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Abstract

Despite Federated Learning (FL)’s trend for learning machine learning models in a1

distributed manner, it is susceptible to performance drops when training on hetero-2

geneous data. In addition, FL inevitability faces the challenges of synchronization,3

efficiency, and privacy. Recently, dataset distillation has been explored in order to4

improve the efficiency and scalability of FL by creating a smaller, synthetic dataset5

that retains the performance of a model trained on the local private datasets. We6

discover that using distilled local datasets can amplify the heterogeneity issue in7

FL. To address this, we propose a new method, called Federated Virtual Learning8

on Heterogeneous Data with Local-Global Distillation (FEDLGD), which trains9

FL using a smaller synthetic dataset (referred as virtual data) created through a10

combination of local and global dataset distillation. Specifically, to handle syn-11

chronization and class imbalance, we propose iterative distribution matching to12

allow clients to have the same amount of balanced local virtual data; to harmonize13

the domain shifts, we use federated gradient matching to distill global virtual data14

that are shared with clients without hindering data privacy to rectify heterogeneous15

local training via enforcing local-global feature similarity. We experiment on both16

benchmark and real-world datasets that contain heterogeneous data from different17

sources, and further scale up to an FL scenario that contains large number of18

clients with heterogeneous and class imbalance data. Our method outperforms19

state-of-the-art heterogeneous FL algorithms under various settings with a very20

limited amount of distilled virtual data.21

1 Introduction22

Federated Learning (FL) [29] has become a popular solution for different institutions to collaboratively23

train machine learning models without pooling private data together. Typically, it involves a central24

server and multiple local clients; then the model is trained via aggregation of local network parameter25

updates on the server side iteratively. FL is widely accepted in many areas, such as computer vision,26

natural language processing, and medical image analysis [25, 12, 41].27

On the one hand, clients with different amounts of data cause asynchronization and affect the efficiency28

of FL systems. Dataset distillation [39, 5, 46, 44, 45] addresses the issue by only summarizing smaller29

synthetic datasets from the private local datasets to ensure each client owns the same amount of30

data. We refer this underexplored strategy as federated virtual learning, as the models are trained31

from synthetic data [40, 10, 16]. These methods have been found to perform better than model-32

synchronization-based FL approaches while requiring fewer server-client interactions.33

On the other hand, due to different data collection protocols, data from different clients inevitably34

face heterogeneity problems with domain shift, which means data may not be independent and35

identically distributed (iid) among clients. Heterogeneous data distribution among clients becomes a36
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key challenge in FL, as aggregating model parameters from non-iid feature distributions suffers from37

client drift [18] and diverges the global model update[26].38

We observe that using locally distilled datasets can amplify the heterogeneity issue. Figure 1 shows39

the tSNE plots of two different datasets, USPS [31] and SynthDigits [9], each considered as a client.40

tSNE takes the original and distilled virtual images as input and embeds them into 2D planes. One41

can observe that the distribution becomes diverse after distillation.42

Figure 1: Distilled local datasets can worsen hetero-
geneity in FL. tSNE plots of (a) original datasets and
(b) distilled virtual datasets of USPS (client 0) and Syn-
thDigits (client 1). The two distributions are marked in
red and blue. We observe fewer overlapped � and ⇥ in
(b) compared with (a), indicating higher heterogeneity
between two clients after distillation.

To alleviate the problem of data heterogeneity43

in classical FL settings, two main orthogonal44

approaches can be taken. Approach 1 aims45

to minimize the difference between the local46

and global model parameters to improve conver-47

gence [25, 18, 38]. Approach 2 enforces con-48

sistency in local embedded features using an-49

chors and regularization loss [37, 47, 42]. The50

first approach can be easily applied to distilled51

local datasets, while the second approach has52

limitations when adapting to federated virtual53

learning. Specifically, VHL [37] samples global54

anchors from untrained StyleGAN [19] suffers55

performance drop when handling amplified het-56

erogeneity after dataset distillation. Other meth-57

ods, such as those that rely on external global58

data [47], or feature sharing from clients [42],59

are less practical, as they pose greater data privacy risks compared to classical FL settings1. Without60

hindering data privacy, developing strategies following approach 2 for federated virtual learning on61

heterogeneous data remains open questions on 1) how to set up global anchors for locally distilled62

datasets and 2) how to select the proper regularization loss(es).63

To this end, we propose FEDLGD, a federated virtual learning method with local and global dis-64

tillation. We propose iterative distribution matching in local distillation by comparing the feature65

distribution of real and synthetic data using an evolving feature extractor. The local distillation results66

in smaller sets with balanced class distributions, achieving efficiency and synchronization while67

avoiding class imbalance. FEDLGD updates the local model on local distilled synthetic datasets68

(named local virtual data). We found that training FL with local virtual data can exacerbate hetero-69

geneity in feature space if clients’ data has domain shift (Figure. 1). Therefore, unlike previously70

proposed federated virtual learning methods that rely solely on local distillation [10, 40, 16], we also71

propose a novel and efficient method, federated gradient matching, that integrated well with FL to72

distill global virtual data as anchors on the server side. This approach aims to alleviate domain shifts73

among clients by promoting similarity between local and global features. Note that we only share74

local model parameters w.r.t. distilled data. Thus, the privacy of local original data is preserved. We75

conclude our contributions as follows:76

• This paper focuses on an important but underexplored FL setting in which local models77

are trained on small distilled datasets, which we refer to as federated virtual learning. We78

design two effective and efficient dataset distillation methods for FL.79

• We are the first to reveal that when datasets are distilled from clients’ data with domain shift,80

the heterogeneity problem can be exacerbated in the federated virtual learning setting.81

• We propose to address the heterogeneity problem by mapping clients to similar features82

regularized by gradually updated global virtual data using averaged client gradients.83

• Through comprehensive experiments on benchmark and real-world datasets, we show that84

FEDLGD outperforms existing state-of-the-art FL algorithms.85

1Note that FedFA [47], and FedFM [42] are unpublished works proposed concurrently with our work
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2 Related Work86

2.1 Dataset Distillation87

Data distillation aims to improve data efficiency by distilling the most essential feature in a large-88

scale dataset (e.g., datasets comprising billions of data points) into a certain terse and high-fidelity89

dataset. For example, Gradient Matching [46] is proposed to make the deep neural network produce90

similar gradients for both the terse synthetic images and the original large-scale dataset. Besides,91

[5] proposes matching the model training trajectory between real and synthetic data to guide the92

update for distillation. Another popular way of conducting data distillation is through Distribution93

Matching [45]. This strategy instead, attempts to match the distribution of the smaller synthetic94

dataset with the original large-scale dataset. It significantly improves the distillation efficiency.95

Moreover, recent studies have justified that data distillation also preserves privacy [7, 4], which is96

critical in federated learning. In practice, dataset distillation is used in healthcare for medical data97

sharing for privacy protection [22]. Other modern data distillation strategies can be found here [33].98

2.2 Heterogeneous Federated Learning99

FL performance downgrading on non-iid data is a critical challenge. A variety of FL algorithms have100

been proposed ranging from global aggregation to local optimization to handle this heterogeneous101

issue. Global aggregation improves the global model exchange process for better unitizing the102

updated client models to create a powerful server model. FedNova [38] notices an imbalance103

among different local models caused by different levels of training stage (e.g., certain clients train104

more epochs than others) and tackles such imbalance by normalizing and scaling the local updates105

accordingly. Meanwhile, FedAvgM [15] applies the momentum to server model aggregation to106

stabilize the optimization. Furthermore, there are strategies to refine the server model from learning107

client models such as FedDF [27] and FedFTG [43]. Local training optimization aims to explore the108

local objective to tackle the non-iid issue in FL system. FedProx [25] straightly adds L2 norm to109

regularize the client model and previous server model. Scaffold [18] adds the variance reduction term110

to mitigate the “clients-drift". Also, MOON [24] brings mode-level contrastive learning to maximize111

the similarity between model representations to stable the local training. There is another line of112

works [42, 37] proposed to use a global anchor to regularize local training. Global anchor can be113

either a set of virtual global data or global virtual representations in feature space. However, in [37],114

the empirical global anchor selection may not be suitable for data from every distribution as they115

don’t update the anchor according to the training datasets.116

2.3 Datasets Distillation for FL117

Dataset distillation for FL is an emerging topic that has attracted attention due to its benefit for118

efficient FL systems. It trains model on distilled synthetic datasets, thus we refer it as federated119

virtual learning. It can help with FL synchronization and improve training efficiency by condensing120

every client’s data into a small set. To the best of our knowledge, there are few published works on121

distillation in FL. Concurrently with our work, some studies [10, 40, 16] distill datasets locally and122

share the distilled datasets with other clients/servers. Although privacy is protected against currently123

existing attack models, we consider sharing local distilled data a dangerous move. Furthermore, none124

of the existing work has addressed the heterogeneity issue.125

3 Method126

In this section, we will describe the problem setup, introduce the key technical contributions and127

rationale of the design for FEDLGD, and explain the overall training pipeline.128

3.1 Setup for Federated Virtual Learning129

We start with describing the classical FL setting. Suppose there are N parties who own local datasets130

(D1, . . . , DN ), and the goal of a classical FL system, such as FedAvg [29], is to train a global model131
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Figure 2: Overview pipeline for FEDLGD. We assume T FL rounds will be performed, among which we will
define the selected distillation rounds as ⌧ 2 [T ] for local-global iteration. For selected rounds (t 2 ⌧ ), clients
will update local models (d) and refine the local virtual data with the latest network parameters (c), while the
server uses aggregated gradients from cross-entropy loss (LCE) to update global virtual data (a) and update
the global model (b). We term this procedure Iterative Local-global Distillation. For the unselected rounds
(t 2 T\⌧ ), we perform ordinary FL pipeline on local virtual data with regularization loss (LCon) on global
virtual data.

with parameters ✓ on the distributed datasets (D ⌘
S

i2[N ]
Di)). The objective function is written as:132

L(✓) =
NX

i=1

|Di|
|D| Li(✓), (1)

where Li(w) is the empirical loss of client i.133

In practice, different clients in FL may have variant amounts of training samples, leading to asynchro-134

nized updates. In this work, we focus on a new type of FL training method – federated virtual learning,135

that trains on distilled datasets for efficiency and synchronization (discussed in Sec.2.3.) Federated136

virtual learning synthesizes local virtual data D̃i for client i for i 2 [N ] and form D̃ ⌘
S

i2[N ]
D̃i.137

Typically, |D̃i| ⌧ |Di| and |D̃i| = |D̃j |. A basic setup for federated virtual learning is to replace Di138

with D̃i in Eq (1), namely FL model is trained on the virtual datasets. As suggested in FedDM [40],139

the clients should not share gradients w.r.t. the original data for privacy concern.140

3.2 Overall Pipeline141

The overall pipeline of our proposed method contains three stages, including 1) initialization, 2)142

iterative local-global distillation, and 3) federated virtual learning. We depict the overview of143

FEDLGD pipeline in Figure 2. However, FL is inevitability affected by several challenges, including144

synchronization, efficiency, privacy, and heterogeneity. Specifically, we outline FEDLGD as follows:145

We begin with the initialization of the clients’ local virtual data D̃c by performing initial rounds of146

distribution matching (DM) [45]. Meanwhile, the server will initialize global virtual data D̃g and147

network parameters ✓g
0
. In this stage, we generate the same amount of class-balanced virtual data for148

each client and server.149

Then, we will refine our local and global virtual data using our proposed local-global distillation150

strategies in Sec. 3.3.1 and 3.3.2. This step is performed for a few selected iterations (e.g. ⌧ =151

{0, 5, 10}) to update ✓ using LCE (Eq 3), D̃g using LDist (Eq 5), and D̃c using LMMD (Eq 2) in early152

training epochs. For each selected iterations, the server and clients will update their virtual data for a153

few distillation steps.154
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Finally, after refining local and global virtual data D̃g and D̃c, we continue federated virtual learning155

in stage 3 on local virtual data D̃c using Ltotal (Eq 3), with D̃g as regularization anchor to calculate156

LCon (Eq. 4). We provide implementation details, an algorithm box, and an anonymous link to our157

code in the Appendix.158

3.3 FL with Local-Global Dataset Distillation159

3.3.1 Local Data Distillation160

Our purpose is to decrease the number of local data to achieve efficient training to meet the following161

goals. First of all, we hope to synthesize virtual data conditional on class labels to achieve class-162

balanced virtual datasets. Second, we hope to distill local data that is best suited for the classification163

task. Last but not least, the process should be efficient due to the limited computational resource164

locally. To this end, we design Iterative Distribution Matching to fulfill our purpose.165

Iterative distribution matching. We aim to gradually improve distillation quality during FL training.166

To begin with, we split a model into two parts, feature extractor  (shown as E in figure 2) and167

classification head h (shown as C in figure 2). The whole classification model is defined as f✓ = h� .168

The high-level idea of distribution matching can be described as follows. Given a feature extractor169

 : Rd ! Rd0
, we want to generate D̃ so that P (D) ⇡ P (D̃) where P is the distribution in170

feature space. To distill local data during FL efficiently that best fits our task, we intend to use171

the up-to-date server model’s feature extractor as our kernel function to distill better virtual data.172

Since we can’t obtain ground truth distribution of local data, we utilize empirical maximum mean173

discrepancy (MMD) [11] as our loss function for local virtual distillation:174

LMMD=
KX

k

|| 1

|Dc
k|

|Dc
k|X

i=1

 t(xi)�
1

|D̃c,t
k |

|D̃c,t
k |X

j=1

 t(x̃t
j)||2, (2)

where  t and D̃c,t are the server feature extractor and local virtual data from the latest global iteration175

t. Following [46, 45], we apply the differentiable Siamese augmentation on virtual data D̃c. K is the176

total number of classes, and we sum over MMD loss calculated per class k 2 [K]. In such a way, we177

can generate balanced local virtual data by optimizing the same number of virtual data per class.178

Although such an efficient distillation strategy is inspired by DM [45], we highlight the key difference179

that DM uses randomly initialized deep neural networks to extract features, whereas we use trained180

FL models with task-specific supervised loss. We believe iterative updating on the clients’ data using181

the up-to-date network parameters can generate better task-specific local virtual data. Our intuition182

comes from the recent success of the empirical neural tangent kernel for data distribution learning and183

matching [30, 8]. Especially, the feature extractor of the model trained with FEDLGD could obtain184

feature information from other clients, which further harmonize the domain shift between clients.185

We apply DM [45] to the baseline FL methods and demonstrate the effectiveness of our proposed186

iterative strategy in Sec. 4. Furthermore, note that FEDLGD only requires a few hundreds of local187

distillations steps using the local model’s feature distribution, which is more computationally efficient188

than other bi-level dataset distillation methods [46, 5].189

Harmonizing local heterogeneity with global anchors. Data collected in different sites may have190

different distributions due to different collecting protocols and populations. Such heterogeneity will191

degrade the performance of FL. Worse yet, we found increased data heterogeneity among clients192

when federatively training with distilled local virtual data (see Figure 1). We aim to alleviate the193

dataset shift by adding a regularization term in feature space to our total loss function for local model194

updating, which is inspired by [37, 20]:195

Ltotal = LCE(D̃
g, D̃c; ✓) + �LCon(D̃

g, D̃c), (3)

and196

LCon=
X

i2I

�1

|P (i)|
X

p2P (i)

log
exp(zg · zp/⌧temp)P

a2A(i) exp(zg · za/⌧temp)
, (4)

where LCE is the cross-entropy measured on the virtual data, and LCon is the supervised contrastive197

loss where I is the collection of all indices, A(i) indicates all the local and global virtual data indices198

without i (i.e. A(i) ⌘ I\{i}), z =  (x) is the output of feature extractor, P (i) represents the set of199
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images belonging to the same class yi without data i, and ⌧temp is a scalar temperature parameter. In200

such a way, global virtual data can be served for calibration, where zg is from D̃g as an anchor, and201

zp and za are from D̃c. At this point, a critical problem arises: What global virtual data shall we use?202

3.3.2 Global Data Distillation203

Here, we provide an affirmative solution to the question of generating global virtual data that can204

be naturally incorporated into FL pipeline. Although distribution-based matching is efficient, local205

clients may not share their features due to privacy concerns. Therefore, we propose to leverage local206

clients’ averaged gradients to distill global virtual data and utilize it in Eq. (4). We term our global207

data distillation method as Federated Gradient Matching.208

Federated gradient matching. The concept of gradient-based dataset distillation is to minimize the209

distance between gradients from model parameters trained by original data and distilled data. It is210

usually considered as a learning-to-learn problem because the procedure consists of model updates211

and distilled data updates. Zhao et al. [46] studies gradient matching in the centralized setting via212

bi-level optimization that iteratively optimizes the virtual data and model parameters. However, the213

implementation in [46] is not appropriate for our specific context because there are two fundamental214

differences in our settings: 1) for model updating, the gradient-distilled dataset is on the server and215

will not directly optimize the targeted task; 2) for virtual data update, the ‘optimal’ model comes216

from the optimized local model aggregation. These two steps can naturally be embedded in local217

model updating and global virtual data distillation from the aggregated local gradients. First, we218

utilize the distance loss LDist [46] for gradient matching:219

LDist = Dist(5✓LD̃g

CE(✓),5✓LD̃c

CE(✓)) (5)

where D̃c and D̃g denote local and global virtual data, 5✓LD̃c

CE is the average client gradient. Then,220

our proposed federated gradient matching optimize as follows:221

min
Dg

LDist(✓) subject to ✓ =
1

N
✓ci

⇤
,

where ✓ci
⇤
= argmin✓ Li(D̃c) is the optimal local model weights of client i at a certain round t.222

Noting that compared with FedAvg [29], there is no additional client information shared for global223

distillation. We also note the approach seems similar to the gradient inversion attack [49] but we224

consider averaged gradients w.r.t. local virtual data, and the method potentially defenses inference225

attack better (Appendix D.8), which is also implied by [40, 7]. Privacy preservation can be further226

improved by employing differential privacy [1], but this is not the main focus of our work.227

4 Experiment228

To evaluate FEDLGD, we consider the FL setting in which clients obtain data from different domains229

while performing the same task. Specifically, we compare with multiple baselines on benchmark230

datasets DIGITS (Sec. 4.2), where each client has data from completely different open-sourced231

datasets. The experiment is designed to show that FEDLGD can effectively mitigate large domain232

shifts. Additionally, we evaluate the performance of FEDLGD on another benchmark dataset,233

CIFAR10C [14], which collects data from different corrupts yielding data distribution shift and234

contains a large number of clients, so that we can investigate varied client sampling in FL. The235

experiment aims to show FEDLGD’s feasibility on large-scale FL environments. We also validate the236

performance under medical datasets, RETINA, in Appendix. B.237

4.1 Training and Evaluation Setup238

Model architecture. We conduct the ablation study to explore the effect of different deep neural239

networks’ performance under FEDLGD. Specifically, we adapt ResNet18 [13] and ConvNet [46]240

in our study. To achieve the optimal performance, we apply the same architecture to perform both241

the local distillation task and the classification task, as this combination is justified to have the best242

output [46, 45]. The detailed model architectures are presented in Appendix D.4.243

Comparison methods. We compare the performance of downsteam classification tasks using state-of-244

the-art (SOTA) FL algorithms, FedAvg [29], FedProx [26], FedNova [38], Scaffold [18], MOON [24],245
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Table 1: Test accuracy for DIGITS under different images per class (IPC) and model architectures. R and C
stand for ResNet18 and ConvNet, respectively, and we set IPC to 10 and 50. Threre are five clients (MNIST,
SVHN, USPS, SynthDigits, and MNIST-M) containing data from different domains. ‘Average’ is the unweighted
test accuracy average of all the clients. The best performance under different models is highlighted using bold.
The best results on ConvNet are marked in red and in black for ResNet18.

DIGITS MNIST SVHN USPS SynthDigits MNIST-M Average
IPC 10 50 10 50 10 50 10 50 10 50 10 50

FedAvg R 73.0 92.5 20.5 48.9 83.0 89.7 13.6 28.0 37.8 72.3 45.6 66.3
C 94.0 96.1 65.9 71.7 91.0 92.9 55.5 69.1 73.2 83.3 75.9 82.6

FedProx R 72.6 92.5 19.7 48.4 81.5 90.1 13.2 27.9 37.3 67.9 44.8 65.3
C 93.9 96.1 66.0 71.5 90.9 92.9 55.4 69.0 73.7 83.3 76.0 82.5

FedNova R 75.5 92.3 17.3 50.6 80.3 90.1 11.4 30.5 38.3 67.9 44.6 66.3
C 94.2 96.2 65.5 73.1 90.6 93.0 56.2 69.1 74.6 83.7 76.2 83.0

Scaffold R 75.8 93.4 16.4 53.8 79.3 91.3 11.2 34.2 38.3 70.8 44.2 68.7
C 94.1 96.3 64.9 73.3 90.6 93.4 56.0 70.1 74.6 84.7 76.0 83.6

MOON R 15.5 80.4 15.9 14.2 25.0 82.4 10.0 11.5 11.0 35.4 15.5 44.8
C 85.0 95.5 49.2 70.5 83.4 92.0 31.5 67.2 56.9 82.3 61.2 81.5

VHL R 87.8 95.9 29.5 67.0 88.0 93.5 18.2 60.7 52.2 85.7 55.1 80.5
C 95.0 96.9 68.6 75.2 92.2 94.4 60.7 72.3 76.1 83.7 78.5 84.5

FEDLGD R 92.9 96.7 46.9 73.3 89.1 93.9 27.9 72.9 70.8 85.2 65.5 84.4
C 95.8 97.1 68.2 77.3 92.4 94.6 67.4 78.5 79.4 86.1 80.6 86.7

and VHL [37]2. We directly use local virtual data from our initialization stage for FL methods other246

than ours. We perform classification on client’s testing set and report the test accuracies.247

FL training setup. We use the SGD optimizer with a learning rate of 10�2 for DIGITS and CIFAR10C.248

If not specified, our default setting for local model update epochs is 1, total update rounds is 100,249

the batch size for local training is 32, and the number of virtual data update iterations (|⌧ |) is 10.250

The numbers of default virtual data distillation steps for clients and server are set to 100 and 500,251

respectively. Since we only have a few clients for DIGITS and RETINA experiments, we will select all252

the clients for each iteration, while the client selection for CIFAR10C experiments will be specified in253

Sec. 4.3. The experiments are run on NVIDIA GeForce RTX 3090 Graphics cards with PyTorch.254

Proper Initialization for Distillation. We propose to initialize the distilled data using statistics255

from local data to take care of both privacy concerns and model performance. Specifically, each256

client calculates the statistics of its own data for each class, denoted as µc
i ,�

c
i , and then initializes the257

distillation images per class, x ⇠ N (µc
i ,�

c
i ), where c and i represent each client and categorical label.258

The server only needs to aggregate the statistics and initializes the virtual data as x ⇠ N (µg
i ,�

g
i ). In259

this way, no real data is shared with any participant in the FL system. The comparison results using260

different initialization methods proposed in previous works [46, 45] can be found in Appendix C.261

4.2 DIGITS Experiment262

Datasets. We use the following datasets for our benchmark experiments: DIGITS = {MNIST [21],263

SVHN [31], USPS [17], SynthDigits [9], MNIST-M [9]}. Each dataset in DIGITS contains hand-264

written, real street and synthetic digit images of 0, 1, · · · , 9. As a result, we have 5 clients in the265

experiments, and image size is 28⇥ 28.266

Comparison with baselines under various conditions. To validate the effectiveness of FEDLGD,267

we first compare it with the alternative FL methods varying on two important factors: Image-per-class268

(IPC) and different deep neural network architectures (arch). We use IPC 2 {10, 50} and arch 2269

{ ResNet18(R), ConvNet(C)} to examine the performance of SOTA models and FEDLGD using270

distilled DIGITS. Note that we fix IPC = 10 for global virtual data and vary IPC for local virtual data.271

Table 1 shows the test accuracies of DIGITS experiments. In addition to testing with original test sets,272

we also show the unweighted averaged test accuracy. One can observe that for each FL algorithm,273

ConvNet(C) always has the best performance under all IPCs. The observation is consistent with [45]274

as more complex architectures may cause over-fitting in training virtual data. It is also shown that275

using IPC = 50 always outperforms IPC = 10 as expected since more data are available for training.276

Overall, FEDLGD outperforms other SOTA methods, where on average accuracy, FEDLGD increases277

the best test accuracy results among the baseline methods of 2.1% (IPC =10, arch = C), 10.4% (IPC278

2The detailed information of the methods can be found in Appendix E.
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Table 2: Averaged test accuracy for CIFAR10C with ConvNet.
CIFAR10C FedAvg FedProx FedNova Scaffold MOON VHL FEDLGD
IPC 10 50 10 50 10 50 10 50 10 50 10 50 10 50

Client ratio
0.2 27.0 44.9 27.0 44.9 26.7 34.1 27.0 44.9 20.5 31.3 21.8 45.0 32.9 46.8
0.5 29.8 51.4 29.8 51.4 29.6 45.9 30.6 51.6 23.8 43.2 29.3 51.7 39.5 52.8
1 33.0 54.9 33.0 54.9 30.0 53.2 33.8 54.5 26.4 51.6 34.4 55.2 47.6 57.4

(a) Comparison of Reg. loss (b) Vary |⌧ | (c) Vary steps (d) Vary steps

Figure 3: (a) Comparison between different regularization losses and their weighting in total loss
(�). One can observe that supervised contrastive loss gives us better and more stable performance
with different coefficient choices. (b) The trade-off between |⌧ | and computation cost. One can
observe that the model performance improves with the increasing |⌧ |, which is a trade-off between
computation cost and model performance. Vary data updating steps for (c) DIGITS and (d) CIFAR10C.
One can observe that FEDLGD yields consistent performance, and the accuracy tends to improve
with an increasing number of local and global steps.

=10, arch = R), 2.2% (IPC = 50, arch = C) and 3.9% (IPC =50, arch = R). VHL [37] is the closest279

strategy to FEDLGD and achieves the best performance among the baseline methods, indicating that280

the feature alignment solutions are promising for handling heterogeneity in federated virtual learning.281

However, VHL is still worse than FEDLGD, and the performance may result from the differences in282

synthesizing global virtual data. VHL [37] uses untrained StyleGAN [19] to generate global virtual283

data without further updating. On the contrary, we update our global virtual data during FL training.284

4.3 CIFAR10C Experiment285

Datasets. We conduct real-world FL experiments on CIFAR10C3, where, like previous studies [24],286

we apply Dirichlet distribution with ↵ = 0.5 to generate 3 partitions on each distorted Cifar10-C [14],287

resulting in 57 clients each with class imbalanced non-IID datasets. In addition, we apply random288

client selection with ratio = 0.2, 0.5, and 1 and set image size as 28⇥ 28.289

Comparison with baselines under different client sampling ratios. The objective of the experiment290

is to test FEDLGD under popular FL questions: class imbalance, large number of clients, different291

client sample ratios, and data heterogeneity. One benefit of federated virtual learning is that we can292

easily handle class imbalance by distilling the same number (IPC) of virtual data. We will vary IPC293

and fix the model architecture to ConvNet since it is validated that ConvNet yields better performance294

in virtual training [46, 45]. One can observe from Table 2 that FEDLGD consistently achieves the295

best performance under different IPC and client sampling ratios. We would like to point out that296

when IPC=10, the performance boosts are significant, which indicates that FEDLGD is well-suited297

for FL conditions when there is a large group of clients and each of them has a limited number of298

data.299

4.4 Ablation studies for FEDLGD300

The success of FEDLGD relies on the novel design of local-global data distillation, where the301

selection of regularization loss and the number of iterations for data distillation plays a key role. In302

this section, we study the choice of regularization loss and its weighting (�) in the total loss function.303

Recall that among the total FL training epochs, we perform local-global distillation on the selected304

⌧ iterations, and within each selected iteration, the server and clients will perform data updating305

3Cifar10-C is a collection of augmented Cifar10 that applies 19 different corruptions.
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Figure 4: tSNE plots on feature space for FedAvg, FEDLGD without regularization, and FEDLGD. One can
observe regularizing training with our global virtual data can rectify feature shift among different clients.

for some pre-defined steps. The effect of local-global distillation iterations and data updating steps306

will also be discussed. We also perform additional ablation studies such as computation cost and307

communication overhead in Appendix C.308

Effect of regularization loss. FEDLGD uses supervised contrastive loss LCon as a regularization309

term to encourage local and global virtual data embedding into a similar feature space. To demonstrate310

the effectiveness of the regularization term in FEDLGD, we perform ablation studies to replace LCon311

with an alternative distribution similarity measurement, MMD loss, with different �’s ranging from312

0.1 to 20. Figure 3a shows the average test accuracy. Using supervised contrastive loss gives us better313

and more stable performance with different coefficient choices.314

To explain the effect of our proposed regularization loss on feature representations, we embed the315

latent features before fully-connected layers to a 2D space using tSNE [28] shown in Figure 4. For316

the model trained with FedAvg (Figure 4(a)), features from two clients (⇥ and �) are closer to their317

own distribution regardless of the labels (colors). In Figure 4(b), we perform virtual FL training but318

without the regularization term (Eq. 4). Figure 4(c) shows FEDLGD, and one can observe that data319

from different clients with the same label are grouped together. This indicates that our regularization320

with global virtual data is useful for learning homogeneous feature representations.321

Analysis of distillation iterations (|⌧ |). Figure 3b shows the improved averaged test accuracy if322

we increase the number of distillation iterations with FEDLGD. The base accuracy for DIGITS and323

CIFAR10C are 85.8 and 55.2, respectively. We fix local and global update steps to 100 and 500,324

and the selected iterations (⌧ ) are defined as arithmetic sequences with d = 5 (i.e., ⌧ = {0, 5, ...}).325

One can observe that the model performance improves with the increasing |⌧ |. This is because we326

obtain better virtual data with more local-global distillation iterations, which is a trade-off between327

computation cost and model performance. We select |⌧ | = 10 for efficiency trade-off.328

Robustness on virtual data update steps. In Figure 3c and Figure 3d, we fix |⌧ | = 10, and vary329

(local, global) data updating steps. One can observe that FEDLGD yields stable performance, and the330

accuracy slightly improves with an increasing number of local and global steps. Nevertheless, the331

results are all the best when comparing with the baselines. It is also worth noting that there is still332

trade-off between steps and computation cost (See Appendix).333

5 Conclusion334

In this paper, we introduce a new approach for FL, called FEDLGD. It utilizes virtual data on both335

client and server sides to train FL models. We are the first to reveal that FL on local virtual data336

can increase heterogeneity. Furthermore, we propose iterative distribution matching and federated337

gradient matching to iteratively update local and global virtual data, and apply global virtual regu-338

larization to effectively harmonize domain shift. Our experiments on benchmark and real medical339

datasets show that FEDLGD outperforms current state-of-the-art methods in heterogeneous settings.340

Furthermore, FEDLGD can be combined with other heterogenous FL methods such as FedProx [26]341

and Scaffold [18] to further improve its performance. The potential limitation lies in the additional342

communication and computation cost in data distillation, but we show that the trade-off is acceptable343

and can be mitigated by decreasing distillation iterations and steps. Our future direction will be344

investigating privacy-preserving data generation. We believe that this work sheds light on how to345

effectively mitigate data heterogeneity from a dataset distillation perspective and will inspire future346

work to enhance FL performance, privacy, and efficiency.347
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