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Abstract

Coherent optical computing systems are a promising avenue for increasing com-1

putation speed and solving energy requirements for machine learning applications.2

These systems utilize the diffraction process of coherent waves to perform calcu-3

lations in the optical domain. While the diffraction process is linear in complex4

space C, it empirically has been shown, that these systems are able to outperform5

standard linear matrix multiplications in R, because photo-sensors project from6

complex space to real space. Here we give theoretical insights, of why this is7

the case and show, that a system consisting of multiple phase-plates, two output8

photo-detectors, and the appropriate input encoding is theoretically able to learn9

any one-dimensional function. We furthermore use these theoretical insights to10

show that encoding the input information solely in the intensity of the diffractive11

system is never enough to make the system a universal aproximator. These results12

are useful to understand the capabilities of diffractive optical systems and improve13

their training.14

1 Introduction15

In recent years large artificial neural networks have set new standards in research and industrial ap-16

plications. The rise of these large models has been largely made possible by an increase in memory17

and computing power. Training these large neural networks requires general purpose computing de-18

vices that are used to calculate huge matrix multiplications and other operations in parallel. Usually19

these devices are GPUs. However, since many artificial neural network architectures show increased20

performance with increasing number of parameters [1], the best models are in general those with the21

maximum possible number of trainable parameters, only constrained by available data and training22

time. This leads to huge energy and computational requirements during training and deployment.23

To tackle the ever increasing computing power requirements for large neural networks new compu-24

tation architectures are needed to change the way a computer handles these large amount of floating25

point operations.26

One promising approach for such devices is optical computing [2–4]. Approaches can be divided27

into those using incoherent light [5, 6], and those using coherent waves [7–12]. Some of these sys-28

tems rely on optical waveguides, while other systems utilize free space propagation of light [13–18].29

Systems that utilize coherent free space propagation and coherent holographic plates are also called30

diffractive deep neural networks (DDNN) [13]. An input signal is encoded in the amplitude and/or31

phase of a coherent wave that propagates through multiple plates, which are masks that change the32

phase or amplitude of a wave across its wavefrong. These plates are designed in such a way, that33

the complete network performs a desired operation directly in the analog space of the wave. These34

networks have been realized with optical light [19], terahertz waves [13] and with ultrasound [20].35
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Figure 1: Overview of how a diffractive deep neural network is able to create arbitrary onedimen-
sional functions. a) Encoding of the input (x = 0.5) with 20 different fixed coefficients in the phase
domain of an incoming gaussian beam. b) This encoding propagates through the network, hits 3
trained phaseplates while being reflected by a mirror and is finally captured by two regions on a
CCD. c) The two regions on the CCD are subtracted and thus the result is obtained. Using this
encoding the system is able to be trained to perform arbitrary functions.

They are able to perform a whole array of different computations, ranging from image classifica-36

tion and mode conversion [18] to learning of logical functions [14, 15]. However such networks37

are inherently limited by the lack of a nonlinearity, since free space wave diffraction and hologram38

plates are linear in complex space, in which the wave resides in. It has been shown, that diffrac-39

tive deep neural networks without a nonlinearity can perform a complex matrix multiplication [18].40

Optical nonlinearities in optical neural networks are an active research field [21, 22]. However one41

of the easiest implementable nonlinearities is a photosensor. Such a photosensor maps the complex42

field to a voltage, that is proportional to the intensity reaching the sensor. It has numerically been43

shown, that such a system is able to learn certain nonlinear mappings, like an XOR logical func-44

tion [15]. This raises questions about the theoretical capabilities of such systems. Here we show,45

that a network with a Fourier encoding is able to learn arbitrary onedimensional functions, and that46

information should be encoded in the phase of the coherent wave, instead of the intensity, because47

intensity encodings can never be universal function approximators. This is promising for the further48

development of coherent optical computational systems, and gives suggestions, on how to best set49

up such a system.50

2 Results51

2.1 Universal function approximators52

A function that fulfills the universal function approximation property can approximate any continu-53

ous function f(x) ∈ C(Rn). This means that for every f(x) ∈ C(Rn) there exists an g(x; θ) and θ54
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such that max
x∈K

|f(x)− g(x; θ)| < ϵ for any ϵ > 0. θ are learnable parameters. Crucially this prop-55

erty does not determine how to calculate these learnable parameters, just that a combination exists,56

for which f and g are arbitrarily close everywhere in K ⊆ Rm. Most of these theorems are used57

to describe artificial neural networks, and estimate bounds and limitations on the depth and width58

of the layers of deep neural networks[23–25]. These theorems give us a framework to analyze the59

theoretical capability of diffractive deep neural network and similar systems.60

2.2 Deep Diffractive Networks61

The input of a diffractive system can be described as a vector of complex numbers, that represent62

the amplitude and phase of a wavefield at certain input positions.63

I =

I1e
iψ1

...
Ine

iψn

 (1)

This input propagates through the system of diffractive plates, until it hits a photodiode at which64

point only the intensity, which is the square of the absolute value of the complex field, is measured.65

To further derive the capability of DDNNs, we need to take a look at the output of the system.66

The first result we need, is that with enough plates diffractive deep neural networks can perform a67

complex matrix multiplication (see [18]). This allows us to write the propagation of waves through68

the diffractive system as a matrix multiplication69

Y = WI (2)

=

A1,1e
iϕ1,1 . . . A1,ne

iϕ1,n

...
. . .

...
An,1e

iϕn,1 . . . An,ne
iϕn,n


I1e

iψ1

...
Ine

iψn

 (3)

.70

Secondly, the measurement of the output wave only measure the intensity of the light. We can thus71

calculate the output for a single pixel on the photodiode as follows:72

Oj =

∣∣∣∣∣
n∑
i

Ai,jIie
i(ϕi,j+ψi)

∣∣∣∣∣
2

(4)

=

n∑
i

A2
i,jI

2
i + 2

n∑
k

k−1∑
i

Ak,jIkAi,jIi cos(δ) (5)

, with δ = ϕk,j + ψk − ϕi,j − ψi. This results enables us to make further statements about the73

universal approximation capability of diffractive plates.74

2.2.1 Intensity Encoding75

Equation 5 lets us make statements about the nature of the input encoding that should be used. The76

first input encoding is the most natural one, encoding the information in the input intensity. The77

following result states that these networks are never universal function approximators. To prove this78

we will need the following result. Neural networks with one hidden layer, that is of the form y(x) =79 ∑n
i ciσ(Ax − b) with A,x ∈ Rn, ci ∈ R and σ a single valued function applied elementwise80

are universal function approximators, if and only if σ is a not a polynomial [26]. Equation 5 shows81

us, how the output of a single pixel depends on the input encoding I. If the encoding is only in the82

intensity of the incoming wave field83

I =

I1e
iψ1

...
Ine

iψn

 =

x1...
xn

 (6)

, equation 5 reduces to84

Oj =

n∑
i

A2
i,jx

2
i + 2

n∑
k

k−1∑
i

Ak,jAi,jxkxi cos(ϕk,j − ϕi,j) (7)
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which is a second degree polynomial in Aixi, since cos(ϕk,j − ϕi,j) is not dependent on the input85

encoding. Thus no diffractive deep neural network with intensity encoding and no other nonlinearity86

other than the output diode can be an universal function approximator. This result holds for the87

onedimensional case, as well as the multidimensional case.88

2.3 Phase encoding89

Since encoding the information only in the intensity is insufficient to make the network an universal90

function approximator, the phase can be included in the encoding. Using an input encoding of91

I =

I1e
iψ1

...
Ine

iψn

 =

e
ix1

...
exn

 (8)

, equation 5 reduces to92

Oj =

n∑
i

A2
i,j + 2

n∑
k

k−1∑
i

Ak,jAi,jcos(ϕk,j + xk − ϕi,j − xi) (9)

This is equivalent to a single layer neural network with fixed weights of 1 in the first layer and offsets93

that can be trained.94

O =

n∑
i

ciσ(x− xi) (10)

Here ci are the weights in the last layer, x the input variable and xi biases at different positions.95

According to some results, networks of this type are arbitrary function approximators [27] for single96

valued functions, if σ is a even periodic continuous function. Since cos fullfills these requirements,97

this result holds for diffractive deep neural networks with phase encoding. However in numerical98

experiments we have been unable to sufficiently approximate functions that contained higher order99

frequencies, or where different from the family of cosine functions. This is possibly due to the finite100

number of output pixels.101

2.4 Fourier encoding102

Instead of using only one input for each variable the signal can be encoded with different input103

weights wi. This method was used by Yildrim. M et. al. [28] to improve the performance of a104

diffractive system in image classification tasks on multiple datasets. Instead of learning the input105

weights however, we opted to simply use full integer increments to introduce higher frequencies106

into the system. The encoding for a onedimensional variable in the optical system is displayed in107

equation 11108

I =

I1e
iψ1

...
Ine

iψn

 =


ei2πx1

ei4πx1

ei6πx1

...
ein2πx1

 (11)

Note that all intensities are assumed to be 1. Using this encoding in equation 5 gives109

Oj =

n∑
i

A2
i,j + 2

n∑
k

k−1∑
i

Ak,jAi,jcos(2π(k − i)x+ ϕk,j − ϕi,j) (12)

With this encoding higher order frequencies exist and can be used to approximate desired output110

functions. Due to the notable similarities to the Fourier series111

F = C0 +

n∑
i=1

Ci cos(2π
i

P
x− ϕn) (13)
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we call this encoding Fourier encoding. Since the Fourier series is able to approximate a function112

arbitrarily well on an interval P , a diffractive neural network with this encoding should be able to113

do the same.114

However, in equation 12 the coefficients Ai are all ≥ 0, meaning that we can only create positive115

coefficients. The Fourier series coefficients on the other hand are ∈ R. To create coefficients that can116

be negative, two photodiodes can be used, the first acting as a measurement device for the positive117

coefficients, and the second one capturing the negative coefficients. The output of these photodiodes118

can easily be subtracted in an analog electrical system.119

3 Experimental Results120

The following numerical and experimental results have been performed with a diffractive deep neu-121

ral network consisting of 3 layers of 112 × 112 pixel on an area with a sidelength of 0.1792 mm122

corresponding to a pixel size of 16 µm. A laser with a wavelength of 781 nm focused in a Gaussian123

beam with a radius of 0.09 mm was used as the input source. The input was encoded on a plate124

with the same dimensions as the trainable plates. The experimental setup used a single reflective125

spatial light modulator and a mirror slightly angled to reflect the beam back to the SLM. The setup126

is similar to the one used in [28]. This system was implemented and trained with Tensorflow [29].127

Fourier encodings with 1,2,5, 8,10,20,50 and 100 components have been trained to compare the128

influence of more complicated encodings on the capability of the system. Results for four different129

nonlinear functions are displayed in 2 It can be seen that the system is able to learn all four of the

Figure 2: Numerical Results for four different nonlinear functions. The loss improves with an
increasing number of Fourier components added to the optical system. a) sin(2πx) ∗ 0.1. This
function contains negative values. It cannot be learned by the system, that only considers positive
output values. Only when adding negative output components can the function be fully approxi-
mated. b) sin(8πx)∗0.1+0.2. This function shows that multiple Fourier components are needed to

approximate functions with higher frequencies c) 1
2
√
2π
e−0.5

(x−0.5)2

0.22 . This function needs even more
Fourier coefficients to be well approximated. It can be seen, that only the system that takes negative
output coefficients into account is able to approximate the function well. d) 0.2 if x ∈ [0.35, 0.65].
This function is the hardest one to approximate, probably because it is not smooth. In all cases, the
network that takes negative coefficients into account gives a better approximation.

130
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functions. Higher frequencies are needed to approximate all functions. This is especially clear when131

comparing the sinusoidal functions with increasing frequencies. While 2 frequencies are enough to132

train a simple sinus function, the requirements get harder with increasing frequencies. It can also133

be seen, that the negative output values improve the results in all cases, and are necessary to learn134

functions with negative values ( see plot a) of figure 2). Overall the system with negative output135

values manages to learn all functions to a high degree of accuracy.136

These trained phase plates where tested in a physical system, and the output values where measured.137

For this a mirror and a single SLM was used that influenced the phase of the incoming wave. The138

output was measured with a CCD sensor and the two output regions where estimated and summed139

up. Since the output values form the camera sensor are not normed, a multiplicative offset, that140

corrects for the overall energy in the system and an additive offset that corrects for the base noise141

level in the camera sensor where manually chosen for all measured output values. The results are142

displayed in figure 3 The results confirm the numerical experiments. They show that it is possible

Figure 3: Real world experimental results. The functions for the plots a) to f) are the same was
in figure 2. It can be seen, that the measured functions match the numerical ones. Some noise is
introduced during measurement.

143
to train a diffractive deep neural network to perform arbitrary nonlinear functions.144

4 Discussion145

We have shown, that a coherent optical system with diffractive plates, also called deep diffractive146

neural network, is capable of performing arbitrary nonlinear functions in one dimension. We utilized147

an encoding, that embeds the input variable into multiple phase inputs, that have different factors,148

that match those of the Fourier series. Furthermore we have shown a mathematical proof that a149

DDNN with only an intensity encoding can never be considered an universal function approximator.150

A pure phase encoding that does not introduce higher frequencies into the system has been shown to151

be theoretically sufficient for the system to be an universal function approximator, as long as ref [27]152

holds. However we have not been able to numerically train a real world system that purely relies on153

phase encoding to perform arbitrary nonlinear functions. This is potentially due to the finite size of154

the system. Using the Fourier encoding however made it possible to train any onedimensional func-155

tion. A negative output region was useful for all trained functions, but made the biggest difference156

for functions that had negative values for obvious reasons.157

Using the results mentioned above should also be helpful when training DDNNs for different tasks,158

that are potentially more demanding than a onedimensional function. In general the information159

should not be encoded solely in the intensity of the incoming wave, to ensure cosine nonlinearities160

in the output. Furthermore a region with negative values has been shown to be important for all161
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functions, thus should be considered when training a DDNN for other tasks. Such a negative output162

region can be realized with an analog electrical system, consisting of two photodiodes.163
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