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ABSTRACT

How humans and machines make sense of current inputs for relation reasoning
and question-answering while putting the perceived information into context of
our past memories, has been a challenging conundrum in cognitive science and
artificial intelligence. Inspired by human brain’s memory system and cognitive
architectures, we propose a PMI framework that consists of perception, mem-
ory and inference components. Notably, the memory module comprises working
and long-term memory, with the latter endowed with a higher-order structure to
retain extensive and complex relational knowledge and experience. Through a
differentiable competitive write access, current perceptions update working mem-
ory, which is later merged with long-term memory via outer product associations,
reducing information conflicts and averting memory overflow. In the inference
module, relevant information is retrieved from two separate memory origins and
associatively integrated to attain a more comprehensive and precise interpretation
of current perceptions. We exploratively apply our PMI to improve prevailing
Transformers and CNN models on question-answering tasks like bAbI-20k and
Sort-of-CLEVR datasets, as well as detecting equilateral triangles, language mod-
eling and image classification tasks, and in each case, our PMI enhancements
consistently outshine their original counterparts significantly. Visualization anal-
yses reveal that relational memory consolidation, along with the interaction and
integration of information from diverse memory sources, substantially contributes
to the model effectiveness on inference tasks.

1 INTRODUCTION

Cognitive science, neuroscience and artificial intelligence (AI) collectively advance our grasp of in-
telligence, defined as the general mental abilities of perception, memory and reasoning, each with a
unique role in human cognition. To construct more human-like intelligent systems, often referred to
as the standard model of the mind (Laird et al., 2017), it is imperative to delve into the interactions
among perception, memory and reasoning in a unified system. Recently, scholars have uncovered a
significant flaw in previous deep learning architectures: the absence of dedicated memory module
that is critical for long-term information retention and relational reasoning. This drawback becomes
evident when considering the constraints of many intelligent systems, which either exclusively con-
centrate on perception and reasoning or intricately interweave computation with implicit memory.
Therefore, many memory-based studies have emerged, mainly focusing on designing item-based
memory models with recurrent neural networks (RNNs) (Hopfield, 1982; Hochreiter & Schmid-
huber, 1997; Dai et al., 2019; Ramsauer et al., 2020; Schlag et al., 2021) and memory-augmented
neural networks (MANNs) (Graves et al., 2014; 2016a; Le et al., 2018; Liang et al., 2023).

Nonetheless, existing approaches expose four limitations: (i) Implicit memory (hidden state) may
gradually lose previous information as the model constantly updates its weights to accommodate
new inputs, which prevents reusing the precomputed relations in sequential tasks (Vaswani et al.,
2017; Santoro et al., 2017; Devlin et al., 2018). (ii) The memory system is configured in one of two
forms: either as a singular memory unit without hierarchical construction or as multiple separate
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memory components with identical data structures, both of which struggle to align with human
memory traits and achieve robust generalization (Goyal et al., 2022; Dai et al., 2019; Jaegle et al.,
2021; Wu et al., 2022; Kang et al., 2023; Liang et al., 2023). (iii) The memory-memory relation
is either crude, expressed as weighted summation via neural networks or dot product attention,
or it undergoes intricate memory transformation algorithms. (Vaswani et al., 2017; Santoro et al.,
2018). (iv) Memory exploitation is confined to rudimentary retrieval, whether it’s content-based
addressing (Wu et al., 2020; Goyal et al., 2022; Kang et al., 2023) or explicit address (Graves et al.,
2016b; Liang et al., 2023). Arguably, modern MANNs have yet to develop general architectural
frameworks for learning both diverse memory components and how they should interact internally
and externally.

Multiple Memory Systems Theory (MMS) asserts that working memory (WM) and long-term mem-
ory (LTM) stand as pivotal subassemblies of human cognitive processes (Atkinson & Shiffrin, 1968;
Baddeley & Hitch, 1974; Eichenbaum & Cohen, 2004) , where the former serves to temporarily
buffer and process data for current tasks, while the latter is responsible for the retention of relational
knowledge and experiences. Additionally, the Global Workspace Theory (GWT) (Baars, 1993; De-
haene et al., 2021) suggests a communication and coordination scheme, in which disparate cognitive
units write information into a shared workspace that is broadcast to all modules, along with the no-
tion that write access is restricted.

Inspired by the MMS, GWT and cognitive theories, we assume that optimizing the structure of
memory module and its internal and external correspondence mechanisms holds great promise in
surmounting the extant restrictions. Accordingly, we hypothesize a cognitive framework called PMI
that consists of perception, memory and inference modules, wherein memory is posited as a dual-
layer memory block featuring distinct inner and outer communion principles1. More concretely,
structurally, WM exists separately from LTM (especially the relational/declarative memory in LTM),
with the latter possessing a higher-order structure to preserve intricate patterns and relations (Ryan
et al., 2000; Blumenfeld & Ranganath, 2006). Regarding interactions, there are two exterior proce-
dures: perception-based competitive writing and inference-oriented information retrieval, alongside
one inner channel—designed to establish heterogeneous associations among the two memory units
to facilitate efficient information filtering, storage and relational knowledge consolidation. We ap-
ply modern different neural network models like Transformers attention-based (Vaswani et al., 2017;
Brown et al., 2020) and convolutional networks (He et al., 2016), which all equipped with our dual-
memory module, to multifarious tasks that may require both WM and LTM: text and visual question-
answering, detecting equilateral triangles, language modeling and image classification. Across all
these tasks, models integrated with our memory block consistently outperform their original coun-
terparts.

2 METHOD

2.1 OVERVIEW

An overview of our PMI framework is illustrated in Fig. 1a, which contains three pivotal compo-
nents: perception, memory and inference (both potentially learned). Given an input X (e.g., text, an
image, or an audio signal), it is processed through a series of computational stages indexed by t to
derive the cognitive understanding U of the current perception, as outlined below:

1. P component: (Perception) — Convert the incoming input X to an internal feature repre-
sentation H = P(X).

2. M component: (Memory) — Update old memories given the input representation Ht−1:
M t = M(Ht−1,M t−1).

3. I component: (Inference) — Reason (interpret) the current content given the updated mem-
ories: U = I(Ht−1,M t).

In this framework, trainable parameters are learned through backpropagation, while memory blocks
are updated solely through the feedforward, which constitutes the process of memory precipitation
through multiple iterations. A detailed methodological description follows.

1Code is available at https://github.com/zengxyyu/PMI-TR.
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(a) PMI framework (b) Memories update and inference

Figure 1: Framework overview and the process of grasping the current input at calculation step
t. (a) The memory module consists of WM Mw and LTM Ml, each characterized by distinct data
structures. (b) WM is updated by current perception via a differentiable and constrained write access,
which is then integrated into LTM through outer product association. The inference component
retrieves pertinent data from both WM and LTM using content-based addressing MHC and MHSC,
respectively. Subsequently, through integration steps, it consolidates info from these sources to
generate fresh insight into the input, which is used for next rounds of inference or to directly support
the decision-making process.

2.2 PERCEPTION

The perceptual operation maps the original input data to internal entity representations. Focusing on
the prevailing models and taking Transformers as an example, the text input undergoes embedding
and positional encoding to yield initial feature representation h0 ∈ RT×D, where T is the sequence
length of D dimension. In Vision Transformer (ViT) (Dosovitskiy et al., 2020), a 2D image x

∈ RH×W×C is split into N patches xp ∈ RN×(P 2·C), each of which is linearly embedded. Then
positional embeddings are added to obtain the final embedding vector h0 = [ xclass ; x1

p E; x2
p E; · · ·

; xN
p E]+ Epos , E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D, which contains fundamental feature informa-

tion of the image, such as color and texture, where (H,W ) is the resolution of the original image, C
is the number of channels and (P, P ) is the resolution of each image patch. This process resembles
the human perceptual system that receives external information and converts it into understandable
internal representations, laying a foundation for subsequent memory and reasoning.

2.3 GLOBAL SHARED DUAL-LEVEL MEMORY

This section provides a detailed exposition of the proposed dual-layer memory module and the in-
ternal and external communication mechanisms utilized for its update, as illustrated in Fig. 1b. We
posit that the memory module should be globally shared, including working memory Mw, which
temporarily stores and processes information required for the current task, and long-term memory
Ml for the encoding of higher-order relational knowledge and experiences primarily in its declar-
ative/relational memory. We opt for Mw ∈ RN×Dm as a form of WM indexed based on mi slot.
Here, N is the number of slots, each with a dimension of Dm. While the LTM is represented as a
3D structure Ml ∈ RC×N×Dm , with C denoting memory fragments, which is biologically plausi-
ble (Marr & Thach, 1991).

2.3.1 EXTERNAL CHANNEL: Mw-Write

External communication serves to update the contents of WM via two pivotal steps: competitive
writing and forgetting, which informed by a fundamental aspect of the human memory system — our
inclination not to retain a permanent record of every perception but rather to discerningly preserve
essential elements within memory. Collectively, these processes guarantee the storage of the most
critical information pertinent to the ongoing task, an indispensable facet in tasks involving reasoning.

Write with competition This process aims to selectively inscribe perceived inputs into Mw with
finite capacity, also inspired by Miller’s Law, which states that the number of information units that
human WM can handle simultaneously is limited, often around 7± 2. We use a multi-headed sparse
cross-attention mechanism (MHSC) for this execution, as expressed in Eq. 1, 2. Cognate to the
MH mechanism used in Transformers, but MHSC exhibits two distinctive aspects: (i) it necessitates
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separate origins for Q and K and (ii) it introduces a sparsity-inducing operation on the attention
weight matrix. Specifically, the result of the t − 1 step ht−1 ∈ RT×D is projected into keys and
values, along with M t−1

w ∈ RN×Dm that is projected into queries. The current inputs compete to
write through our MHSC, in conjunction with some other operations to yield the intermediate state
M̃ t

w . The whole formulas are as follows:

sk = softmax

(
M t−1

w WQ(ht−1WK)T√
dK

)
(1)

M̃ t
w = s∗kh

t−1WV (2)

M̃ t
w = LN1(M̃

t
w +M t−1

w ) (3)

M̃ t
w,i = ReLU(MLP i(M̃

t
w,i−1)), i ∈ {1, . . . , k} (4)

M̃ t
w = LN2(M

t−1
w + M̃ t

w,k) (5)

It’s noteworthy that the input needs to be linearly projected to the same dimension Dm as M t−1
w

(following the traditional practice of D = Dm). WQ, WK and WV are weight matrices. sk ∈
RN×(T+N) is the attention weight scores of M t−1

w and ht−1. Unlike the standard soft competition,
we use a top-k softmax (Ke et al., 2018) to select a fixed number of entities for updating the Mw.
s∗k denotes the post-softmax value, please consult Algorithm 1 for details. LN1 and LN2 signify
different LayerNorms, employed to uphold memory stability over prolonged time steps. ReLU is
the ReLU function, MLP i is the ith multilayer perceptron and M̃ t

w,k is the intermediate output
through k multilayer perceptrons.

Forgetting Memory forgetting entails the elimination or reduction of previously stored data to make
space for new info, optimizing memory performance. It is reasonable to adopt the gating mechanism
since it emulates the biological memory process and effectively alleviates information conflicts. This
is implemented in Eq. 6, where It and Ft indicate the input and forget gates respectively, as proposed
in RMC (Santoro et al., 2018). Further details can be found in Appendix D.1.

M t
w = Ft(M

t−1
w , ht−1)⊙M t−1

w + It(M
t−1
w , ht−1)⊙ M̃ t

w (6)

2.3.2 INTERNAL CHANNEL: Ml-Write

The internal channel is utilized to update LTM that boasts a larger capacity to accommodate more
relational info. As illustrated in Eq. 7, we conduct an outer product calculation between the updated
M t

w and the previous-step LTM M t−1
l ∈ RC×N×Dm to merge novel vital info into the current LTM

M t
l . In contrast to scalar product computation that only yields a numerical value, the outer product

operation (Smolensky, 1990; Halford et al., 1998) is used to capture relations and interactions be-
tween vectors, which not only enhances higher-order representational capacity but also contributes
to information precipitation and memory reinforcement.

M t
l = LN3

(
(M t

w ⊗M t−1
l ) +M t−1

l

)
(7)

Here, LN3 denotes LayerNorm, and ⊗ signifies the outer product operation.

2.4 INFERENCE

Inference component, guided by the updated memories, provides insights of current perceptions.
Our interpretation of the inference is that it stems from an assumption on the form of the joint dis-
tribution between perceptual inputs and current memories. To mimic human-like ability to focus
on crucial details of the ongoing task while leveraging extensive knowledge and experience to navi-
gate complex situations, we use content-based addressing MHC that is equivalent to MHSC without
sparsity and MHSC to retrieve relevant memories from M t

w and M t
l based on current input ht−1,

getting ht
w and ht

l respectively, as shown in Eq. 8-10.

U t
w = MHC

(
ht−1W̃Q,M t

wW̃
K ,M t

wW̃
V
)

(8)

M̂ t
l =

1

C

C∑
i=1

M t
l [i, :, :] where M̂ t

l ∈ RN×Dm (9)

U t
l = MHSC

(
ht−1ŴQ, M̂ t

l Ŵ
K , M̂ t

l Ŵ
V
)

(10)
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Subsequently, the understanding U t
l from LTM serves to further revise and supplement the

understanding U t
w from WM via the MHC mechanism, where U t

l creates queries that match with
keys and values from U t

w to generate a richer representation U t
wl. Then a linear combination of U t

w
and U t

wl is conducted with a hyper-parameter α to yield the final cognition U t, as shown in Eq. 12.
This process of multiple correlation and fusion of various information sources contributes to extract-
ing richer and more valuable insights that support higher-level decision-making and reasoning.

U t
wl = MHC

(
U t
l W̄

Q, U t
wW̄

K , U t
wW̄

V
)

(11)

U t = αU t
w + (1− α)U t

wl (12)

3 RELATED WORK

Cognitive Science In cognitive neuroscience, memory studies endeavor to unravel the intricacies of
information storage, organization and retrieval in brains, and their profound impact on thinking, cog-
nition and behavior, building on the pioneering work of Ebbinghaus (1885) and Bartlett & Bartlett
(1932). Afterwards, Atkinson & Shiffrin (1968) proposed a multi-store model including sensory,
short-term and LTM, which contributes to our insights of different memory types and stages. The
successor Baddeley & Hitch (1974) further refined and delineated this model by substituting short-
term memory with WM—a transient storage that can interact with LTM. Sigma (Rosenbloom et al.,
2016) and Soar (Laird, 2019) are canonical cognitive frameworks of recent advancements, both of
which employ a similar memory system comprising WM and LTM that play crucial roles in complex
reasoning and problem-solving tasks. Moreover, the Global Workspace Theory (Baars, 1993) put
forward a coordination and collaboration mechanism with restricted write access, which sheds light
on the interaction of diverse cognitive components.

Memory networks Semi-parametric MANNs, as a form of using implicit knowledge to perform
complex reasoning tasks, are a persistent theme in neural network research. Today MANNs typ-
ically rely on explicit memory and attention mechanisms, with pioneering models like Memory
Networks (Weston et al., 2014) and Neural Turing Machines (NTMs) (Graves et al., 2014), both
of which are equipped with a storage for vector representations accessible via attention. Memory
Networks use addressable memory to execute tasks through a series of read operations. In con-
trast, NTMs also utilize addressable content storage, but unlike Memory Networks, which pre-load
memories using all the inputs, NTMs write and read the memory one input at a time. Following
this are Differentiable Neural Computers (DNC) (Graves et al., 2016a) and Sparse DNC (Rae et al.,
2016), which are realized as recurrent neural networks (RNNs) capable of read and write operations
on memory over time and are trained via BPTT (Werbos, 1990). A parallel research path involves
enhancing RNNs like LSTM by incorporating data structures such as lists, stacks or queues (Joulin
& Mikolov, 2015; Grefenstette et al., 2015).

Transformers with memory extensions Memory is a topic of active exploration in diverse Trans-
former studies. Transformer-XL (Dai et al., 2019) and its successors, Compressive Transformer (Rae
et al., 2019), RMT (Bulatov et al., 2022) and Scaling Transformer (Bulatov et al., 2023) re-introduce
the notion of memory and recurrence by caching self-attention hidden states from each layer into
a fixed-size queue and reusing them in subsequent attention computations, with the difference that
Compressive Transformer utilizes a compression network to further compress its memories into
fewer vectors. In addition, various forms of global representations are introduced as a model mem-
ory that learns to gather information from input sequence tokens. Notable examples of these ap-
proaches include Set Transformers (Lee et al., 2019), ETC (Ainslie et al., 2020), Longformer (Belt-
agy et al., 2020) and TR+HSW (Goyal et al., 2022), all of which redesign the self-attention mech-
anism to reduce computational complexity. Memory modules, with their read-write global mem-
ory operations, have recently attracted attention for their potential to remember prior information,
driving a movement towards more structured models. For instance, Memformer (Wu et al., 2020)
proposes a dedicated external dynamic memory module after the primitive self-attention layer and
interacts with it through memory reader and writer components to store previous hidden states in
concise representations for efficient sequence modeling. More recently, DT-Mem (Kang et al., 2023)
introduces a WM that contains N memory slots between the Transformer module and the MLP to
store and retrieve information through an attention-based approach, where the Transformer module
is similar to the GPT-2 (Radford et al., 2019) module without the feedforward layer. Most pertinent
to our work, Goyal et al. (2022), taking cues from the GWT theory, replace Transformers’ pairwise
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interactions with a shared workspace featuring constrained write access—a concept equivalent to
our WM that can read and write. While these endeavors are closely related to explicit memories,
their memory structures are monolithic, which leads to boundaries in representing certain higher-
order information or relations. Hence, one takeaway from our work is that it may be prospective
to revisit previous memory enhancement methods in light of insights from cognitive science into
memory structures.

4 EXPERIMENTS

To assess the efficacy of the PMI module in discovering and learning inferring entities and their
relations, we conduct a preliminary exploration by incorporating it as a replacement for the pairwise
self-attention layers in Transformers and ViT (Dosovitskiy et al., 2020), where memory components
are shared globally. This modified architecture, called PMI-TR, are then applied to a diverse range
of tasks, including visual QA, text-based QA, detecting equilateral triangles and language model-
ing. Readers can refer to Appendices E and F for the model hyperparameter settings and detailed
descriptions of each task, respectively.

4.1 RELATIONAL REASONING : SORT-OF-CLEVR

Sort-of-CLEVR (Santoro et al., 2017) is a dataset similar to CLEVR, designed specifically for re-
search on relational reasoning. Each 2D image in Sort-of-CLEVR is of size 75 × 75 and comes
with 6 randomly placed geometric shapes of 6 possible colors and 2 possible shapes. There are
10 non-relational and 20 relational questions that are equally divided into binary and ternary types
per image, along with corresponding answers (details in Appendix F.4). Given the bounded answer
space, this task is treated as a classification task. Each image is partitioned into a sequence of uni-
form patches and then encoded as in ViT. Subsequently, we concatenate the image embedding with
its corresponding question embedding as input into our PMI-TR, in line with Goyal et al. (2022).

For this task we evaluated our PMI-TR with the following five baselines: Standard Transformers
with shared parameters across layers [TR] (Vaswani et al., 2017), Set transformer [ISAB]: Trans-
formers where self-attention is replaced by ISAB module (Lee et al., 2019), Transformers with
Shared Workspace with top-k competition [TR+HSW] (Goyal et al., 2022) and High Capacity Trans-
formers [TR+HC]: Standard Transformers with different parameters across layers.

(a) Unary Accuracy (b) Binary Accuracy (c) Ternary Accuracy

Figure 2: Test accuracy vs training iterations for the Sort-of-CLEVR task.

The test accuracy curves over 200 training epochs are illustrated in Fig. 2. We observe that Trans-
formers equipped with our global shared memory module converges faster compared to all other
baselines, demonstrating superior performance on both relational and non-relational tasks. In con-
trast, the TR+HSW model excels in addressing non-relational questions but struggles with rela-
tional problems. We conjecture this might be because non-relational problems frequently demand
the model to tackle only small amounts of information about individual objects. Interestingly, the
single-level memory slots in the global workspace (similar to our WM) possess the capability to
store and process scant present information, allowing them to handle these issues with ease. How-
ever, relational questions regularly necessitate multi-step reasoning to obtain an answer, such as
extracting object attributes followed by relational analysis. The introduction of LTM enables the
model to deposit crucial information during the learning process. Consequently, it can retrieve per-
tinent knowledge from this memory module in upcoming reasoning steps, going beyond its reliance
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solely on the current input. This contributes to a more comprehensive understanding and handling
of relational questions.

4.2 TEXT-BASED QA : BABI

Table 1: Test error rates: mean ± std. (in %) on
the 20 bAbI tasks for models trained using 10k
examples and best error over 10 runs. † is reported
from Dehghani et al. (2018)

Model Error

Mean Best

LSTM (Hochreiter & Schmidhuber, 1997) 27.3±0.8 25.2
TR† (Vaswani et al., 2017) 22.1 N/A
DNC (Graves et al., 2016b) 12.8±4.7 3.8

H-Mem (Limbacher & Legenstein, 2020) 10.8 N/A
NUTM (Le et al., 2020a) 5.6±1.9 3.3

MemNet (Dou & Principe, 2023) 5.6 N/A

TR+HSW (Goyal et al., 2022) 3.6±0.46 3.25
PMI-TR (ours) 2.55±0.11 2.32

BAbI is a pure text-based QA dataset (Weston
et al., 2015) that is widely used to assess the
ability of MANNs, attention mechanisms and
other types of models to remember and rea-
son on textual information. This dataset con-
tains 20 challenging tasks, each corresponding
to a particular type of reasoning, such as logi-
cal deduction, counting, pathfinding and induc-
tion, all of which possibly require both WM and
LTM. Each question is associated with a set of
supporting facts. For example, the facts “John
journeyed to the office” and “John left the milk”
support the question “Where is the milk?” (an-
swer: “office”) (more in Appendix F.2). Fol-
lowing Le et al. (2020b), each story is prepro-
cessed into a sentence-level sequence, which
is fed into our PMI-TR model as the input se-
quence. A model succeeds on a task if its performance surpasses 95%. We compare our model with
recent memory networks and report the results in Table 1 (more in Appendix G.2).

4.3 DETECTING EQUILATERAL TRIANGLES

Figure 3: Detecting Equilateral Trian-
gles. This figure compares the performance
of Transformers with our PMI [PMI-TR]
against other Transformer baselines.

In this binary classification task, our goal is to de-
termine whether a 64 × 64 sized image contains
an equilateral triangle composed of three randomly
placed point clusters (Ahmad & Omohundro, 2009).
For equilateral triangles, the midpoints of these clus-
ters are equidistant from each other. To feed an im-
age into our PMI-TR, we adopt the same methodol-
ogy as employed in ViT (Dosovitskiy et al., 2020).
Specifically, each image is divided into equally sized
4 × 4 patches, which are then utilized as distinct
input positions for the PMI-TR. In order to make
precise judgments, this task requires the model to
adeptly comprehend and memorize the spatial rela-
tions between disparate point clusters, embodying
the relative positions and distances among them. By
incorporating our PMI module, with shared WM and
LTM across all layers, the model can preserve deci-
sive info concerning each point cluster for subsequent inference procedures. Moreover, the con-
strained capacity of WM compels the model to selectively inscribe crucial information into the
memory module, which coincides favorably with the inherent sparsity intrinsic to the task.

The results in Fig. 3 reveal that PMI-TR outperforms the standard TR model in terms of both
convergence speed and accuracy, converging faster (curves available in Appendix G.1) and achieving
an impressive accuracy of 97.9%, an 8.1% improvement. Additionally, our approach surpasses other
baselines, further confirming the efficacy of the PMI module. Here, STR denotes Transformers with
sparse factorizations of the attention matrix (Child et al., 2019), [PMI-TR+S] is a variant of the
PMI-TR without top-k sparsity, and other baselines are detailed in experiment 4.1.

4.4 LANGUAGE MODELING

To further validate the effectiveness of the proposed approach in long-sequence language model-
ing, we apply PMI-TR—a decoder-only transformer embedded with our PMI module, to a variety
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of datasets on both character-level and word-level language modeling to have a comparison with
state-of-the-art models, including Enwik8 (Matt, 2011), WikiText-103 (Merity et al., 2016) and PG-
19 (Rae et al., 2019).

Table 2: Comparison of valid and test perplexity
on WikiText-103 against other models.

Models Layers Params Valid PPL Test PPL

LSTM (Grave et al., 2016) - - - 48.7
RMC (Santoro et al., 2018) - - 30.8 31.6

Std. Transformer-XL (Dai et al., 2019) - 151M - 24
RMT (Bulatov et al., 2022) 16 - - 24.85

Compressive Transf. (Rae et al., 2019) 18 - 16 17.1
Transformer-XL Large (Dai et al., 2019) 18 257M - 18.3

TIMS+HSW (Goyal et al., 2022) 8 112M 35.9 36.7
PMI-TR (ours) 8 116M 24.9 23.8
PMI-TR (ours) 16 233M 15.3 16.5

The experiment on Enwik8 employs a 12-layer
PMI-TR (8 heads, 512 hidden size, 2048 in-
termediate FF), WikiText-103 uses a 16-layer
PMI-TR (10 heads, 410 hidden size, 2100 inter-
mediate FF), while PG19 uses a 12-layer PMI-
TR (8 heads, 1024 embedding size, 4096 in-
termediate FF). The complete hyperparameter
settings are available in Appendix E. The test
bits-per-character (BPC) on the Enwiki8 and
the perplexity (PPL) on WikiText-103 and PG-
19 are reported in the Table 3, Table 2 and Ta-
ble 4, respectively. Notably, we improve the re-
sults of bpc/perplexity to 0.96 on Enwiki8, 16.5
on WikiText-103 and 31.04 on PG19, which demonstrates the superiority of the PMI architecture.
Additional qualitative analysis are available in the Appendix C.

Table 3: The test bits-per-character on Enwik8.

Models Layers Params Test BPC

Transformer-XL (Dai et al., 2019) 12 41M 1.06
Transformer-XL (Dai et al., 2019) 24 277M 0.99

Compressive Transf. (Rae et al., 2019) 24 - 0.97
Sparse Transf. (Child et al., 2019) 30 95M 0.99

Adaptive Transf. (Sukhbaatar et al., 2019) 12 39M 1.02
RMT (Bulatov et al., 2022) 12 - 1.222

TIMS+HSW (Goyal et al., 2022) 12 43M 1.36
PMI-TR (ours) 12 45M 0.96

Table 4: The valid and test perplexity on PG-19.

Models Layers PG19

Valid PPL Test PPL

Transformer-XL (Dai et al., 2019) 36 45.5 36.3
Compressive Transf. (Rae et al., 2019) 36 43.4 33.6

∞-former (Martins et al., 2021) 12 - 32.48
Routing Transf. (Roy et al., 2021) 12 - 33.2

TR+HSW (Goyal et al., 2022) 12 39.46 32.46
PMI-TR (ours) 12 37.12 31.04

4.5 MORE EXPLORATIONS OF MEMORY MODULE

4.5.1 MEMORY ATTRIBUTES AND COMMUNICATION MODES

This section delves into qualitative analyses of memory properties and communication modes on
bAbI and Sort-of-CLEVR tasks. Studies on memory properties seek to investigate how factors
like capacity and persistence (global sharing) affect model performance. Experiments on commu-
nication modes aim to evaluate the efficacy of competitive writing, as well as the correction and
supplementation of LTM-derived data to relevant info from WM. To tackle these questions, we set
up three models of distinct sizes PMI-TRs (l = 4, h = 4), PMI-TRm (l = 8, h = 8) and PMI-
TRl (l = 12, h = 16), and run them on various combinations of N , M and k, where l and h are
the number of layers and heads in PMI-TR, respectively, considering their critical roles in model
performance.

The results are reported in Table 5, where PMI-TRmw/o1 denotes PMI-TR without memory sharing
among its layers, PMI-TRmw/o2 indicates that info retrieved from LTM is directly aggregated with
data from WM via α without correction step, and PMI-TRmw/o3 represents PMI-TR without WM
involvement during inference. soft is a standard soft competition mode, not a top-k strategy. We
can derive following key findings. For memory properties, firstly, greater memory capacity doesn’t
necessarily equate to better performance. The optimal results are achieved at N = 8 and M = 5,
aligning with discoveries in cognitive neuroscience. Secondly, memory persistence markedly im-
proves the performance and speed of convergence in relational inference tasks, especially in binary
and ternary relations, respectively, by 7.32%, 6.88% over non-globally shared cases (more in Ap-
pendix B.1). Notably, independent memory modules result in an eightfold increase in trainable
parameters. Regarding the communication mode, constrained writing exhibits heightened sensi-
tivity in binary and ternary inference tasks, albeit with contrasting effects. We speculate that this
divergence may be attributed to the larger volume of info storage required for ternary problems,
thus necessitating a slightly larger k value. Moreover, the impact of lacking WM is notably less
than lacking LTM. Without the guidance of LTM, as an erudite scholar, there is a minor uptick in
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error rate for bAbI task under the same setup, and the three types of Sort-of-CLEVR task exhibit
respective decreases of 0.31% (unary), 7.34% (binary) and 4.54% (ternary) in accuracy, underscor-
ing the constructive effect of previously accumulated relations and knowledge via outer product on
relational reasoning.

Table 5: Results of ablation studies on memory properties and communication modes.

Model N M Top-k
bAbI Sort-of-CLEVR

Params Err% Params Unary% Binary% Ternary%

PMI-TRs

6 3 5 2.00M 2.81 2.03M 99.14 77.12 61.29
8 5 5 2.27M 2.72 2.29M 99.45 86.06 62.85
8 5 7 2.27M 2.73 2.29M 99.50 82.84 64.35

10 7 9 2.53M 2.78 2.55M 99.19 80.24 59.48

PMI-TRm

6 3 5 2.07M 2.61 2.09M 99.40 80.13 65.93
8 5 5 2.33M 2.55 2.36M 99.34 87.61 62.45
8 5 7 2.27M 2.57 2.36M 99.19 81.93 60.89

10 7 9 2.59M 2.62 2.62M 99.40 80.18 65.83

PMI-TRl

6 3 5 2.20M 2.73 2.22M 99.40 81.92 64.21
8 5 5 2.46M 2.58 2.49M 99.14 84.73 65.52
8 5 7 2.46M 2.59 2.49M 99.29 80.68 66.94

10 7 9 2.73M 2.71 2.75M 99.09 81.47 65.01

PMI-TRmw/o1 8 5 5 16.48M 2.84 16.5M 99.14 80.29 60.06

PMI-TRmw/o2 8 5 5 2.33M 2.91 2.36M 99.19 79.96 62.40

PMI-TRmw/o3 8 5 5 2.33M 2.64 2.36M 99.26 84.72 61.86

PMI-TRm 8 5 soft 2.33M 2.75 2.36M 99.15 79.64 61.87

4.5.2 VISUALIZATIONS OF ATTENTION PATTERNS

To explore whether knowledge accumulates in LTM, we use visualizations of attention patterns
between current perceptions and LTM on the bAbI task, shown in Fig. 4. Here, current inputs act as
queries, and the LTM matrix serves as keys and values for cross-attention computation. As the depth
increases, a clear trend emerges in the heatmaps: more colored regions appear that gradually stabilize
and resemble, implying a growing correlation between inputs and LTM that evolvingly converges
(more explanations in Appendix B.2). This may indicate that richer knowledge is accumulated in
LTM, leading to a more consistent grasp of different elements within the input data across these
layers.

5 CONCLUSION

Inspired by multiple memory systems and global workspace theory in cognitive neuroscience, we
propose the PMI module containing perception, dual-layer memory and inference components, to
generate a more comprehensive and accurate understanding of current inputs while depositing vital
contents into memory to cope with more complex situations. We have explored PMI’s dual utility:
as an alternative to self-attention layers in Transformers and as a complement to convolutional net-
works. Extensive experiments on images and texts provide compelling evidence for the effectiveness
and adaptability of PMI, meaning it could be a core component in diverse architectures. We look
forward to a broader application of our method, including its integration into various frameworks
and its extension to a wide range of tasks across varying modalities.
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(a) Attention patterns between inputs and WM (b) Attention patterns between inputs and LTM

Figure 4: Attention patterns between perceptions and memories across different layers of the PMI-
TR.
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Appendix

A PSEUDO CODES

Algorithm 1: PMI-TR Algorithm
Notation: Given an original input sequence of length T with embedding dimension of D for

the proposed model. Let hl denotes the output of the lth layer. The working memory is
represented as a matrix Mw ∈ RN×Dm with distinct compartmentalized memories for each
row, where mw,i is the state of slot i (the total number of slots is N ). The long-term memory
is represented as 3D matrix Ml ∈ RC×N×Dm , where C is the number of memory segments.

Initialization: Convert the raw input X ∈ RT×vocab size to h0 = px ⊕ ex ⊕ clstoken, where
h0 ∈ RT×D, px signifies the positional encoding, ex corresponds to the embedding of X and
clstoken is the classification head. Initialize the working memory matrix Mw and the
long-term memory matrix Ml, respectively, guaranteeing their universal sharing across all
layers encompassed within our framework.

Input to the layer l: hl−1 having shape RT×D

Step 1: The current perceptions compete with each other to be selected to update the Mw

• Q = M l−1
w W q

• sk = softmax

(
Q(hl−1Wk)

T

√
dk

)
, where sk ∈ RN×T

• Construct a set Ft containing the indices of the k selected specialists with the top-k largest
values of sk.

s∗k =

{
s[n,t], t ∈ Ft,

0, t /∈ Ft
for all n ∈ {1, . . . , N}, t ∈ {1, . . . , T}

Step 2: External communication: Mw-Write
• residual = M l−1

w

• M̃ l
w = LN1(s

∗
kh

l−1W v + residual)

• M̃ l
w,i = ReLU

(
MLPi(M̃

l
w,i−1)

)
i ∈ {1, . . . , k}, k signifies the number of layers in

the MLP.
• M̃ l

w = LN2(M̃
l
w,k + residual)

• M l
w = Fl(M

l−1
w , hl−1)⊙M l−1

w + Il(M
l−1
w , hl−1)⊙ tanh(M̃ l

w)

Fl refers to the forget gate and Il represents the input gate of lth layer.
Step 3: Internal communication: Ml-Write with the updated Mw

• M l
l = LN3((M

l
w ⊗M l−1

l ) +M l−1
l )

Step 4: Make sense of the current perceptions based on the updated Mw and Ml: Mw-Read
and Ml-Read

• h l
w = softmax

(
hl−1W̃ q(M l

wW̃k)
T

√
dk

)
M l

wW̃
v

• M̂ l
l =

1
C

∑C
i=1 M

l
l [i, :, :] where M̂ l

l ∈ RN×Dm

• ck = softmax
(

hl−1Ŵ q(M̂ l
l Ŵ

k)
T

√
dk

)
• h l

l = c∗kv̂ where v̂ ∈ M̂ l
l Ŵ

v

Similar to s∗k, c∗k represents the outcome of the top-k largest sparse attention scores
associated with ck.

• h l
wl = MHC

(
hl
lW̄

Q, hl
wW̄

K , hl
wW̄

V
)

• h l = αhl
w + (1− α)hl

wl
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B EXPERIMENTS ON MEMORY CONSOLIDATION

B.1 MORE ABLATION RESULTS

In this section, we present the results of ablation experiments concerning the global sharing of mem-
ory components. The plot in Fig. 5 illustrates the change in testing accuracy over training iterations.
Here, the PMI-TR model denotes the usage of a globally shared working memory module, while
PMI-TRw/o signifies the absence of global sharing. TR represents the vanilla Transformers model.
The results demonstrate several key findings. Firstly, across all three tasks, both our PMI-TR and
PMI-TRw/o models exhibit faster convergence compared to the traditional TR model. Secondly,
when compared to the baselines TR and PMI-TRw/o, PMI-TR achieves the highest accuracy and
convergence rate, particularly in complex binary and ternary relation tasks, showcasing the effec-
tiveness of the adopted global sharing strategy in complex relational reasoning tasks. However, for
non-relational tasks, their performance remains relatively on par, potentially due to the fact that non-
relational tasks often emphasize extracting direct patterns and information from input data, which
coincidentally aligns with the effective capture of these correlations by the self-attention mechanism
in Transformers.

(a) Unary Accuracy (b) Binary Accuracy (c) Ternary Accuracy

Figure 5: Test accuracy vs. training iterations for the Sort-of-CLEVR task. Results of the ablation
experiments on the memory module’s global sharing or persistence.

B.2 VISUALIZATION

We present four Q&A instances from the bAbI dataset, illustrating the attention matrix of perception
towards both working memory (Fig. 6a) and long-term memory (Fig. 6b) during the reasoning
process within eight layers of the PMI-TR model. Each row corresponds to distinct Q&A examples,
with columns representing the layers of our PMI-TR. Moreover, in each heatmap, the vertical axis
is a representation of perceptual information, functioning as queries, while the horizontal axis refers
to long-term memory or working memory, serving as keys in the cross-attention mechanism.

As an illustration, let’s consider a specific problem with its set of stories and corresponding answer.
In the first line of the working memory attention patterns, each Si represents a distinct sentence
in the narrative. For instance, S1 corresponds to ’the hallway is east of the bathroom’, and S2
corresponds to ’the bedroom is west of the bathroom’, and so forth until Smax, where the maximum
Smax for each task may vary (in task 1, Smax is S10). In cases where there are fewer than Smax

story sentences, placeholder sentences (all zeros) are used as filler input. The letter ’Q’ represents
the question: ’What is the bathroom east of?’, and ’CLS’ is the classification header.

Firstly, it is a well-known fact that the magnitude of attention weights is reflected through color
intensity, where the deeper the color, the higher the weight. Figure 6a illustrates attention patterns
between perception and working memory across various layers of PMI-TR for four instances from
the bAbI dataset. During the inference process, with an increase in layers within the PMI-TR model,
a clear pattern emerges in the heatmaps: the presence of colored blocks markedly diminishes, yet
the intensity of color within the remaining blocks steadily deepens. This implies a growing fo-
cus of working memory on essential segments of current inputs, especially those indispensable for
question-answering. This result is consistent with the restrained write access elucidated in Section
2.3.1, which encourages working memory to concentrate on the utmost critical elements of the task.
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Figure 6b depicts attention patterns between perception and long-term memory across different lay-
ers. For each problem (per row), as layers increase (from left to right), the heat maps show a clear
trend opposite to the working memory pattern, with more and more colored areas but less inten-
sity, and the last several heat maps tend to be stable and approximate. This suggests that long-term
memory gradually accumulates more knowledge as computation step t increases, and thus exhibits
moderate correlation with a broader input area (unlike working memory with limited capacity, which
focuses only on the most important info). Similar attention patterns in the final layers imply conver-
gence of the three-dimensional long-term memory matrix within finite calculation steps, resulting in
a more consistent understanding of various input aspects.

(a) Attention patterns between perception and working memory across different layers of the PMI-TR for 4
examples from the bAbI dataset.

(b) Attention patterns between perception and long-term memory across different layers of the PMI-TR for 4
examples from the bAbI dataset.

Figure 6: Attention patterns between perception and memory.
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B.3 IMAGE CLASSIFICATION : CIFAR-10

In order to establish the generality of the PMI framework, we extend its application beyond PMI-
TR mentioned above to include a convolutional series model and evaluate its performance on the
CIFAR-10 dataset. CIFAR-10 is a benchmark image dataset commonly used in the field of computer
vision, which consists of 50k training and 10k test images of resolution 32 × 32 with a total of 10
classes. Specifically, the original images, after four convolutional layers, serve as perceptions into
our PMI module to obtain understandings, which then undergo linear and softmax transformations
to yield final classification results.

The performance of the best models on test sets is reported in Table 6, where CNN PMI w/o refers
to CNN PMI without guidance from LTM. It’s obvious that both PMI-TR and CNN PMI models
exhibit superior performance, achieving accuracies of 79.12% and 78.69% in CIFAR-10, respec-
tively, with an improvement of 2.94% (compared to TR) and 0.08% (compared to CNN MLP).
These results further underscore the universality of our PMI module.

Table 6: Results of different models on CIFAR-10.

Models Trans. Conv.

ViT ISAB TR+HSW PMI-TR (ours) CNN MLP CNN PMI (ours) CNN PMI w/o (ours)

Acc (%) 76.18 76.39 76.28 79.12 78.61 78.69 78.63

Params (M) 0.75 2.21 2.01 2.0 0.11 1.75 1.68

C QUALITATIVE RESULTS

For a qualitative analysis of working memory and long-term memory in long-term language mod-
eling, we illustrate an instance of the attention histogram between different memory types and the
current input sequence during the inference stage on the WikiText-103 dataset when predicting the
next token. The attention histogram for long-term memory in Figure 7 highlights its ability to focus
on more long-range and relevant information, significantly exceeding the span of working memory
depicted in Figure 8.

Figure 7: Attention histogram of long-term memory to the current input sequence during inference
in PMI-TR, when predicting the ground truth word “Japanese”. The words in the LTM which receive
higher attention (>0.5) are shaded.

Ground Truth: Although they had lost contact during the night , the Americans did find the
Japanese

Shortages of aircraft and serviceability problems greatly retarded pilot train-
ing and the ships only had a total of 17 D4Ys and 18 <unk>on hand
on 1 October ; of these , only 6 and 16 were operational , respectively .
The Japanese plan for the defence of the Philippines envisioned that the surviving carriers would
be used to lure the American carrier forces away from the invasion area to a position where the
carriers could be attacked by land @-@ based aircraft and the transports by the rest of the IJN

. The other carrier air groups were not in much better shape and
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Figure 8: Attention histogram of working memory to the current input sequence during inference in
PMI-TR, when predicting the ground truth word “Japanese”. The words in the WM which receive
higher attention (>0.5) are shaded.

the Japanese decided to retain the aircraft ashore for use against the American carriers . The
Fourth Carrier Division was assigned to the Northern Force under the command of Vice
Admiral Jisaburō Ozawa and the sisters sailed from Yashima on 20 October . On the
morning of 24 October , the bulk of the few aircraft aboard were launched to attack the
American carriers as a distraction . They inflicted no damage and caused the Americans to
search in the direction from which they had attacked . The Americans finally spotted the
Japanese carriers at 16 : 40 , some 200 miles ( 320 km ) east of Cape Engaño , the northeastern

tip of Luzon . The American carriers were spread out and it was very late in the day to launch an
airstrike , so Admiral William Halsey , commander of the Third Fleet decided to mass his carriers
in a position to attack the following morning . Ozawa reversed course during the night , correctly
believing that the Americans would follow him north .

D IMPLEMENTATION DETAILS

D.1 GATING MECHANISM

To update the working memory, we employ the gating mechanism introduced by Santoro et al.
(2018), which consists of an input gate and a forget gate. Let Xt−1 = [Xt−1

1 , Xt−1
2 , · · · , Xt−1

T ] ∈
RB×T×D represent the perceptual input, and M t−1

w ,M t
w ∈ RB×N×Dm represent the previous and

updated working memory, respectively. M̃ t
w is the intermediate result described by Eq. 5 in Sec-

tion 2.3.1. The gating mechanism can be formulated as follows.

X̄ =
1

T

T∑
i=1

relu(Xi ×W I)

K = X̄ + tanh(M t−1
w )×WF

It = sigmoid(K + bi)

Ft = sigmoid(K + bf )

M t
w = It × tanh(M̃ t

w) + Ft ×M t−1
w

Here, It and Ft represent the input and forget gates of the current calculation step t, with corre-
sponding weight matrices W I and WF . The biases for the input and forget gates are denoted as bi
and bf . In practice, we set bi = 0, bf = 1, D = Dm.

E HYPERPARAMETERS SETTING

The hyperparameter settings of the PMI-TR model on all tasks are shown in Table 7 and Table 8,
where Adam and AdamW were proposed by (Kingma & Ba, 2014) and (Loshchilov & Hutter,
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2017), respectively. The other baseline models remain the same configuration for the corresponding
tasks.

Table 7: The hyperparameter setting of PMI-TR model on four tasks.

Parameters Tasks

bAbI Sort-of-
CLEVR

Triangle Cifar-10

Top-k 5 5 5 5
Number of layers 8 4 2 4
Number of attention heads 8 4 4 4
Embedding dimensions 256 256 128 256
Optimizer Adam Adam Adam AdamW
Weight decay N/A N/A N/A 0.09
Learning rate 0.0002 0.0001 0.0001 0.0002
Batch size 64 64 100 64
Inp Dropout 0.1 0.1 0.1 0.1
Seed 1 1 1 1

Number of working memory slots (N ) 8 8 8 8
Number of long-term memory segments (M ) 5 5 5 5
Size of each working memory slot (Dm) 256 256 256 256
Size of each long-term memory segment 5× 256 5× 256 5× 256 5× 256
Number of MLP layers in attention 4 4 5 4
Memory attention heads 8 4 1 1
Gate style ’unit’ ’unit’ ’unit’ ’unit’
Initial α value 0.7 0.75 0.7 0.55

Table 8: The hyperparameter setting of PMI-TR model on three language modeling tasks.

Parameters Tasks

Enwik8 WikiText-103 PG-19

Top-k 5 5 5
Number of layers 12 16 12
Number of attention heads 8 10 8
Embedding dimensions 512 410 1024
Optimizer Adam Adam Adam
Weight decay 0.5 0.5 0.5
Learning rate 0.00025 0.00025 0.00025
Batch size 64 64 64
Inp Dropout 0.1 0.1 0.1
Seed 1 1 1

Number of working memory slots (N ) 8 8 8
Number of long-term memory segments (M ) 5 5 5
Size of each working memory slot (Dm) 512 410 1024
Size of each long-term memory segment 5× 512 5× 410 5×1024
Number of MLP layers in attention 4 4 5
Memory attention heads 8 4 1
Gate style ’unit’ ’unit’ ’unit’
Initial α value 0.7 0.7 0.7
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F DESCRIPTION OF THE TASKS/DATASETS

F.1 ENWIKI8&WIKITEXT-103&PG-19

Enwiki8 (Matt, 2011) is utilized for character-level language modeling and comprises 100M bytes
of unprocessed Wikipedia text, where the first 90MB for training, 5MB for validation and the latter
5MB for testing. Both WikiText-103 (Merity et al., 2016) and PG-19 (Rae et al., 2019) are bench-
marks for word-level language modeling with long-term dependency, with the former containing
103M tokens from 28K English Wikipedia articles and the latter from English books published
before 1919.

F.2 BABI

The bAbI-20k dataset consists of 20 distinct text-based QA tasks, each presenting a unique rea-
soning challenge, including counting, deduction and induction. Each task is divided into training,
validation and test datasets, with 9k, 1k and 1k questions respectively. They are presented in the
form of short stories or text passages, comprising narratives, questions, answers and supporting
facts. Narratives introduces entities, actions and contextual info relevant to the question, and the
answer is substantiated by facts from the narratives. Four detailed examples are shown below.

Task 1: Single Supporting Fact
1. John travelled to the hallway.
2. Mary journeyed to the bathroom.
3. Daniel went back to the bathroom.
4. John moved to the bedroom.
Where is Mary? A: bathroom S: 2

Task 8: Lists/Sets
1. Mary got the milk there.
2. John moved to the bedroom.
3. John picked up the football there.
4. John journeyed to the bathroom.
What is John carrying? A: football S: 3

Task 12: Conjunction
1. Mary and Daniel travelled to the bathroom.
2. John and Daniel travelled to the office.
3. Sandra and Daniel moved to the kitchen.
4. Sandra and John moved to the garden.
Where is Sandra? A: garden S: 4

Task 16: Basic Induction
1. Julius is a lion. 2. Lily is a rhino.
3. Bernhard is a swan. 4. Lily is white.
5. Bernhard is green. 6. Greg is a rhino.
7. Greg is gray. 8. Julius is white.
9. Brian is a lion.
What color is Brian? A: white S: 9 1 8

F.3 DETECTING EQUILATERAL TRIANGLES

(a) (b) (c) (d)

Figure 9: An illustration of the equilateral triangle detection task. Here, (a) and (b) refer to non-
equilateral triangle, (c) and (d) refer to equilateral triangle.
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F.4 SORT-OF-CLEVR

Ternary questions
Q: How many objects are in the rectangle formed by the centers of the red and yellow objects?

Answer: 1
Q: Are there any objects on the line formed by the centers of the red and grey objects?

Answer: yes
Q: How many objects form an obtuse triangle with a blue object and a yellow object?

Answer: 3

Binary questions:
Q: What is the shape of the object that is furthest from the green object?

Answer: orange
Q: What is the color of the object that is closest to the red object?

Answer: green
Q: How many objects have the shape of the yellow object?

Answer: 3

Figure 4: An instance from
the sort-of-clevr dataset.

Unary questions:
Q: What is the shape of the red object?

Answer: circle
Q: Is the green object on the left or right of the image?

Answer: left
Q: Is the grey object on the top or bottom of the image?

Answer: top

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 TEST CURVES FOR DETECTING EQUIVALENT TRIANGLES

As shown in Fig. 10, we observe that our proposed models, PMI-TR and its variant, PMI-TR+S
without top-k sparsity, show significantly faster convergence compared to other models. It is worth
noting that the PMI-TR model achieves slightly higher accuracy compared to the PMI-TR+S model,
highlighting the usefulness of our competitive writing mechanism.

Figure 10: Comparison of convergence speeds on equilateral triangle detection task.

G.2 BABI DETAILED RESULTS

Detailed results are shown in the Table 9.
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Task run1 run2 run3 run4 run5 run6 run7 run8 run9 run10 Mean±std
1:Single Supporting Fact 0 0 0 0 0 0 0 0 0 0 0
2:Two Supporting Facts 0.21 0.08 0 0.10 0 0.52 0.56 0.73 0.35 0.62 0.32±0.28
3:Three Supporting Facts 1.35 0.35 0.03 0.15 0.56 1.88 0.92 0.04 0.15 1.19 0.66±0.64
4:Two Arg. Relations 0 0 0 0 0 0.21 0 0 0.31 0 0.05±0.11
5:Three Arg. Relations 0.52 0.46 0.52 0.73 0.52 0.52 0.73 0.73 0.83 0.42 0.60±0.14
6:Yes/No Questions 0 0 0 0 0 0 0 0 0 0 0
7:Counting 0.31 0.25 0.04 0.73 0.35 0.35 0.35 0.46 0.15 0.04 0.30±0.21
8:Lists/Sets 0 0 0.21 0.21 0.31 0.10 0.52 0.10 0.10 0.21 0.18±0.16
9:Simple Negation 0 0 0 0 0 0 0 0 0 0 0
10:Indefinite Knowledge 0 0 0.31 0.10 0 0 0 0 0.10 0 0.05±0.10
11:Basic Coreference 0 0 0 0 0 0 0 0 0 0 0
12:Conjunction 0 0 0 0 0 0 0 0 0 0 0
13:Compound Coref. 0 0 0 0 0 0 0 0 0 0 0
14:Time Reasoning 0 0 0 0 0 0 0.10 0 0 0 0.01±0.03
15:Basic Deduction 0 0 0.21 0 0 0 0 0 0 0 0.02±0.07
16:Basic Induction 48.21 47.12 44.96 47.92 48.04 48.63 47.35 50.81 47.27 48.56 47.89±1.47
17:Positional Reasoning 0.94 0.03 0.03 0.31 0.58 1.67 0.83 0.60 0.77 0.38 0.61±0.49
18:Size Reasoning 0.42 0.01 0.00 0.52 0.21 0.21 0.21 0.31 0.52 0.21 0.26±0.18
19:Path Finding 0.00 0 0 0.21 0 0 0.10 0 0.10 0 0.04±0.07
20:Agent’s Motivations 0 0 0 0 0 0 0 0 0 0 0

Average 2.60 2.42 2.32 2.55 2.53 2.70 2.58 2.69 2.53 2.58 2.55±0.11

Failed task(>5%) 1 1 1 1 1 1 1 1 1 1

Table 9: Results from 10 test runs of the PMI-TR model on 20 bAbI tasks, each consisting of 10k
samples, following 200 epochs of joint training. Bold denotes the best run.
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