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Abstract

Coherent optical computing systems are a promising avenue to increasing compu-
tation speed and solving energy requirements for machine learning applications.
These systems leverage the diffraction of coherent waves to perform calculations
in the optical domain. Although diffraction is inherently a linear process in com-
plex space C, empirical results show that these systems can outperform standard
linear matrix multiplications in R, because photo-sensors project from complex
space to real space. Here we provide theoretical insights to explain this phe-
nomenon. We demonstrate that a system consisting of multiple phase-plates, two
output photo-detectors, and the appropriate input encoding is theoretically able
to learn any one-dimensional function. Additionally, we show that encoding input
information exclusively in the intensity of the diffractive system is never sufficient
for the system to be a universal function approximator. These findings enhance the
understanding of the capabilities of diffractive optical systems and offer guidance
for improving their training methods.

1 Introduction

In recent years large artificial neural networks have set new standards in research and industrial
applications. The rise of these models has been largely enabled by an increase in memory and com-
puting power. Training these large neural networks requires general purpose computing devices that
are used to calculate huge matrix multiplications and other operations in parallel. Usually these
devices are GPUs. However, since many artificial neural network architectures exhibit increased
performance with a greater number of parameters [1], the best models are generally those with the
maximum possible number of trainable parameters, only constrained by available data and training
time. This leads to significant energy and computational demands during training and deployment.
To tackle the ever increasing computing power requirements for large neural networks new compu-
tation architectures are needed to change the way a computer handles these large amount of floating
point operations.

One promising approach for such devices is optical computing [2–4]. Optical computing approaches
can be broadly divided into those using incoherent light [5, 6], and those using coherent waves [7–
12]. Some of these systems rely on optical waveguides, while other systems utilize free space
propagation of light [13–18]. Systems that utilize coherent free space propagation and coherent
holographic plates are also referred to as diffractive deep neural networks (DDNN) [13]. An input
signal is encoded in the amplitude and/or phase of a coherent wave that propagates through multiple
plates, which are masks that change the phase or amplitude of a wave across its wavefront. These
plates are designed in such a way, that the complete network performs a desired operation directly
in the analog space of the wave. Such networks have been realized with optical light [19], terahertz
waves [13] and with ultrasound [20]. They can perform a wide array of different computations, from
image classification and mode conversion [18] to learning logical functions [14, 15]. These networks
are inherently limited by the lack of a nonlinearity, since free space wave diffraction and hologram
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Figure 1: Overview of how a diffractive deep neural network is able to create arbitrary onedimen-
sional functions. a) Encoding of the input (x = 0.5) with 20 different fixed coefficients in the phase
domain of an incoming Gaussian beam. b) This encoding propagates through the network, hits 3
trained phaseplates while being reflected by a mirror and is finally captured by two regions on a
CCD. c) The two regions on the CCD are subtracted and thus the result is obtained. Using this
encoding the system is able to be trained to perform arbitrary functions.

plates are linear in complex space. It has been shown, that diffractive deep neural networks without
a nonlinearity can perform a complex matrix multiplication [18]. Optical nonlinearities in optical
neural networks are an active research field [21, 22]. However one of the easiest implementable
nonlinearities is a photosensor, which maps the complex field to a voltage, that is proportional to
the intensity reaching the sensor. It has numerically been shown, that such a system is able to learn
certain nonlinear mappings, like an XOR logical function [15]. This raises questions about the
theoretical capabilities of such systems. Here we show, that a network with a Fourier encoding is
able to learn arbitrary onedimensional functions and analyze the conditions under which this is the
case. This is promising for the further development of coherent optical computational systems and
gives suggestions on how to best set up such a system.

2 Results

2.1 Universal function approximators

A function that fulfills the universal function approximation property can approximate any continu-
ous function f(x) ∈ C(Rn). This means that for every f(x) ∈ C(Rn) there exists an g(x; θ) and θ
such that max

x∈K
|f(x)− g(x; θ)| < ϵ for any ϵ > 0. θ are learnable parameters. Crucially this prop-

erty does not determine how to calculate these learnable parameters, just that a combination exists,
for which f and g are arbitrarily close everywhere in K ⊆ Rm. Most of these theorems are used
to describe artificial neural networks, and estimate bounds and limitations on the depth and width
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of the layers of deep neural networks[23–25]. These theorems give us a framework to analyze the
theoretical capability of diffractive deep neural network and similar systems.

2.2 Deep Diffractive Networks

The input of a diffractive system can be described as a vector of complex numbers, that represent
the amplitude and phase of a wavefield at certain input positions.

I =

I1e
iψ1

...
Ine

iψn

 (1)

This input propagates through the system of diffractive plates, until it hits a photodiode at which
point only the intensity, which is the square of the absolute value of the complex field, is measured.

To further derive the capability of DDNNs, we need to take a look at the output of the system. The
first used to analyze the capabilities of DDNNs, is that the dimensionality of the subspace of possible
transformations in a k layer DDNN with an input and output pixel count of n and number of weights
j on each plate is equivalent tomin(n2, k∗j−(k−1)) (see [18]). Assuming a theoretically infinitely
scalable input amplitude, and k ∗ j − (k − 1) >= n2, this allows us to think of the propagation
through a DDNN as a single matrix multiplication with complex weights.

Y = WI (2)
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Secondly, the measurement of the output wave only measures the intensity of the light. We can thus
calculate the output for a single pixel on the photodiode as follows:

Oj =

∣∣∣∣∣
n∑
i

Ai,jIie
i(ϕi,j+ψi)

∣∣∣∣∣
2

(4)

=

n∑
i

A2
i,jI

2
i + 2

n∑
k

k−1∑
i

Ak,jIkAi,jIi cos(δ) (5)

, with δ = ϕk,j + ψk − ϕi,j − ψi. This results enables us to make further statements about the
universal approximation capability of diffractive plates.

2.2.1 Intensity Encoding

Equation 5 enables statements about the nature of the input encoding that should be used and how it
affects the output. First we analyze the case where the input is encoded only in the intensity of the
incoming wave. Equation 5 shows, how the output of a single pixel depends on the input encoding
I if the input is only encoded in the intensity of the incoming wave field

I =

I1e
iψ1

...
Ine

iψn

 =

x1...
xn

 (6)

, equation 5 reduces to

Oj =

n∑
i

A2
i,jx

2
i + 2

n∑
k

k−1∑
i

Ak,jAi,jxkxi cos(ϕk,j − ϕi,j) (7)

which is a second degree polynomial in Aixi, since cos(ϕk,j − ϕi,j) is not dependent on the input
encoding.
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It is well known that neural networks with one hidden layer, that is of the form y(x) =
∑n
i ciσ(Ax−

b) with A,x ∈ Rn, ci ∈ R and σ a single valued function applied element-wise are universal
function approximators, if and only if σ is a not a polynomial [26].

Thus no diffractive deep neural network with intensity encoding and no other nonlinearity other than
the output diode can be an universal function approximator. This result holds for the onedimensional
case, as well as the multidimensional case.

2.3 Fourier encoding

Instead of encoding the input in the intensity, a natural next step is to encode the signal in the phase.
The following encoding maps the input information multiple times with different but fixed weights.
A similar method was used by Yildrim. M et. al. [27] to improve the performance of a diffractive
system in image classification tasks on multiple datasets. However their methods required trainable
weights that would change for new datasets. Instead of learning the input weights, we opted to
simply use full integer increments to introduce higher frequencies into the system, and show that
this encoding resembles the well known Fourier series. The encoding for a onedimensional variable
in the optical system is displayed in equation 8

I =

I1e
iψ1

...
Ine

iψn

 =


ei2πx

ei4πx

ei6πx

...
ein2πx

 (8)

Note that all intensities are assumed to be 1. Using this encoding in equation 5 gives

Oj =

n∑
i

A2
i,j + 2

n∑
k

k−1∑
i

Ak,jAi,jcos(2π(k − i)x+ ϕk,j − ϕi,j) (9)

Higher order frequencies exist and can be used to approximate desired output functions. Due to the
notable similarities to the Fourier series

F = C0 +

n∑
i=1

Ci cos(2π
i

P
x− ϕn) (10)

we call this encoding Fourier encoding. Since the Fourier series is able to approximate a function
arbitrarily well on an interval P , a diffractive neural network with this encoding should be able to
do the same.
However, in equation 9 the coefficients Ai are all ≥ 0, meaning that we can only create positive
coefficients. The Fourier series coefficients on the other hand are ∈ R. To create coefficients
that can be negative, two photodiodes can be used, the first acting as a measurement device for
the positive coefficients, and the second one capturing the negative coefficients. The output of these
photodiodes can easily be subtracted in an analog electrical system. This addition enables the system
to theoretically learn arbitrary functions.

3 Experimental Results

To experimentally show that a diffractive system as described above is able to learn any onedi-
mensional function the following numerical and experimental results have been performed with a
diffractive deep neural network consisting of 3 layers of 112 × 112 pixels on an area with a side-
length of 0.1792 mm corresponding to a pixel size of 16 µm. A laser with a wavelength of 781 nm
focused in a Gaussian beam with a radius of 0.09 mm was used as the input source. The input was
encoded on a plate with the same dimensions as the trainable plates. The experimental setup used a
single reflective spatial light modulator and a mirror slightly angled to reflect the beam back to the
SLM, which was carefully manually calibrated. The setup is similar to the one used in [27]. This
system was implemented and trained with Tensorflow [28]. Fourier encodings with 1,2,5,8,10,20,50
and 100 components have been trained to compare the influence of more complicated encodings on
the capability of the system. Results for four different nonlinear functions are displayed in figure 2
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Figure 2: Numerical Results for four different nonlinear functions. The loss improves with an
increasing number of Fourier components added to the optical system. a) sin(2πx) ∗ 0.1. This
function contains negative values. It cannot be learned by the system, that only considers positive
output values. Only when adding negative output components can the function be fully approxi-
mated. b) sin(8πx)∗0.1+0.2. This function shows that multiple Fourier components are needed to

approximate functions with higher frequencies c) 1
2
√
2π
e−0.5

(x−0.5)2

0.22 . This function needs even more
Fourier coefficients to be well approximated. It can be seen, that only the system that takes negative
output coefficients into account is able to approximate the function well. d) 0.2 if x ∈ [0.35, 0.65].
This function is the hardest one to approximate, probably because it is not smooth. In all cases, the
network that takes negative coefficients into account gives a better approximation.

It can be seen that the system is able to learn all four of the functions. Higher frequencies are needed
to approximate all functions. This is especially clear when comparing the sinusoidal functions with
increasing frequencies. While 2 frequencies are enough to train a simple sinus function, the require-
ments get harder with increasing frequencies. It can also be seen, that the negative output values
improve the results in all cases, and are necessary to learn functions with negative values ( see plot
a) of figure 2). Overall the system with negative output values manages to learn all functions to a
high degree of accuracy.

These trained phase plates where tested in a physical system, and the output values where measured.
For this a mirror and a single SLM was used that influenced the phase of the incoming wave. The
output was measured with a CCD sensor and the two output regions where estimated and summed
up. Since the output values form the camera sensor are not normed, a multiplicative offset, that
corrects for the overall energy in the system and an additive offset that corrects for the base noise
level in the camera sensor where manually chosen for all measured output values. The results are
displayed in figure 3 The results confirm the numerical experiments. They show that it is possible
to train a diffractive deep neural network to perform arbitrary nonlinear functions.

4 Discussion

We have shown, that a coherent optical system with diffractive plates, also called deep diffractive
neural network, is capable of performing arbitrary nonlinear functions in one dimension. We utilized
an encoding, that embeds the input variable into multiple phase inputs, that have different factors,
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Figure 3: Real world experimental results. The functions for the plots a) to f) are the same was
in figure 2. It can be seen, that the measured functions match the numerical ones. Some noise is
introduced during measurement, due to the nature of an analog system.

that match those of the Fourier series. Furthermore we have shown a mathematical proof that a
diffractive system that solely relies on intensity inputs for the data can never be an universal function
approximator.

The experiments support the theoretical findings. Multiple nonlinear functions using the Fourier
encoding have been measured on a real world system after training them on a backpropagatable
simulation. A negative output region was useful for all trained functions, but made the biggest
difference for functions that had negative values for obvious reasons.

One additional question is if a system that encodes the information in the phase without using mul-
tiple input factors, like the Fourier encoding can potentially be considered a universal function ap-
proximator. Using an input encoding of

I =

I1e
iψ1

...
Ine

iψn

 =

e
ix1

...
exn

 (11)

leads to an output of

O = O+ −O− =

m∑
j

ci(1 + cos(∆ϕ1,ϕ2
− x)) (12)

which is equivalent to a neural network with fixed weights of 1 and a bias ∆ϕ1,ϕ2
in the first layer,

a cosine activation function, and trainable weights in the second layer. Theoretical results exist, that
show that these networks can potentially be universal function approximators [29]. However we
have been unable to train arbitrary nonlinear functions using only this encoding, without inputs that
introduce higher frequencies.

The insights gained about diffractive systems should also be helpful when training DDNNs for
different tasks, that are potentially more demanding than a onedimensional function. However since
the input data is multiplied for every new Fourier coefficient added to the system, spacial demands
on the input encoding are potentially a concern. In general the results highlight a few key things that
should be taken into account when training DDNNs. First, the information should not be encoded
solely in the intensity of the incoming wave, to ensure cosine nonlinearities in the output, potentially
using more than one frequency per input value. Secondly, a region with negative values has been
shown to be important for all functions. Such a negative output region can be realized with an analog
electrical system, consisting of two photodiodes. Obeying by these results should lead to improved
performance of any free space diffractive system for information processing purposes.
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