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Abstract

Formal methods—such as  symbolic
proofs—offer a principled way to force
Large Language Models (LLMs) to reason
more reliably. However it is unclear whether
LLMs can actually use these proofs to generate
faithful, and yet human understandable
explanations? We introduce ProofTeller,
a new benchmark to evaluate this capabil-
ity. On a new dataset with over 68,000
human-annotated tokens, we evaluate several
LLMs on three tasks: identifying key proof
steps, summarizing the proofs, and creating
a user-targeted message. Across tasks and
settings, both automated metrics and human
evaluation reveal a critical reliability gap:
LLMs over-emphasize steps near the final
conclusion, while humans draw on evidence
distributed throughout the proof.  These
findings expose a fundamental mismatch
between the reasoning strategies of current
LLMs and those of humans, underscoring
the need for approaches that enable LLMs
to employ formal proof methods reliably
while faithfully generating a comprehensible
reasoning chain.

1 Introduction

Deploying large language models (LLMs) in
real-world critical domains from medical appli-
cations (Bang et al., 2025) to autonomous vehi-
cles (Cui et al., 2024) to critical network infras-
tructure (Manocchio et al., 2024) warrants ensur-
ing reliable and consistent outputs. In-context
learning (Brown et al., 2020) provides LLMs with
remarkable abilities to solve tasks explained in
natural language, and subsequent developments
like retrieval-augmented generation (RAG) (Lewis
et al., 2020), have further enhanced their util-
ity. However, LLMs outputs are not always re-
liable (Abbasi Yadkori et al., 2024). They can
produce inconsistent answers if information is pre-
sented in slightly different ways (Sclar et al., 2024;

Elazar et al., 2021) and are threfore prone to gen-
erating plausible but unfaithful explanations that
do not reflect the true drivers of their predictions
(Turpin et al., 2023).

In the past year, various “thinking” LLMs such
as DeepSeek-R1 (Guo et al., 2025), Qwen3 (Yang
et al., 2025), Gemini-2.5 (Comanici et al., 2025)
have shown better reasoning capabilities empiri-
cally. However even these reasoning models fail to
use explicit algorithms, generating inconsistent out-
puts (Shojaee et al., 2025). This leads to unwanted
hallucinations and presents a significant barrier to
LLM usage in applications where accuracy and
reliability are paramount.

To mitigate these consistency issues and reduce
hallucinations, one promising approach is to use
formal methods to inject reliability in LLMs, such
as by providing symbolic proofs as input context.
Such hybrid systems can leverage the rigorous and
verifiable nature of formal logic, combined with
the fluency of LLMs (Kassner et al., 2021). How-
ever, as Turpin et al. (2023) highlights the nature
of faithfulness in modern LLMs continues to be
brittle and sensitive to the given input, and thus
their reasoning can be swayed by biasing features
in the input. Furthermore, symbolic proofs some-
times do not contain all the necessary information
to explain a scenario perfectly (Mondorf and Plank,
2024). In such cases, LLMs has to infer the miss-
ing components by relying on knowledge gleaned
during pretraining. This can lead to hallucinations
if this “knowledge” is not aligned with the given
input (Sun et al., 2025; Xie et al., 2024).

These observations point to a concrete question:

Can LLMs reliably parse a formal proof,
distill the key reasoning steps, and re-
state them faithfully for a non-expert?

Answering this question lets us probe—within a
single, controlled setting— all failure modes iden-
tified above. If a model misunderstands or omits
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Figure 1: An example datapoint showcasing limitations of LLMs on our benchmark tasks

critical deductive steps we identify the lack of cor-
rectness, if it over or under-states what the proof
entails we can identify hallucination or inconsis-
tency and finally if it cannot translate the outcome
to the user, we witness a breakdown in faithfulness.

We introduce ProofTeller, a benchmark ex-
pressly designed to stress-test these capabilities.
Concretely, each instance in ProofTeller asks
an LLM to

1. Highlight the key steps that contribute the
most to the final verdict of the proof,

2. Summarize long symbolic proofs faithfully,

3. Explain the result in a concise message tai-
lored to a layman end user.

We provide a rigorous evaluation of 9 LLMs, in-
cluding 7 open weights and 2 proprietary LLMs.
Additionally, we also conduct numerous human
evaluations studies to further showcase the gaps be-
tween human and LLM abilities. With this bench-
mark and our evaluation framework grounded in
realistic scenarios, we aim to establish a princi-
pled yardstick for measuring and ultimately im-
proving the reliability and consistency of LLMs in
real world critical domains.

2 Related Work

Symbolic Text Understanding Many recent works
evaluate the symbolic reasoning of LL.Ms. For ex-
ample, (Shalyt et al., 2025) tests LLM’s abilities
for mathematical problem-solving using symbolic
perturbations, (Kulkarni et al., 2025) makes use of
SQL for robust tabular reasoning, and (Vo et al.,

2025) evaluates LLLMs for an abstract causal dis-
covery task from natural language text. While these
works focus on solving or discovering symbolic re-
lationships using LLMs, our benchmark focuses on
evaluating LLM’s ability to explain formal proofs.
Data-To-Text Generation Our work also shares
similarity with data-to-text (D2T) generation since
we also generate natural language text from struc-
tured data (i.e., JSON proofs). In D2T literature,
ToTTo (Parikh et al., 2020) benchmark emphasizes
the faithful generation of text from tables. An-
other such benchmark is DART (Nan et al., 2021),
which focuses on generating text from complex
RDF triples. Our work introduces a different struc-
tured input (i.e., logic proofs), which requires mod-
els to understand logical operators to create a sum-
mary and a user-targeted message.

Explaining Logical Proofs We find our work di-
rectly contributing to the field of explaining logical
proofs. We find (Colombo et al., 2025) to be the
most related to our work as it has a similar input
format of formal proofs and output contains sum-
maries. It uses LLMs to fill in templates to explain
Datalog inferences in the financial domain. In con-
trast, our benchmark evaluates LLMs on multiple
tasks including summarization.

3 Benchmark Creation

We start by generating different types of description
logic (DL) proofs for all three domains. Our proof
data come from three distinct domains: (1) Biology,
(2) Food & Recipes, and (3) Critical Situations
in Drones. For conciseness purposes, we refer to
these domains as (1) Biology, (2) Recipe, and (3)
Drone throughout the remainder of the text. For



this benchmark, we explore real-world scenarios
and user groups that are different for each domain.
For each target domain, we randomly sample 50
proofs for annotation. In this section, we describe
our benchmark creation process step by step.

3.1 Generating DL proofs

Table 1 provides quantitative information about the
domains and the extracted proofs. Although crit-
ical situations in drones are formally specified in
DatalogMTL rather than DL, we adopt DL termi-
nology throughout this work for consistency—for
instance, referring to rules as axioms. Proof size is
the number of inference steps, see “Steps” in the
proof in Figure 1. A full-sized example proof for
each of these domains is provided in Appendix B.

Biology. Our first domain is based on the Cell
Line Ontology', a community-driven ontology de-
veloped to standardize and integrate cell line infor-
mation and support computer-assisted reasoning.

Recipe. We created a food and recipe ontology?,
a formal semantic model to represent and reason
about culinary recipes, dietary restrictions, and al-
lergen content. This ontology builds upon estab-
lished recipe and food ontologies (Qi et al., 2018;
Dooley et al., 2018), with the extracted proofs
specifically related to the added recipes.

Drone. The drone ontology® models complex sit-
uations occurring during a drone flight. It uses met-
ric temporal operators as well as numerical predi-
cates. The associated proofs incorporate different
urgency levels to prioritize critical situations.

3.2 Target User Group and Scenarios

Biology: a 10th-grade student learning about the
characteristics of various cells.

Recipe: a 6th-grade student learning about food
allergens and classification of ingredients into ve-
gan, vegetarian and non-vegetarian.

Drone: a drone pilot monitoring an autonomous
drone, who needs help in understanding current or
future critical situations.

3.3 Task Annotation

To annotate these proofs for all three tasks, we
recruited two graduate-level students. We divide

'"https://obofoundry.org/ontology/clo.
html

2available in the supplementary material

the task-specific annotation into two phases: Pilot
and Main. In the pilot phase, we gave each human
annotator 10 proofs per domain and asked them
to annotate the generated proofs for the following
tasks: (i) identify the key contributing steps to the
conclusion from the proof (maximum up to 3 steps),
(i1) summarize proofs, and (iii) generate a short
user-targeted message.

At the end of the pilot phase, we asked our ex-
pert annotator to review the pilot annotations from
both our annotators and share detailed feedback
on their annotations. We then asked our student
annotators to incorporate the feedback. This feed-
back particularly helped align the most contributing
steps between the student annotators. Finally, we
divided the remaining 120 proofs equally among
them for individual annotations. Throughout the
annotation process, the student annotators were
prohibited from using any Al tools for annotation
purposes. By the end of this annotation process,
we collected over 68,000 human-annotated tokens>
across domains and tasks. We provide detailed
annotation statistics in Table 2.

We provide the final version of our annotation
guidelines in the Appendix G. We plan to release
our full benchmark dataset and code with the
camera-ready version of this work.

4 Experiments

In this section, we describe our experimental setup
for benchmarking LLM performance. We provide
an LLM with proofs and task-specific prompts to
generate answers for each task. Given the con-
nected nature of tasks (i.e., providing contributing
steps in the context may help summarize the proof),
it is important to test LLMs with and without pro-
viding the output of all the previous tasks as part of
the context.

4.1 Prompting strategy

Our prompting setup contains 4 prompt variants as
shown in Table 3. We write all our prompts to be
clear and task-specific, following the principles of
effective prompt engineering to elicit structured,
reliable outputs (Levy et al., 2024). The exact
prompts used for each experimental condition are
detailed in Appendix C.

Our baseline prompting setup varies along two
axes: the number of examples provided to the

3We use GPT-4.1-mini tokenizer to count the number of
tokens throughout our work.
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Ontology Proofs
Domain #Predicates (Arity) #Axioms #Proofs (DL) Proof Size
Biology 43,327 (unary), 249 (binary) 72,830 2,429 (EL) 4-100
Recipe 35,369 (unary), 195 (binary) 52,248 74 (EL), 12 (ALC) 4-100
Drone 201 (of maximal arity 4) 332 50 (DatalogMTL) 9-59

Table 1: Metrics of Ontologies and Logical Proofs. £L is a lightweight Description Logic and ALC is a more
complex Description Logic. More details on these description logics are available in Appendix A.

Domain Steps Steps Summary Summary Target User Msg Target User Msg
(in tokens) (in words) (in tokens) (in words) (in tokens) (in words)

Biology 13331 5530 5691 4674 900 698

Drone 14320 1315 4080 3326 878 688

Recipe 24488 10352 3858 3254 903 649

Total 52139 17197 13629 11254 2681 2035

Table 2: Token and word statistics for human-annotated proofs, summaries, and target user messages.

Strategy Task Cont(.:xt
Examples Trail
Zero-shot atomic No No
Zero-shot chained No Yes
One-shot atomic Yes No
One-shot chained Yes Yes

Table 3: Baseline prompting strategies

model (i.e., zero-shot vs. one-shot) and the con-
versational structure of the interaction (i.e., atomic
single-turn vs. chained multi-turn). This design
allows us to systematically investigate the effec-
tiveness of in-context learning and conversational
history on task performance.

While in the atomic single-turn setup the order
of tasks may not matter, it might matter in the multi-
turn setup. We tried multiple different task orders
and found that the following order performed better
empirically: (1) find the most contributing steps,
(2) summarize the proof and (3) provide a short
message for the target user. We note that finding the
most contributing steps is the first step in the chain
and we also do not provide any examples for this
task. For the same, the output of this task remains
the same across all our prompting strategies.

In the chained prompting variants, the overall
input length can become much longer as the con-
versational history grows. Hence, we limit our ex-
periments to one-shot prompting for the practical
given the longer input size (refer to Table 5).

4.2 LLM Coverage

We test a range of recent LLMs, including state-of-
the-art proprietary models and several open-source
models of varying sizes (refer to Table 4).

Model Open Thinking
GPT-4.1-mini No No
GPT-40-mini No No
SmolLM3-3B Yes No*
Llama-3.1-8B Yes No
Mistral-3.2-24B  Yes No
Llama-3.3-70B Yes No
Qwen3-8B Yes Yes
Magistral-24B Yes Yes
Qwen3-32B Yes Yes

Table 4: Information about the LLMs used

Here, LLMs such as qwen3-8b,
magistral-24b and qwen3-32b inher-
ently perform CoT reasoning via thinking tokens,
effectively serving as implicit CoT baselines.

4.3 Implementation Details

We use VLLM (Kwon et al., 2023) to perform infer-
ence on all open-source models in their native pre-
cision (i.e., fpl6/bT16). For each model, we use
the recommended inference parameters (refer to
the Appendix D) provided in their model card. We
use 4x H100 GPUs to perform all our experiments
with open-source models. For the closed-source

*We use the non-thinking variant here.



Minimum Maximum Average

Domain Tokens Tokens Tokens
Biology 296 2612 1180
Drone 466 3267 1307
Recipe 1272 4058 2021

Table 5: Number of tokens in proofs per domain

models, we use OpenAI hosted API services. For
both open and closed-source models, we prompt
LLMs to generate a JSON response and use a fixed
seed value for reproducible outputs.

4.4 Metrics

Steps similarity To quantitatively evaluate the
similarity in choosing the most contributing steps,
we measure the average depth of the selected proof
steps within the reference proof. We represent each
proof as a Directed Acyclic Graph (DAG), G =
(V, E), where vertices v € V are the inferences
and a directed edge (u,v) € E indicates that the
conclusion of v is a premise for w.

The depth of a step v, denoted d(v), is the length
of the longest path from the proof’s final conclusion
(Vroot) to v. To standardize this measure across
different proofs, we compute a normalized depth,
d(v), as:

d(v) = _dly)
maxycy d(u)
This ensures that d(v) € [0,1], where 0 corre-
sponds to the root (final conclusion) and 1 to the
deepest leaf nodes (asserted conditions). For a
given explanation consisting of a set of selected

steps S = {s1,..., s}, we calculate the mean
normalized depth d(.5):
B 15
d(s) = % Z d(s;)
i=1

By analyzing the distributions of d(S) for each
LLM and human annotators, we can identify biases
in their selection preferences and measure their
alignment with human reasoning patterns.

Summary & Target User Message We evalu-
ate similarity between the LLM-generated text and
the human annotations using the following stan-
dard metrics, such as BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), chrF++ (Popovié, 2017),
and BERTScore (Zhang et al., 2020).

5 Results

Key steps similarity Figure 2 presents the distri-
butions of the mean normalized step depth for most
contributing steps identified by humans and LLMs
across all domains. This result remains the same
across all four baseline strategies, since it is the
first step in the chain, and we also do not provide
any examples for this task.
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Figure 2: Most contributing steps distribution (averaged
across domains)

Human-identified steps exhibit the highest mean
step depth (= 0.4) and the widest distribution, cov-
ering nearly the entire normalized range. This in-
dicates that humans do not adhere to a single fixed
strategy. Instead, they flexibly select steps from all
levels of the proof graph, from high-level conclu-
sions to foundational premises. In contrast, most
LLMs display a strong and consistent bias toward
low-depth steps, indicating a preference for infer-
ences that are structurally close to the final conclu-
sion. We also observe that no model successfully
replicates the human distribution.

For this task, SmO1LLM3-3B comes closest to
the human average mean depth, outperforming
even larger models such asMagistral-24B and
GPT-4.1-mini, which rank second and third on
this task, respectively. One major limitation we
observe in SmolLM3-3B, GPT-40-mini, and
Llama-3.1-8B is that they sometimes pick the
final conclusion step itself as the most contribut-
ing step. We then dive deeper to evaluate if these
patterns are consistent across domains.

We observe clear differences in distribution pat-
terns across domains. In the Biology domain (Fig-
ure 3), human-identified steps have a lower mean
depth compared to other domains, indicating a pref-
erence for steps closer to the final conclusion, while
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still maintaining a wide distribution. Among the
LLMs, Smo LLM3 - 3B again exhibits a mean depth
closest to the human average in this specific do-
main.
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Figure 4: Most contributing steps distribution (Drone)

In the Drone domain, as shown in Figure 4,
human-selected steps have the highest mean depth
across all domains (> 0.5) and a broader distribu-
tion. On the contrary, all LLMs exhibit a strong
preference for low-depth steps, creating the most
significant gap between human and model distribu-
tions observed in our study. While SmolLM3-3B
remains the best-performing model in terms of
matching the mean, it also at times picks the fi-
nal conclusion step as the most contributing one.

Figure 5 shows the distributions for the Recipe
domain. The human distribution is similar to the
cross-domain average, with a mean depth of =~ 0.4
and noticeable variance. Most LLMs again grav-
itate towards steps structurally close to the con-
clusion. In this domain, Magistral-24B out-
performs Smo LLM3 - 3B, though all the LLMs fall
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Figure 5: Most contributing steps distribution (Recipe)

short of replicating the breadth and average depth
of human-selected steps.

In conclusion, the normalized step depth metric
reveals a fundamental difference between human
flexibility and LLM bias. While humans select key
contributing steps from all levels of a reasoning
chain, LLMs consistently favor low-depth steps
near the final conclusion. This opens up another
future research opportunity in developing LLMs
that can replicate human understanding, leading
to a more human-aligned identification of pivotal
reasoning steps.

Summary & Target User Msg similarity
We evaluate the LLMs’ performance against
human-written references using BLEU, ROUGE-L,
chrF++, and BERTScore. The performance un-
der the one-shot atomic strategy is nearly identi-
cal, with the chained context providing a marginal
overall improvement. The results for the rest three
prompting strategies are available in Appendix E.

The results for the one-shot chained strat-
egy are presented in Figure 6.  These re-
sults suggest that, for the summary task,
Llama-3.1-8BandMistral-3.2-24B con-
sistently achieve the highest scores across all four
metrics. However, for the more constrained tar-
get user message task, GPT-40-mini emerges
as one of the top-performing LLMs along with
Mistral-3.2-24B. In contrast, LLMs like
GPT-4.1-mini and SmolLM3-3B generally
rank lower on these generation tasks compared to
their performance on the step selection task.

6 Human Evaluation

While automated metrics like BLEU, ROUGE, and
BERTScore offer scalable evaluation, they are lim-
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Figure 6: Automated metrics of the best performing strategy (One-shot chained)

Summary criteria

Target Message criteria

Model Name Conciseness  Coverage Faithfulness Readability =~ Appropriateness Coverage Faithfulness
Llama-3.1-8B 4.07 3.65 3.76 4.05 3.54 3.69 3.67
Mistral-3.2-24B 4.01 4.63 3.86 3.83 3.85 4.19 4.11
GPT-4.1-mini 3.79 4.60 4.00 3.57 3.89 4.33 4.24
Llama-3.3-70B 4.14 3.84 4.00 3.84 3.62 3.46 4.44
Human 4.55 4.80 4.80 4.35 4.59 4.47 4.96

Table 6: Averaged human evaluation scores across all domains and annotators

ited in their ability to assess critical qualitative
aspects of text generation. These metrics often
fail to capture nuances of faithfulness, readabil-
ity, and appropriateness, which are vital for user-
facing summaries and messages. The results in
Figure 6 show that top-performing models, such
as Llama-3.1-8B and Mistral-3.2-24B,
achieve very similar scores. Automated metrics
alone make it difficult to determine if these small
numerical differences translate into meaningful im-
provements in quality or to verify if the generated
content is factually correct and truly useful.

To address these limitations and provide a
more robust assessment, we conduct a human
evaluation study. We select a diverse set of
models for comparison against a Human base-
line: the two top performers according to
automated metrics (Mistral-3.2-24B and
Llama-3.1-8B), a larger model from the same

family (Llama-3.3-70B), and a recent propri-
etary model (GPT-4.1-mini). This selection
allows us to validate whether the top automated
scores correspond to actual qualitative improve-
ments, and to explore the performance differences
between various model types and sizes. To carry
out the evaluation, we recruit five human annota-
tors to rate the outputs for both tasks, using the
following task-specific criteria.’

Summary Criteria The evaluators rate the sum-
mary based on the following aspects:
Faithfulness - assesses the degree to which the
reference proof factually supports every statement
in the summary.

Readability - judges the summary based on its
clarity, grammar, and ease of comprehension.
Conciseness assesses if the summary only contains
essential information or not.

5The human evaluation guide is available in Appendix G.



Coverage determines if the summary captures all
key reasoning steps and the main conclusion.

Target Message Criteria The evaluators rate the
target user message based on the following aspects.
Faithfulness assesses the degree to which the ref-
erence proof factually supports the target message.
Appropriateness judges the overall suitability of
the message for its target audience, combining as-
pects of faithfulness, clarity, and conciseness.
Coverage determines if the summary target mes-
sage contains the main conclusion and at least one
main reason.

6.1 Results

The human evaluation statistics are presented in
Table 6. These indicate qualitative differences be-
tween the LLMs and Human annotators. Based
on this evaluation, GPT-4.1-mini and Mistral-3.2-
24B are the best-performing LLMs overall and they
score higher compared to the Llama family LLMs.
For the summary task, GPT-4.1-mini and Mistral-
3.2-24B obtained the highest scores for the Cover-
age criteria, but they fall short on the Conciseness
criteria. This indicate the verbose nature of these
LLMs. We confirm this by plotting average sum-
mary and target message lengths for all the LLMs.
The plots are available in Appendix F. In the Target
Message task, GPT-4.1-mini achieves the highest
scores across all three criteria: Appropriateness,
Coverage, and Faithfulness.

These findings diverge from the automated eval-
uation results shown in Figure 6. While auto-
mated metrics ranked Llama-3.1-8B and Mistral-
3.2-24B as having similar top-tier performance,
human annotators rated Llama-3.1-8B lower than
both Mistral-3.2-24B and GPT-4.1-mini. This sug-
gests a limitation of automated metrics in capturing
nuanced aspects of text quality and demonstrates
the utility of human judgment for such assessments.

We finally assess the reliability of the human
evaluation by calculating inter-annotator agreement
using Fleiss’ Kappa (x). The results indicate that
the five annotators reached a substantial level of
agreement, which supports the reliability of our
findings. For the Summary criteria, annotators
achieved almost perfect agreement for Faithfulness
(k = 0.813), and substantial agreement for Read-
ability (k = 0.677) and Conciseness (x = 0.721).
Agreement for Coverage (v = 0.442) was mod-
erate, suggesting a higher degree of subjectivity
for this criterion. For the Target Message cri-

teria, all three aspects showed substantial agree-
ment: Faithfulness (k = 0.774), Appropriateness
(k = 0.678), and Coverage (x = 0.656). These
agreement scores demonstrate that annotators ap-
plied the evaluation criteria consistently and that
the criteria themselves were well defined.

6.2 Error Analysis

In order to understand the ratings a bit better, we
asked our human evaluators to provide us with the
reasoning for the scores for 5 low-scoring samples
per domain per LLM. We present our findings here.

Summary We observe that almost all the models
use some technical terms from the proof verbatim,
especially Mistral-3.2-24B and GPT-4.1-mini. This
leads to lower readability scores in general. For
llama-3.1-8b, we observed a consistent pattern of
incorrectly using the term “equivalent" when the
proof demonstrates a subclass relationship. This
recurring issue indicates a potential weakness in
understanding logical operators.

Target user message We observed that for the
GPT-4.1-mini uses left-branching sentence struc-
ture, which increases memory load and scores
lower on the appropriateness criteria. An example
target message showcasing this issue is — Because
saucy shepherd pie has carrots as ingredients, it
needs special allergen labels about carrots. Llama-
3.1-8B suffers again from its inability to under-
stand logical operators. Interestingly, Llama-3.3-
70B produces very short target messages (i.e., Cell
derivation from Mus musculus) and achieves lower
ratings for coverage criteria. This observation is
also supported by Figure 21 in the Appendix.

7 Conclusion

We introduce ProofTeller, a benchmark to
evaluate LLM reliability in explaining formal
proofs via key step identification, summarization,
and user messaging. Our experiments with nine
LLMs reveal reliability gaps. We find that LLMs
consistently favor low-depth steps near the conclu-
sion, whereas humans select steps from all over the
proof. This suggests LLMs lack a holistic under-
standing of the reasoning chain. Further, our hu-
man evaluation of summarization tasks highlights
qualitative deficiencies in faithfulness and concise-
ness not captured by automated metrics. These find-
ings demonstrate that even modern LLMs struggle
to faithfully interpret and communicate the essence
of a formal proof reliably.



Limitations

Experimental limitations While we took a sys-
tematic approach, our exploration of the vast
prompt engineering space was limited. We did our
initial testing with three distinct seed variations,
which may not fully capture the possible variability
in output. Furthermore, we restricted prompt varia-
tions for each task to five, potentially overlooking
other effective phrasings or structures that could
yield superior performance. Finally, we confined
the initial evaluation of the system prompt’s influ-
ence to three language models before finalizing
the one used for this work, meaning findings may
not be consistent across all possibly suited system
prompts.

Scope limitation Our work is limited to three
domains within DL. and DatalogMTL formalisms.
Moreover, to maintain the original notations,
the proof syntax employs logic-specific Unicode
symbols (e.g. C, H) and specialized terminol-
ogy (e.g. “eliminate” and “Intersection
Composition”) requiring LLM:s to first recog-
nize their semantic meaning before interpreting the
logical implications.

Evaluation Subjectivity Evaluation of explana-
tion quality can be inherently subjective, especially
with respect to aspects such as appropriateness and
faithfulness. Different annotators may interpret the
relevance and accuracy of an explanation in diverse
ways, leading to potential variability in the assigned
scores. To mitigate this, we provided clear guide-
lines and examples, but acknowledge that some
level of subjectivity is unavoidable in human evalu-
ations of natural language explanations.

Ethics Statement

All annotators involved in the evaluation process
are either co-authors of this paper or were fairly
compensated for their time, receiving above the
minimum wage of 14.5 EUR per hour. This en-
sures ethical standards in data annotation and helps
maintain the quality and reliability of the evaluation
results.
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A Preliminaries

A.1 DL Proofs

The proofs in our benchmark are based on the
two description logics (DLs) ££ and ALC (Baader
etal., 2017) as well as DatalogMTL (Brandt et al.,
2018), an extension of Datalog with metric tempo-
ral operators for querying temporal data.

The syntax of DLs is based on disjoint, countably
infinite sets N¢ and Ngr of concept names A, B,
...and role names r, s, ..., respectively. In EL,
concepts are built from concept names by applying
the constructors T (top), C' M D (conjunction), and
dr.C (existential restriction for a role name r). A
general concept inclusion (GCs) is of the form C' C
D, where C and D are EL concepts, and a finite set
of GCls is called a TBox or ontology. The DL ALC
extends EL by the concept constructors L (bottom),
C U D (disjunction), Vr.C (value restriction), and
=C' (negation). For the semantics, in particular
when a GCI 7 is entailed by a TBox T (written
T |= n), we refer the reader to (Baader et al., 2017).

In contrast to ££ and ALC, temporal reasoning
in DatalogMTL also takes facts about constants
into account. A (function-free first-order) atom has
the form P(7) with P a predicate of some arity n
and 7 an n-ary tuple consisting of constants and
variables. A literal (or metric atom) A takes one
of the following forms, where g is a non-empty
positive rational interval:

A=T|L|P(r) | ©,A|4,A|B,A]
M,A | AS,A | AU,A

A rule with body literals Ay, ..
head literal B is of the form:

., An,n > 1, and

B :— A1 N..NA,,

with B not containing the operators &, <, S or
U. If an atom, literal or rule contains no variable,
we call it ground. A fact F' is defined as an expres-
sion of the form AQp where A is a ground atom
and p a rational interval. Moreover, we call a fi-
nite set D of facts a dataset and a finite set II of
rules a program. In this context, entailments are of
the form I, D = F. However, for simplicity, we
now denote entailments in DLs and DatalogMTL
uniformly by 7 = 7.

Our goal is to explain a logical consequence
T |= n, where T is either a TBox or a program to-
gether with a dataset, and 7 is a GCI or a fact,
respectively. Following (Alrabbaa et al., 2020,
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2022b), proofs of T |= n are finite, acyclic, di-
rected hypergraphs, where vertices v are labeled
with GCIs or facts £(v) and hyperedges are of the
form (S, d), with S a tuple of vertices and d a
vertex such that {{(v) |v € S} = £(d); the leafs
of a proof must be labeled by elements of 7 and
the unique sink vertex by 7. In addition, an edge
labeling function (see labels without boxes in Fig-
ures 8,12,10) indicates which logical rule derived
a conclusion ¢(d) from the premises. The size of a
proof is the number of its vertices.

For this benchmark, ££ proofs were generated
using the reasoner ELK (Kazakov et al., 2014;
Kazakov and Klinov, 2014), while for ALC, we
employed the forgetting tool LETHE (Koopmann,
2020; Alrabbaa et al., 2020). For DatalogMTL, we
extended the Metric Temporal Reasoner (MeTeoR)
(Wang et al., 2022) to trace the applied reasoning
steps (Borgwardt et al., 2024). We also used EVEE
(EVincing Expressive Entailments) (Alrabbaa et al.,
2022a), a Java library that can extract size-minimal
proofs from the output of a reasoner.

B Proof Examples

Biology Example In Figures 7 and 8, one can
see an example of a proof that RMUG-S is an im-
mortal human cell line cell (IhCL for short). An
immortal cell line (ICL) is expected to be capa-
ble of an unlimited number of divisions, and is
thus able to support indefinite propagation in vitro.
RMUG-S is a human (lat. Homo sapiens) ovarian
adenocarcinoma cell line originated from a 62 year
old Japanese female.

Food & Recipes example In Figures 9 and 10
one can see an example of a vegan bread recipe.

Critical Situations in Drone example The proof
in Figure 12 show a temporal proof for the drone
probably having internal damage at time point 0 by
detecting an internal temperature above the thresh-
old temperature.

C Prompts

We provide all the prompts verbatim in Figures 13,
15, 14, 16.

D Inference details

For the open weights LLMs, we use the exact same
inference parameters mentioned in the LLM model
card on their respective HuggingFace model page.



finalConclusion: RMUG-S C IhCL,

inferences:

A

A

A

A

A

Figure 7: Biology Proof JISON (we abbreviated ’derives
from’ and ’part of” as dF and pOf correspondingly)

[ {

conclusion: RMUG-S C IhCL,

ruleName: Class Hierarchy,

premises: [ RMUG-S C

(3dF.3p0f.Homo sapiens

ICL),

(3dF.3p0f.Homo sapiens 1
ICL) C IhCL ]

conclusion: RMUG-S C
(3dF.3p0f.Homo sapiens
ICL),

ruleName: Intersection
Composition,

premises: [ RMUG-S C ICL,
RMUG-S C 3dF.3p0f.Homo

sapiens ]

conclusion: RMUG-S C ICL,
ruleName: Asserted Conclusion

conclusion: RMUG-S C
3dF.3p0f.Homo sapiens,
ruleName: Asserted Conclusion

conclusion: (3dF.3p0f.Homo
sapiens m ICL) C IhCL,

ruleName: Equivalent Classes
Decomposition,

premises: [ IhCL =
(3dF.3p0f.Homo sapiens M
ICL) 1

conclusion: IhCL =
(3dF.3p0f.Homo sapiens M
ICL),

ruleName: Asserted Conclusion }

]

13

E Additional Results on Summary &
Target User Message similarity
automated metrics

The results in Figure 6 and 17 show that providing
the context trail leads to a slight but consistent im-
provement across all models and metrics for both
the summary and target user message tasks. For in-
stance, the ROUGE-L score for Llama-3.1-8B
on the summary task improves from approximately
44.5 to 45.0 when the context trail is included. Sim-
ilarly, the BERTScore for GPT-40-mini on the
target message task increases from around 57.0 to
57.5. While minor, this trend suggests that access
to the full reasoning path, even when generating
a summary of it, provides valuable context that
helps the models produce outputs that are more
aligned with the human-written references. This
indicates that for generation tasks grounded in a
logical proof, providing the complete proof struc-
ture is beneficial.

F Length analysis for Summary and
Target User Message tasks

Figures 20 and 21 show this analysis.

G Annotation Guidelines



RMUG-S C ICL RMUG-S C 3dF.3pOf.Homo sapiens IhCL = (3dF.3pOf.Homo sapiens 1 ICL)

e s

Intersection Composition Equivalent Classes Decomposition

TSa N

'RMUG-S C (3dF.3pOf.Homo sapiens 1 ICL) | | (3dF.3pOf.Homo sapiens 1 ICL) C IhCL |

\/

Class Hierarchy

5

RMUG-S C IhCL

Figure 8: Biology Proof

finalConclusion: bread C vegan recipe,
inferences: [ {

A

A

A

A

A

A

A

conclusion: bread C vegan
recipe,

ruleName: eliminate 'flour',

premises: [ (Vingr.(water U
flour) M bread) C vegan
recipe,
bread C Vvingr. (water U

flour) 1]

conclusion: (Vvingr.(water U
flour) M bread) C vegan
recipe,

ruleName: eliminate 'vegan',

premises: [ water C vegan,
flour C vegan,
(vingr.vegan n bread) C

vegan recipe ]

conclusion: water C vegan,
ruleName: asserted

conclusion: flour C vegan,
ruleName: asserted

conclusion: (vingr.vegan 11
bread) C vegan recipe,

ruleName: eliminate 'food
recipe',

premises: [ bread C (food
recipe mn 3Jingr.flour N
Jingr.water),
vegan recipe = (Vingr.vegan

n food recipe) 1]

conclusion: bread C (food
recipe M Jingr.flour N
Jingr.water),

ruleName: asserted

conclusion: vegan recipe =
(vingr.vegan n food recipe),
ruleName: asserted

conclusion: bread C

vingr. (water u flour),
ruleName: asserted } ]

Figure 9: Recipe proof JISON
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Table 1: Rubrics and Workflow for Evaluating Candidate Explanations

gold standard reasoning in mathe-

matical form.

What you see How to interpret it Why it matters
Description  Logic | Ground-truth correct reasoning | Serves as the gold standard to
Proof (JSON) chain — assume JSON contains the | judge each candidate.

Candidate Summary
& Target message

Model’s attempt to compress the
proof for an end-user.

Ratings indicate clarity and
faithfulness to the proof.

Structure of the Description Logic Proof: The JSON proof structure links “premises” step by
step using “ruleName” in the “inferences” field. Each step uses asserted or previously inferred
“premises”, applies a “ruleName”, and produces a “conclusion”. This builds a logical sequence
from base facts to the “finalConclusion”.

Field Max Purpose Typical Content
Length
Summary ~ 4-5 sen- | Capture candidate’s full rea- | Key conclusion, main support-
tences soning and conclusion. ing facts
Target Mes- | <20 words | Single-line alert user will | Trigger condition, conse-
sage see. quence or instruction
Rating Rubrics (5-point scale):
1. Summary:
 Faithfulness: Alignment with the proof.
* Readability: Clarity, tone.
* Conciseness: No redundancy.
* Coverage: All key steps present.
2. Target Message:
* Faithfulness: Supported by proof.
* Appropriateness: Suited to end-user, no extra inference.
* Coverage: Critical details for action.
Score Faithfulness Readability Conciseness Coverage
5 (Excel- | Every statement | Flawless writing Only essential | Every key step and
lent) fully justified by info conclusion covered
proof
4 (Good) Minor paraphrase, | Very clear, minor | Small  redun- | Misses one trivial
accurate (>95%) phrasing issue dancy step or includes one
unneeded detail
3 (Fair) Several  weakly- | Understandable, Multiple extra | Omits >2  sec-
supported  state- | awkward wording | phrases ondary steps
ments
2 (Poor) Key facts misstated | Hard to follow Verbose or | Omits at least one
or unsupported info beyond | critical step
important points
1 (Unac- | Major hallucina- | Largely 1gncoher— Very lengthy or | Fails to cover main
ceptable) tions/contradic- ent irrelevant info conclusion/reason-
tions ing




qF

eliminate 'food recipe'

ﬂ#

eliminate 'vegan'

F

eliminate 'flour'

5

bread C vegan recipe

Figure 10: Simplified proof. Edges "asserted" removed, "ingr." means "has ingredient" and "vegan" — "vegan
ingredient”
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finalConclusion :
inferences :

warninglvl(d,4)@[0,0],

[ {

conclusion :
warninglvl(d,4)@[0,0],

ruleName : inclusion,

premises : [
warninglvl(d,4)@[-1,9] 1

{

conclusion :
warninglvl(d,4)@[-1,9]
ruleName : warninglvl(X,4)
risk(X),
premises : [ risk(d)@[-1,9] 1]
{
conclusion : risk(d)@[-1,91],
ruleName : risk(X) :—
riskofinternaldamage(X),
premises : [
riskofinternaldamage(d)@[-1,9]
|

I

’

I

oA
conclusion :
riskofinternaldamage(d)@[-1,91,
ruleName : reverse H,
premises : [
BH[0,10]riskofinternaldamage(d)@l
1
{
conclusion :
BH[0,10]riskofinternaldamage(d)@l
ruleName :
BH[0,10]riskofinternaldamage(Y) :-
internaltemperature(Y,S),drone(Y
premises : [
internaltemperature(d,48)@[-1,-1
drone(d)@[-300,+c0) ]

}’

oA
conclusion :
internaltemperature(d,48)@[-1,-1
ruleName : Asserted
oA
conclusion :
drone(d)@[-300,+0),
ruleName : reverse M,
premises : [
H[0,+c0)drone(d)@[-300,-300]

]
oA

conclusion :
H[0,+c0)drone(d)@[-300, -30017,
ruleName : HB[0,+cc)drone(X) :
drone(X),
premises : [
drone(d)@[-300,-300] ]
{

conclusion :
drone(d)@[-300,-3001],
ruleName : Asserted } ]

I

drone(d)@[-300,-300]

X

EH[O, +=)drone(X) :— drone(X)

-

(E510,++=)drone(d)@[-300.-300] |

reverse [

internaltemperature(d,48)@[-1,-1]

drone(d)@[-300,+=)

EH[0,10]riskofinternaldamage(Y) :— internaltemperature(Y,S),drone(Y),S>40

N

(EBI0. 10}riskofinternaldamage(d)@[-1,-1]

R
/ reverse (§

(riskoﬁ nternaldamage(d)@[-1 ,9]]

risk(X) :— riskofinternaldamage(X)

risk(d)@[-1,9]

warninglvl(X,4) :— risk(X)

warninglvi(d,4)@[-1,9]
inclusion
warninglvi(d,4)@]0,0]

Figure 12: Proof for the drone experiencing overheating.

Figure 11: Example proof for a critical scenario for
drones
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - 1 ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - 2 ###

An example summary for an example proof was written by a human expert as shown below.
Example Proof: {{example_proof}}

Example Summary: {{example_summary}}

Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert.
The summary should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - 3 ###

An example message for the targeted user was written by a human expert as shown below. The human expert utilized the
‘Example Proof* and the ‘Example Summary* to write this message.

Example Target Message: {{example_target_msg}}

Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The mes-
sage should be a maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final
conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 13: Prompt template for One-shot chained; same color for all tasks indicates multi-turn response chain,
adding the previous context for all the tasks.



System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - 1 ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - 2 ###
Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert. The summary
should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - 3 ###
Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The message should be a
maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 14: Prompt template for Zero-shot chained; same color for all tasks indicates multi-turn response chain,
adding the previous context for all the tasks.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

{{proof_method_description}}

### TASK - FIND THE MOST CONTRIBUTING STEPS ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - SUMMARIZE PROOF ###

An example summary for an example proof was written by a human expert as shown below.
Example Proof: {{example_proof}}

Example Summary: {{example_summary}}

Summarize the proof shown in Task 1 (i.e., Finding the most contributing steps) similar to a human expert.
The summary should contain the conclusion of the proof and how it was reached.

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - TARGET-USER MESSAGE ###

An example message for the targeted user was written by a human expert as shown below. The human expert utilized the
‘Example Proof* and the ‘Example Summary‘ to write this message.

Example Target Message: {{example_target_msg}}

Generate a message for the targeted user similar to a human expert for the proof shown in Task 1. The mes-
sage should be a maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final
conclusion.

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 15: Prompt template for One-shot atomic; different colors for all tasks indicate single-turn responses for
each independent task.
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System Prompt

You are an expert on Description Logic and DatalogMTL proofs. You are also good at explaining complex things in an easy
way.

Task 1: Identify Most Contributing Steps

### TASK - FIND THE MOST CONTRIBUTING STEPS ###
List the steps that contribute the most in deriving the final conclusion (at most 3 steps). Put the exact steps verbatim from
the proof below, including conclusion, rule name, and premises.

{{proof}}

Output strictly a JSON object matching this schema:
{{ StepsOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 2: Summarize the Proof

### TASK - SUMMARIZE PROOF ###
Summarize the proof below similar to a human expert. The summary should contain the conclusion of the proof and how it

was reached.

{{proof}}

Output strictly a JSON object matching this schema:
{{ SummaryOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Task 3: Generate Targeted Message

### TASK - TARGET-USER MESSAGE ###
Generate a message for the targeted user similar to a human expert for the proof given below. The message should be a
maximum of 15-20 words long and it should explain to {{user}} what exact condition led to the final conclusion.

{{proof}}

Output strictly a JSON object matching this schema:
{{ TargetMsgOutput.model_json_schema() | tojson }}

LLM response
{{JSON_response}}

Figure 16: Prompt template for Zero-shot atomic; different colors for all tasks indicate single-turn responses for
each independent task.
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summary - BERTScore

summary - charF++

summary - ROUGE-L

target_msg - BERTScore
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summary - BLEU summary - ROUGE-L summary - charF++ summary - BERTScore

target_msg - BLEU target_msg - ROUGE-L target_msg - charF++ target_msg - BERTScore

Figure 19: Automated metrics of Zero-shot atomic strategy
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Average Word Length for summary (mean)
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Figure 20: Average length of summary for One-shot
chained strategy

Average Word Length for target_msg (mean)
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Figure 21: Average length of target user message for
One-shot chained strategy

24



	Introduction
	Related Work
	Benchmark Creation
	Generating DL proofs
	Target User Group and Scenarios
	Task Annotation

	Experiments
	Prompting strategy
	LLM Coverage
	Implementation Details
	Metrics

	Results
	Human Evaluation
	Results
	Error Analysis

	Conclusion
	Preliminaries
	DL Proofs

	Proof Examples
	Prompts
	Inference details
	Additional Results on Summary & Target User Message similarity automated metrics
	Length analysis for Summary and Target User Message tasks
	Annotation Guidelines

