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Abstract

The cost of labeling is a significant challenge in practical machine learning. This issue arises
not only during the learning phase but also at the model evaluation phase, as there is a need
for a substantial amount of labeled test data in addition to the training data. In this study,
we address the challenge of active model selection with the goal of minimizing labeling
costs for choosing the best-performing model from a set of model candidates. Based on an
appropriate test loss estimator, we propose an adaptive labeling strategy that can estimate
the difference of test losses with small variance, thereby enabling the estimation of the best
model using fewer labeling cost. Experimental results on real-world datasets confirm that
our method efficiently selects the best model.

Keywords: Active learning, model selection

1. Introduction

The labeling cost is a crucial problem in practical machine learning. To train highly accurate
models, it is desired to collect a huge amount of labeled data. The problem of labeling
cost triggered several active research fields including active learning (Settles, 2009; Ren
et al., 2021), transfer learning (Yang et al., 2020; Zhuang et al., 2020), semi-supervised
learning (Van Engelen and Hoos, 2020), weakly-supervised learning (Sugiyama et al., 2022),
and foundation models (Bommasani et al., 2021). These studies aim at training accurate
models with limited amount of labeling, e.g., by actively selecting data instances to be
labeled, or by fine-tuning existing models with a small amount of labeled data.

Evaluation of trained machine learning models is also an inevitable step when deploying
models to real world use. If the models do not exhibit desirable accuracy for practical use,
such models should not be deployed. An important point here is that the problem of labeling
cost also emerges at this evaluation stage because we need a certain amount of labeled test
data apart from the training data. Despite the importance of the evaluation stage, the
labeling cost of evaluation is not widely explored, except for a few seminal works (Sawade
et al., 2010; Katariya et al., 2012; Kumar and Raj, 2018; Kossen et al., 2021).

In this study, we tackle the problem of active model selection with an aim of reducing
the labeling cost for model selection (Sawade et al., 2012). In many machine learning tasks,
it is common to train a few models with different hyper-parameters and select the one with
the highest performance. A typical approach for model selection is to evaluate models on
a labeled test data collected independently from the training data. Here, the problem of
labeling cost arises if we need a large amount of labeled test data for model selection. To
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relieve the labeling cost, we propose an algorithm for actively selecting data instance to be
labeled so that we can identify the best-performing model with a small amount of labeling.

2. Active Testing

In this section, we review the framework of active testing proposed by Kossen et al. (2021),
which constitutes the basis of our study. The goal of active testing is to estimate the average
test loss R = 1

N

∑N
i=1 ℓ(f(xi), yi) by labeling only on the subset of DU = {xi}Ni=1 so that

we can reduce the labeling cost. Kossen et al. (2021) proposed an active strategy that
selects one test instance to be labeled at a time. Here, ℓ is a loss function the users want to
evaluate, which takes the predictions f(xi) of model f and the true labels yi as input and
returns the loss. Below, we use the shorthand notation ℓi := ℓ(f(xi), yi)

There are two proposals in active testing. The first proposal is using Leveled Unbiased
Risk Estimator (LURE) (Farquhar et al., 2021) to estimate R given the actively labeled test
instances. Suppose one obtained labels yi1 , yi2 , . . . , yiM for M sequentially selected points
xi1 , xi2 , . . . , xiM using some query distributions q1, q2, . . . , qM . Then, LURE is given as

L(M) =
1

M

M∑
m=1

vMm ℓim , vMm = 1 +
N −M

N −m

(
1

(N −m+ 1)qm(im)
− 1

)
, (1)

where qm(im) represents the probability of selecting im ∈ Um−1 at the m-th step when
i1:m−1 = {i1, i2, . . . , im−1} have been labeled. It is known that L(M) is unbiased, i.e.,
Ei1:M [L(M)] = R for any M .

The second proposal is considering the sampling distribution qm so that the variance
of LURE to be minimized. For the unbiased estimator L(M), the question is how large
it can deviate from the true value R. If L(M) has a small variance, it ensures L(M)
resides in the neighborhood of R with high probability. Thus, L(M) with small variance
is ideal. The ideal distribution q∗m minimizing the variance (Farquhar et al., 2021) is given
by q∗m(i) ∝ ℓi,∀i ∈ Um−1. Apparently, this ideal distribution is unavailable for the data
points that are not yet labeled. Kossen et al. (2021) therefore proposed an approximation
qATm (i) ∝ Eπ(z|xi) [ℓ(f(xi), z)] ,∀i ∈ Um−1, where π is a surrogate model1 approximating the
labeling mechanism for any given input x. The surrogate model is trained, e.g., by using
the same training set of f .

3. Proposed Method for Active Model Selection

We now formalize the problem of active model selection (Sawade et al., 2012). We then
propose an algorithm for active model selection by extending the framework of active testing.
Let f1, f2, . . . , fK be K model candidates, and DU = {xi}Ni=1 be a set of unlabeled test
instances. If we know the true label yi corresponding to xi for all the instances, we can
compute the average test lossRk = 1

N

∑N
i=1 ℓ(fk(xi), yi). Then, we can find the model with

the minimum loss2 as k∗ = argmink Rk. Of course, this is possible only in an ideal situation
where all the labels are known. The goal of active model selection is to estimate k∗ by a
limited amount of labeling.

1. For the choice of the surrogate π, see Kossen et al. (2021) for the detailed discussions and experiments.
2. When there are multiple models with the same minimum loss, it is sufficient to find only one of them.
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3.1 Proposed Method for K = 2

We first consider a simple setting where the number of model candidates K = 2. In this
situation, the model selection problem reduces to the problem of estimating the sign of the
difference R1 − R2. When R1 − R2 < 0, we can conclude that the model f1 has a smaller
average loss and hence k∗ = 1, and k∗ = 2 otherwise. Below, we denote ℓki := ℓ(fk(xi), yi)
and ∆i := ℓ1i − ℓ2i for simplicity.

We first note that we can use LURE for estimating the difference R1 −R2. Indeed, for
any query distribution qm, we have L1(M)−L2(M) = 1

M

∑M
m=1 v

M
m ∆im , where L1(M) and

L2(M) denote LURE for the models f1 and f2, respectively. This is an unbiased estimator
of R1 − R2, i.e., Ei1:M [L1(M) − L2(M)] = R1 − R2. The remaining task is to design an
appropriate query distribution qm.

We derive the ideal query distribution qm minimizing the variance of L1(M)− L2(M).
If the estimator L1(M) − L2(M) has a small variance, we can expect L1(M) − L2(M) to
belong in close neighborhood of R1 − R2, which allows us to estimate the sign of R1 − R2

confidently. Suppose that i1:m−1 is given. Then, the ideal query distribution minimizing
the conditional variance Vim∼qm [L1(m)− L2(m) | i1:m−1] is given by3

q∗m(i) ∝ |∆i| , ∀i ∈ Um−1. (2)

The ideal distribution qm in (2) is available only when the true label is known so that one
can compute the true |∆i|. We follow the idea of Kossen et al. (2021) and use a surrogate
model π to estimate |∆i|. The resulting query distribution is then given by

q2m(i) ∝ |∆̂i|, |∆̂i| = Eπ(z|xi) [|ℓ(f1(xi), z)− ℓ(f2(xi), z)|] . (3)

3.2 Proposed Method for General K

Algorithm 1 Proposed Model Selection

Input: Models {fk}Kk=1, Surrogate π, Unla-
beled data DU

Output: Estimated optimal model index k̂

1: U0 ← {1, 2, . . . , N}, Q0 ← ∅
2: for m = 1 to M do
3: Calculate qKm(i) in (5) for all i ∈ Um−1.
4: Sample im ∼ qKm(i) and observe yim .
5: Um ← Um−1 \ {im}, Qm ← Qm−1 ∪

{(ℓ1im , ℓ
2
im
, . . . , ℓKim , q

K
m(im))}.

6: end for
7: Calculate Lk(M) by using QM for k =

1, 2, . . . ,K.
8: return argmink∈{1,2,...,K} Lk(M).

We extend Algorithm to the general
case when the number of model candidates
K ≥ 2. Similar to the case of K = 2,
we design the query distribution qm min-
imizing the variance. The difference from
K = 2 is that there are K(K−1)

2 combina-
tions of the models to be compared with.
The question here is that which variance
we aim to minimize.

In our proposed method, we con-
sider minimizing the sum of all the pair-
wise variances, which is given by V :=∑

k<k′ Vim∼qm [Lk(m)− Lk′(m) | i1:m−1].
Suppose that i1:m−1 is given. Then, the
query distribution minimizing the sum of

3. See Appendix A for the proof.
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all the pairwise variances V is4

q∗m(i) ∝ ∆V
i :=

∑
k<k′

∣∣∣∆k,k′

i

∣∣∣ , ∀i ∈ Um−1, where ∆k,k′

i := ℓki − ℓk
′

i . (4)

Similar to the case of K = 2, we approximate |∆V
i | using the surrogate π. The resulting

sampling distribution is then given by

qKm(i) ∝ |∆̂V
i |, |∆̂V

i | =
∑
k<k′

Eπ(z|xi) [|ℓ(fk(xi), z)− ℓ(fk′(xi), z)|] . (5)

The pseudo-code of the proposed algorithm for general K is shown in Algorithm 1.

4. Related Work

The objective of active model selection is to estimate the best-performing model from the
candidates by a small number of labeling. The study most close to ours would be Sawade
et al. (2012). They proposed to estimate the average test loss using the importance weighting

LW
k (M) =

1

WM

M∑
m=1

1

qm(xim)
ℓkim , WM =

M∑
m=1

1

qm(xim)
. (6)

They showed that the ideal query distribution minimizing the asymptotic variance of

LW
1 (M)− LW

2 (M) is q∗m(i) ∝
√

Ep(z|xi)

[
(∆ℓ(xi, z)−∆R)

2
]
, where ∆ℓ(x, z) := ℓ(f1(x), y)−

ℓ(f2(x), z) and ∆R := R1 −R2.
There is one essential difference with the current study and Sawade et al. (2012). Our

query distribution (2) minimizes the conditional variance of the estimated test loss in each
step, while Sawade et al. (2012) minimizes the asymptotic variance only. As we show in the
experiments in Section 5, this difference is significant. The proposed method incurs small
variance even for a small number of labeling M , while the method of Sawade et al. (2012)
tends to incur large variance for small M .

5. Experiment

In this section, we demonstrate the effectiveness of the proposed method in two ways. First,
we show that the proposed method can estimate the difference of test losses with small
variance, so that we can confirm our theoretical claim. Second, we demonstrate that the
proposed method can estimate the best-performing model with a small number of labeling
compared to the existing baselines.

5.1 Setups

Datasets & Loss We used the four datasets obtained from LIBSVM Data repository5

shown in Table 1. In the experiments, we randomly subsampled 5,000 instances as the
training set and subsampled another 500 instances as the test set. Because these are the
classification datasets, we used the zero–one loss as the loss function ℓ.

4. See Appendix A for the proof.
5. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/multiclass.html
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dataset classes features instances

covtype 7 54 581,012
letter 26 16 15,000
mnist 10 780 60,000

sensorless 48 11 58,509

Table 1: Datasets used for the experiments.

As the multiple model candidates
f1, f2, . . . , fK , we used four-layer percep-
tron (MLP) with different number of hid-
den neurons. We trained each model fk on
the training set using MLPClassifier of
scikit-learn with hidden layer sizes =
(b, b/2) for several different values of b and
max iter = 1000. We used the default val-
ues for the other options.

As the surrogate π, we used the ensemble 1
K

∑K
k=1 fk proposed by Sawade et al. (2012).

Baselines We compared the proposed method (Proposed) with the two baselines. The
first baseline is Uniform that selects the next labeling instance uniformly at random. This
is the most naive baseline. The second baseline is Sawade using the loss estimator and the
query distribution proposed by Sawade et al. (2012).

5.2 Experiment 1: Comparison of Variance

covtype letter mnist sensorless

R1 0.238 0.092 0.082 0.028
R2 0.228 0.124 0.074 0.030

Table 2: [Experiment 1] The average test
losses R1 and R2 for MLPs f1 with the num-
ber of neurons b = 100 and f2 with b = 1000,
respectively. The bold loss denote Rk∗ cor-
responding to the best model with the mini-
mum test loss for each dataset.

covtype letter mnist sensorless

R1 0.262 0.160 0.092 0.034
R2 0.298 0.110 0.078 0.036
R3 0.238 0.092 0.082 0.028
R4 0.248 0.068 0.074 0.028
R5 0.246 0.092 0.068 0.028
R6 0.228 0.124 0.074 0.030

Table 3: [Experiment 2] The average
test losses R1, R2, . . . , R6 for MLPs
f1, f2, . . . , f6 with the number of neurons
b = 30, 50, 100, 300, 500, 1000, respectively.
The bold and underlined losses denote Rk∗

and Rk∗2
, respectively, corresponding to the

minimum and second minimum test losses
for each dataset.

We first validate the variance of the dif-
ference of estimated test losses. Here, we
used MLP of b = 100 as the first model f1
and MLP of b = 1000 as the second model
f2. Table 2 shows the test losses of the
models.

Figure 1 shows the results of active
model selection. We run each method of
Uniform, Sawade, and Proposed for
1000 times with different random seeds.
Figure 1 shows the average and the stan-
dard deviation of the estimated test loss
difference ∆R = Rk∗ − Rk∗2

over the num-
ber of labeling M , where Rk∗ and Rk∗2

de-
note the minimum and the second mini-
mum test loss.

It is evident from the figure that Pro-
posed attained the smallest standard de-
viation (std.) for any M compared to the
baselines. The figures show that Pro-
posed converged to the true ∆R around
M = 100. Moreover, we can see that its
upper line (average + std.) gets smaller
than zero (black dashed line) for very small
M = 20 ∼ 50. That is, Proposed could
estimate the sign of the difference and
thereby identifying the best model after la-
beling M = 20 ∼ 50 instances most of the times.
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Figure 1: [Experiment 1] The estimated test loss differences over the number of labels M .
The average estimates are drawn in solid line while their standard deviations (average ±
std.) are denoted by the shaded regions.
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Figure 2: [Experiment 2] The success rates of identifying the best model over the number
of labels M .

5.3 Experiment 2: Estimation of the Best-Performing Model

We now demonstrate that the proposed method can find the best-performing model ef-
fectively. Here, we used MLP of b = 30, 50, 100, 300, 500, 1000 as the model candidates
f1, f2, f3, f4, f5, f6, shown in Table 3. We run each method of Uniform, Sawade, and
Proposed for 1000 times with different random seeds.

Figure 2 shows the success rate of each method after labeling M instances, i.e., the ratio
of the cases when the method can successfully identify the best model over the 1000 trials.
In the figures, we can see that Proposed dominates the other baselines; it could approach
to the perfect success rate with the smaller labeling cost. In particular, for the letter, mnist,
and sensorless datasets, it attained the perfect success rate with M ≈ 100, far smaller cost
than the baselines. The results also confirm that Uniform tends to be the worst most of
the cases as expected. Sawade was far better than Uniform showing its effectiveness for
active model selection.

6. Conclusion

In this study, we tackled the problem of active model selection with an aim of reducing the
labeling cost for selecting the best-performing model. We formulated the problem as the
estimation of the sign of the difference of test losses. To solve the problem, we derived the
ideal query distribution that minimizes the variance of the estimated test loss difference, so
that one can estimate the best model with confidence. Experiments on real-world datasets
confirmed that our method can estimate the difference of test losses with small variance,
leading to an effective model selection with a small number of labeling.
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Appendix A. Proof.

In this appendix, we prove the following theorems from Sections 3.1 and 3.2.

Theorem 1 (Query Distribution with Minimum Variance) Suppose that i1:m−1 is
given. Then, the query distribution minimizing the conditional variance Vim∼qm [L1(m)− L2(m) | i1:m−1]
is given by

q∗m(i) ∝ |∆i| , ∀i ∈ Um−1. (2)

Proof We recall that, by the definition of LURE and vmm,

L1(m)− L2(m) =
1

m

m−1∑
j=1

vmj ∆ij +
1

m

1

N −m+ 1

∆im

qm(im)
.

Because i1:m−1 is given and fixed, only the last term is the random variable whose ex-

pectation is Eim∼qm

[
∆im

qm(im)

]
=

∑
j∈Um−1

∆j . The conditional variance is then expressed
as

Vim∼qm [L1(m)− L2(m) | i1:m−1]

=
1

m2

1

(N −m+ 1)2
Eim∼qm

 ∆im

qm(im)
−

∑
j∈Um−1

∆j


2

=
1

m2

1

(N −m+ 1)2

 ∑
j∈Um−1

∆2
j

qm(j)
−

 ∑
j∈Um−1

∆j


2 .

Thus, the minimization of the conditional variance is reduced to the following optimization
problem.

min
qm

∑
j∈Um−1

∆2
j

qm(j)
, s.t. qm(j) ≥ 0,

∑
j∈Um−1

qm(j) = 1.

We can solve this problem by using the method of Lagrange multipliers, and the claim
follows.

Theorem 2 (Query Distribution with Minimum V ) Suppose that i1:m−1 is given. Then,
the query distribution minimizing the sum of all the pairwise variances V is

q∗m(i) ∝ ∆V
i :=

∑
k<k′

∣∣∣∆k,k′

i

∣∣∣ , ∀i ∈ Um−1, where∆k,k′

i := ℓki − ℓk
′

i . (4)

Proof By the similar arguments as in the proof of Theorem 1, the minimization of V
reduces to the following optimization problem.

min
qm

∑
j∈Um−1

(
∆V

j

)2

qm(j)
, s.t. qm(j) ≥ 0,

∑
j∈Um−1

qm(j) = 1.
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We can solve this problem by using the method of Lagrange multipliers, and the claim
follows.

Appendix B. Experiment 1: Comparison of Variance

We show the additional results on Experiment 1 in Section 5.2.

B.1 RandomForest and Ensemble Surrogate

Here, we show the results on RandomForest. As the model candidates f1, f2, we used
RandomForest of the depth 14 and 20, respectively. We trained each model fk using the
training set using RandomForestClassifier of scikit-learn with max depth = b with b = 14
and b = 20, shown in Table 4. We used the default values for the other options. As the
surrogate π, we used the ensemble 1

2

∑2
k=1 fk proposed by Sawade et al. (2012). We run

each method of Uniform, Sawade, and Proposed for 1000 times with different random
seeds.

covtype letter mnist sensorless

R1 0.226 0.104 0.082 0.012
R2 0.212 0.088 0.070 0.006

∆R - 0.014 - 0.016 - 0.012 - 0.006

Table 4: [Experiment 1: RandomForest] The average test losses R1 and R2 for Random-
Forestss f1 with the maximum depth b = 14 and f2 with b = 20, respectively. The bold loss
denote Rk∗ corresponding to the best model with the minimum test loss for each dataset.
∆R = Rk∗ −Rk∗2

is the difference of test losses where Rk∗2
denotes the second minimum test

loss.

Figure 3 shows the average and the standard deviation of the estimated test loss dif-
ference ∆R = Rk∗ − Rk∗2

over the number of labeling M , where Rk∗ and Rk∗2
denote the

minimum and the second minimum test loss. The result is similar to the case of MLP in
Section 5.2 where Proposed attained the smallest variance for all M .
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Figure 3: [Experiment 1: RandomForest + Ensemble Surrogate] The estimated test loss
differences over the number of labels M . The average estimates are drawn in solid line while
their standard deviations (average ± std.) are denoted by the shaded regions.
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Figure 4: [Experiment 1: MLP + Logistic Regression Surrogate] The estimated test loss
differences over the number of labels M . The average estimates are drawn in solid line while
their standard deviations (average ± std.) are denoted by the shaded regions.
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Figure 5: [Experiment 1: RandomForest + Logistic Regression Surrogate] The estimated
test loss differences over the number of labels M . The average estimates are drawn in solid
line while their standard deviations (average ± std.) are denoted by the shaded regions.

B.2 Logistic Regression Surrogate

Here, we show the results for the case when we used the linear logistic regression as the surro-
gate π. We trained linear logistic regression on the training set using LogisticRegressionCV
of scikit-learn with default options. In the experiment, we use the same model candidates,
MLPs (Section 5.2, Table 2) and RandomForests (Appendix B.1, Table 4).

Figures 4 and 5 show the variance for MLP and RandomForest, respectively. In the
figures, Proposed performed the best similar to the case when the ensemble surrogate is
used (Section 5.2, Appendix B.1). These results show that the choice of the surrogate π
did not have significant impacts to the results.

Appendix C. Experiment 2: Estimation of the Best-Performing Model

We show the additional results on Experiment 2 in Section 5.3.

C.1 RandomForest and Ensemble Surrogate

Here, we show the results on RandomForest. As the multiple model candidates f1, f2, . . . , fK ,
we used RandomForest of different depths. We trained each model fk using the training
set using RandomForestClassifier of scikit-learn with max depth = b with a prescribed
value b. We used the default values for the other options. As the surrogate π, we used the
ensemble 1

K

∑K
k=1 fk proposed by Sawade et al. (2012).
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covtype letter mnist sensorless

R1 0.248 0.174 0.074 0.018
R2 0.232 0.146 0.076 0.010
R3 0.226 0.104 0.082 0.012
R4 0.232 0.102 0.064 0.008
R5 0.222 0.088 0.068 0.008
R6 0.212 0.088 0.070 0.006

∆R - 0.010 - 0.014 - 0.004 - 0.002

Table 5: [Experiment 2: RandomForest] The average test losses R1, R2, . . . , R6 for Random-
Forests f1, f2, . . . , f6 with the maximum depth b = 10, 12, 14, 16, 18, 20, respectively. The
bold and underlined losses denote Rk∗ and Rk∗2

, respectively, corresponding to the minimum
and second minimum test losses for each dataset. ∆R = Rk∗ −Rk∗2

is the difference of test
losses.

We used RandomfForest with the maximum depth b = 10, 12, 14, 16, 18, 20 as the model
candidates f1, f2, f3, f4, f5, f6, shown in Table 5. We run each method of Uniform, Sawade,
and Proposed for 1000 times with different random seeds.

Figure 6 shows the success rate for identifying the best model. Similar to the results
in Section 5.3, Proposed performed the best; it requires the small number of labeling for
identifying the best model compared to the baselines. In this experiment, Sawade was
comparable with Proposed, although Proposed outperformed slightly.
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Figure 6: [Experiment 2: RandomForest + Ensemble Surrogate] The success rates of iden-
tifying the best model over the number of labels M .

C.2 Logistic Regression Surrogate

Here, we show the results for the case when used the linear logistic regression as the surrogate
π. We trained linear logistic regression on the training set using LogisticRegressionCV

of scikit-learn with default options. In the experiment, we use the same model candidates,
MLPs (Section 5.3, Table 3) and RandomForests (Appendix C.1, Table 5).

Figures 7 and 8 shows the success rates for MLP and RandomForest, respectively. In
the figures, Proposed performed the best similar to the case when the ensemble surrogate
is used (Section 5.3, Appendix C.1). These results show that the choice of the surrogate π
did not have significant impacts to the results.
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Figure 7: [Experiment 2: MLP + Logistic Regression Surrogate] The success rates of iden-
tifying the best model over the number of labels M .

S
u
cc
es
s
R
a
te

0 100 200 300 400 500
0.0
0.2
0.4
0.6
0.8
1.0

# of labels M

Uniform
Sawade
Proposed

(a) covtype

0 100 200 300 400 500
0.0
0.2
0.4
0.6
0.8
1.0

# of labels M

(b) letter

0 100 200 300 400 500
0.0
0.2
0.4
0.6
0.8
1.0

# of labels M

(c) mnist

0 100 200 300 400 500
0.0
0.2
0.4
0.6
0.8
1.0

# of labels M

(d) sensorless

Figure 8: [Experiment 2: RandomForest + Logistic Regression Surrogate] The success rates
of identifying the best model over the number of labels M .
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