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Abstract

We introduce Cognitive Dimension Reduction (CDR), a framework that sheds light
on how individuals simplify the multidimensional world to guide decision-making
and comprehension. Our proposal posits that cognitive limitations prompt the
adoption of simplified models, reducing the environment to a subset of dimensions.
Within these limitations, we propose that individuals exploit both environment
structure and goal relevance. Employing information theory, we formalize these
principles and develop a model that explains how environmental and cognitive
factors influence dimension reduction. Furthermore, we present an experimental
method for CDR assessment and initial findings that support it.

1 Introduction

Various decisions we make, such as when to invest in the stock market, entail a great amount of
cognitive processing. We constantly make decisions based on streams of dynamic, high-dimensional
information with limited cognitive resources (Bach and Dolan (2012)). The last decades have seen
the emergence of influential theories, according to which we make such decisions using various
simplifications. For example, schema theory hypothesizes cognitive structures that define relations
between relatively few dimensions or categories (Gilboa and Marlatte (2017), Rumelhart (1980)). In
reinforcement learning, it has been suggested that people select a small subset of all dimensions to
learn about in a process known as representation learning (Gershman and Niv (2010), Wilson and Niv
(2012)). A central tenet of these theories is that behavior and comprehension are based on a subset of
prominent dimensions, which partition the world based on continuous and categorical features.

In computational terms, behavior is shaped by a dimension-reduction process. For example, an
investor might sell a stock based on its past performance while ignoring other dimensions, such as
the market’s trend. This paper lays out principles of cognitive dimension reduction: finding a subset
of dimensions that exploit the environment’s structure and are goal-relevant. Crucially, this process
is performed under the constraints of limited resources (Section 2). We formulate these principles
using information theory and propose a quantitative model called Cognitive Dimension Reduction
(CDR) (Section 3). We conclude by proposing an experimental method for testing the CDR model
and initial findings that support its validity (Section 4).

2 The principles of cognitive dimension reduction

People are often motivated to comprehend the environment in order to achieve their goals. However,
limitations such as cognitive capabilities and time constraints allow processing only some dimensions,
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where dimensions correspond to attributes or aspects of the environment. The best feasible solution in
this case, which is the one we propose in the model, is to use a subset of dimensions that approximates
the environment’s structure and are goal-relevant.

2.1 The structure of the environment

The scholarly consensus is that the world is, and perceived to be, structured (e.g., Rosch (1975), Rosch
and Mervis (1975)). Rather than consisting of orthogonal dimensions with uniform distributions, the
world consists of correlated dimensions (Berlin et al. (1973)). Humans and animals take advantage of
structure to enhance comprehension and learning (Gershman and Niv (2010), Kemp and Tenenbaum
(2009)). This is also evident at the neuronal level (Barlow et al. (1961), Simoncelli (2003)).

One way to take advantage of structure is through abstraction. By abstraction, we refer to the belief
that two or more subjectively distinguishable objects have the same value along some dimension
(Gilead et al. (2020)). For example, referring to companies such as Pfizer and Johnson&Johnson as
pharmaceutical companies is an abstraction. Abstraction is thus a dimension reduction process that
highlights some dimensions (such as involvement in pharmaceuticals) while ignoring others (such as
involvement in consumer products).

2.2 Relevance for goals

People are sensitive to the extent that dimensions are relevant to their tasks and goals (Barsalou
(1991), Eitam and Higgins (2010), Solomon et al. (1999)). To illustrate, different dimensions might
become prominent when buying a stock, depending on whether the goal is short-term or long-term
revenues. When learning, people can consider relevance alongside environment structure (Bates et al.
(2019)).

2.3 Information processing constraints

When confronted with high-dimensional information, time constraints and cognitive limitations
prevent people from making optimal decisions (Gigerenzer and Selten (2002), Simon (1955)). In such
situations, decisions are often formed after reducing the environment to a few prominent dimensions
(Brewer and Treyens (1981), Kleider et al. (2008), Sims (2010)). One advantage of using only a
subset of the dimensions is that it requires less memory capacity (Brady et al. (2009)). In addition,
focusing on fewer dimensions reduces the attention load, which may facilitate learning (Bhui and
Jiao (2023), Leong et al. (2017)).

In the next section, we propose an information-theoretic model of cognitive dimension reduction that
ties together the aforementioned principles. The model offers a quantitative method for determining
the dimensions to which the environment is reduced.

3 CDR: an entropy-based dimension reduction model

Consider an investor who thinks that the value of Pfizer’s stocks depends on two dimensions: the
general trend of the stock market and Pfizer’s achievements. The value of the stock and the two
dimensions used to explain its value can be formulated as random variables. In information theory,
the Shannon entropy of a random variable is a measure of the average information inherent in the
variable’s outcomes (Shannon and Weaver (1949)). The Shannon entropy is suited for measuring
the joint information of these two dimensions since it considers the redundancies between them.
The amount of information regarding the stock value obtained from observing the other dimensions
can be measured using their mutual information (see also Cover and Thomas (2012) for detailed
explanations on information theory).

In the model, we use the Shannon entropy not only as a measure of informativeness but also as a
proxy for the cognitive complexity of attending, memorizing, and using dimensions. This hypothesis
builds on previous work that applied information theory across a range of cognitive processes (for
a review, see Sayood (2018)). For example, the time it takes to process and recognize elements is
linearly related to their entropy (Hick (1952), Hyman (1953)). Recently, links between entropy and
cognitive neuroscience were established in the predictive brain framework (Clark (2013)). Within
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this framework, the free energy principle postulates that the brain copes with the overload of high-
dimensional information by striving to minimize the entropy of its prediction errors (e.g., Friston
(2010)).

3.1 The model

We assume that the set of dimensions in the environment D = {d1, .., dk} and their distributions are
known. Cognitive Dimension Reduction outputs a subset of these dimensions D′ ⊆ D in the context
of comprehending or predicting a target dimension V .

CDR (D,V ) = argmax
D′⊆D

(I (D′;V )) (1)

subject to
H (D′) ≤ C (2)

Equation 1 represents the incentive to accurately learn the dimensions D′ most informative of the
target dimension V . The mutual information I measures the amount of information from V that can
be learned by observing a subset of dimensions D′. Equation 2 represents the information processing
constraint on the dimensions that can be used. The Shannon entropy, H , measures the expected
information in dimensions D′. The cost parameter, C > 0, may be affected by situational factors
such as time constraints and individual abilities such as working memory and attention capacities.

Put together, the dimensions CDR (D,V ) are maximally informative of dimension V , out of all
subsets of dimensions whose entropy is upper bounded by C.

4 Experimental evidence

Next, we introduce an experiment that demonstrates an application of the CDR model and initial
evidence supporting it. This experiment examines the dimensions used for decisions and evaluations,
tapping into the downstream consequence of cognitive dimension reduction. We stress that the
experiment was not run to test the CDR model, but rather, it inspired the model. Therefore, we
present the experiment as an example of the model’s application rather than a verification of its
validity. Moreover, the experiment only examines one set of values for the model’s variables, and
additional work should test the model’s predictions with other values.

4.1 Grouping and averaging

Researchers have demonstrated that people evaluate aggregate options by averaging across values in
various domains (Anderson (1965), Brusovansky et al. (2019)), including stock market evaluations
(Betsch et al. (2006)). The grouping and averaging approach (Shah and Oppenheimer (2011)) extends
this observation by showing that people first group information and then evaluate each group by
averaging the values associated with the group; finally, an overall evaluation is formed by averaging
groups’ evaluations. Our experimental results are consistent with the possibility that the dimension
that CDR outputs is the one according to which grouping and averaging are performed.

4.2 Experimental method

Participants were told they would be presented with two stock portfolios, each consisting of equal
stock shares. Participants were then shown two sequences of 19 stocks, one for each portfolio (the
order portfolios were presented was counterbalanced between participants). For each stock, they
first saw what industry this stock belonged to, and then, if the value of the stock rose or fell over
the previous week (Figure 1). After the stocks’ presentation, participants were asked to choose the
portfolio that performed better and only then to evaluate the performance of the industries. (The
method of this experiment was adapted from Woiczyk and Le Mens (2021)).

The two portfolios in the experiment had the same sequence of rising and falling stocks and, hence
the same overall performance (Figure 2). The stocks’ assignment to industries differed between the
two portfolios. When grouping and averaging based on industries (see 4.1), one portfolio, i.e., the
better grouping by industry portfolio, was more favorable. However, if participants grouped and
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Figure 1: For each portfolio, participants saw a sequence of stocks. For each stock, they saw what
industry it belonged to (e.g., Banking, Food) and if its value rose or fell.

averaged based on individual stocks (or did not group at all), they would be equally likely to choose
either portfolio.

Figure 2: A summary of the portfolio information participants saw in the experiment. The sequence
of stocks was presented according to the above order. The cells’ colors represent the industries (e.g.,
Food, Utilities, Products) which were randomly assigned in the experiment.

4.3 Relation to the CDR model

As we describe next, conditions in this experiment were such that the model predicted most partici-
pants would reduce the information to the industry dimension and use it for grouping and evaluating
a portfolio’s performance. We model each stock as a random sample from a three-dimensional space
(IN, S, V ). The industry dimension IN has three possible values (known to participants in advance),
S is an identifying dimension with a unique value for each stock, and V is the binary change in stock
value (rise or fall), which was the target dimension in this experiment. A priori, participants can
perceive a portfolio’s performance by reducing the information to the industry dimension IN , the
stock dimension S, both, or neither of these dimensions.

Since there were 19 stocks in each portfolio, the stock dimension S had relatively high entropy
(H(S) = log 19 = 4.25). The industry dimension had relatively low entropy since there were
only three industries (i.e., H(IN) ≤ log 3 = 1.59). Following Miller (1956), we expected most
participants’ parameter C (in Eq. 2) to be in the range that the information constraint would be
satisfied for the industry but not for the stock dimension.

In addition to being a sufficiently simple dimension, the industry dimension is highly informative
in this experiment. For every industry, either the values of all its stocks rose or they all fell (i.e.,
I(IN ;V ) = H(V ) > 0). Participants saw several stocks in each industry, allowing them to learn the
association between industries and values throughout the task. The remaining alternative of ignoring
all the dimensions would not reveal any information about a stock’s value before it was presented
(I(∅;V ) = 0). It follows that out of the options that satisfy the information constraint (Eq. 2), the
industry dimension attains argmaxD′⊆D (I (D′;V )).

To conclude, using CDR, we predicted that the information would be reduced to the industry
dimension in this experiment. Thus, even though the two portfolios had the same performance, we
expected participants would prefer the portfolio with better grouping by industry performance.

4.4 Results

One hundred and twelve participants recruited via Prolific completed the experiment; we excluded 11
participants based on low accuracy on the industry evaluation questions, leaving 101 participants.
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Even though both portfolios had the same performance, when asked which portfolio performed
better, a significant majority of the participants chose the portfolio with better grouping by industry
performance (68%, i.e., 73 of the 101 participants, chi-square: χ2 = 19.17, p < 0.0001).

5 Discussion

According to the CDR model, people prioritize a subset of the possible dimensions in the environment
that allow them to achieve high values without incurring a high informational cost. In computational
terms, people perform a lossy dimension reduction, which is optimal once accounting for cognitive
and environmental limitations.

CDR is a static model that assumes dimensions and distributions are fixed and known. As a result, the
model is less suited for predicting behavior when there are misconceptions regarding the distributions
of the dimensions or their informativeness, which hinders revealing the best dimensions. Such
misconceptions may occur when uninformative dimensions are salient. CDR should fare better when
predicting the behavior of experienced individuals or when the environment is relatively stable.
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