the 922

target message task increases from around 57.0 to 923

57.5. While minor, this trend suggests that access 924

to the full reasoning path, even when generating 925

a summary of it, provides valuable context that 926

helps the models produce outputs that are more 927

aligned with the human-written references. This 928

indicates that for generation tasks grounded in a 929

logical proof, providing the complete proof struc- 930

ture is beneficial. 931

F Length analysis for Summary and 932

Target User Message tasks 933

Figures 20 and 21 show this analysis. 934

G Annotation Guidelines 935
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Figure 8: Biology Proof

finalConclusion: bread ⊑ vegan recipe,
inferences: [ {

conclusion: bread ⊑ vegan
recipe,

ruleName: eliminate 'flour',
premises: [ (∀ingr.(water ⊔

flour) ⊓ bread) ⊑ vegan
recipe,
bread ⊑ ∀ingr.(water ⊔

flour) ]
},{

conclusion: (∀ingr.(water ⊔
flour) ⊓ bread) ⊑ vegan
recipe,

ruleName: eliminate 'vegan',
premises: [ water ⊑ vegan,

flour ⊑ vegan,
(∀ingr.vegan ⊓ bread) ⊑

vegan recipe ]
},{

conclusion: water ⊑ vegan,
ruleName: asserted

},{
conclusion: flour ⊑ vegan,
ruleName: asserted

},{
conclusion: (∀ingr.vegan ⊓

bread) ⊑ vegan recipe,
ruleName: eliminate 'food

recipe',
premises: [ bread ⊑ (food

recipe ⊓ ∃ingr.flour ⊓
∃ingr.water),
vegan recipe ≡ (∀ingr.vegan

⊓ food recipe) ]
},{

conclusion: bread ⊑ (food
recipe ⊓ ∃ingr.flour ⊓
∃ingr.water),

ruleName: asserted
},{

conclusion: vegan recipe ≡
(∀ingr.vegan ⊓ food recipe),

ruleName: asserted
},{

conclusion: bread ⊑
∀ingr.(water ⊔ flour),

ruleName: asserted } ]

Figure 9: Recipe proof JSON
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Table 1: Rubrics and Workflow for Evaluating Candidate Explanations

What you see How to interpret it Why it matters
Description Logic
Proof (JSON)

Ground-truth correct reasoning
chain – assume JSON contains the
gold standard reasoning in mathe-
matical form.

Serves as the gold standard to
judge each candidate.

Candidate Summary
& Target message

Model’s attempt to compress the
proof for an end-user.

Ratings indicate clarity and
faithfulness to the proof.

Structure of the Description Logic Proof: The JSON proof structure links “premises” step by
step using “ruleName” in the “inferences” field. Each step uses asserted or previously inferred
“premises”, applies a “ruleName”, and produces a “conclusion”. This builds a logical sequence
from base facts to the “finalConclusion”.

Field Max
Length

Purpose Typical Content

Summary ≈ 4–5 sen-
tences

Capture candidate’s full rea-
soning and conclusion.

Key conclusion, main support-
ing facts

Target Mes-
sage

≤ 20 words Single-line alert user will
see.

Trigger condition, conse-
quence or instruction

Rating Rubrics (5-point scale):

1. Summary:

• Faithfulness: Alignment with the proof.
• Readability: Clarity, tone.
• Conciseness: No redundancy.
• Coverage: All key steps present.

2. Target Message:

• Faithfulness: Supported by proof.
• Appropriateness: Suited to end-user, no extra inference.
• Coverage: Critical details for action.

Score Faithfulness Readability Conciseness Coverage
5 (Excel-
lent)

Every statement
fully justified by
proof

Flawless writing Only essential
info

Every key step and
conclusion covered

4 (Good) Minor paraphrase,
accurate (≥95%)

Very clear, minor
phrasing issue

Small redun-
dancy

Misses one trivial
step or includes one
unneeded detail

3 (Fair) Several weakly-
supported state-
ments

Understandable,
awkward wording

Multiple extra
phrases

Omits ≥2 sec-
ondary steps

2 (Poor) Key facts misstated
or unsupported

Hard to follow Verbose or
info beyond
important points

Omits at least one
critical step

1 (Unac-
ceptable)

Major hallucina-
tions/contradic-
tions

Largely incoher-
ent

Very lengthy or
irrelevant info

Fails to cover main
conclusion/reason-
ing

Step-by-step Annotation Workflow:

1. Read the proof, identify conclusion and key steps.

2. Evaluate the Summary on all metrics.

3. Evaluate the Target message on all metrics.

4. Click “Save all” before moving on.

Notes:

• Accurate numbers and details matter.

• Tone tailored for each target user matters.

• Conciseness is not a reason to omit essentials.

Figure 22: Annotation Rubric and Workflow for Quality Assessment.
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Figure 10: Simplified proof. Edges "asserted" removed, "ingr." means "has ingredient" and "vegan" — "vegan
ingredient"
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finalConclusion : warninglvl(d,4)@[0,0],
inferences : [ {

conclusion :
warninglvl(d,4)@[0,0],

ruleName : inclusion,
premises : [

warninglvl(d,4)@[-1,9] ]
}, {

conclusion :
warninglvl(d,4)@[-1,9],

ruleName : warninglvl(X,4) :–
risk(X),

premises : [ risk(d)@[-1,9] ]
}, {

conclusion : risk(d)@[-1,9],
ruleName : risk(X) :–

riskofinternaldamage(X),
premises : [

riskofinternaldamage(d)@[-1,9]
]

}, {
conclusion :

riskofinternaldamage(d)@[-1,9],
ruleName : reverse ⊞,
premises : [

⊞[0,10]riskofinternaldamage(d)@[-1,-1]
]

}, {
conclusion :

⊞[0,10]riskofinternaldamage(d)@[-1,-1],
ruleName :

⊞[0,10]riskofinternaldamage(Y) :–
internaltemperature(Y,S),drone(Y),S>40,

premises : [
internaltemperature(d,48)@[-1,-1],
drone(d)@[-300,+∞) ]

}, {
conclusion :

internaltemperature(d,48)@[-1,-1],
ruleName : Asserted

}, {
conclusion :

drone(d)@[-300,+∞),
ruleName : reverse ⊞,
premises : [

⊞[0,+∞)drone(d)@[-300,-300]
]

}, {
conclusion :

⊞[0,+∞)drone(d)@[-300,-300],
ruleName : ⊞[0,+∞)drone(X) :–

drone(X),
premises : [

drone(d)@[-300,-300] ]
}, {

conclusion :
drone(d)@[-300,-300],

ruleName : Asserted } ]

Figure 11: Example proof for a critical scenario for
drones

Figure 12: Proof for the drone experiencing overheating.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - 1 ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 2: Summarize the Proof

### TASK - 2 ###
An example summary for an example proof was written by a human expert as shown below.
Example Proof: {{example_proof}}
Example Summary: {{example_summary}}

Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert.
The summary should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - 3 ###
An example message for the targeted user was written by a human expert as shown below. The human expert utilized the
‘Example Proof‘ and the ‘Example Summary‘ to write this message.
Example Target Message: {{example_target_msg}}

Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The mes-
sage should be a maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final
conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Figure 13: Prompt template for One-shot chained; same color for all tasks indicates multi-turn response chain,
adding the previous context for all the tasks.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - 1 ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 2: Summarize the Proof

### TASK - 2 ###
Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert. The summary
should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - 3 ###
Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The message should be a
maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Figure 14: Prompt template for Zero-shot chained; same color for all tasks indicates multi-turn response chain,
adding the previous context for all the tasks.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - FIND THE MOST CONTRIBUTING STEPS ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 2: Summarize the Proof

### TASK - SUMMARIZE PROOF ###
An example summary for an example proof was written by a human expert as shown below.
Example Proof: {{example_proof}}
Example Summary: {{example_summary}}

Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert.
The summary should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - TARGET-USER MESSAGE ###
An example message for the targeted user was written by a human expert as shown below. The human expert utilized the
‘Example Proof‘ and the ‘Example Summary‘ to write this message.
Example Target Message: {{example_target_msg}}

Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The mes-
sage should be a maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final
conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Figure 15: Prompt template for One-shot atomic; different colors for all tasks indicate single-turn responses for
each independent task.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

### TASK - FIND THE MOST CONTRIBUTING STEPS ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 2: Summarize the Proof

### TASK - SUMMARIZE PROOF ###
Summarize the proof below similar to a human expert. The summary should contain the conclusion of the proof and how it
was reached.

{{proof}}

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - TARGET-USER MESSAGE ###
Generate a message for the targeted user similar to a human expert for the proof given below. The message should be a
maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final conclusion.

{{proof}}

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response

{{JSON_response}}

Figure 16: Prompt template for Zero-shot atomic; different colors for all tasks indicate single-turn responses for
each independent task.

21



GPT-
4o

-m
ini

Qwen
3-8

B

Qwen
3-3

2B

Sm
olL

M3-3
B

GPT-
4.1

-m
ini

mag
istr

al-
sm

all-
25

06

Mistr
al-

3.2
-24

B

Lla
ma-3

.3-
70

B

Lla
ma-3

.1-
8B

8

10

12

14

16

summary - BLEU

GPT-
4o

-m
ini

GPT-
4.1

-m
ini

Qwen
3-3

2B

mag
istr

al-
sm

all-
25

06

Sm
olL

M3-3
B

Qwen
3-8

B

Lla
ma-3

.3-
70

B

Mistr
al-

3.2
-24

B

Lla
ma-3

.1-
8B

26

28

30

32

34

36

38

40

42

summary - ROUGE-L

GPT-
4o

-m
ini

Sm
olL

M3-3
B

Qwen
3-8

B

mag
istr

al-
sm

all-
25

06

Qwen
3-3

2B

GPT-
4.1

-m
ini

Lla
ma-3

.1-
8B

Mistr
al-

3.2
-24

B

Lla
ma-3

.3-
70

B
32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0

52.5
summary - charF++

GPT-
4o

-m
ini

Qwen
3-3

2B

Sm
olL

M3-3
B

GPT-
4.1

-m
ini

Qwen
3-8

B

mag
istr

al-
sm

all-
25

06

Lla
ma-3

.3-
70

B

Lla
ma-3

.1-
8B

Mistr
al-

3.2
-24

B

37.5

40.0

42.5

45.0

47.5

50.0

52.5

55.0

summary - BERTScore

GPT-
4.1

-m
ini

Lla
ma-3

.3-
70

B

mag
istr

al-
sm

all-
25

06

Sm
olL

M3-3
B

Mistr
al-

3.2
-24

B

Qwen
3-3

2B

Lla
ma-3

.1-
8B

Qwen
3-8

B

GPT-
4o

-m
ini

6

8

10

12

14

16

target_msg - BLEU

Lla
ma-3

.3-
70

B

GPT-
4.1

-m
ini

Sm
olL

M3-3
B

mag
istr

al-
sm

all-
25

06

Lla
ma-3

.1-
8B

Qwen
3-8

B

Qwen
3-3

2B

Mistr
al-

3.2
-24

B

GPT-
4o

-m
ini

25

30

35

40

45

target_msg - ROUGE-L

Lla
ma-3

.3-
70

B

GPT-
4.1

-m
ini

mag
istr

al-
sm

all-
25

06

Sm
olL

M3-3
B

Qwen
3-8

B

Lla
ma-3

.1-
8B

Mistr
al-

3.2
-24

B

GPT-
4o

-m
ini

Qwen
3-3

2B
20

25

30

35

40

45

target_msg - charF++

Lla
ma-3

.3-
70

B

Sm
olL

M3-3
B

GPT-
4.1

-m
ini

mag
istr

al-
sm

all-
25

06

Lla
ma-3

.1-
8B

Qwen
3-8

B

Mistr
al-

3.2
-24

B

Qwen
3-3

2B

GPT-
4o

-m
ini

30

35

40

45

50

55

target_msg - BERTScore

Figure 17: Automated metrics of One-shot atomic strategy
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Figure 18: Automated metrics of Zero-shot chained strategy
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Figure 19: Automated metrics of Zero-shot atomic strategy
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Figure 20: Average length of summary for One-shot
chained strategy
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Figure 21: Average length of target user message for
One-shot chained strategy
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