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Abstract

In this paper, we study the robustness of classical deep hedging strategies under
distributional shifts by leveraging the concept of adversarial attacks. We first
demonstrate that standard deep hedging models are highly vulnerable to small
perturbations in the input distribution, resulting in significant performance degrada-
tion. Motivated by this, we propose an adversarial training framework tailored to
increase the robustness of deep hedging strategies. Our approach extends pointwise
adversarial attacks to the distributional setting and introduces a computationally
tractable reformulation of the adversarial optimization problem over a Wasserstein
ball. This enables the efficient training of hedging strategies that are resilient to
distributional perturbations. Through extensive numerical experiments, we show
that adversarially trained deep hedging strategies consistently outperform their clas-
sical counterparts in terms of out-of-sample performance and resilience to model
misspecification. Additional results indicate that the robust strategies maintain
reliable performance on real market data and remain effective during periods of
market change. Our findings establish a practical and effective framework for
robust deep hedging under realistic market uncertainties.1

1 Introduction

In the past decades, options and derivatives trading has seen enormous growth, with billions of
contracts traded every year [1]. Hedging of financial derivatives refers to taking financial positions
in other linked assets to mitigate the risk associated with the derivative. Thereby, hedging is a
fundamentally important task in the financial services industry. Deep Hedging [2] introduces a
model-free, data-driven framework that employs deep learning to optimize hedging strategies directly
from simulated market scenarios. The core idea is to parameterize hedging decisions via neural
networks. Optimal hedging is achieved by training the neural networks to minimize a risk measure of
the hedged portfolio’s profit and loss (P&L). While this approach has been widely adopted in industry,
the performance of learned hedging strategies critically depends on the quality of the training data. For
instance, the data-generating distribution during training might differ slightly from the test distribution
under which the deep hedging strategy is ultimately deployed and evaluated. This mismatch, known
as model misspecification, can result in suboptimal or even misleading decisions, a phenomenon
that is well documented in various classes of data-driven decision-making problems [3, 4]. This
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highlights the fundamental challenge of modeling uncertainty in finance and the importance of
designing strategies that remain robust to small changes in the underlying distribution.

To mitigate model uncertainty in decision-making problems, a large variety of different approaches
exist. Parametric methods quantify uncertainty on model parameters, allowing strategies to account
for potential estimation errors, like in [5, 6]. Moreover, advances in machine learning enable the use
of generative models with high-dimensional parameter spaces to simulate complex dynamics [7, 8, 9].
In the field of deep hedging, recent works consider robustness by perturbing the terminal distribution
[10], randomized model parameters [11] or penalizing deviations from a reference distribution [12].

On the other hand, model uncertainty can be addressed within the framework of distributionally
robust optimization (DRO) [13]. DRO seeks to make optimal decisions under the worst-case scenario
over a specified set of probability distributions, known as the ambiguity set. This problem can be
formulated as a two-player game

minθ∈Θ maxη∈Bδ(µ) Ex∼η

[
l(θ;x)

]
, (1.1)

where θ denotes the decision variable optimized over the parameter space Θ, representing the first
player. The adversarial player selects a distribution η from an ambiguity set Bδ(µ) of plausible
distributions centered around a nominal distribution µ. The objective is described by the loss function
l(θ;x), parameterized by θ and evaluated at an input x ∈ Rd, which is modeled as a random variable.
The parameter δ > 0 controls the size of the ambiguity set, with B0(µ) = {µ}. Thus, when δ = 0,
the DRO problem (1.1) reduces to the nominal stochastic optimization problem

minθ∈Θ Ex∼µ

[
l(θ;x)

]
. (1.2)

Various functions to encode the difference between probability distributions in Bδ(µ) are popular,
such as the ϕ-divergence [14], matching moments [15], and the total variation distance [16]. Among
these, the Wasserstein distance is particularly popular and powerful, see the appendix for the detailed
definition and see [17, 18, 13] for detailed treatments of Wasserstein-based DRO problems. These
existing computational tractability results in Wasserstein DRO rely on structural assumptions about
the underlying loss function, such as convexity, which do not hold in the deep hedging setting
considered in this work.

The concept of robustness is important across machine learning applications. In image classification
tasks, [19] first highlighted that neural networks are vulnerable to adversarial attacks—small, imper-
ceptible changes to input images that cause misclassification. This discovery led to a growing body
of research on adversarial attacks and training techniques to improve network robustness against
them ([20, 21, 22]). However, most studies have focused on pointwise adversarial perturbations,
where attacks modify individual data points. A broader perspective considers distributional attacks,
where an adversary perturbs the entire data-generating distribution rather than specific samples
([23, 24, 25, 18, 13, 26, 27]). Specifically, the distributional version of adversarial attacks can be
applied to search for the worst-case scenario in the DRO problem.

In this paper, we study the robustness properties of classical deep hedging strategies under distribution
shifts by utilizing the concept of adversarial attacks. The main contributions of this paper can be
summarized as follows:

• We propose the first framework that unifies distributional adversarial training with deep
hedging. Building on tractable reformulations from Wasserstein DRO [26] and sensitivity
analysis results [23], our approach derives computationally efficient adversarial attacks
within a Wasserstein ball and integrates them into an adversarial training procedure. This
framework reveals the vulnerability of classical deep hedging to even small distributional
shifts and provides a tractable method to enhance robustness.

• Prior work [13, 17, 18] establishes that data-driven Wasserstein DRO solutions guarantee
out-of-sample performance under certain theoretical assumptions. However, in complex
dynamic settings such as deep hedging, these assumptions do not generally hold. Through
adversarial training with limited data (5,000–100,000 samples), we empirically demonstrate
that adversarially trained strategies outperform classical deep hedging methods in terms of
out-of-sample and out-of-distribution performance.

• We validate our framework on real market data, demonstrating that adversarially trained
strategies remain effective and robust during periods of market stress and distributional
shifts, and compare our results against the robust deep hedging approach of [11].

2



Related work. Deep hedging was introduced in [2, 28]. Since its introduction, numerous works have
studied deep hedging and related machine learning-based hedging methods from different perspectives.
Robustness of deep hedging methods has been studied in [10, 11, 12]. Further directions include
tackling complex pricing problems [29, 30, 31], targeting improved efficiency [32, 33] or general
initial portfolios [34], alternative reinforcement learning frameworks [35, 36, 37, 38], empirical
approaches [39, 40], or implementations on quantum hardware [41]. We refer to the surveys [42, 43]
for a comprehensive overview.

Parallel to this, distributionally robust optimization (DRO) has emerged as a framework for decision-
making under model uncertainty, with Wasserstein-based methods offering both theoretical guarantees
and computational tractability [13, 17, 18]. In machine learning, adversarial training provides another
robustness perspective, where worst-case perturbations improve generalization [19, 20, 21, 22].
Recent works extend pointwise adversarial attacks to the distributional setting [23, 24, 25, 26, 27],
thereby connecting adversarial training methods with DRO formulations.

2 Deep Hedging Framework

Basic setup. In Deep Hedging [2], we consider a discrete-time market with trading dates
{0, 1, . . . , T} and a set of r tradable assets. Let S = (S1, . . . , ST+1) ∈ Rr×(T+1) denote the
mid-price trajectories of the assets. The price process S is adapted to a filtration (Ft)

T
t=0 generated

by an information process I = (I1, . . . , IT+1), where each It ∈ Rd captures market-relevant features
at time t such as asset prices, volatility, risk limits, or trading signals. We denote the price trajectories
S(I) as a function of I. The trajectory I is sampled from a known distribution µ, which may corre-
spond to a stochastic model or a uniform distribution over simulated or historical scenarios. A trading
strategy δ = (δ1, . . . , δT−1) ∈ Rr×T represents the portfolio holdings in the r assets. Each position
δt is determined by a neural network that is parameterized by θ = (θ1, ..., θT ) and takes the history
of available information up to time t as input,

δt = fθt(I1, . . . , It), (2.1)

where fθ is a function parameterized by network weights θt ∈ Rn. Therefore, the whole trading
strategy δ depends on the the network parameter θ ∈ Θ and information process I, denoted δ(θ, I).

We consider hedging a contingent claim with payoff P (ST ) at maturity, where P : Rr → R is a
given payoff function. The profit and loss (PnL) of the hedging position is defined as

PnL(θ, I) = p0 +
∑T

t=1
δ⊤t (θ, I)(St+1(I)− St(I))− P (ST (I)) (2.2)

for a given price p0 ≥ 0. The objective is to optimize the hedging outcome PnL(θ, I) under a convex
risk measure ρ, such as the entropic risk measure or Conditional Value at Risk (CVaR) [44], i.e., solve

minθ∈Θ ρ [PnL(θ, I)] . (2.3)

Optimized Certainty Equivalents. We focus on convex risk measures that admit an optimized
certainty equivalent (OCE) form. Specifically, consider convex risk measures that can be expressed as

ρ(Z) = inf
ω∈R
{ω + E [ℓ(−Z − ω)]} , (2.4)

for random variables Z and a fixed loss function l : R→ R. OCE risk measures form an important
class of convex risk measures [45], naturally suited for deep hedging [2]. During training, we
implement an OCE risk measure by treating ω as a trainable parameter. That is, we consider an
augmented parameter θ̃ := (θ, ω) and define the deep hedging loss as

lDH(θ̃, I) = ω + ℓ(−PnL(θ, I)− ω). (2.5)

We can equivalently express the deep hedging problem (2.3) as a standard expected loss minimization

minθ̃ EI∼µ[lDH(θ̃, I)]. (2.6)

During the evaluation, the optimal ω can be obtained by directly solving (2.4).
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DRO Formulation of Deep Hedging. The reformulated deep hedging problem (2.6) now has the
common structure of (1.2), which induces a corresponding DRO formulation

minθ̃ maxη∈Bδ(µ) EI∼η[lDH(θ̃, I)]. (2.7)

The OCE framework naturally encompasses common convex risk measures such as entropic risk
and Conditional Value-at-Risk (CVaR), whose specific implementations will be demonstrated in
subsequent examples. Crucially, the OCE reformulation aligns with standard DRO formulations,
enabling direct utilization of established convergence guarantees and computational methods.

Examples. We consider a Black-Scholes model and General Affine Diffusion model with entropic
risk and a Heston model with CVaR. Detailed formulations of these models and the associated loss
functions are provided in the appendix.

3 Adversarial Attacks

Pointwise adversarial attacks. Pointwise adversarial attacks aims to perturb the input within a
δ-ball centered at the input to maximize the corresponding loss, that is

maxx̂∈Rd l(θ; x̂) subject to d(x̂, x) ≤ δ. (3.1)

Two cornerstone algorithms in this domain are the Fast Gradient Sign Method (FGSM) [20] and
Projected Gradient Descent (PGD) [21]. For input x and L∞ distance d(·, ·), the FGSM perturbation
is computed as

x̂ = x+ δ · sign(∇xl(θ;x)), (3.2)
where δ is the perturbation magnitude, ∇xl(θ;x) is the gradient of the loss function l with respect to
the input x, and sign(·) denotes the element-wise sign function. FGSM directly perturbs the input
data in the direction of the gradient to the boundary of the δ-ball around the original input x, which is
computationally efficient. For a deeper exploration of the worst-case perturbation, PGD is an iterative
extension of FGSM that applies multiple small perturbations to the input. At each iteration, the input
is updated as

x̂(k+1) = Projd(·,x)≤δ

(
x̂(k) + β · sign(∇xl(θ; x̂

(k)))
)
, (3.3)

where β is the step size, and Projd(·,x)≤δ projects the perturbed input back into the δ-ball around x to
ensure the perturbation remains bounded.

Distributional adversarial attacks. Distributional adversarial attacks aim to find the worst-case
data distribution perturbation within an ambiguity set Bδ(µ) that maximizes the expected loss of the
model. This is formalized as

Vθ(δ) = maxη∈Bδ(µ) Ex∼η[l(θ;x)], (3.4)

where an optimal perturbed distribution η∗ achieves this maximum. Solving (3.4) requires to optimize
over an infinite-dimensional Wasserstein ball, making direct approaches intractable. Therefore, we
provide a reformulation that approximates (3.4) based on the sensitivity results on DRO in Wasserstein
balls that are inspired by [46]. The proposed reformulation relies on the following two assumptions.
Assumption 3.1. The distance d on Rd is induced by a norm ∥ · ∥, with corresponding dual norm
∥ · ∥∗ defined as

∥y∥∗ = sup
∥x∥≤1

⟨y, x⟩. (3.5)

Furthermore, there exists a function h : Rd → Rd such that

∥x∥∗ = ⟨h(x), x⟩ for all x ∈ Rd. (3.6)

Assumption 3.2. For each θ, the map x 7→ l(θ;x) is Lipschitz continuous.

Assumption 3.1 is satisfied, e.g., for d chosen as the distance induced by the ∥ · ∥p norm. In this case,
the dual norm is given by ∥ · ∥q, where q is the Hölder conjugate satisfying 1/p + 1/q = 1. The
corresponding function h : Rd → Rd is explicitly given (with operations applied component-wise) as

h(x) = sign(x) |x|q−1. (3.7)
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Additionally, we focus on the data-driven framework, where the input distribution µ is the empirical
distribution constructed from the training set {X1, . . . , XN}, i.e., µ = 1

N

∑N
n=1 δXn

.

Analogously to [23, Theorem 4.1] in the setting of a classification problem, we use [46, Theorem
2.1] and its proof to establish the following theorem. The details are provided in the appendix.
Theorem 3.3. Under Assumption 3.1 and Assumption 3.2, Vθ(δ) can be approximated by

Vθ(δ) = Eηδ
[l(θ, x)] + o(δ) as δ ↓ 0, (3.8)

where ηδ = 1
N

∑N
n=1 δX̂n

. For n = 1, . . . , N , each X̂n is the perturbation of the original sample

X̂n = Xn + δ · h(∇xl(θ;Xn))∥∇xl(θ;Xn)∥q−1
∗ Υ1−q, (3.9)

Υ = (
1

N

∑N

n=1
∥∇xl(θ;Xn)∥q∗)1/q. (3.10)

Equation (3.9) provides an approximate worst-case perturbation by leveraging the sensitivity expan-
sion of the Wasserstein DRO problem, which directly yields a computationally tractable solution
that approximates (3.4). However, this approach may not fully explore the adversarial landscape.
Therefore, we instead constrain optimization to a subset of the ambiguity set which contains ηδ and
has a simpler structure. The set B̂δ(µN ) is defined as

B̂δ(µN ) =

{
µ̂N =

1

N

∑N

n=1
δX̂n

: X̂i ∈ Rd, (
1

N

∑N

i=1
d(Xi, X̂i)

p)1/p ≤ δ

}
. (3.11)

Lemma 3.4. Consider the empirical optimization problem

V e
θ (δ) = maxη∈B̂δ(µ)

Ex∼η

[
l(θ;x)

]
, (3.12)

obtained by replacing the ambiguity set Bδ(µ) in (3.4) by B̂δ(µ) as defined in (3.11). Under
Assumptions 3.1 and 3.2, we have

Vθ(δ) = V e
θ (δ) + o(δ) as δ ↓ 0. (3.13)

The set B̂δ(µN ) has been previously studied in the literature [26, 27] with focus on the setting
where N grows. Our paper provides a sensitivity analysis as δ ↓ 0. Finally, we write (3.12) into a
constrained problem perturbing the dataset directly

V e
θ (δ) = maxX̂1,...,X̂N

1

N

∑N

n=1
l(θ;Xn) subject to (

1

N

∑N

i=1
d(Xi, X̂i)

p)1/p ≤ δ. (3.14)

It is worth noticing that, as p → ∞, the constraint in (3.14) becomes an L∞-constraint, i.e.,
maxn(d(Xn, X̂n)) ≤ δ, which coincides with the pointwise adversarial attack setting.

4 Algorithms for Distributional Adversarial Attacks in Deep Hedging

In this section, we develop a numerical algorithm to solve the distributional adversarial attack problem
(3.4) via its tractable approximation (3.14) in the deep hedging framework. Drawing inspiration
from adversarial training methods in machine learning, we adapt the Fast Gradient Sign Method
(FGSM) [20] and Projected Gradient Descent (PGD) [21] to the distributional setting. For each
algorithm, we first propose a one-step FGSM-like perturbation to generate adversarial distributions
efficiently. We then extend this to a multi-step PGD-like algorithm, which iteratively refines the
perturbation with smaller steps while constraining the perturbation through a projection step.

We first focus on the Black-Scholes model, where the input information is exactly the single price
trajectory S, as detailed in the appendix. We will then explain how to extend the algorithm to models
with more than one trajectory, including the Heston model, where the input is a pair of price and
variance trajectories S and v. For the readers’ convenience, we focus on these two cases here and
present algorithms for a general setting in the supplementary material.

In deep hedging, with the loss function lDH(θ;S) as defined in (2.5), problem (3.14) becomes

maxŜ1,...,ŜN

1

N

∑N

n=1
lDH(θ; Ŝn) subject to (

1

N

∑N

n=1
d(Sn, Ŝn)

p)1/p ≤ δ. (4.1)
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We define the distance in the input space RT+1 as the L∞ distance, i.e.,

d(Sn, Ŝn) = ∥Sn − Ŝn∥∞ = maxt=0,...,T |Sn,t − Ŝn,t|. (4.2)

The infinity norm has the L1-norm as its dual norm, i.e., ∥g∥∗ =
∑T

t=0 |gt|, and h(x) = sign(x),
applied component-wise, satisfies ⟨h(x), x⟩ = ∥x∥∗, which implies Assumption 3.1.

Wasserstein Projection Gradient Decent (WPGD). Following the above setup, equation (3.9)
provides an asymptotic approximation of the worst-case distributional shift, leading to a one-step
perturbation of each path like FGSM

Sn 7→ Sn + δ · sign(gSn )∥gSn∥q−1
∗ Υ1−q, (4.3)

where gSn is the gradient of lDH(θ;Sn) with respect to Sn and Υ is defined as ( 1
N

∑N
n=1 ∥gSn∥

q
⋆)

1/q .
To propose an analogous PGD-like algorithm, we iteratively apply (4.3) with adjusted step-size β
and project the perturbed path back to a ball defined by the constraint in (4.1). During the projection,
each sample Ŝn is updated to

Ŝn ← Sn + max(1, δ/dist)(Ŝn − Sn), (4.4)

where dist = ( 1
N

∑N
i=1 d(Si, Ŝi)

p)1/p. The overall procedure, called the Wasserstein Projection
Gradient Descent (WPGD), is summarized in Algorithm 1.

Algorithm 1 Wasserstein Projection Gradient Descent (WPGD)

1: for i = 1 to num_of_iteration do
2: Compute Υ̂ := ( 1

N

∑N
n=1 ∥∇xlDH(θ; Ŝn)∥q⋆)1/q

3: for n = 1 to N do
4: Ŝn ← Ŝn + β · sign(∇xlDH(θ; Ŝn))∥∇xl(θ; Ŝn)∥q−1

∗ Υ̂1−q,
5: end for
6: Ŝ1, . . . , Ŝn ← ProjB̂δ(µ)

(Ŝ1, . . . , Ŝn)

7: end for

Wasserstein Budget Projection Gradient Descent (WBPGD). We can interpret d(Sn, Ŝn)
p in

(4.1) as a budget allocated to path Sn during the attack. This intuition motivates a reparameterization
of the perturbed sample as

Ŝn = Sn + budgetn × directionn, (4.5)

where for each sample Sn, the variable budgetn ∈ R≥0 represents the magnitude of the perturba-
tion, and directionn, with the same dimension as Sn, denotes its direction bounded within [−1, 1].
Then, the optimization problem (4.1) can be considered as allocating budgetn with the restriction
( 1
N

∑N
n=1 budgetpn)

1/p = δ and optimizing the perturbation direction for each sample. We have the
following one-step updates on budgetn and directionn based on (4.3).

Lemma 4.1. For the perturbation Ŝn satisfying (4.3), we have the equivalent representation

Ŝn = Sn + budgetn × directionn. (4.6)

Let gbn and gdn be the gradient of lDH(θ;Sn + b × d) with respect to b and d when b = 0 and
d = sign(∇SlDH(θ;Sn)), then

budgetn = δ · (gbn)q−1Υ1−q, directionn = sign(gdn). (4.7)

Furthermore, Υ in (4.3) satisfies Υ = ( 1
N

∑N
n=1(g

b
n)

q)1/q .

By applying the above updates iteratively with step size and projection, we propose a new PGD-
like algorithm that optimizes the budget allocation and perturbation direction for each sample
independently. The full procedure is summarized in Algorithm 2.
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Algorithm 2 Wasserstein Budget Projection Gradient Descent (WBPGD)

1: for i = 1 to num_of_iteration do
2: Compute gbn and gdn through back-propagation for n = 1, . . . , N

3: Compute Υ̂ := ( 1
N

∑N
n=1(g

b
n)

q)1/p

4: for n = 1 to N do
5: budgetn ← budgetn + β · (gbn)q−1Υ̂1−q

6: directionn ← directionn + β/δ · sign(gdn)
7: Clamp directionn to [−1, 1]
8: Ŝn ← Sn + budgetn × directionn
9: end for

10: Ŝ1, . . . , Ŝn ← ProjB̂δ(µ)
(Ŝ1, . . . , Ŝn)

11: end for

Extension to Heston model. We now consider how to extend the above algorithms to models with
several series of data as input, such as the Heston model. In this case, the network strategy uses two
input series: the price process S and the variance process v. During the attack phase, we perturb
either the price process S alone (referred to as S-Attack) or both the price and variance processes
simultaneously (referred to as SV-Attack). For S-Attack, we can directly apply the above algorithms.
For SV-attack, we first need to define, for a weight λ > 0, the distance on (S,V) as

d((S,V), (Ŝ, v̂)) = ((maxt|St − Ŝt|)p + (λ ·maxt|vt − v̂t|)p)1/p. (4.8)

The price and variance are weighted differently as they are on different scales. Under this distance,
we have d((S, v), (Ŝ, v̂))p = d(S, Ŝ)p + λpd(v, v̂)p and the following result by direct calculation.
Corollary 4.2. Under Assumption 3.1 and Assumption 3.2, for input x = (S, v) with distance defined
as (4.8), Υ becomes

Υ = (
∑N

n=1
∥∇Sl(θ;Sn, vn)∥q1 + ∥1/λ · ∇vl(θ;Sn, vn)∥q1)1/q (4.9)

and the perturbation (3.9) can be written as

S 7→ S + sign(∇Sl(θ;S, v))∥∇xl(θ;S, v)∥q−1
∗ Υ1−q (4.10)

v 7→ v + 1/λ · sign(∇vl(θ;S, v))∥1/λ · ∇vl(θ;S, v)∥q−1
∗ Υ1−q. (4.11)

This corollary reveals that applying an adversarial perturbation jointly to the price and variance
processes (S,v) under the defined metric (4.8) is equivalent to independently perturbing the price
series S and the scaled variance series λv separately using the l∞-distance. Consequently, in practical
implementation, we can conveniently treat S and λv as separate input sequences, by transforming
the original sample set {S1, . . . ,Sn} into {S1, λv1, . . . ,Sn, λvn}.

5 Experimental Results

5.1 Attacks on classical deep hedging strategies

We start with applying distributional adversarial attacks to neural network strategies trained in the
classical deep hedging [2] setting, i.e., on the Heston model with CVaR loss function. As detailed in
Section 4, both S-attack and SV-attack are implemented using the WPGD and WBPGD algorithms
introduced in Algorithms 1 and 2. The resulting hedging loss across varying perturbation magnitudes
δ is summarized in Table 1. The base case (δ = 0) corresponds to the unperturbed hedging loss.
Table 1 shows that the adversarial loss significantly increases as the attack magnitude (δ) increases.
Additionally, the WBPGD method consistently outperforms the WPGD method, especially at larger
perturbation magnitudes. Therefore, WBPGD will be used as the main attack method in subsequent
experiments.

To understand practical implications and quantify the extent of distortion in the path space due to
the attack, we assessed perturbation impacts through covariance matrix comparisons, as shown in
Table 2. The Frobenius distance between the covariance matrices of perturbed and original paths,
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given the original covariance matrix norm (≈ 386), indicates minor covariance distortions, especially
for small perturbations (δ < 0.1). Specifically, simultaneous perturbations on both price and variance
processes (SV-Attack) result in less pronounced covariance changes compared to perturbations only
on the price process (S-Attack). In the appendix we also report autocorrelation function comparisons.

Overall, together with with Table 1, these analyses show that adversarial attacks may significantly
deteriorate the hedging strategy’s performance, even under seemingly modest perturbations, thereby
underscoring the necessity for robust neural network models in financial applications.

Table 1: Robustness of classical deep hedging strategy under different attack methods and magnitudes
δ 0 0.01 0.03 0.05 0.1 0.3 0.5

S-WBPGD 1.9280 1.9642 2.0432 2.1356 2.4466 4.5771 8.0745
SV-WBPGD 1.9280 1.9659 2.0485 2.1451 2.4660 4.5898 7.7391
S-WPGD 1.9280 1.9642 2.0431 2.1343 2.4369 4.5148 7.5411
SV-WPGD 1.9280 1.9652 2.0457 2.1378 2.4393 4.4802 7.4678

Table 2: Distance between covariance matrices of perturbed and original paths
δ 0.01 0.03 0.05 0.1 0.3 0.5

S-Attack 0.1421 0.4038 0.6295 1.0248 2.3864 4.5057
SV-Attack 0.1355 0.3836 0.5929 0.9548 2.1787 3.8617

5.2 Adversarial training

We introduce adversarial training, which aims to enhance the robustness of strategies against distribu-
tional adversarial attacks and hence solve the DRO problem. We adopt the standard deep hedging
methodology [2] as baseline and expand it to incorporate adversarial examples during training.
Experimental details (e.g., network architecture, hyperparameters) are provided in the appendix.

Loss functions. In standard deep hedging, the network parameters θ are optimized using the
loss function defined by Lclean(θ) =

∑N
n=1 lDH(θ;Xn). In adversarial training, we separate the

optimization problem into two parts: the inner maximization problem and the outer minimization
problem. During the inner maximization part, the network parameters θ are fixed and we apply a
distributionally adversarial attack to find the worst-case perturbation. With the adversarial perturbation
X̂n obtained from the distributional adversarial attack, we can then minimize the expected loss
function with respect to the network parameters θ in the outer minimization part. Following [20, 22],
our training uses an enhanced loss function

Ladv(θ) = α ·
∑N

n=1
lDH(θ;Xn) +

∑N

n=1
lDH(θ; X̂n), (5.1)

where {X̂1, ..., X̂n} are adversarially perturbed versions of the original samples and α balances the
importance of clean versus adversarial samples. This leads to an iterative process of adversarial
training, alternating between generating adversarial samples and optimizing the network parameters.

Dataset. We conduct our experiments using three well-established financial models: Black–Scholes,
Heston, and the General Affine Diffusion (GAD) model. Here we present results for the Heston model
in Section 5.3, while model details and results for the other models are provided in the appendix.
Results for real market data are reported in Section 5.4 below. For each model, we generate extensive
training datasets of 100,000 sample paths. To examine robustness across varying dataset sizes, we
partition each dataset into smaller subsets with sizes N ranging from 5,000 to 100,000 samples.
Neural networks are independently trained on these subsets, and the average performance is assessed
and reported on a fixed test set, which contains 1 million paths, generated from the same distribution.
In addition, we generate a validation set of 100,000 paths, but only N paths will be used for validation,
so that the training is exposed to only a limited number of data depending on N .

Robustness of adversarial training. Strategies trained with our adversarial procedure achieve
lower losses under distributional perturbations than classical deep hedging strategies, indicating that
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the method effectively approximates the desired distributionally robust solution. Detailed experiments
and results are provided in the appendix.

5.3 Adversarial training improves out-of-sample and out-of-distribution performance

Out-of-sample performance. Given robust strategies alongside the corresponding clean strategies,
Figure 1a evaluates hedging performance on a test set of 1 million simulated paths approximating
the true data-generating distribution. The midline presents the average performance of strategies
trained on partitioned datasets of size N , while the shaded area shows the performance range. From
the plot, adversarial training significantly outperforms conventional methods, especially when data
is scarce: at N = 5,000, SV-Attack achieves a 54% lower mean hedging loss than clean training
(2.86 vs 6.21) while reducing worst-case outcomes by 66% (max loss 3.60 vs 10.62). When the data
size becomes larger, the empirical distribution becomes closer to the true underlying distribution,
and all strategies approach near-identical performance (∼1.95). However, the robust strategy still
outperforms the clean one even at relatively smaller scales. In addition, though S-Attack and SV-
Attack show comparable average performance, SV-Attack exhibits tighter variance across all N ,
indicating the advantage of allowing perturbation in the variance process.

Out-of-distribution performance. In prior experiments, test data were drawn from the same
distribution as the training data. To further assess generalizability, we now evaluate the strategy
on out-of-distribution (OOD) samples generated under perturbed parameter regimes. Specifically,
we generate 100 new parameter configurations by scaling the original values by factors uniformly
sampled from [0.9, 1.1], introducing bounded deviations of ±10%. For each perturbed configuration,
10,000 sample paths are simulated, resulting in a comprehensive OOD dataset of 1 million paths.
Figure 1b illustrates the strategy’s performance on this OOD dataset. Despite the models never
encountering these perturbed parameter regimes during training, the observed performance trends
align closely with the out-of-sample results in Figure 1a, underscoring the robustness of the approach
under parameter distribution shifts.

(a) Out-of-sample performance (b) Out-of-distribution performance

Figure 1: Comparative hedging performance under Heston models. Shaded regions indicate min-max
ranges across training partitions.

5.4 Experiments on Market Data

In this section, we evaluate the performance of adversarial training on real market data. Specifically,
we train hedging strategies using historical daily closing prices from leading companies in the S&P
500 index from [47], covering the period from 26 September 2008 to 8 March 2020. The time period
is chosen in line with the benchmark method [11] with which we compare our method.

For this evaluation, we constructed two synthetic datasets based on an additional model introduced in
the appendix. The FIX dataset is simulated using the General Affine Diffusion (GAD) model with
fixed parameters estimated from a 250-day period prior to 8 March 2020. The ROBUST dataset,
following [11], is also based on the GAD model but incorporates parameter robustness by sampling
parameters uniformly from intervals determined by the extreme values across 26 rolling estimates.
These estimates are obtained from 250-day windows updated every 100 days between 26 September
2008 and 8 March 2020. For each dataset (FIX and ROBUST), we generate 100,000 paths for training,
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validation, and testing. The starting price is set as the closing price of the respective company on 8
March 2020, and each trajectory is scaled to begin from 10.

Directly training on the FIX and ROBUST datasets corresponds to the methods proposed in Deep
Hedging [2] and Robust Deep Hedging [11], respectively. Building on this foundation, we implement
the adversarial framework described in Section 5.2, resulting in two adversarial variants of the
strategies. Similar to [11], we evaluate out-of-sample performance on real data by computing profit
and loss (PnL) for hedging strategies on the tested price trajectories starting form 9 March 2020.
Table 3 summarizes results for five companies.2, where bold entries indicate top-performing results
per company. To address the limitations of using a single price trajectory, we refer the reader to the
Appendix for details of the evaluation protocol and an additional evaluation result.

Several notable patterns emerge from this analysis. The clean strategy trained on the ROBUST dataset
generally outperforms the clean strategy trained on the FIX dataset. This aligns with the conclusion
of [11], which highlights the benefit of incorporating parameter uncertainty into the training data.
However, our proposed adversarial training framework consistently achieves better performance
overall. When trained on the FIX dataset, adversarial training yields notable improvements over clean
training across all companies. In cases where clean training on the ROBUST dataset performs better
than adversarial training on the FIX dataset, applying adversarial training to the ROBUST dataset
further enhances performance. These findings underscore the effectiveness of the adversarial training
framework we propose in addressing model misspecification and enhancing strategy robustness.

Table 3: Testing performance (P&L) on tested price trajectory
Method AAPL AMZN BRK-B GOOGL MSFT
Clean training on FIX [2] -2.261 -0.981 -2.086 -1.275 -4.341
Clean training on ROBUST [11] -0.830 -0.849 -0.281 0.026 -0.223
Adversarial training on FIX -0.579 -0.291 -0.127 -0.459 -0.564
Adversarial training on ROBUST -0.739 -0.860 -0.294 0.199 -0.144

6 Conclusion

We presented a robust deep hedging framework that leverages adversarial training under Wasserstein
ambiguity to address the challenges of model misspecification and distributional shifts. By formu-
lating the distributionally robust optimization problem as a minimax objective and approximating
it through a tractable reformulation, we demonstrated how deep hedging strategies can be trained
adversarially. Empirical results across a variety of widely used synthetic models and data regimes
show that adversarially trained strategies achieve improved out-of-sample and out-of-distribution
performance, especially under structural changes or limited data availability. Further experiments
on real market data suggest that these strategies also generalize well beyond simulated settings,
maintaining robustness in periods of market stress. These findings underscore the practical value of
robust training methods in financial environments characterized by uncertainty and instability.

Limitations and future work. Our adversarially trained deep hedging framework enhances ro-
bustness, but its performance remains sensitive to the choice of the Wasserstein radius, which may
differ across models. Future work could explore potentially stronger distributional adversarial attack
methods and explore extensions to alternative ambiguity set geometries beyond Wasserstein balls.

Acknowledgment GH’s research is supported by the Department of Mathematics at Imperial
College London through the Roth Scholarship. We also thank G-Research for the travel support to
attend NeurIPS.
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NeurIPS Paper Checklist

(i) Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and Section 1 accurately reflect our paper’s contributions and
scope on adversarial attack and training in deep hedging framework.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

(ii) Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of the work and future expectations at the end of the
paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

(iii) Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Complete proofs of all theoretical results are provided in the Appendix C, with
assumptions clearly stated.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
(iv) Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclose all the information needed to reproduce all the results of the
paper in Section 5.2 and Appendix D. The codes to reproduce the results are provided in
supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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(v) Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide codes in the supplemental material with clear instructions to
reproduce all experimental results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

(vi) Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe the experimental setup in detail in Section 5.2 and Appendix D,
with all necessary information provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

(vii) Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the out-of-sample and out-of-distribution performance in Fig 1
containing min-max ranges across training partitions.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

(viii) Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details of computer resources we use to train the neural network
in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

(ix) Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work does not violate NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

(x) Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section 1, we emphasize that potential issues of model misspecification,
which may result in suboptimal or even misleading decisions. This highlights the practical
importance of designing strategies that remain robust to small changes in the underlying
distribution.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

(xi) Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not pose a risk of potential misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

(xii) Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our paper does not use any existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

(xiii) New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

(xiv) Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

(xv) Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

(xvi) Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Wasserstein Distance

For a Wasserstein distributionally robust optimization problem (1.1), the ambiguity set Bδ(µ) is
defined as a Wasserstein ball centered at µ ∈ P(Rd), i.e.,

Bδ(µ) =
{
η ∈ P(Rd) : Wp(µ, η) ≤ δ

}
. (A.1)

For any p ∈ (1,∞), the Wasserstein distance Wp(µ, η) between two distributions µ and η is defined
as

Wp(µ, η) =
(

inf
γ∈Π(µ,η)

∫
Rd×Rd

d(x, y)pdγ(x, y)
)1/p

, (A.2)

where Π(µ, η) denotes the set of all joint distributions on Rd × Rd with marginals µ and η and d
denotes a metric on Rd.

For p = ∞, the Wasserstein distance becomes the minimal maximal displacement between two
distributions

W∞(µ, η) = inf
γ∈Π(µ,η)

{γ-ess sup d(x, y)}. (A.3)

Here, γ-ess sup denotes the essential supremum with respect to the measure γ over Rd × Rd.

B Deep Hedging Examples

Case 1: Black–Scholes Model with Entropic Risk Measure. In this scenario, we assume that the
asset price follows the classical Black–Scholes model

dSt = mSt dt+ σSt dWt, (B.1)

where m is the drift, σ is the volatility, and Wt is a standard Brownian motion. The process is
discretized in time for training the neural network.

Here, as the process is Markovian, we define the information process directly as the price process St,
which provides all the necessary information to make decisions at time t. The network strategy in
(2.1) is simplified to

δt = fθt(St). (B.2)

We consider hedging a European call option with terminal payoff

P (ST ) = max(ST −K, 0), (B.3)

where K is the strike price. To account for risk aversion in the objective function, we adopt the
entropic risk measure

ρ(Z) =
1

λ
logE

[
e−λZ

]
, (B.4)

where λ > 0 is the risk aversion parameter. This risk measure is commonly used in finance to model
the risk preferences of investors [44].

By [2, Example 3.8], the the entropic risk measure admits the OCE form

ρ(Z) = inf
ω∈R

{
ω + E

[
exp(−λ(Z + ω))− 1 + log λ

λ

]}
. (B.5)

Moreover, the corresponding optimal ω in (B.5) is given by

ω∗ =
1

λ
logE[λ · exp(−λZ)]. (B.6)

The corresponding deep hedging loss is then defined as

lDH(θ, ω, S) = ω − 1 + log λ

λ
+ exp(−λ(PnL(θ,S) + ω)). (B.7)
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Case 2: Heston Model with Conditional Value-at-Risk (CVaR). In this scenario, we assume that
the asset price follows the Heston stochastic volatility model:

dS1
t = mS1

t dt+
√
vtS

1
t dW

1
t , dvt = a(b− vt) dt+ σ

√
vt dW

2
t , (B.8)

where vt is the stochastic variance process, and the Brownian motions W 1
t and W 2

t satisfy

E[dW 1
t dW

2
t ] = ρ dt. (B.9)

The parameters a, b, and σ control the mean reversion speed, long-run variance level, and volatility
of volatility, respectively.

As vt itself is not directly tradable, to hedge the volatility risk, we introduce a second price process
representing a variance swap corresponding to the tradable asset.

The variance swap at time t is given by

S2
t =

∫ t

0

vs ds+
vt − b

a
(1− e−a(T−t)) + b(T − t), (B.10)

where the integral is approximated by the trapezium rule in practice.

We then hedge through trading both the underlying asset and the variance swap, i.e., we define the
combined price process as St = (S1

t , S
2
t ). Moreover, since the network needs both the price of

the underlying and variance to make decisions, the information process is defined as It = (S1
t , vt).

The Heston model is Markovian with respect to this information process, so the network strategy
becomes:

δt = fθt(S
1
t , vt). (B.11)

We again consider hedging a European call option with the same terminal payoff as in (B.3).

To evaluate hedging performance under downside risk, we adopt the Conditional Value-at-Risk
(CVaR) risk measure at confidence level α ∈ [0, 1)

CVaRα(Z) =
1

1− α

∫ 1−α

0

VaRγ(Z)dγ (B.12)

VaRγ(Z) = inf {z ∈ R : P(Z ≤ −z) < γ} . (B.13)

This risk measure captures the expected loss in the worst 1− α fraction of outcomes and is widely
used in risk management [48]. The CVaR can be written in OCE form

CVaRα(Z) = inf
ω∈R

{
ω +

1

1− α
E[max(−Z − ω, 0)]

}
, (B.14)

where the optimal ω is attained at the α-quantile of Z.

We then define the corresponding deep hedging loss as

lDH(θ, ω, S1, v) = ω +
1

1− α
max(−PnL(θ,S1, v)− ω, 0). (B.15)

Case 3: General Affine Diffusion (GAD) Model with Entropic Risk Measure. In this scenario,
we assume the asset price follows a General Affine Diffusion (GAD) process:

dSt = (b0 + b1St) dt+ (a0 + a1St)
γ dWt, (B.16)

where Wt is a standard Brownian motion and the parameters b0, b1, a0, a1, and γ control the drift
and diffusion characteristics.

To discretize the process for numerical implementation, we apply the Euler–Maruyama scheme.
Following the robust approach of [11], we introduce parameter uncertainty through intervals, where
at each path and each time step, parameters are drawn uniformly from their respective intervals:

for t = 1, . . . , T :

∆Wt ∼ N (0,∆t),

a0 ∼ U [a0, a0], a1 ∼ U [a1, a1], b0 ∼ U [b0, b0], b1 ∼ U [b1, b1],

St = St−1 + (b0 + b1St−1)∆t+ (a0 + a1St−1)
γ∆Wt. (B.17)
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By taking intervals as a point value, the above process approximates the classical GAD process.

As in the Black–Scholes model, the network strategy is defined using only the current asset price:

δt = fθt(St). (B.18)

Following the same setup as in [11], we consider hedging an Asian at-the-money put option with the
terminal payoff

P (S) = max

(
S0 −

1

T

T∑
t=1

St, 0

)
. (B.19)

We use the same entropic risk measure as in the Black-Scholes model (see Case 1 above).

C Proofs

Proof of Theorem 3.3. Our proof follows the approach of [23, Theorem 4.1], adapted to the classifi-
cation setting. Specifically, we build on [46, Theorem 2.1] and its proof, which we restate below as a
theorem.

Theorem C.1 (Adapted from [46, 23]). Under Assumption 3.1 and Assumption 3.2, the following
statements hold.

(i) The first-order sensitivity expansion as δ ↓ 0 ensures

V (δ) = V (0) + δΥ+ o(δ), where Υ := Ex∼µ [∥∇xl(θ;x)∥q∗]
1/q (C.1)

and q is the conjugate exponent of p, satisfying 1/q + 1/p = 1.

(ii) Furthermore, V (δ) can be approximated by

V (δ) = Eηδ
[l(θ, x)] + o(δ) as δ ↓ 0 (C.2)

where the perturbed distribution ηδ is explicitly given by

ηδ =
[
x 7→ x+ δ · h(∇xl(θ;x))∥∇xl(θ;x)∥q−1

∗ Υ1−q
]
#
µ. (C.3)

In the data-driven framework we choose µ = 1
N

∑N
n=1 δXn . Then Υ in (C.1) becomes the average

Υ = (
1

N

∑N

n=1
∥∇xl(θ;Xn)∥q∗)1/q (C.4)

and the perturbation ηδ in (C.3) becomes a uniform distribution on the perturbed dataset
{X̂1, . . . , X̂N}, where each X̂n satisfies

X̂n = Xn + δ · h(∇xl(θ;Xn))∥∇xl(θ;Xn)∥q−1
∗ Υ1−q. (C.5)

Proof of Lemma 3.4. By Theorem 3.3, ηδ is of the form 1
N

∑N
n=1 δX̂n

and satisfy

1

N

∑N

i=1
d(Xi, X̂i)

p =
1

N

∑N

i=1

∥∥δ · h(∇xl(θ;Xn))∥∇xl(θ;Xn)∥q−1
∗ Υ1−q

∥∥p
=

δp

Υ(q−1)p
· 1
N

∑N

i=1
∥h(∇xl(θ;Xn)∥∥∇xl(θ;Xn)∥(q−1)p

∗

=
δp

Υq
· 1
N

∑N

i=1
∥∇xl(θ;Xn)∥q∗

= δp (C.6)

where we use ∥h(x)∥ = sup∥x∥∗≤1⟨h(x), x⟩ = sup∥x∥∗≤1 ∥x∥∗ = 1, (q − 1)p = (1− 1/q)pq = q

for exponent conjugate and (C.4). Therefore, we have ηδ ∈ B̂δ(µ).
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Moreover, for µ = 1
N

∑N
n=1 δXn and µ̂ = 1

N

∑N
n=1 δX̂n

, we have

π =
1

N

∑N

n=1
δ(Xn,X̂n)

∈ Π(µ, µ̂). (C.7)

Therefore, by the definition of the Wasserstein distance,

Wp(µ, µ̂) ≤ (

∫
d(x, y)p dπ(x, y))1/p = (

1

N

∑N

i=1
d(Xi, X̂i)

p)1/p. (C.8)

If ( 1
N

∑N
i=1 d(Xi, X̂i)

p)1/p < δ, so is Wp(µ, µ̂), hence B̂δ(µ) ⊂ Bδ(µ).

Overall, we proved that ηδ ∈ B̂δ(µ) ⊂ Bδ(µ). Therefore, Eηδ
[l(θ;x)] ≤ V e

θ (δ) ≤ Vθ(δ) and

0 ≤ 1

δ
(Vθ(δ)− V e

θ (δ)) ≤
1

δ
(Vθ(δ)− Eηδ

[l(θ;x)]). (C.9)

By Theorem 3.3, RHS→ 0 as δ → 0, so 1
δ (Vθ(δ)− V e

θ (δ)) also converges to 0. In other words,

Vθ(δ) = V e
θ (δ) + o(δ) as δ ↓ 0. (C.10)

Proof of Lemma 4.1. For gSn = ∇Sl(θ;Sn), the updates (4.3) can be separated into updates on
budgetn and directionn

Υ = (
1

N

∑N

n=1
∥gSn∥∗)1/q, budgetn = ∥gSn∥q−1

∗ Υ1−q, directionn = sign(gSn ). (C.11)

By the chain rule, we have gbn = ⟨gSn , directionn⟩ = ∥gSn∥∗ and gdn = gSn/budgetn. The update above
becomes

Υ = (
1

N

∑N

n=1
(gbn)

q)1/q, budgetn = (gbn)
q−1Υ1−q, directionn = sign(gdn), (C.12)

which proves the lemma.

Corollary 4.2 is a special case of the following more general result, which we will prove next.

Corollary C.2. Consider the setting of Theorem 3.3 with inputs of the form x = (x1, ..., xd) ∈
Rd×(T+1) representing d-dimensional sequences of length T + 1. Set the norm as

∥x∥ := (

d∑
i=1

(λi ∥xi∥∞)p)1/p, (C.13)

where ∥ · ∥∞ is the infinity norm defined in the space of the trajectories RT+1. Over the input
samples {X1, . . . , XN}, where each sample contains d trajectories Xn = (X1

n, . . . , X
d
n), we define

gn = (g1n, . . . , g
d
n) = ∇xl(θ; (X

1
n, . . . , X

d
n)) to be the gradient with respect to the input.

In this setting, the perturbation (3.9) can be written as

X̂i
n = Xi

n +
1

λi
sign(gin)∥ 1

λi
gin∥

q−1
1 Υ1−q (C.14)

for i = 1, . . . , d and n = 1, . . . , N . Moreover, Υ becomes

Υ = (
∑N

n=1

∑d

i=1
∥ 1
λi
gin∥

q
1)

1/q (C.15)

where ∥ · ∥1 is the l1-norm defined on RT+1.

Proof. We first show that the norm in (C.13) has dual norm defined as

∥y∥∗ = (

d∑
i=1

( 1
λi
∥yi∥1)q)1/q. (C.16)
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With the standard pairing ⟨x, y⟩ =
∑

i⟨xi, yi⟩, we estimate

∣∣⟨x, y⟩∣∣ ≤ d∑
i=1

∥xi∥∞∥yi∥1 ≤ (

d∑
i=1

(λi ∥xi∥∞)p)1/p(

d∑
i=1

( 1
λi
∥yi∥1)q)1/q = ∥x∥ ∥y∥∗, (C.17)

where the inequalities hold by Hölder’s inequality.

By setting λi∥xi∥∞ ∝ 1
λi
∥yi∥1 and xi = ∥xi∥∞sign(yi) for each i, for any y there exists x such

that ∥x∥ = 1 and
∣∣⟨x, y⟩∣∣ = ∥x∥ ∥y∥∗. Hence (C.16) indeed defines the dual norm by definition. The

corresponding function h(y) such that ⟨h(y), y⟩ = y is defined as

h(y) =
1

∥y∥q−1
∗

( 1
λ1
sign(yi)∥ 1

λ1
yi∥q−1

1 , . . . , 1
λd

sign(yd)∥ 1
λd

yd∥q−1
1 ). (C.18)

Recall that the perturbation in (3.9) is

X̂n = Xn + δ · h(gn)∥gn∥q−1
∗ Υ1−q. (C.19)

By (C.18), h(gn) becomes,

h(gn) =
1

∥gn∥q−1
∗

( 1
λ1
sign(g1n)∥ 1

λ1
g1n∥

q−1
1 , . . . , 1

λd
sign(gdn)∥ 1

λd
gdn∥

q−1
1 ). (C.20)

Therefore, bringing (C.20) into (C.19), each trajectory in each sample Xn is perturbed to

X̂i
n = Xi

n + δ · ( 1

∥gn∥q−1
∗

1
λi
sign(gin)∥ 1

λ1
gin∥

q−1
1 ) · ∥gn∥q−1

∗ Υ1−q

= Xi
n +

δ

λi
sign(gin)∥ 1

λi
gin∥

q−1
1 Υ1−q (C.21)

for i = 1, . . . , d and n = 1, . . . , N . Finally,

Υ = (
∑N

n=1
∥gn∥q∗)1/q = (

∑N

n=1

∑d

i=1
∥ 1
λi

gin∥
q
1)

1/q. (C.22)

D Experimental Details

Here we provide additional experimental details regarding the adversarial training introduced in
Section 5.2. Readers can refer to the code for a comprehensive implementation.

Network Architecture. The neural network architecture remains consistent with the standard deep
hedging framework [2], characterized by decision-making at each time step t through:

δt = fθt
t (It), (D.1)

where It encapsulates all relevant information available at step t. In line with [2], each fθt
t comprises

two hidden layers, each with 20 neurons, batch normalization, and ReLU activation.

Training Procedure. Our training procedure begins with a preliminary phase of clean training to
establish stable initial parameters. Specifically, this phase lasts 100 epochs for the BS model and
300 epochs for the more complex Heston model. Subsequently, the network undergoes adversarial
training for an additional 200 epochs (BS) or 400 epochs (Heston), alternating adversarial example
generation and optimization of Eq. (5.1). For comparison, we train baseline networks (clean strategies)
exclusively with clean training for an equivalent total duration (300 epochs for BS, 700 epochs for
Heston).

Optimizer and Learning rate. Optimization utilizes the Adam optimizer, with decaying learning
rate—initially set to 0.005 for BS and 0.05 for Heston. The batch size is set to 10,000 unless the
dataset size N is smaller, in which case the entire dataset is utilized per batch.
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Hyperparameters. Critical adversarial training hyperparameters include α, tested at 0, 1, 10 to
gauge the relative influence of clean versus adversarial loss, and perturbation magnitude δ, explored
across {0.001, 0.003, 0.005, 0.01, 0.03, 0.05, 0.1, 0.3, 0.5}. Hyperparameter selection is performed
by evaluating performance on a validation set of size N and selecting the hyperparameters yielding
the best validation results.

Adversarial attack. During the experiment, we employ the WBPGD algorithm detailed in Algo-
rithm 2 for adversarial attacks. We execute this algorithm for 20 iterations, setting the step-size as
β = 4

20δ, which is dependent on the perturbation magnitude δ. Additionally, for the two models
considered, input trajectories have identical initial values across all samples. Consequently, we avoid
perturbing the initial values by explicitly setting both the perturbation and corresponding gradient
components to zero.

Computation time. All computational runs are conducted without GPU on AMD EPYC 7742
or Intel Icelake Xeon Platinum 8358 processors equipped with less than 64GB of memory. For
standard adversarial training involving 100,000 sample paths, the computation time is approximately
3 hours for the Black-Scholes model and around 10 hours for the Heston model. In contrast, classical
deep hedging without adversarial training requires roughly one-tenth of this computational effort.
The increased computational demand for adversarial training is reasonable, as each network update
includes an additional 20 iterations of adversarial perturbations, enhancing the network’s robustness.

Cash-invariant property of convex risk measure. By the cash-invariance property [44] of the
convex risk measure ρ, we have ρ(Z + c) = ρ(Z) − c for any random variable Z and constant c
(representing cash injection). Therefore, in practice, we directly set p0 in (2.2) to 0 as it does not
affect the optimization problem. Note that we are only interested in hedging here; for pricing the an
appropriate choice of p0 could be determined as described in [2].

E Additional Experimental Results

In this section, we provide supplementary experimental results to further validate and contextualize
the analyses presented in Section 5.

E.1 Autocorrelation function comparison

Building upon the analysis presented in Section 5.1, we further examine the impact of adversarial
perturbations by comparing the autocorrelation functions (ACFs) of the adversarially perturbed
trajectories against those of the original trajectories. For a path {xt}, the ACF is defined as:

ACF(x, lag) =
1

σ2

∑lag

i=0

1

N − i

∑N−i

t=1
(xt − x̄)(xt+i − x̄), (E.1)

where x̄ is the empirical mean of the path x, and σ2 is its empirical variance.

(a) S in S-Attack (b) S in SV-Attack (c) V in SV-Attack

Figure 2: Difference in Autocorrelation function (ACF) of perturbed paths for different δ values and
original paths.

Fig. 2 illustrates the difference in ACF of perturbed paths and original paths. It reveals minimal
deviations (< 0.005) in autocorrelation for perturbations with magnitude δ < 0.1. Despite these
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modest ACF differences, the corresponding hedging errors are notably large (see Table 1), thereby
undermining further that an adversarially perturbed sample path distribution may lead to significant
hedging losses, even though comparisons of ACF and covariance matrices suggest that the perturbed
distribution is close to the original distribution.

E.2 Robustness of adversarial training

For the robust strategy trained using adversarial training detailed in Section 5.2, we examine the adver-
sarial loss to confirm training effectiveness. We evaluate robust strategies trained under distributional
adversarial attacks with perturbation magnitudes δ = 0.01 and 0.1, comparing their performance
against a clean strategy trained on an identical dataset of 100,000 samples. Table 4 illustrates the
adversarial loss for each strategy under varying perturbation levels. The robust strategies consistently
yield significantly lower adversarial losses compared to the clean strategy, clearly demonstrating that
our robust training framework successfully provides a computationally tractable approximation of the
theoretically optimal distributionally robust optimization (DRO) solution, enhancing model resilience
against adversarial perturbations. Additionally, there is an expected trade-off observed in the loss: for
the robust strategy trained with δ = 0.1, the loss at no or small perturbation levels is higher, but the
adversarial loss at larger perturbation magnitudes is substantially reduced, aligning with the designed
training objective.

Table 4: Comparison of robust and clean strategies under different perturbation magnitudes
δ 0 0.01 0.03 0.05 0.1 0.3 0.5

clean 1.9162 1.9598 2.0530 2.1560 2.4659 4.6069 8.0379
robust (δ = 0.01) 1.9186 1.9541 2.0298 2.1130 2.3675 4.1626 7.1445
robust (δ = 0.1) 1.9796 2.0035 2.0534 2.1064 2.2549 3.1161 4.3156

E.3 Results on adversarial training

Optimal hyperparameter choice. As detailed in Section 3 and Appendix D, our robust training
framework introduces two critical hyperparameters: the attack radius δ controlling perturbation
magnitude, and the balance weight α modulating between nominal and adversarial losses. Through
grid search across (δ, α) ∈ [0.001, 0.5]×{0, 1, 10}, we identify optimal configurations that maximize
validation performance for each training set size N . The optimal hyperparameters for the Heston
model are presented in Table 5a where we can observe that the optimal δ decreases from 0.5 at
N = 5, 000 to 0.005 at N = 100, 000. This phenomenon arises because smaller training sizes induce
greater divergence between the empirical distribution µN and the true data-generating distribution µ,
thus larger adversarial perturbations (δ) are required to bridge this distributional gap. The optimal
parameters for the Black-Scholes model show a similar pattern, see Table 5b.

Detailed Heston results. Table 6 provides detailed out-of-sample performance results, supplement-
ing the information shown in Figure 1a. Specifically, the table shows improvements in robust strategy
performance as the sample size becomes large and demonstrates that the SV-Attack strategy exhibits
lower variance compared to the S-Attack strategy.

Black-Scholes results. Figure 3 and Table 7 show comprehensive results for the Black-Scholes
model, revealing patterns analogous to the Heston model. However, the gap between robust and
clean strategies is relatively smaller than in Heston. This aligns with expectations - the simpler
Black-Scholes model offers fewer exploitable gaps for adversarial training to mitigate, particularly in
volatility dynamics.
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Table 5: Hyperparameter Choices for Heston and Black-Scholes Models

(a) Heston Model Hyperparameters

Training S-Attack SV-Attack
Samples (N) δ α δ α

5,000 0.3 1 0.5 1
10,000 0.1 10 1.0 10
20,000 0.05 1 0.1 1
50,000 0.03 0 0.03 0
100,000 0.01 0 0.005 0

(b) Black-Scholes Model Hyperparameters

Training Samples (N) δ α

5,000 0.01 10
10,000 0.005 10
20,000 0.003 10
50,000 0.001 1
100,000 0.001 0

Table 6: Detailed out-of-sample performance across sample sizes (N) for SV-Attack, S-Attack, and
Clean strategies on Heston model

Strategy N Avg Loss Min Loss Max Loss Variance

SV-Attack 5,000 2.8644 2.7386 3.5975 0.0346
SV-Attack 10,000 2.5460 2.5173 2.6087 0.0008
SV-Attack 20,000 2.1063 2.0928 2.1282 0.0002
SV-Attack 50,000 1.9706 1.9669 1.9742 2.6e-5
SV-Attack 100,000 1.9469 1.9469 1.9469 –

S-Attack 5,000 2.9646 2.7605 4.5912 0.1574
S-Attack 10,000 2.5287 2.4694 2.6629 0.0028
S-Attack 20,000 2.1259 2.1027 2.1489 0.0004
S-Attack 50,000 1.9705 1.9665 1.9745 3.2e-5
S-Attack 100,000 1.9472 1.9472 1.9472 –

Clean 5,000 6.2095 4.7379 10.6187 2.0887
Clean 10,000 3.0000 2.8068 3.1755 0.0129
Clean 20,000 2.1955 2.1329 2.2266 0.0014
Clean 50,000 1.9773 1.9705 1.9841 9.2e-5
Clean 100,000 1.9503 1.9503 1.9503 –

Table 7: Detailed BS model performance metrics across sample sizes (N) for robust and Clean
strategies

Strategy N Avg Loss Min Loss Max Loss

Robust 5,000 2.4109 2.4040 2.4195
Robust 10,000 2.3947 2.3920 2.3976
Robust 20,000 2.3855 2.3852 2.3861
Robust 50,000 2.3798 2.3794 2.3802
Robust 100,000 2.3769 2.3769 2.3769

Clean 5,000 2.4136 2.4055 2.4208
Clean 10,000 2.3976 2.3947 2.3993
Clean 20,000 2.3860 2.3854 2.3866
Clean 50,000 2.3798 2.3794 2.3801
Clean 100,000 2.3772 2.3772 2.3772
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Figure 3: Out-of-sample hedging performance comparison under Black-Scholes dynamics, comparing
robust training with clean strategies. Shaded regions indicate min-max ranges across training
partitions.

E.4 Results on Heston models with transaction costs

In this section, we provide an additional example demonstrating the effectiveness of adversarial
training by considering the Heston model with transaction costs. Following Equation (2.2), we
modify the profit and loss (P&L) by incorporating a transaction cost term, which is proportional to
the value of the assets traded:

PnL(θ, I) = p0 +
∑T

t=1

(
δ⊤t (θ, I)(St+1(I)−St(I)) + ϵS⊤

t (I)|δt(θ, I)− δt−1(θ, I)|
)
−P (ST (I))

where ϵ denotes the transaction cost rate, which we set to 0.005 in this experiment.

Apart from adding an additional transaction cost term to the loss function, the experimental setup
follows the same procedure described in Sections 5.2 and Appendix D. To account for transaction
costs, we also consider a recurrent neural network architecture, in which the portfolio holding at each
time step is passed as input to the next. In this setting, the update rule in (B.11) becomes

δt = fθt(S
1
t , vt, δt−1). (E.2)

We refer to the original feedforward network as NetSim, and the recurrent version as NetRec.

As in Figure 1, we report the out-of-sample performance of both adversarial and clean training in
Figure 4 and Figure 5 on NetSim and NetRec, respectively. The results show that the adversarially
trained strategy consistently outperforms the clean strategy. However, this behavior differs from the
case without transaction costs: instead of plateauing as the sample size increases, the hedging loss
decreases more rapidly. We also observe that although NetRec is more complex, its performance
does not outperform NetSim. Both findings may indicate that even with 100,000 samples, the data
does not fully capture the underlying distribution in the more complex setting. Under such conditions,
adversarial training demonstrates clear advantages over clean training. These findings further highlight
the potential of adversarial methods to enhance robustness in data-limited or distributionally uncertain
environments.

E.5 Results on real market data

In Section 5.4, we evaluated performance on a single real price trajectory, following the approach
of [11]. However, relying on a single path leads to the absence of validation data and exposure to
training randomness. Hence, we adopt the following evaluation protocol. For adversarial training,
we use N = 100,000 training samples and report the average out-of-sample performance across six
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Figure 4: Out-of-sample hedging performance comparison under Heston model with transaction cost
on NetSim, comparing among clean strategies and robust strategies under S-attack and SV-attack.

Figure 5: Out-of-sample hedging performance comparison under Heston model with transaction cost
on NetRec, comparing among clean strategies and robust strategies under S-attack and SV-attack.
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strategies corresponding to (α, δ) ∈ {0, 1} × {0.03, 0.05, 0.1}. For clean training, we average the
results over three independent runs with identical settings.

For a more thorough assessment of the model performance, we construct a more comprehensive
REAL dataset by applying a rolling window of length 30 over the period from 7 March 2020
to 30 September 2021. Each path is normalized to start at a price of 10, yielding a total of 300
sample trajectories. We adopt the entropic risk measure to evaluate strategy performance, thereby
avoiding the need to compute option prices—one of the key motivations for using this loss function.
Performance results are summarized in Table 8, where lower values indicate better outcomes, and
bold entries highlight the best performance in each column. We observe that the adversarial strategy
trained on the FIX dataset consistently outperforms all others across all stocks. In contrast, clean
training on the ROBUST dataset does not offer notable improvements over FIX dataset, and applying
adversarial training to the ROBUST dataset further degrades performance. These findings suggest
that explicitly incorporating robust parameter intervals into the data generation process may be
unnecessary—or even counterproductive. Since adversarial training already mitigates the impact of
model misspecification, the use of parameter intervals estimated from historical data that may no
longer reflect current market conditions can introduce outdated constraints, ultimately diminishing
the relevance and effectiveness of the strategy.

Table 8: Testing performance (entropic loss on REAL dataset)
Method AAPL AMZN BRK-B GOOGL MSFT
Clean training on FIX [2] 0.2920 0.2971 0.1993 0.2608 0.3269
Clean training on ROBUST [11] 0.3053 0.3005 0.2410 0.3797 0.2692
Adversarial training on FIX 0.2517 0.2408 0.1692 0.2401 0.1891
Adversarial training on ROBUST 0.3077 0.3148 0.2437 0.3965 0.2776

Finally, we complement that analysis by reporting the performance on the FIX and ROBUST datasets
in Tables 9 and 10, respectively. Similar to Black-Scholes and Heston model, neural networks are
independently trained on subsets of size N , and we compute the average performance on the test
set. For each adversarial training result, the hyperparameters, including the attack radius δ and the
balance weight α, are selected using a validation set of size N .

When models are trained and evaluated on the FIX dataset, we observe trends consistent with those
seen in the Black-Scholes and Heston experiments: adversarial training consistently outperforms
clean training, with the advantage especially pronounced when the sample size is small, suggesting
particular effectiveness in data-scarce regimes. The ROBUST dataset, which generalizes the FIX
dataset by incorporating model misspecification, further highlights the benefits of adversarial train-
ing—strategies trained adversarially on FIX significantly outperform their clean-trained counterparts,
demonstrating enhanced robustness to distributional shifts. When models are trained directly on the
ROBUST dataset, the pattern becomes more nuanced: performance does not always improve with
larger sample sizes, yet adversarial training still generally provides a performance edge. Together,
these results underscore the practical value of adversarial training in improving generalization under
complex and uncertain market conditions.

F Extension to other models

In Section 3, we introduced distributional adversarial attack algorithms specifically for the Black-
Scholes model, with input I = S, and the Heston model, with input I = (S1,v). In this section, we
generalize these approaches to an arbitrary model characterized by input trajectories I = (I1, . . . , Id).

We begin by defining a distance measure on the general input space

d(I, Î) =

(
d∑

i=1

(λi ·max
t
|Iit − Îit |)p

)1/p

, (F.1)

analogous to the distance measure introduced for the Heston model in (4.8). This definition allows
distinct perturbation scales for each trajectory, consistent with the Heston model framework.
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Table 9: Performance comparison on FIX dataset
Company Method N=5000 10000 20000 50000 100000

Trained on FIX dataset

AAPL
Adversarial 0.1737 0.1752 0.1706 0.1667 0.1643
Clean 0.1960 0.1943 0.1782 0.1734 0.1745
Improvement 0.0223 0.0191 0.0076 0.0067 0.0101

AMZN
Adversarial 0.1927 0.1785 0.1763 0.1753 0.1737
Clean 0.2401 0.1970 0.1867 0.1782 0.1770
Improvement 0.0474 0.0185 0.0104 0.0029 0.0033

BRK-B
Adversarial 0.1412 0.1368 0.1353 0.1353 0.1352
Clean 0.1867 0.1649 0.1523 0.1408 0.1363
Improvement 0.0455 0.0281 0.0169 0.0055 0.0011

GOOGL
Adversarial 0.2258 0.2025 0.1985 0.1981 0.1976
Clean 0.2955 0.2224 0.2065 0.2005 0.1984
Improvement 0.0696 0.0199 0.0080 0.0023 0.0008

MSFT
Adversarial 0.1549 0.1491 0.1431 0.1436 0.1418
Clean 0.1878 0.1789 0.1551 0.1479 0.1473
Improvement 0.0329 0.0298 0.0120 0.0043 0.0055

Utilizing Corollary C.2, a direct generalization of Corollary 4.2, the update rule for each scaled
trajectory is given by:

λiÎ
i
n = λiI

i
n + δ · sign(

1

λi
gin)∥

1

λi
gin∥

q−1
1 Υ1−q, (F.2)

which closely parallels the update step for the complete sample set

În = In + δ · h(gn)∥gn∥q−1
∗ Υ1−q. (F.3)

Furthermore, the total distance
∑N

n=1 d(In, În)
p and the term Υp used during the iterative update

process can naturally be decomposed into sums across both trajectory dimensions (i = 1, . . . , d) and
individual samples (n = 1, . . . , N ).

Consequently, similar to the approach in the Heston model, each trajectory will be independently
perturbed according to an l∞-norm metric, effectively transforming the original set of samples into a
structured set of scaled trajectories {λiI

i
n}

i=1,...,d
n=1,...,N .

32



Table 10: Performance comparison on ROBUST dataset
Company Method N=5000 10000 20000 50000 100000

Trained on FIX dataset

AAPL
Adversarial 0.4346 0.5023 0.4748 0.4404 0.4490
Clean 0.4387 0.5354 0.5679 0.5328 0.4831
Improvement 0.0041 0.0331 0.0931 0.0924 0.0341

AMZN
Adversarial 0.4983 0.5342 0.5875 0.5958 0.5994
Clean 0.5859 0.6509 0.6677 0.6743 0.6737
Improvement 0.0876 0.1167 0.0802 0.0785 0.0743

BRK-B
Adversarial 0.5548 0.5330 0.5416 0.4872 0.5029
Clean 0.6408 0.6733 0.6876 0.6441 0.6351
Improvement 0.0860 0.1403 0.1459 0.1569 0.1322

GOOGL
Adversarial 0.5276 0.6236 0.6563 0.6054 0.6055
Clean 0.5378 0.6707 0.6814 0.6775 0.6844
Improvement 0.0102 0.0471 0.0252 0.0721 0.0788

MSFT
Adversarial 0.5859 0.6357 0.5716 0.5505 0.5678
Clean 0.6358 0.6870 0.6993 0.6847 0.7124
Improvement 0.0499 0.0513 0.1276 0.1342 0.1446

Trained on ROBUST dataset

AAPL
Adversarial 0.3936 0.3607 0.3463 0.3703 0.4325
Clean 0.4229 0.3705 0.3699 0.3875 0.4510
Improvement 0.0293 0.0098 0.0237 0.0172 0.0185

AMZN
Adversarial 0.4276 0.3525 0.2701 0.2401 0.2470
Clean 0.4505 0.3627 0.2633 0.2647 0.3065
Improvement 0.0229 0.0102 -0.0068 0.0246 0.0595

BRK-B
Adversarial 0.3702 0.2849 0.1912 0.2123 0.2467
Clean 0.4117 0.3618 0.2265 0.1800 0.3076
Improvement 0.0415 0.0769 0.0354 -0.0323 0.0609

GOOGL
Adversarial 0.3748 0.2584 0.1434 0.0985 0.1427
Clean 0.4222 0.3351 0.2100 0.1276 0.2207
Improvement 0.0474 0.0766 0.0667 0.0291 0.0780

MSFT
Adversarial 0.3885 0.2800 0.1945 0.2170 0.2399
Clean 0.4115 0.3473 0.2535 0.2674 0.2944
Improvement 0.0230 0.0673 0.0590 0.0504 0.0544
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