
Published as a conference paper at ICLR 2024

ENCODING UNITIG-LEVEL ASSEMBLY GRAPHS WITH
HETEROPHILOUS CONSTRAINTS FOR METAGENOMIC
CONTIGS BINNING

Hansheng Xue1,2, Vijini Mallawaarachchi3, Lexing Xie1, Vaibhav Rajan2∗
1School of Computing, Australian National University, Canberra, Australia
2School of Computing, National University of Singapore, Singapore
3College of Science and Engineering, Flinders University, Adelaide, Australia
{hansheng.xue,lexing.xie}@anu.edu.au, vaibhav.rajan@nus.edu.sg
vijini.mallawaarachchi@flinders.edu.au

ABSTRACT

Metagenomics studies genomic material derived from mixed microbial commu-
nities in diverse environments, holding considerable significance for both human
health and environmental sustainability. Metagenomic binning refers to the clus-
tering of genomic subsequences obtained from high-throughput DNA sequencing
into distinct bins, each representing a constituent organism within the commu-
nity. Mainstream binning methods primarily rely on sequence features such as
composition and abundance, making them unable to effectively handle sequences
shorter than 1,000 bp and inherent noise within sequences. Several binning tools
have emerged, aiming to enhance binning outcomes by using the assembly graph
generated by assemblers, which encodes valuable overlapping information among
genomic sequences. However, existing assembly graph-based binners mainly fo-
cus on simplified contig-level assembly graphs that are recreated from assembler’s
original graphs, unitig-level assembly graphs. The simplification reduces the res-
olution of the connectivity information in original graphs. In this paper, we design
a novel binning tool named UNITIGBIN, which leverages representation learning
on unitig-level assembly graphs while adhering to heterophilous constraints im-
posed by single-copy marker genes, ensuring that constrained contigs cannot be
grouped together. Extensive experiments conducted on synthetic and real datasets
demonstrate that UNITIGBIN significantly surpasses state-of-the-art binning tools.

1 INTRODUCTION

Metagenomics involves the analysis of genetic materials originating from mixed microbial commu-
nities present in various environments (Kaeberlein et al., 2002). It offers a suite of tools rooted in
genome sequencing to address crucial questions related to human health and environmental sustain-
ability. As an illustration, the Human Microbiome Project (Turnbaugh et al., 2007) uses metage-
nomic analysis techniques to acquire valuable insights into the intricate microbial communities re-
siding in human body. This effort also aids in identifying microbial species associated with various
diseases present in the human gut (Nayfach et al., 2019). In a standard metagenomic analysis work-
flow, genetic materials are gathered from the microbial community and then processed through a
sequencing platform to generate DNA sequences commonly referred to as reads. Since these genetic
materials are mixed together, it’s uncertain which species each read belongs to. A core challenge in
downstream analysis is to determine the species present within the input sample by examining these
reads. However, these reads are too short for direct analysis. Many metagenomic techniques use as-
sembly graphs to assemble these short reads into longer DNA sequences known as unitigs. Contigs
are then formed by combining one or multiple connected unitigs (Xiang et al., 2023). In an assembly
graph, each vertex corresponds to a unitig, and each edge represents the overlapping relationships
between two unitigs (Nurk et al., 2017; Kolmogorov et al., 2020). Contigs are represented as either

∗Corresponding author.

1

Published as a conference paper at ICLR 2024

a single vertex or a path comprising several vertices within the assembly graph. Contigs binning
refers to the clustering of these contigs into distinct bins corresponding to constituent genomes.

Many existing metagenomic binning tools rely on statistical information extracted from contigs
themselves, including nucleotide composition and abundance features (Breitwieser et al., 2019;
Yue et al., 2020). These tools do not take into account the homophily information within the as-
sembly graph (Barnum et al., 2018), which suggests that sequences connected to each other in
the assembly graph are more likely to belong to the same species. In addition, inherent noise
within sequences presents additional challenges for these sequence feature-based binning meth-
ods. Several binning tools have been developed recently to leverage assembly graphs, including
GraphBin (Mallawaarachchi et al., 2020) and GraphMB (Lamurias et al., 2022). However, instead
of directly using unitig-level assembly graphs produced by the assembler, they simplify original
graphs and re-construct contig-level assembly graphs, where vertices represent contigs and edges
represent their overlaps. However, the simplification reduces the resolution of the connectivity in-
formation in unitig-level assembly graphs and may introduce erroneous edges (Xiang et al., 2023).
Moreover, many existing binning tools face difficulties and exhibit low recall values when handling
short sequences, often shorter than 1,000 bp, which are commonly excluded from analysis.

Additional biological information, such as single-copy marker genes, can also be exploited to im-
prove binning results (Albertsen et al., 2013; Dupont et al., 2012). Single-copy marker genes are
genes that occur only once in each species. If two contigs share the same single-copy marker gene, it
is highly likely that they belong to different species. Some binning tools have utilized this additional
information from single-copy marker genes to estimate the initial number of bins or enhance the
quality of contig binning results (Mallawaarachchi & Lin, 2022; Lamurias et al., 2023). However,
there are limited graph neural network models that can be directly employed to model the unitig-level
assembly graph with heterophilous relationships. Moreover, dealing with the large-scale character-
istics of unitig-level assembly graphs in real metagenomic data poses significant challenges for the
learning process. In this paper, we develop a graph neural network framework designed to model the
unitig-level assembly graph while also adhering to heterophilous constraints imposed by single-copy
marker genes, called UNITIGBIN. The contributions of this paper are listed as follows:

• To the best of our knowledge, this is the first use of graph neural networks to model the
unitig-level assembly graph in the field of metagenomic contig binning.

• We devise a novel model for constraint-based graph learning, UNITIGBIN-Learning, which
captures the unitig-level assembly graph with constraints by employing a diffusive convo-
lution and optimizing triplet constraints. A p-batch strategy is designed for parallelization.

• We devise a novel UNITIGBIN-Binning framework that leverages a Matching algorithm to
initialize markered contigs, uses Propagating labels to annotate unmarked contigs mean-
while satisfying constraints, and employs a local refining strategy to fine-tune final binning.

• Extensive experiments on synthetic and real datasets show that UNITIGBIN significantly
outperforms state-of-the-art binners in terms of binning purity and completeness, regardless
of whether graphs are from standard metagenomic assemblers, metaSPAdes and metaFlye.

2 RELATED WORK

Contigs binners. Despite contigs being assembled from short reads using assembly graphs, the
majority of existing binners overlook the homophily information present in these assembly graphs.
Instead, these binning tools rely on composition (normalized oligonucleotide, i.e., short strings of
length k, frequencies) and coverage (average number of reads aligning to each position of the con-
tig) information to perform contig binning. For example, MetaWatt (Strous et al., 2012) leverages
multivariate statistics and Markov models to bin contigs. CONCOCT (Alneberg & et al., 2014)
combines the variational Bayesian model selection and Gaussian mixture model to cluster contigs
into bins. MaxBin2 (Wu et al., 2016) designs an expectation-maximization algorithm that uses both
composition and coverage information to iteratively bin the contigs. BusyBeeWeb (Laczny et al.,
2017) is a web application that uses a bootstrapped supervised binning approach for contig binning.
MetaBAT2 (Kang et al., 2019) is a graph partitioning approach that uses contigs’ composition to con-
struct the graph. SolidBin (Wang et al., 2019) uses a semi-supervised spectral clustering algorithm
combined with additional biological knowledge. MetaBinner (Wang et al., 2023) is an ensemble
binning tool that can integrate various types of features. In addition, several binning tools have been

2

Published as a conference paper at ICLR 2024

Figure 1: The framework of UNITIGBIN consists of Learning, Matching, Propagating, and Refining.

developed to enhance performance using deep learning techniques. For instance, VAMB (Nissen
et al., 2021) uses deep variational autoencoders to learn both composition and coverage informa-
tion. CLMB (Zhang et al., 2022) employs deep contrastive learning techniques to produce robust
results even from noisy data. SemiBin (Pan et al., 2022) designs a semi-supervised Siamese neu-
ral network incorporating must-link and cannot-link constraints obtained from reference genomes.
These binning tools do not utilize assembly graphs and often omit short contigs because composition
and coverage features are less reliable for short contigs, leading to lower recall values.

Assembly graph improves binning. To enhance the binning outcomes, recent bin-refinement meth-
ods (Mallawaarachchi et al., 2020) have introduced the utilization of assembly graphs. However,
these bin-refinement tools are not independent and require the initial binning results from existing
binners as a starting point. MetaCoAG (Mallawaarachchi & Lin, 2022) is a standalone binning tool
capable of integrating composition, abundance, and assembly graph information to enhance bin-
ning performance. In addition, several methods have been developed to use graph neural networks
to model the assembly graph. For instance, GraphMB (Lamurias et al., 2022) uses a variational
autoencoder model to encode both composition and abundance and then feeds these features into
graph neural networks for contigs binning. This approach does not incorporate additional infor-
mation like heterophilous constraints from single-copy marker genes. RepBin (Xue et al., 2022)
designs a self-supervised graph learning framework for modeling assembly graphs while encoding
prior constraints. Then, a semi-supervised label propagation model is employed for contig binning.
CCVAE (Lamurias et al., 2023) develops a variational autoencoder to simultaneously learn the as-
sembly graph and the information of single-copy marker genes and then uses a clustering algorithm
for contig binning. A common limitation of these graph-based binning tools is their applicability
solely to contig-level assembly graphs, which are generated from the unitig-level assembly graph
using specific strategies. The transition from unitig-level to contig-level reduces the resolution of
connectivity information in the original graph and may introduce errors due to the chosen strategy.

3 METHODOLOGY

Preliminaries. Given a unitig-level assembly graph G=(V,E, P,X) along with its constraints C.
The output embedding for unitigs and contigs in the graph are d-dimensional vectors Z ∈ R|V |×d

and Ẑ ∈ R|P |×d, and contigs binning results are denoted as B={bi ∈ RK , i ∈ |P |}, where K de-
notes the number of bins. In the assembly graph G, V is the nodes or unitigs set, E={(vi, vj)|vi, vj ∈
V } denotes edges indicating the overlap between unitigs, P={(vi, ...vj , ...vk)|vi, vj , vk ∈ V } cor-
responds to the paths or contigs within the graph, and X={xv|v ∈ V } are features associated with
nodes. Heterophilous constraints from the single-copy marker genes are C={(pi, ..., pj)|pi, pj ∈ P}.
The objective of binning metagenomic contigs is to assign a label bi ∈ B to each contig pi ∈ P .

Preprocessing. The heterophilous constraints C are created by employing the FragGeneScan (Rho
et al., 2010) and HMMER (Eddy, 2011) tools to detect contigs containing single-copy marker genes,
following a similar approach as MaxBin (Wu et al., 2016) and MetaCoAG (Mallawaarachchi & Lin,
2022). When contigs belong to the same constraint set, it implies that these contigs should not be
grouped together in pairs within the bins. The unitig-level assembly graphs are constructed from two
widely used assemblers: metaSPAdes (Nurk et al., 2017) and metaFlye (Kolmogorov et al., 2020).

Prior to modeling the assembly graph and clustering contigs, we initially perform preprocessing op-
erations based on known knowledge (unitig-level assembly graph G and heterophilous constraints
C). Two operators are introduced in UNITIGBIN, i) Graph disentangling and ii) Contigs sampling.
Graph disentangling is designed to separate contigs within the unitig-level assembly graph. For ex-
ample, when constraints suggest that contig A and contig B should belong to distinct bins, yet these

3

Published as a conference paper at ICLR 2024

two contigs share an overlapping unitig in the assembly graph (as shown in Figure 1), we create a
new unitig by duplicating the original unitig 5 to disentangle the assembly graph. Contigs sampling
is devised to create positive relationships among contigs by leveraging the inherent structure of the
assembly graph. Different from conversion strategies used in GraphBin and GraphMB to construct
contig-level assembly graphs. Here, we focus on determining whether two paths are directly con-
nected or linked by only a single hop (Miller et al., 2010); in this case, we establish a positive edge
between these contigs. The sampled positive contigs set is represented asO = {(pi, pj)|pi, pj ∈ P}.
Overview. UNITIGBIN consists of two main components: Learning, which uses a graph neural
network to model the unitig-level assembly graph while adhering to constraints, and Binning, a
contig-level framework. In the Binning stage, a Matching algorithm is employed to initialize mark-
ered contigs, Propagating labels are used to annotate unmarked contigs while satisfying constraints,
and a local Refining strategy is incorporated to fine-tune binning assignments (refer to Figure 1).

3.1 Learning: REPRESENTING UNITIG-LEVEL ASSEMBLY GRAPH WITH CONSTRAINTS

The UNITIGBIN-Learning model aims to obtain latent representations for both unitigs/nodes Z and
contigs/paths Ẑ considering both unitig-level assembly graph G and heterophilous constraints C. In
this section, we will introduce the Learning framework in three components, a) Diffusion encoder-
decoder framework, b) Triplet Gaussian constraints optimization, and c) p-Batch parallelization.

3.1.1 DIFFUSION ENCODER-DECODER FRAMEWORK

Figure 2: The framework of the UNITIGBIN-Learning.

An encoder-decoder architecture is
adopted as the foundational learn-
ing framework in Learning, which
comprises two primary components:
a graph diffusive convolution en-
coder (Klicpera et al., 2019) and
an inner-product decoder. The dif-
fusive encoder captures the graph’s
topology and initial node features,
while the inner-product decoder re-
constructs the graph’s structure using
learned features from the diffusive encoder. Minimizing the reconstruction loss, which measures the
dissimilarity between the original and reconstructed graph, allows us to obtain the node embeddings.

Encoder-Decoder. In Learning, a variational autoencoder (Kingma & Welling, 2013) is estab-
lished. A denotes the adjacency matrix of a unitig-level assembly graph with self-loops (A=A+IN ,
IN is the unit matrix), D stands for its diagonal degree matrix, i.e., Dii=

∑N
j=1 Aij . We use DIF-

FCONV to symbolize the diffusive convolution. Then, the diffusive encoder can be formulated as:
q(Z|X,A)=

∏N
i=1 q(zi|X,A), with q(zi|X,A)=N (zi|µi,diag(σ

2
i)), where µ=DIFFCONVµ(H,A),

log σ=DIFFCONVσ(H,A), and H=DIFFCONV(X,A). The inner-product decoder is calculated as
p(Â|Z)=

∏N
i=1

∏N
j=1 p(Aij |zi, zj), with p(Aij=1|zi, zj)=Sigmoid(z⊤i zj). The object is as follows:

Lg = Eq(Z|X,A)[log p(Â|Z)]−KL[q(Z|X,A)||p(Z)], (1)

where p(Z)=
∏

i p(zi)=
∏

iN (zi|0, I) is a Gaussian prior. A weighted cross entropy loss (Kipf &
Welling, 2016) is used in Equation 1 to measure the reconstruction error between A and Â. KL(·) is
the divergence function to measure the similarity between the distribution of q(Z|X,A) and p(Z).

Diffusive convolution. Following RepBin (Xue et al., 2022), we also use the PageRank-based
diffusion (Page et al., 1999) to model the unitig-level assembly graph. To provide a brief explana-
tion, when considering a node i with vectorial feature xi, the iterative calculation of its diffusive
feature follows the equation PPR(xi)=(1-α)APPR(xi)+αxi, where α ∈ (0, 1] is the probability of
transitioning to a different state. The transitions state for node i can be computed as PPR(xi)=α(IN -
(1-α)A)−1xi. The diffusive convolution and layer-wise propagation rule can be formulated as:

H l+1 = σ(DIFFCONV ·H lΘl), DIFFCONV = α[IN − (1− α)D−1/2AD−1/2]−1 (2)

where σ(·) denotes a non-linear activation function, and Θl ∈ R|V |×dl is a l-layer trainable transfor-
mation matrix, dl is the embeddings dimension in the l-layer, and H0=X . By optimizing the object

4

Published as a conference paper at ICLR 2024

in Equation 1, latent embeddings for unitigs can be obtained, Z ∈ R|V |×d. A readout function can
be used to generate features for contigs, Ẑ=R(Z), with Ẑi= 1

|Pi|
∑

v∈Pi
Zv , and Ẑ ∈ R|P |×d.

3.1.2 TRIPLET GAUSSIAN CONSTRAINTS OPTIMIZATION

In constraints C, each set signifies that certain contigs contain the identical marker gene and
these contigs must not be grouped pairwise into the same bin. In Learning, we convert contig-
constraints C into the pairwise contig-constraints set C′ and pairwise unitig-constraints setM′. In
each pairwise constraint (i, j) ∈ M′, it indicates that unitig i and j must not be assigned to the
same bin. We treat these pairwise constraints as negative samples, whereas we sample existing
edges in the graph as positive samples. In detail, for every pairwise constraint (i, j) ∈ M′, we
sample node i’s neighbors, Ni, as positive edges. Sampled triplet constraints can be defined as
M={(i, j, k), i, j ∈ V, k ∈ Ni}. To integrate Gaussian distributions and triplet constraints, we
draw inspiration from (Bojchevski & Günnemann, 2018) and incorporate measuring and ranking
strategies. Within the encoder-decoder framework, the Gaussian embeddings in hidden layers can
be acquired as follows: zi=N (µi,

∑
i) with

∑
i=diag(elu(log σi)+1), µi ∈ Rd,

∑
i ∈ Rd×d,

where µ=DIFFCONVµ(H,A) and log σ=DIFFCONVσ(H,A). The KL divergence-based dissimilar-
ity measurement (He et al., 2015) between two Gaussian embeddings zi and zj can be represented as

∆(zi, zj)=DKL(Nj ||Ni)= 1
2 [tr(

∑−1
i

∑
j)+(µi−µj)

⊤ ∑−1
i (µi−µj)−d− log

|
∑

j |
|
∑

i |
], where tr(·)

and |·| denote the trace and determinant of a matrix respectively. Each triplet constraint (i, j, k) ∈M
signifies that unitig i and j must not be in the same bins, and there is a high probability that nodes
i and k should belong to the same bin. In other words, node i is more closely related to k com-
pared to node j. We formulate the triplet constraints ranking strategy as ∆(zi, zk) < ∆(zi, zj). The
square-exponential loss (LeCun et al., 2006) is used to measure the triplet constraints ranking as:

Lc =
∑

(i,j,k)∈M

[DKL(Nk||Ni)
2
+ exp−DKL(Nj ||Ni)] (3)

Algorithm 1: The Unitig-level Assembly Graph Learning Algorithm UNITIGBIN-Learning.
Data: Unitig-level assembly graph G; constraints C; dimension of embedding d; number of

graph batches n;
Result: Embedding for unitigs Z and contigs Ẑ.

1 G,O ← Preprocess(G, C) // Graph untangling and Contigs sampling
2 M← Sample(G, C) // Sample triplet unitig constraints
3 Batches← p-Batch(O, n) // Split batches
4 for e ∈ epochs do
5 for b ∈ Batches do
6 Hb ← DIFFCONV(Ab,Xb) // Base diffusive convolution
7 µb, log σb← DIFFCONVµ(Hb, Ab),DIFFCONVσ(Hb, Ab) //Gaussian embedding
8 Lgb← Equation 1 // Compute loss for graph reconstruction
9 end

10 Lg ←Lgb // Accumulate the batch losses
11 Lc ← Equation 3, Lb← DKL // compute the constraint,batch loss
12 L← Lg + Lb + λ1 · Lc // Compute loss in Equation 4
13 end
14 Z ← µ // Unitigs Embedding

15 Ẑ ←R(Z) // Contigs Embedding

3.1.3 p-BATCH: TRAINING DATA BATCHING

Training GNNs on unitig-level assembly graphs from real metagenomic data, which can reach mil-
lions in size, presents significant computational challenges. Creating training batches presents a
challenge as it must satisfy two criteria: i) processing each contig in parallel while preserving its
completeness, and ii) grouping diverse contigs with positive relationships into the same batch to re-
tain this valuable information. To address these hurdles, we introduce a graph splitting and training
module named p-Batch, which systematically selects independent sets of nodes from the Positive-
contig Graph which derived from the positive contigs set O in an iterative manner. The p-Batch
module takes each path as the minimum splitting unit and functions iteratively through two steps: i)

5

Published as a conference paper at ICLR 2024

selecting the largest contigs sets from the candidates, and ii) feeding them into the smallest batch.
The p-Batch will continue until all candidate contigs are fed into one batch. In practice, there are
still some unitigs that are fed into different batches. We design a loss function to minimize the prob-
ability distribution of these jointly nodes. The objective function for the p-Batch loss function can
be calculated as Lb =

∑
(i,j)∈Q DKL(Nj ||Ni)

2, where Q is the set of joint-unitigs pairs.

Objective function. The object of Learning is determined by a combination of Lg , Lc, and Lb, with
λ1 regulating the significance of constraints loss. Refer to Algorithm 1 for pseudocode of Learning.

L = Lg + Lb + λ1 · Lc (4)

3.2 Binning: COMPRISING MATCHING CONSTRAINTS, PROPAGATING AND REFINING BINS

Matching. After obtaining the embeddings of contigs in the Learning step, you can directly apply
existing clustering algorithms (such as K-Means) for contigs binning. However, dealing with imbal-
anced bin sizes adds complexity to the contigs binning process. RepBin (Xue et al., 2022) proposes
a semi-supervised label propagation model using constrained contigs as initial labels. However,
RepBin runs K-Means on embeddings of a large number of constrained contigs to initialize labels,
which can be computationally expensive. The lack of a known number of bins is another challenge.

In UNITIGBIN, we devised a simple yet efficient matching algorithm for attaining optimal binning
initialization. Matching mainly consists of two key steps: i) Binning Initialization and ii) Iterative
Matching. Initially, we arrange constraints in C in descending order based on their length, selecting
the largest set as the initial bin. We then perform iterative calculations to determine the similarity
between matched bins and candidate contigs. A greedy method is used to select the maximum value
for matching operations. In the matching process, we incorporate a threshold value denoted as T . If
the similarity between a bin and a contig is above T , we add this contig to the bin. Instead, we opt to
create a new bin that includes this contig. Refer to Algorithm 2 in Appendix A.1 for the pseudocode.

Propagating. From the preceding Learning and Matching phases, we obtain embeddings of unitigs
denoted as Z ∈ R|V |×d and initial labels assigned to constrained contigs represented by YC ∈ RK .
We follow RepBin and design a contig-level label propagation model instead of running K-Means
algorithm directly. Besides, we also introduce a penalty function to maximize constraint satisfaction.

Propagating consists of three parts: graph convolution, readout function, and fully connected layer.
Graph convolution learns both the unitig-level assembly graph and unitigs features from Learning,
which can be described as Zl+1=σ(CONV ·ZlΘl), where CONV=D−1/2AD−1/2. The embeddings
of contigs can be obtained through the readout function, Ẑ=R(Z), Ẑ ∈ R|P |×d. Then, the binning
probability can be represented as Y =Softmax(ẐW + b), Y ∈ R|P |×K , where K is the number
of bins. A cross-entropy function is used to optimize the binning results. However, the binning
assignment may violate prior constraints. To maximize constraint satisfaction, we introduce an
optimization function. Given K bins, we use a 0/1 matrix in RK×K for incorporating constraints.
The constraint matrix I ̸= denotes the binary conflict relationships among K bins, i.e., I ̸=(i, j)=1 if
i ̸= j and 0 otherwise, for any i, j ∈ {1, ...,K}. The bin-assignment matrix Y ∈ R|P |×K is a matrix
that represents the bin assignment probability (over K bins) for each contig i in its corresponding
row Yi. For any constraint (i, j) ∈ C′, we aim to assign different bins to i and j and thus maximize
the sum of joint-probabilities with different bins, i.e., YT

i I ̸=Yj . The objective function is as follows:

L = −
∑
l∈YC

K∑
k=1

Ylk lnZlk − λ2 ·
1

|C′|
∑

(i,j)∈C′

log(YT
i I ̸=Yj) (5)

Refining. In Refining, our primary goal is to explore potential binning assignments for contigs,
taking into account heterophilous constraints. This step primarily consists of two components: i)
Splitting and ii) Merging. Splitting aims to divide existing bins into multiple sub-bins when identical
marker genes are present within the bin. Merging is intended to combine sub-bins into a larger bin
when these sub-bins do not share the same marker genes. Refer to Appendix A.1 for the pseudocode.

4 EXPERIMENTS

Datasets and Baselines. We evaluate UNITIGBIN model on 12 datasets, consisting of 6 assembled
by metaSPAdes v3.15.2 (Nurk et al., 2017) and 6 assembled by metaFlye v2.9 (Kolmogorov et al.,

6

Published as a conference paper at ICLR 2024

Table 1: CheckM results for the number of HQ bins by UNITIGBIN and baselines.

Methods Sim20G Sim50G Sim100G Sharon DeepHPM COPD

MetaBAT2 5 16 3 2 0 0
MaxBin2 20 35 54 6 8 9
Semi Bin 18 38 68 5 - -
VAMB 18 31 51 5 2 6

GraphMB 9 13 18 2 - -
CCVAE 12 15 28 2 - -
RepBin 18 15 19 1 0 -

MetaCOAG 17 34 69 7 8 17

UNITIGBIN 20 43 76 7 12 21
△% MaxBin2 0% 18.6% 28.9% 14.3% 33.3% 57.1%

△% SemiBin/VAMB 10% 11.6% 10.5% 28.6% 83.3% 71.4%
△% MetaCoAG 15% 20.9% 9.2% 0% 33.3% 19.0%

2020). In metaSPAdes-assembled datasets, Sim20G, Sim50G, and Sim100G are three datasets col-
lected from GraphBin2 (Mallawaarachchi et al., 2021) and MetaCoAG (Mallawaarachchi & Lin,
2022). In metaFlye-assembled datasets, 6 real-world Wastewater Treatment Plant (WWTP) datasets
are collected (Singleton et al., 2021). Table A1 provides a comprehensive overview of the dataset
statistics. UNITIGBIN is evaluated against three categories of binning tools: a) 2 traditional ap-
proaches, MaxBin 2.0 (Wu et al., 2016) and MetaBAT2 (Kang et al., 2019); b) 2 deep learning-
based binning tools, SemiBin (Pan et al., 2022) and VAMB (Nissen et al., 2021); c) 4 assembly
graph-based binning models, GraphMB (Lamurias et al., 2022), RepBin (Xue et al., 2022), Meta-
CoAG (Mallawaarachchi & Lin, 2022), and CCVAE (Lamurias et al., 2023).

Metrics and Experimental Settings. We use the popular CheckM v1.1.3 (Parks et al., 2015) tool
to evaluate the binning results of UNITIGBIN and baselines. CheckM assesses bin quality through
sets of single-copy marker genes and without using ground truth. We use CheckM to assess the
completeness and contamination of the bins generated by each tool. For metaSPAdes datasets, we
adhere to the experimental setup outlined in MetaCoAG (Mallawaarachchi & Lin, 2022). We define
precision as 1/(1 + contamination) and recall as completeness. High-quality (HQ) bins are char-
acterized by precision > 90 and recall > 80. Medium-quality (MQ) bins have precision > 80 and
recall > 50, while the remaining bins are classified as Low-quality (LQ) bins. For metaFlye datasets,
we follow the experimental setup used in GraphMB (Lamurias et al., 2022) and CCVAE (Lamurias
et al., 2023), which employs two specific criteria: completeness > 90 & contamination < 5, and
completeness > 50 & contamination < 10, to assess the quality of bins. We also use AMBER
v2.0.2 (Meyer et al., 2018) tool and calculate the Precision, Recall, F1, Adjusted Rand Index (ARI)
metrics (Xue et al., 2022) to evaluate simulated datasets using ground truth.

4.1 EVALUATION ON METASPADES-BASED DATASETS

Table 1 shows that UNITIGBIN significantly outperforms state-of-the-art baselines, achieving the
highest number of high-quality bins as evaluated by CheckM. In Sim100G, UNITIGBIN yields 76
high-quality bins, approximately 9.2% more than the highest number obtained by baselines (69 for
MetaCoAG). In COPD, UNITIGBIN also attains the highest number of high-quality (HQ) bins, with
21 HQ bins, which is considerably greater than the second-highest number of HQ bins obtained
by MetaCoAG (17). This substantial gap between UNITIGBIN and baselines underscores the su-
perior performance of our model in contig binning. The CheckM results for medium-quality (MQ)
bins generated by UNITIGBIN and baselines can be found in Table A3. UNITIGBIN consistently
outperforms other methods by achieving the highest number of HQ+MQ bins across most datasets.

In three simulated datasets, we also employ the AMBER tool and calculate the Precision, Recall,
F1, and ARI scores to assess the performance of both UNITIGBIN and baselines. Here we take
Sim20G as an example, Figure 3 denotes the Average Completeness (AC) and Average Purity (AP)
at the nucleotide level, while Table 2 presents the F1 and ARI score (with ‘bp’ representing the
nucleotide-level and ‘seq’ representing the sequence-level), and the number of HQ bins. Com-
parison with baselines demonstrates that UNITIGBIN achieves the highest level of performance.
In particular, UNITIGBIN is capable of binning not only long contigs but also those shorter than

7

Published as a conference paper at ICLR 2024

1,000 bp, which are typically discarded by other binning tools. For instance, UNITIGBIN achieves
a sequence-level F1 score of 0.952, which is significantly higher than the second-highest F1 score
obtained by MaxBin2, 0.632. The calculated Precision, Recall, F1, and ARI scores are shown in
Table A2.

Figure 3: AC and AP for Sim20G.

Table 2: F1(%), ARI(%), and HQ metrics on the Sim20G.

Methods F1(bp) F1(seq) ARI(bp) ARI(seq) HQ↑
MetaBAT2 61.0 30.1 39.2 21.6 4
MaxBin2 99.0 63.2 99.0 77.5 20
SemiBin 98.4 53.7 98.1 41.7 19
VAMB 97.5 59.1 97.9 96.7 18

GraphMB 94.2 58.3 55.9 34.4 10
CCVAE 97.8 61.3 79.1 46.8 13
RepBin 96.6 44.8 96.3 14.2 16

MetaCoAG 95.3 58.9 99.1 78.7 15
UNITIGBIN 98.7 95.2 99.3 97.4 20

4.2 EVALUATION ON METAFLYE-BASED DATASETS

We also benchmark UNITIGBIN and baselines on six real datasets assembled using metaFlye. We
use the CheckM tool and count the number of bins that meet two criteria (following CCVAE): A)
completeness>90 & Contamination<5; and B) completeness>50 & Contamination<10. Figure 4
clearly shows that UNITIGBIN outperforms baselines across all six datasets. UNITIGBIN produces a
total of 1,775 bins that meet the criteria A. In contrast, the highest count achieved by baselines is 962
bins, which is 45.8% less than the number of bins obtained by UNITIGBIN. Notably, CCVAE uses
CheckM to detect single-copy marker genes within contigs and extract heterophilous constraints.
Moreover, CCVAE also employs CheckM to evaluate binning results. To eliminate potential am-
biguity, we follow the pipeline of MaxBin2 and MetaCoAG, using FragGeneScan and HMMER to
identify contigs containing marker genes. We also present results for UNITIGBIN using constraints
extracted from CheckM, which are detailed in Figure A1. In summary, UNITIGBIN consistently
demonstrates superior performance across datasets assembled by both metaSPAdes and metaFlye.

Figure 4: CheckM results of UNITIGBIN and baselines on 6 real datasets assembled using metaFlye.

4.3 VISUALIZATION AND EXPERIMENTAL ANALYSIS

Visualization. To gain deeper insights into the binning results, we employ the python-igraph pack-
age to visualize the unitig-level assembly graph of Sim100G, alongside the ground truth and binning
results obtained from various binning tools (selected ten representative bins, see Figure 5). Nodes
represent unitigs, while edges indicate overlapping relationships between distinct unitigs. Distinct
colors represent different species or bins. UNITIGBIN produces binning results that align well with
the ground truth, whereas other baselines struggle with missing or inaccurate labels.

8

Published as a conference paper at ICLR 2024

Figure 5: Visualization of selected ten bins in Sim100G with ground truth and different binners.

Ablation study & Parameters analysis. To assess the effectiveness of our proposed model, we
perform an ablation study to investigate the individual algorithmic components within UNITIGBIN.

Figure 6: Results of UNITIGBIN
and its variants on Sim100G.

Figure 6 illustrates that each component within UNITIGBIN
contributes to the improvement in contigs binning perfor-
mance (more details in Appendix A.7). We also analyze the
impact of parameters such as dimension d, the transition prob-
ability α in diffusive convolution, the threshold T in Match-
ing, the importance of constraints λ1 in loss function Eqn 4,
and the importance of constraints λ2 in loss function Eqn 5.
Figures A3 show that UNITIGBIN displays a relatively low
sensitivity to variations in the aforementioned parameters. As
λ1 is raised, involving more importance of constraints, the
performance of UNITIGBIN increases and tends to stabilize.

Training process & Running time. Figure A2 (a) and (b)
show the training process of Learning and Propagating in
UNITIGBIN respectively. As the number of training iterations increases, the proportion of vio-
lated constraints decreases and more constraints are satisfied. We also benchmark the running time
of UNITIGBIN against selected baselines on Sim100G (refer to Figure A2 (c)). UNITIGBIN is the
second-fastest deep learning-based binning tool, with a runtime of approximately 30 mins, beaten
only by VAMB, which is faster. It is significantly faster than other deep learning-based methods.

5 CONCLUSION

To model the unitig-level assembly graph directly output from metagenomic assemblers while in-
corporating heterophilous constraints derived from single-copy marker genes, we present a novel
binning tool called UNITIGBIN, a graph neural network model with constraint satisfaction designed
for binning metagenomic contigs. UNITIGBIN comprises Learning, which uses a graph neural net-
work model to learn the unitig-level assembly graph while adhering to constraints. It is followed by
a contig Binning framework that employs an adapted Matching algorithm to initialize markered con-
tigs, uses Propagating to annotate unmarked contigs while satisfying constraints, and incorporates a
local Refining strategy to fine-tune binning assignments. Extensive experiments conducted on both
synthetic and real datasets show that UNITIGBIN outperforms existing binning tools significantly.
The primary limitations of the model include its inability to label overlapping bins, where contigs
belong to multiple species, and the difficulty of binning unmarked and short contigs. As future work,
we plan to explore graph neural networks for binning short, unmarked contigs with multiple labels,
and efficiently encoding large-scale unitig-level assembly graphs.

9

Published as a conference paper at ICLR 2024

REFERENCES

Mads Albertsen, Philip Hugenholtz, Adam Skarshewski, Kåre L Nielsen, Gene W Tyson, and Per H
Nielsen. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning
of multiple metagenomes. Nature biotechnology, 31(6):533–538, 2013.

Johannes Alneberg and et al. Binning metagenomic contigs by coverage and composition. Nature
methods, pp. 1144–1146, 2014.

Tyler P Barnum, Israel A Figueroa, Charlotte I Carlström, Lauren N Lucas, Anna L Engelbrektson,
and John D Coates. Genome-resolved metagenomics identifies genetic mobility, metabolic inter-
actions, and unexpected diversity in perchlorate-reducing communities. The ISME journal, 12(6):
1568–1581, 2018.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In ICLR, 2018.

Florian P Breitwieser, Jennifer Lu, and Steven L Salzberg. A review of methods and databases for
metagenomic classification and assembly. Briefings in bioinformatics, 20(4):1125–1136, 2019.

Simon JS Cameron, Keir E Lewis, Sharon A Huws, Wanchang Lin, Matthew J Hegarty, Paul D
Lewis, Luis AJ Mur, and Justin A Pachebat. Metagenomic sequencing of the chronic obstructive
pulmonary disease upper bronchial tract microbiome reveals functional changes associated with
disease severity. PLoS One, 11(2):e0149095, 2016.

Alex Chklovski, Donovan H Parks, Ben J Woodcroft, and Gene W Tyson. Checkm2: a rapid,
scalable and accurate tool for assessing microbial genome quality using machine learning. Nature
Methods, 20(8):1203–1212, 2023.

Chris L Dupont, Douglas B Rusch, Shibu Yooseph, Mary-Jane Lombardo, R Alexander Richter,
Ruben Valas, Mark Novotny, Joyclyn Yee-Greenbaum, Jeremy D Selengut, Dan H Haft, et al.
Genomic insights to sar86, an abundant and uncultivated marine bacterial lineage. The ISME
journal, 6(6):1186–1199, 2012.

Sean R Eddy. Accelerated profile HMM searches. PLoS computational biology, 7(10):e1002195,
2011.

Hadrien Gourlé, Oskar Karlsson-Lindsjö, Juliette Hayer, and Erik Bongcam-Rudloff. Simulating
Illumina metagenomic data with InSilicoSeq. Bioinformatics, 35(3):521–522, 2019.

Shizhu He, Kang Liu, Guoliang Ji, and Jun Zhao. Learning to represent knowledge graphs with
gaussian embedding. In CIKM, 2015.

Tammi Kaeberlein, Kim Lewis, and Slava S Epstein. Isolating” uncultivable” microorganisms in
pure culture in a simulated natural environment. Science, 296(5570):1127–1129, 2002.

Dongwan D Kang, Feng Li, Edward Kirton, Ashleigh Thomas, Rob Egan, Hong An, and Zhong
Wang. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction
from metagenome assemblies. PeerJ, 7:e7359, 2019.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Thomas N Kipf and Max Welling. Variational Graph Auto-Encoders. In NeurIPS Workshop on
Bayesian Deep Learning, 2016.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion Improves Graph
Learning. In NeurIPS, 2019.

Mikhail Kolmogorov, Derek M Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko,
Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy PL Smith, et al.
metaFlye: scalable long-read metagenome assembly using repeat graphs. Nature Methods, 17
(11):1103–1110, 2020.

10

Published as a conference paper at ICLR 2024

Cedric C. Laczny, Christina Kiefer, Valentina Galata, Tobias Fehlmann, Christina Backes, and An-
dreas Keller. BusyBee Web: metagenomic data analysis by bootstrapped supervised binning and
annotation. Nucleic Acids Research, pp. W171–W179, 2017.

Andre Lamurias, Mantas Sereika, Mads Albertsen, Katja Hose, and Thomas Dyhre Nielsen. Metage-
nomic binning with assembly graph embeddings. Bioinformatics, 38(19):4481–4487, 2022.

Andre Lamurias, Alessandro Tibo, Katja Hose, Mads Albertsen, and Thomas Dyhre Nielsen.
Metagenomic Binning using Connectivity-constrained Variational Autoencoders. In ICML, 2023.

Yann LeCun, Sumit Chopra, Raia Hadsell, M Ranzato, and Fujie Huang. A tutorial on energy-based
learning. Predicting structured data, 1(0), 2006.

Heng Li. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics, 34(18):3094–
3100, 2018.

Cong-Cong Liu, Shan-Shan Dong, Jia-Bin Chen, Chen Wang, Pan Ning, Yan Guo, and Tie-Lin
Yang. Metadecoder: a novel method for clustering metagenomic contigs. Microbiome, 10(1):
1–16, 2022.

Jason Lloyd-Price, Anup Mahurkar, Gholamali Rahnavard, Jonathan Crabtree, Joshua Orvis,
A Brantley Hall, Arthur Brady, Heather H Creasy, Carrie McCracken, Michelle G Giglio, et al.
Strains, functions and dynamics in the expanded Human Microbiome Project. Nature, 550(7674):
61–66, 2017.

Vijini Mallawaarachchi and Yu Lin. Accurate binning of metagenomic contigs using composition,
coverage, and assembly graphs. Journal of Computational Biology, 29(12):1357–1376, 2022.

Vijini Mallawaarachchi, Anuradha Wickramarachchi, and Yu Lin. GraphBin: refined binning of
metagenomic contigs using assembly graphs. Bioinformatics, 36(11):3307–3313, 2020.

Vijini G. Mallawaarachchi, Anuradha S. Wickramarachchi, and Yu Lin. Improving metagenomic
binning results with overlapped bins using assembly graphs. Algorithms for Molecular Biology,
16(1):3, 2021.

Fernando Meyer, Peter Hofmann, Peter Belmann, Ruben Garrido-Oter, Adrian Fritz, Alexander
Sczyrba, and Alice C McHardy. AMBER: assessment of metagenome BinnERs. Gigascience, 7
(6):giy069, 2018.

Fernando Meyer, Adrian Fritz, Zhi-Luo Deng, David Koslicki, Till Robin Lesker, Alexey Gurevich,
Gary Robertson, Mohammed Alser, Dmitry Antipov, Francesco Beghini, et al. Critical assessment
of metagenome interpretation: the second round of challenges. Nature methods, 19(4):429–440,
2022.

Jason R Miller, Sergey Koren, and Granger Sutton. Assembly algorithms for next-generation se-
quencing data. Genomics, 95(6):315–327, 2010.

Stephen Nayfach, Zhou Jason Shi, Rekha Seshadri, Katherine S Pollard, and Nikos C Kyrpides.
New insights from uncultivated genomes of the global human gut microbiome. Nature, 568
(7753):505–510, 2019.

Jakob Nybo Nissen, Joachim Johansen, Rosa Lundbye Allesøe, Casper Kaae Sønderby, Jose
Juan Almagro Armenteros, Christopher Heje Grønbech, Lars Juhl Jensen, Henrik Bjørn Nielsen,
Thomas Nordahl Petersen, Ole Winther, et al. Improved metagenome binning and assembly using
deep variational autoencoders. Nature biotechnology, 39(5):555–560, 2021.

Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A Pevzner. metaSPAdes: a new
versatile metagenomic assembler. Genome research, 27(5):824–834, 2017.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank citation ranking:
Bringing order to the web. Technical report, Stanford InfoLab, 1999.

Shaojun Pan, Chengkai Zhu, Xing-Ming Zhao, and Luis Pedro Coelho. A deep siamese neural
network improves metagenome-assembled genomes in microbiome datasets across different en-
vironments. Nature communications, 13(1):2326, 2022.

11

Published as a conference paper at ICLR 2024

Shaojun Pan, Xing-Ming Zhao, and Luis Pedro Coelho. SemiBin2: self-supervised contrastive
learning leads to better MAGs for short- and long-read sequencing. Bioinformatics, 39:i21–i29,
06 2023.

Donovan H Parks, Michael Imelfort, Connor T Skennerton, Philip Hugenholtz, and Gene W Tyson.
CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and
metagenomes. Genome research, 25(7):1043–1055, 2015.

Mina Rho, Haixu Tang, and Yuzhen Ye. FragGeneScan: predicting genes in short and error-prone
reads. Nucleic acids research, 38(20):e191–e191, 2010.

Alexander Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes
Dröge, Ivan Gregor, Stephan Majda, Jessika Fiedler, Eik Dahms, et al. Critical assessment of
metagenome interpretation—a benchmark of metagenomics software. Nature methods, 14(11):
1063–1071, 2017.

Itai Sharon, Michael J Morowitz, Brian C Thomas, Elizabeth K Costello, David A Relman, and
Jillian F Banfield. Time series community genomics analysis reveals rapid shifts in bacterial
species, strains, and phage during infant gut colonization. Genome research, 23(1):111–120,
2013.

Caitlin M Singleton, Francesca Petriglieri, Jannie M Kristensen, Rasmus H Kirkegaard, Thomas Y
Michaelsen, Martin H Andersen, Zivile Kondrotaite, Søren M Karst, Morten S Dueholm, Per H
Nielsen, et al. Connecting structure to function with the recovery of over 1000 high-quality
metagenome-assembled genomes from activated sludge using long-read sequencing. Nature com-
munications, 12(1):2009, 2021.

Marc Strous, Beate Kraft, Regina Bisdorf, and Halina Tegetmeyer. The Binning of Metagenomic
Contigs for Microbial Physiology of Mixed Cultures. Frontiers in Microbiology, 3:410, 2012.

Peter J Turnbaugh, Ruth E Ley, Micah Hamady, Claire M Fraser-Liggett, Rob Knight, and Jeffrey I
Gordon. The human microbiome project. Nature, 449(7164):804–810, 2007.

Ziye Wang, Zhengyang Wang, Yang Young Lu, Fengzhu Sun, and Shanfeng Zhu. SolidBin: im-
proving metagenome binning with semi-supervised normalized cut. Bioinformatics, 35(21):4229–
4238, 2019.

Ziye Wang, Pingqin Huang, Ronghui You, Fengzhu Sun, and Shanfeng Zhu. Metabinner: a high-
performance and stand-alone ensemble binning method to recover individual genomes from com-
plex microbial communities. Genome Biology, 24(1):1, 2023.

Yu-Wei Wu, Yung-Hsu Tang, Susannah G Tringe, Blake A Simmons, and Steven W Singer.
MaxBin: an automated binning method to recover individual genomes from metagenomes us-
ing an expectation-maximization algorithm. Microbiome, 2:1–18, 2014.

Yu-Wei Wu, Blake A Simmons, and Steven W Singer. MaxBin 2.0: an automated binning algorithm
to recover genomes from multiple metagenomic datasets. Bioinformatics, 32(4):605–607, 2016.

Baoyu Xiang, Liping Zhao, and Menghui Zhang. Unitig level assembly graph based metagenome-
assembled genome refiner (ugmagrefiner): A tool to increase completeness and resolution of
metagenome-assembled genomes. Computational and Structural Biotechnology Journal, 21:
2394–2404, 2023.

Hansheng Xue, Vijini Mallawaarachchi, Yujia Zhang, Vaibhav Rajan, and Yu Lin. RepBin:
constraint-based graph representation learning for metagenomic binning. In AAAI, 2022.

Yi Yue, Hao Huang, Zhao Qi, Hui-Min Dou, Xin-Yi Liu, Tian-Fei Han, Yue Chen, Xiang-Jun
Song, You-Hua Zhang, and Jian Tu. Evaluating metagenomics tools for genome binning with real
metagenomic datasets and cami datasets. BMC bioinformatics, 21(1):1–15, 2020.

Pengfei Zhang, Zhengyuan Jiang, Yixuan Wang, and Yu Li. Clmb: deep contrastive learning for ro-
bust metagenomic binning. In International Conference on Research in Computational Molecular
Biology, pp. 326–348. Springer, 2022.

12

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 THE PSEUDOCODE FOR UNITIGBIN

In this paper, we propose the model of neural networks for constraint-based graph representation to
solve the metagenomic contigs binning problem, called UNITIGBIN. UNITIGBIN consists of two
main components: Learning, which uses a graph neural network model to directly learn the unitig-
level assembly graph while adhering to constraints, and Binning, a contig-level binning framework.
In the Binning stage, a Matching algorithm is employed to initialize markered contigs, Propagating
labels are used to annotate unmarked contigs while satisfying constraints, and a local Refining strat-
egy is incorporated to fine-tune binning assignments. In the subsequent subsection, we will elucidate
the Matching and Refining modules and provide the pseudocode.

Matching. In Matching, we design an adapted matching algorithm to obtain optimal binning ini-
tialization. The Matching process primarily has two steps: i) Binning Initialization and ii) Iterative
Matching. Initially, we arrange the constraints in C in descending order based on their length, select-
ing the largest constraint set as the initial bin. Then, we perform iterative calculations to determine
the similarity between matched bins and candidate contigs. We employ a greedy approach to select
the maximum value for matching operations. During the matching process, we incorporate a thresh-
old value denoted as T . If the similarity between a bin and a candidate is below this threshold, we
consider it unfavorable to add the candidate contig to the bin. Instead, we opt to create a new bin
that includes this contig. The pseudocode for the UNITIGBIN-Matching is as follows.

Algorithm 2: The Markers Matching Algorithm UNITIGBIN-Matching.

Data: Embedding for contigs Ẑ; Heterophilous constraints C; Threshold for adjustment T ;
Result: Matched binning initializations YC .

1 C ← Sort(C) // Sort C in descending order by their length
2 YC ← C[0] // Initialize bin with maximum set of constraints
3 for k ∈ [1, |C|) do
4 S={(i, j) : s} ← Sim(YC , C[k]) // Compute sim between bins and cands
5 S={(i, j) : s} ← Sort(S) // Sort S in descending order by sim value
6 Tag = [] // Initialize the iteration tag as None
7 for {(i, j) : s} ∈ S do
8 if i,j not in Tag then
9 if s < T then

10 YC[|YC |]← j // Add a new bin with contig j
11 Tag← |YC |, j // Add bin |YC | and contig j to iteration

tag list
12 else
13 YC[i]← j // Assign contig j to bin i
14 Tag← i, j // Add bin i and contig j to iteration tag

list
15 end
16 end
17 end
18 end

Refining. In Refining, our primary goal is to explore potential binning assignments for contigs,
taking into account heterophilous constraints. This step primarily consists of two components: i)
Splitting and ii) Merging. Splitting aims to divide existing bins into multiple sub-bins when identical
marker genes are present within the bin. Merging is intended to combine sub-bins into a larger bin
when these sub-bins do not share the same marker genes. The pseudocode for the UNITIGBIN-
Refining is as follows.

A.2 DATASETS AND BASELINES

Datasets. We evaluate UNITIGBIN model on 12 datasets, consisting of 6 assembled by metaSPAdes
v3.15.2 (Nurk et al., 2017) and 6 assembled by metaFlye v2.9 (Kolmogorov et al., 2020). Within
the metaSPAdes-assembled datasets, Sim20G, Sim50G, and Sim100G are three datasets collected

13

Published as a conference paper at ICLR 2024

from GraphBin2 (Mallawaarachchi et al., 2021) and MetaCoAG (Mallawaarachchi & Lin, 2022)1,
which are simulated based on the species found in the simMC+ dataset (Wu et al., 2014). Paired-
end reads for these datasets are simulated using InSilicoSeq (Gourlé et al., 2019). Sharon, COPD,
and DeepHPM are 3 real-world datasets. Sharon is a preborn infant gut metagenome (Sharon et al.,
2013) identified with the National Center for Biotechnology Information (NCBI) accession num-
ber SRA052203. COPD refers to the metagenomics of the Chronic Obstructive Pulmonary Disease
Lung Microbiome (Cameron et al., 2016) and is associated with the NCBI BioProject number PR-
JEB9034. DeepHMP represents a human metagenome sample from the tongue dorsum of a partic-
ipant in the Deep WGS HMP clinical samples (Lloyd-Price et al., 2017), with the NCBI accession
number SRX378791. In the metaFlye-assembled datasets, 6 real-world datasets are collected from
GraphMB (Lamurias et al., 2022) and CCVAE (Lamurias et al., 2023)2. The six datasets consist
of real-world Wastewater Treatment Plant (WWTP) datasets obtained from (Singleton et al., 2021)
under the BioProject number PRJNA629478. FragGeneScan (Rho et al., 2010) and HMMER (Eddy,
2011) are applied to detect contigs containing marker genes and generate heterophilic constraints,
following the methodology outlined in MetaCoAG (Mallawaarachchi & Lin, 2022) and MaxBin
2.0 (Wu et al., 2016). Ground truths for three simulated datasets (Sim20/50/100G) are derived us-
ing Minimap2 (Li, 2018) to map the contigs to the reference genomes, still following the steps of
MetaCoAG. Table A1 provides comprehensive statistics of 12 datasets.

Algorithm 3: The Binning Refinement Algorithm UNITIGBIN-Refining.
Data: Binning for contigs B; Heterophilous constraints C;
Result: Refined binning B̂.

1 // Splitting
2 C2M ← C // Construct a mapping function:Contig→Marker
3 B̄ ← [] // Initialize the splitting binset
4 for bin ∈ B do
5 bs,ms← [],[] // Initialize the subbin and submarker
6 for c ∈ bin do
7 m← C2M(c) // Map the contig to corresponding marker
8 if m /∈ ms then
9 ms←ms+m, bs←bs+b // No identical marker

10 else
11 B̄ ← B̄+bs // Identical marker, add a new subbin
12 bs←b, ms←m // Initialize the subbin and submarker
13 end
14 end
15 B̄ ← B̄+bs // add a bin
16 end
17 // Merging
18 B2M ← B̄, C // Construct a mapping function:Bin→Marker
19 Tag← True // Initialize the iteration tag as True
20 while Tag == True do
21 Tag← False // Set the iteration tag as False
22 S={(i, j) : s} ← Count(B2M(B̄)) // Count common markers between

pairwise bins
23 for {(i, j) : s} in S do
24 if s == 0 then
25 B̄ ←Merging(B̄,i,j) // Merge bin i and bin j into one bin
26 Tag← True // Set the iteration tag to be true
27 break
28 end
29 end
30 end
31 B̂ ← B̄ // Output the final binning assignment

1https://figshare.com/projects/MetaCoAG/121014
2https://zenodo.org/records/6122610

14

Published as a conference paper at ICLR 2024

Table A1: Summary and statistics of the 12 datasets.

Dataset No. of Fragments No. of Contigs No. of No. of No. of AssemblerSamples length (bp) Fragments length (bp) Contigs Links Markers

Sim-20G 1 10,891.04 6,131 46,234.75 1,452 8,213 75

metaSPAdes

Sim-50G 1 5,888.21 24,401 28,680.50 5,058 32,654 85
Sim-100G 1 4,501.06 67,516 19,977.80 15,729 90,124 85

Sharon 18 1,039.83 37,164 1,212.44 29,899 29,174 109
DeepHPM 8 594.81 227,635 694.53 130,363 126,497 108

COPD 18 716.74 452,600 759.00 125,524 109,134 108

Hjor 4 39,443.96 22,005 42,677.75 21,111 5,335 108

metaFlye

Viby 4 48,103.74 27,719 52,183.60 26,427 7,342 109
Damh 4 48,748.20 40,048 54,275.15 37,285 12,977 110
Mari 4 40,005.90 42,539 44,377.07 40,450 12,178 108
AalE 4 41,192.55 46,938 44,788.51 44,777 11,749 109
Hade 4 36,665.14 82,063 41,467.02 76,924 26,737 104

Baselines. UNITIGBIN is evaluated against three categories of binning tools: a) 2 traditional ap-
proaches, MaxBin 2.0 (Wu et al., 2016) and MetaBAT2 (Kang et al., 2019); b) 2 deep learning-
based binning tools, SemiBin (Pan et al., 2022) and VAMB (Nissen et al., 2021); c) 4 assembly
graph-based binning models, GraphMB (Lamurias et al., 2022), RepBin (Xue et al., 2022), Meta-
CoAG (Mallawaarachchi & Lin, 2022), and CCVAE (Lamurias et al., 2023). For all baselines, we
fine-tune their models with various parameters and present metric scores of their best configurations.

i) Traditional approaches:
MaxBin2: is a probabilistic model that incorporates an Expectation-Maximization algorithm, uti-
lizing both composition and coverage features for contigs binning (Wu et al., 2016). Available at
https://sourceforge.net/projects/maxbin2/.
MetaBAT2: constructs a graph using the composition information of contigs and employs a graph
partitioning algorithm to address the metagenomic binning problem (Kang et al., 2019). Available
at https://bitbucket.org/berkeleylab/metabat/src/master/.

ii) Deep learning-based binning tools:
SemiBin: is a reference-based binning approach that aligns contigs to reference genomes, creat-
ing must-link and cannot-link constraints. It then utilizes a semi-supervised siamese neural net-
work to integrate prior constraints into the contig binning process (Pan et al., 2022). Available at
https://github.com/BigDataBiology/SemiBin.
VAMB: uses deep variational autoencoder models to encode both the composition and coverage in-
formation of contigs and then employs an iterative clustering algorithm to bin contigs (Nissen et al.,
2021). Available at https://github.com/RasmussenLab/vamb.

iii) Assembly graph-based binning models:
GraphMB: encodes contig composition and abundance information using a variational au-
toencoder model, combining these learned features with the assembly graph to train a
graph neural network model. The resulting contig embeddings are then fed into the same
clustering algorithm as VAMB for contig binning (Lamurias et al., 2022). Available at
https://github.com/MicrobialDarkMatter/GraphMB.
RepBin: employs a constraint-based self-supervised graph learning framework to model the as-
sembly graph, followed by the utilization of a GCN-based label propagation model for contig bin-
ning (Xue et al., 2022). Available at https://github.com/xuehansheng/RepBin.
MetaCoAG: designs an algorithm that integrates composition, abundance, and assembly graph to
enhance contigs binning. Available at https://github.com/metagentools/MetaCoAG.
CCVAE: incorporates the prior constraints of single-copy marker genes, identified using CheckM,
into a variational autoencoder model to learn the assembly graph. It subsequently employs a clus-
tering algorithm on learned embeddings for contig binning (Lamurias et al., 2023). Available at
https://github.com/MicrobialDarkMatter/ccvae.

15

Published as a conference paper at ICLR 2024

A.3 IMPLEMENTATION DETAILS

In this section, we will provide instructions on how to run our proposed UNITIGBIN model to re-
produce the experimental results presented in our paper. In the preprocessing phase, two crucial
operations are carried out to create the unitig-level assembly graphs and derive heterophilous con-
straints. These constraints are generated by identifying single-copy marker genes within contigs.

a) Create Unitig-level Assembly Graphs. Two different types of assembly graphs are employed
in this paper. We utilize two widely used assemblers, namely metaSPAdes (Nurk et al., 2017) and
metaFlye (Kolmogorov et al., 2020), to generate the unitig-level assembly graphs. The example
command is as follows:
i) The metaSPAdes assembler:
$ spades --meta -1 Reads 1.fastq -2 Reads 2.fastq -o /output dir
ii) The metaFlye assembler:
$ flye --meta --pacbio-raw Reads.fastq -o /output dir

b) Extract Heterophilous Constraints. In UNITIGBIN, we use FragGeneScan (Rho et al., 2010)
and HMMER (Eddy, 2011) to extract the constraints by identifying single-copy marker genes in
contigs. The example command is as follows:
$ run FragGeneScan.pl -genome=/path/to/contigs.fasta
-out=/output dir/contigs.fasta.frag -complete=0
-train=complete -thread=8 1>/output dir/contigs.fasta.frag.out
2>/output dir/contigs.fasta.frag.err
$ hmmsearch --domtblout /output dir/contigs.fasta.hmmout --cut tc
--cpu 8 /path/to/marker.hmm /output dir/contigs.fasta.frag.faa
1>/output dir/contigs.fasta.hmmout.out
2>/output dir/contigs.fasta.hmmout.err
Next, we employ the code from SolidBin (Wang et al., 2019) to extract constraints and store them
in several sets. Each set represents the contigs containing a specific single-copy marker gene.

c) Run UNITIGBIN. To reproduce the experimental results in this paper, we can simply run the
following command (we take the Sim20G as an example):
$ python unitigbin.py --data Sim20G --epoch 2000 --dim 32 --lr
0.01 --nbatch 1 --α 0.05 --λ1 0.7 --λ2 0.1 --th 0.01
where parameter --data represents the selected dataset; --epoch denotes the number of epoch;
--dim is the dimension of the embedding; --lr is the learning rate; --nbatch represents
the number of batches; --α denotes the probability of transition in diffusive convolution; --th
represents the threshold in the Matching; --λ1 and --λ2 are two parameters control the importance
of constraints in the process of Learning and Propagating respectively.

d) CheckM Evaluation. After obtaining the binning results, we can use CheckM v1.1.3 (Parks
et al., 2015) to evaluate the performance of binning. The example command is as follows:
$ checkm lineage wf -x fasta /input dir/*.fasta
/output dir/CheckM Res
$ checkm analyze -x fasta /path/to/checkm data 2015 01 16/hmms/
phylo.hmm /output dir /output dir/CheckM Res
$ checkm qa --out format 1 -f /output dir/CheckM Res/result.txt
/path/to/checkm data 2015 01 16/hmms/phylo.hmm /output dir/CheckM Res

Running environment. UNITIGBIN is implemented in Python 3.6 and Pytorch 1.8 using the Linux
server with Intel Xeon Platinum 8268 2.9 GHz CPU, 96GB RAM and 1 Nvidia Tesla Volta V100-
SXM2 with 32GB memory.

Experimental setups. For UNITIGBIN, we use composition features from the sequences and adja-
cency matrix of the unitig-level assembly graph as the initial features for nodes. The default settings
of UNITIGBIN hyperparameters are as follows. The representation dimensions are all empirically
set and vary from 32 to 256. The parameter α in the diffusive convolution is simply set within the
range of [0.005, 0.05]. The batch size of the p-batch varies from 1 to 5 in all datasets. Following the
experimental setup in (Mallawaarachchi & Lin, 2022) and (Lamurias et al., 2023), all the algorithms
run five times on each input dataset and the best binning assignment is reported. The UNITIGBIN
model is freely available at https://github.com/xuehansheng/UnitigBIN.

16

https://github.com/xuehansheng/UnitigBIN

Published as a conference paper at ICLR 2024

Table A2: Evaluation results by UNITIGBIN and baselines.

Dataset Methods Contigs / Ratio↑ Bins Precision↑ Recall↑ F1↑ ARI↑

Sim20G

MetaBAT2 402 / 28.0% 88 97.01 7.96 14.70 21.55

(K=20)

MaxBin2 666 / 46.3% 21 89.48 42.97 58.06 77.46
VAMB 530 / 36.9% 21 99.62 38.29 55.32 96.52

SemiBin 790 / 54.9% 20 68.21 38.29 49.05 41.69
GraphMB 732 / 50.9% 34 74.35 39.33 51.45 34.43
CCVAE 737 / 51.3% 51 85.25 38.59 53.13 46.82
RepBin 1,437 / 99.9% 20 97.99 95.84 96.90 94.51

MetaCoAG 595 / 41.4% 20 89.52 38.74 54.07 78.66
UNITIGBIN 1,438 / 100% 21 98.22 98.07 98.14 97.38

Sim50G

MetaBAT2 1,139 / 22.5% 222 81.13 6.09 11.33 14.98

(K=50)

MaxBin2 1,900 / 37.6% 49 84.23 33.59 48.03 76.32
VAMB 1,310 / 25.9% 46 88.74 31.35 46.33 85.74

SemiBin 2,231 / 44.1% 241 90.67 36.63 52.18 74.18
GraphMB 2,332 / 46.1% 87 58.24 38.35 46.25 18.11
CCVAE 2,137 / 42.2% 65 54.83 36.94 44.14 16.78
RepBin 5,058 / 100% 47 78.69 90.80 84.31 77.55

MetaCoAG 2,030 / 40.1% 47 79.72 35.32 48.95 69.30
UNITIGBIN 5,058 / 100% 48 89.41 91.06 90.23 90.61

Sim100G

MetaBAT2 54 / 0.4% 32 100.00 0.46 0.92 83.95

(K=100)

VAMB 3,814 / 24.9% 87 87.01 29.82 44.42 81.13
MaxBin2 5,723 / 37.4% 95 71.10 25.84 37.90 52.43
GraphMB 8,045 / 52.5% 226 46.11 39.62 42.62 7.65
CCVAE 7,206 / 47.0% 243 56.94 36.58 44.54 13.35
SemiBin 6,706 / 43.8% 957 91.40 34.46 50.05 71.77
RepBin 15,310 / 99.9% 72 63.51 92.55 75.33 48.58

MetaCoAG 6,033 / 39.4% 90 74.84 30.31 43.15 59.89
UNITIGBIN 15,319 / 100% 101 76.77 78.45 77.60 79.85

A.4 EVALUATION METRICS

In addition to the CheckM (Parks et al., 2015) and AMBER (Meyer et al., 2018) tools, we also
calculate the Precision, Recall, F1, and ARI as evaluation metrics for the contigs binning task.
A ∈ RK×S is used to denote the confusion matrix, where K is the number of bins predicted by
binners and S represents the number of true species in the ground truth. The element in A, like
Ak,s, indicates that the number of contigs are clustered into the bin k but actually belong to the
species s. N is the total number of contigs binned by this tool and Nu denotes the number of
contigs that are not clustered or discarded by this binning tool. The detailed evaluation metrics are
described as follows:

Precision =

∑
k maxs Ak,s∑
k

∑
s Ak,s

, Recall =

∑
s maxk Ak,s∑

k

∑
s Ak,s +Nu

, (6)

F1 = 2× Precision×Recall

Precision+Recall
, ARI =

∑
k,s

(
Ak,s

2

)
−

∑
k

(
Ak,.

2

)∑
s

(
A.,s

2

)(
N
2

)
1
2 (
∑

k

(
Ak,.

2

)
+
∑

s

(
A.,s

2

)
)−

∑
k

(
Ak,.

2

)∑
s

(
A.,s

2

)(
N
2

) . (7)

In the results, we present the number of contigs identified by different binning tools and also calcu-
late the proportion of contigs that have been labeled. The higher the proportion of labeled contigs,
the better the binning tool performs. Besides, we also show the number of bins identified by differ-
ent binners. Both predicted bins higher or lower than ground truth are not good. From the evaluation
metrics collected in Table A2, we can find that UNITIGBIN achieves the highest score among the
most evaluation metrics. In particular, UNITIGBIN can label both long and short contigs, leading
to a significantly higher Recall compared to other binning tools, with the exception of RepBin. For

17

Published as a conference paper at ICLR 2024

example, in the Sim100G dataset, MetaBAT2 can only label 0.4% of the contigs, while UNITIGBIN
is capable of labeling all 15,319 contigs.

A.5 CHECKM RESULTS ON METASPADES DATASETS.

We use CheckM tool to evaluate the performance of UNITIGBIN on 6 metaSPAdes-assembled
datasets. We adhere to the experimental setup outlined in MetaCoAG (Mallawaarachchi & Lin,
2022). We define precision as 1/(1 + contamination) and recall as completeness. High-quality
(HQ) bins are characterized by precision > 90 and recall > 80. Medium-quality (MQ) bins have
precision > 80 and recall > 50, while the remaining bins are classified as Low-quality (LQ) bins.
The detailed evaluation metrics are collected in Table A3. Several deep learning-based binning
tools, such as SemiBin, GraphMB, CCVAE, and RepBin, could not be executed on the DeepHPM
and COPD datasets due to resource limitations. Table A3 demonstrates that UNITIGBIN outper-
forms the other baseline methods significantly. UNITIGBIN achieves the highest number of HQ bins
and HQ+MQ bins. For instance, in the real COPD dataset, UNITIGBIN obtains 21 HQ and 28 MQ
bins, which is more than the second-highest number of HQ bins achieved by MetaCoAG (17 for HQ
and 25 MQ bins). In DeepHPM, UNITIGBIN achieves 12 HQ bins, surpassing the highest number
of HQ bins obtained by baselines (8 for MetaCoAG and MaxBin2).

Table A3: Evaluation results by UNITIGBIN and baselines (CheckM).

Methods Sim20G Sim50G Sim100G
HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓

MetaBAT2 5 11 72 16 12 194 3 5 24
MaxBin2 20 0 1 35 3 7 54 15 26
SemiBin 18 1 3 38 4 8 68 9 31
VAMB 18 1 3 31 3 12 51 10 26

GraphMB 9 1 24 13 1 73 18 2 206
CCVAE 12 1 38 15 0 71 28 2 213
RepBin 18 1 1 15 1 15 19 8 33

MetaCoAG 17 0 0 34 6 3 69 8 13
UNITIGBIN 20 0 1 43 4 4 76 11 14

Sharon DeepHPM COPD
HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓

MetaBAT2 2 2 20 0 1 60 0 2 74
MaxBin2 6 2 6 8 14 47 9 24 123
SemiBin 5 0 10 - - - - - -
VAMB 5 1 4 2 3 13 6 7 48

GraphMB 2 0 53 - - - - - -
CCVAE 2 0 74 - - - - - -
RepBin 1 0 8 0 4 46 - - -

MetaCoAG 7 3 0 8 10 9 17 25 26
UNITIGBIN 7 5 2 12 17 10 21 28 20

A.6 CONSTRAINTS FROM CHECKM

In the UNITIGBIN model, we use the FragGeneScan (Rho et al., 2010) and HMMER (Eddy, 2011)
tools to generate heterophilous constraints, following the MaxBin2 (Wu et al., 2016) and Meta-
CoAG (Mallawaarachchi & Lin, 2022). However, it’s worth noting that CCVAE (Lamurias et al.,
2023) relies on the CheckM tool to generate prior information for constraints. To further assess
the performance of our proposed UNITIGBIN model, we also integrate the heterophilous con-
straints obtained from CheckM instead of the original constraints into UNITIGBIN. Figure A1
shows the number of HQ (completeness>90 & Contamination<5) and MQ (completeness>50
& Contamination<10) bins achieved by UNITIGBIN under the constraints of CheckM. UNITIG-
BIN(CheckM) achieves more HQ and MQ bins than UNITIGBIN and significantly more than CC-
VAE. For example, in the Hade dataset, UNITIGBIN(CheckM) achieves the highest number of HQ
bins (75), surpassing the HQ bins obtained by CCVAE (52 HQ bins) and UNITIGBIN (64 HQ bins).

18

Published as a conference paper at ICLR 2024

Figure A1: Results of CCVAE, UNITIGBIN and UNITIGBIN(CheckM) on 6 datasets.

A.7 PARAMETERS ANALYSIS AND SCALABILITY

More details in ablation study. In Figure 6, the ‘Learning’ denotes the Learning model and uses
K-Means to bin contigs; ‘w/o Refining’ represents the UNITIGBIN model without the final Refining
step; ‘Learning w/o C’ indicates that not incorporate constraints into the Learning process; ‘Learn-
ing w/o B’ means the Learning model without batch loss; and ‘Binning w/o C’ is the Binning model
does not optimize constraints satisfaction. Figure 6 illustrates that each component within UNITIG-
BIN contributes to the improvement in contig binning performance.

Training and running time. Figure A2 (a) and (b) show the training process of Learning and Prop-
agating modules in UNITIGBIN respectively. The loss value stabilizes when the number of epochs
reaches 600. Besides, as the number of training iterations increases, the proportion of violated con-
straints decreases. We also benchmark the running time of UNITIGBIN against selected baselines
on Sim100G (refer to Figure A2 (c)). MaxBin2 and MetaCoAG are two non-deep learning models
and were executed on CPU, while other deep learning-based binning tools were trained on GPU.
Here, we provide the running time and the count of HQ bins. UNITIGBIN is the second-fastest deep
learning-based binning tool, with a runtime of approximately 30 mins, beaten only by VAMB, which
is faster. It is significantly faster than other deep learning-based binning tools, including GraphMB
(49 mins), SemiBin (55 minutes), RepBin (55 minutes), and CCVAE (72 minutes).

Figure A2: The training loss and running time of UNITIGBIN on Sim100G.

Parameters analysis. In this part, we investigate the importance of core parameters in the UNITIG-
BIN without Refining model, including the dimension of embedding d, the probability of transition
in diffusive convolution α, the threshold in the matching algorithm T , and two parameters control
the importance of constraints λ1 and λ2. Figure A3 (a) shows that UNITIGBIN is relatively robust
to the dimension of embedding d ranging from 32 to 512. In Figure A3 (b), we observe a grad-

19

Published as a conference paper at ICLR 2024

ual increase in the number of HQ bins as the α parameter in DIFFCONV is varied from 5e−4 to
5e−2. Figure A3 (c) shows that UNITIGBIN is also relatively robust to the parameter of threshold
in the matching algorithm. The parameter λ1 in the Learning model governs the significance of
heterophilous constraints. As λ1 increases, the number of HQ bins also increases, reaching its max-
imum when set to 0.7. The UNITIGBIN model demonstrates robustness to changes in the parameter
λ2 in the Binning model (as shown in Figure A3 (e)).

Figure A3: Parameters analysis of UNITIGBIN on Sim100G (d, α, T , λ1, and λ2).

A.8 ADDITIONAL EXPERIMENTAL RESULTS

Evaluating constraints satisfaction. One goal of our proposed UNITIGBIN model is to enhance the
satisfaction of heterophilous constraints derived from single-copy marker genes. In order to assess
the achievement of our objectives, we calculate the ratio of final binning results that deviate from
heterophilous constraints. The illustration in Figure A3(b) depicts the procedure for minimizing the
number of violating constraints. Furthermore, the table below (on Sim100G) provides the ratio of
violating constraints accomplished by the UNITIGBIN and selected baseline methods. UNITIGBIN
satisfies almost all constraints, exhibiting only a 0.9% violation of heterophilous constraints, a rate
lower than that observed in other baseline methods.

Table A4: The specific proportion of violated heterophilous constraints.

MaxBin2 SemiBin VAMB MetaBAT2 GraphMB CCVAE RepBin MetaCoAG UNITIGBIN

Num. 1,712 / 2,226 / 2,623 / 37 / 42,244 / 22,627 / 8,854 / 2,069/ 1,686 /
127,449 180,044 152,948 1,313 170,476 167,211 177,910 153,026 182,366

Ratio 1.34% 1.24% 1.92% 2.82% 24.80% 13.53% 4.98% 1.35% 0.90%

Additional comparisons with the Metadecoder tool. Metadecoder (Liu et al., 2022) is a binning
tool based on a Gaussian mixture model, utilizing k-mer frequencies and coverages. Here, we also
introduce Metadecoder as a baseline and conduct initial comparisons on three simulated datasets
and one Sharon dataset. We followed the experimental settings specified in MetaCoAG and selected
CheckM as the evaluation tool. As observed in Table A5, Metadecoder’s performance is noticeably
inferior to that of UNITIGBIN. In Sim20G, Metadecoder generates 19 high-quality bins, surpassing
the count achieved by MetaCoAG (17) but falling short of UNITIGBIN (20). In the Sim50G and
Sim100G datasets, Metadecoder produces 25 high-quality bins for Sim50G and 35 for Sim100G,
respectively. These counts are notably lower than those achieved by UNITIGBIN (43 for Sim50G

20

Published as a conference paper at ICLR 2024

and 76 for Sim100G). In the Sharon dataset, Metadecoder generates only 4 high-quality bins, a count
significantly lower than the number achieved by both MetaCoAG and UNITIGBIN (7).

Table A5: Evaluation results by UNITIGBIN and baselines.

Methods Sim20G Sim50G Sim100G Sharon
HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓

Metadecoder 19 0 2 25 10 16 35 27 45 4 1 11
MetaCoAG 17 0 0 34 6 3 69 8 13 7 3 0
UNITIGBIN 20 0 1 43 4 4 76 11 14 7 5 2

Additional comparisons with the SimBin2 tool. we conduct a comparison between UNITIGBIN
and SemiBin2 (Pan et al., 2023), an enhanced version of SemiBin, to further assess performance.
SemiBin2 is applied to three simulated datasets and one real world dataset, and its performance is
compared with SemiBin, MetaCoAG (the best assembly graph-based baseline), and UNITIGBIN.
We adhere to the experimental setup outlined in MetaCoAG (refer to A.5), and the resulting ex-
perimental data is presented in Table A6. SemiBin2 demonstrates superior performance compared
to SemiBin and MetaCoAG across all three simulated datasets, although it falls slightly short of
UNITIGBIN. In the Sharon dataset, SemiBin2, MetaCoAG, and UNITIGBIN all attain the maximum
count of high-quality bins (7), which is higher than the number obtained by SemiBin (5).

Table A6: Evaluation results by UNITIGBIN and baselines.

Methods Sim20G Sim50G Sim100G Sharon
HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓

SemiBin 18 1 3 38 4 8 68 9 31 5 0 10
SemiBin2 19 2 1 41 3 6 72 15 21 7 2 6

MetaCoAG 17 0 0 34 6 3 69 8 13 7 3 0
UNITIGBIN 20 0 1 43 4 4 76 11 14 7 5 2

Assessing performance using CheckM2. We utilize CheckM2 (Chklovski et al., 2023) to further
assess the performance of UNITIGBIN and the baseline methods. As an illustration, we focus on
three simulated datasets assembled by metaSPAdes. Our experimental setup aligns with the guide-
lines provided in MetaCoAG (Mallawaarachchi & Lin, 2022), where High-quality (HQ) bins are
defined by precision > 90 and recall > 80. Medium-quality (MQ) bins exhibit precision > 80 and
recall > 50, while the remaining bins are categorized as Low-quality (LQ) bins. The CheckM2
repository can be accessed at https://github.com/chklovski/CheckM2, and the ex-
ecution command is $ checkm2 predict --threads 64 --input /input dir/*
--output-directory /output dir/. The detailed experimental results are compiled in
Table A7. UNITIGBIN demonstrates superior performance compared to other baselines, securing a
top-tier position. As an instance, UNITIGBIN identifies 20 high-quality bins in the Sim20G dataset,
a number equivalent to that achieved by MaxBin2 and VAMB. In the Sim50G dataset, UNITIG-
BIN secures 41 high-quality bins, slightly surpassing the count achieved by MaxBin2 (40). In the
Sim100G dataset, UNITIGBIN acquires 69 high-quality bins, slightly fewer than the count achieved
by SemiBin (70). UNITIGBIN continues to show good performance in evaluations using CheckM2.

Additonal comparison on CAMI dataset. While our paper extensively employs various simulated
and real-world datasets to assess the performance of UNITIGBIN in comparison to state-of-the-art
baselines, we also undertake benchmarking on a specific dataset (Urogenital tract, referred toe as
CAMI UG) from the toy Human Microbiome project of the second CAMI challenge (Sczyrba et al.,
2017; Meyer et al., 2022). Additionally, we adhere to the experimental setup outlined in MetaCoAG
and employ CheckM as the evaluation tool for conducting preliminary comparisons. In this part, our
primary choice for a comparative method is VAMB (Nissen et al., 2021), a deep learning-based bin-
ning tool. A summary of the experimental results is presented in Table A8. UNITIGBIN slightly sur-
passes the performance of the VAMB model, yielding 35 high-quality bins and 26 medium-quality
bins. UNITIGBIN can bin a greater number of contigs than VAMB, with a runtime of approximately
40 minutes (For detailed information about the running environment, please refer to Section A.3.).

21

Published as a conference paper at ICLR 2024

Table A7: Evaluation results by UNITIGBIN and baselines (CheckM2).

Methods Sim20G Sim50G Sim100G
HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓ HQ↑ MQ↑ LQ↓

MetaBAT2 4 4 80 7 7 208 4 6 22
MaxBin2 20 0 1 40 2 3 65 12 18
SemiBin 19 1 2 39 2 9 70 8 20
VAMB 20 0 2 35 1 10 68 6 13

GraphMB 10 1 23 14 0 73 22 3 170
CCVAE 13 1 37 15 0 71 35 1 119
RepBin 18 1 1 17 9 21 25 14 39

MetaCoAG 18 1 1 39 4 4 67 12 4
UNITIGBIN 20 0 1 41 8 9 69 12 14

To apply UNITIGBIN to the CAMI UG dataset, we configure the ’nbatch’ parameter as 5, indicating
the division of the original unitig-level assembly graph into 5 subgraphs. While we have an opti-
mization function for joint-unitigs pairs (p-Batch), increasing the number of batches may potentially
introduce more errors. Thus, there is still a need for efforts to design more efficient binning models
on the unitig-level assembly graphs, especially when dealing with large-scale metagenomic data.

Table A8: Evaluation results by UNITIGBIN and VAMB on the CAMI UG dataset.

Methods Binned Detected CAMI UG
Contigs Bins HQ↑ MQ↑ LQ↓

VAMB 21,398 100 34 10 56
UNITIGBIN 49,879 121 35 26 53

22

	Introduction
	Related Work
	Methodology
	Learning: Representing Unitig-level Assembly Graph with Constraints
	Diffusion Encoder-Decoder Framework
	Triplet Gaussian Constraints Optimization
	p-Batch: Training data batching

	Binning: Comprising Matching Constraints, Propagating and Refining Bins

	Experiments
	Evaluation on metaSPAdes-based datasets
	Evaluation on metaFlye-based datasets
	Visualization and Experimental Analysis

	Conclusion
	Appendix
	The pseudocode for UnitigBin
	Datasets and Baselines
	Implementation Details
	Evaluation Metrics
	CheckM Results on metaSPAdes datasets.
	Constraints from CheckM
	Parameters Analysis and Scalability
	Additional Experimental Results

