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Abstract

Existing multilingual neural machine transla-001
tion (MNMT) approaches mainly focus on im-002
proving models with the encoder-decoder archi-003
tecture to translate multiple languages. How-004
ever, decoder-only architecture has been ex-005
plored less in MNMT due to its underperfor-006
mance when trained on parallel data solely. In007
this work, we attribute the issue of the decoder-008
only architecture to its lack of language transfer009
capability. Specifically, the decoder-only archi-010
tecture is insufficient in encoding source tokens011
with the target language features. We propose012
dividing the decoding process into two stages013
so that target tokens are explicitly excluded in014
the first stage to implicitly boost the transfer ca-015
pability across languages. Additionally, we im-016
pose contrastive learning on translation instruc-017
tions, resulting in improved performance in018
zero-shot translation. We conduct experiments019
on TED-19 and OPUS-100 datasets, consider-020
ing both training from scratch and fine-tuning021
scenarios. Experimental results show that, com-022
pared to the encoder-decoder architecture, our023
methods not only perform competitively in su-024
pervised translations but also achieve improve-025
ments of up to 3.39 BLEU, 6.99 chrF++, 3.22026
BERTScore, and 4.81 COMET in zero-shot027
translations.1028

1 Introduction029

Multilingual neural machine translation (MNMT)030

(Firat et al., 2016) aims to integrate multiple lan-031

guage translation directions into a single model.032

Although multilingual translation systems based on033

large language models have demonstrated strong034

performance (Zhang et al., 2023; Yang et al., 2023;035

Xu et al., 2024), current MNMT models with the036

encoder-decoder architecture (Fan et al., 2020;037

Goyal et al., 2022; Team et al., 2022) remain a fo-038

cus of research due to the competitive performance,039

fewer parameters, and reduced training costs (Zhu040

1All codes will be released for reproduction.
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Figure 1: Comparison between different architectures in
preliminary experiments on TED-19. Figure 1a shows
the BLEU score. Figure 1b shows the layer-wise lan-
guage feature representations of a sentence where the
x-axis indicates the layer number and the vertical line
indicates the value range. Specifically, we follow Qu
et al. (2024) to compute a similarity score, where values
higher than 0.5 mean the representation exhibits the tar-
get language features more and lower than 0.5 indicates
showing more source language features. Appendix A
provides the details of implementation.

et al., 2023). However, in MNMT, models with the 041

decoder-only architecture2 have shown underper- 042

formance by the empirical research of Gao et al. 043

(2022); Zhang et al. (2022), as further evidenced 044

by Figure 1a. Therefore, addressing the underde- 045

velopment of decoder-only architectures in MNMT 046

is crucial due to the advantage of zero-shot gen- 047

eralization (Wang et al., 2022), which potentially 048

benefits zero-shot translation, i.e., translating lan- 049

guage pairs unseen during training. 050

We attribute the issue to the lack of language 051

transferability, causing generations to rely solely 052

on representations that always manifest the source 053

language features. Specifically, MNMT encoder- 054

decoder models typically add a language tag indi- 055

cating the target language at the beginning of the 056

source tokens as a translation instruction (Johnson 057

et al., 2017; Wu et al., 2021), then, Kudugunta et al. 058

(2019); Qu et al. (2024) show that the encoder of 059

MNMT models transfers source tokens to represent 060

2The term "decoder-only architecture" encompasses both
causal decoder-only architectures (Radford et al., 2018) and
prefix decoder-only architectures (Dong et al., 2019).
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target language features more than source language061

features. As shown in Figure 1b, the representation062

of source tokens extracted from the model with the063

encoder-decoder architecture mainly exhibits the064

target language features at the output of the encoder065

(red line), however, this characteristic is absent in066

decoder-only architectures (green and blue lines).067

We hypothesize that the decoder-only architectures068

merely capture the surface information of source069

tokens instead of transferring source tokens into a070

state with more target language features.071

We propose dividing the decoder-only architec-072

ture into two stages, namely, Two-stage Decoder-073

only (TDO). Specifically, the representations of tar-074

get tokens are excluded in the first stage to enforce075

language transfer using the translation instruction,076

and the target tokens are fused in the second stage,077

which follows the normal decoder-only manner.078

Moreover, unlike the encoder-decoder architecture,079

where source and target tokens are processed sep-080

arately, in the decoder-only architecture, source081

tokens pass through all layers. However, the train-082

ing objective of MNMT only focuses on the target083

tokens, leading to the degradation of the target lan-084

guage features on the source token representation.085

Thus, we introduce Instruction-level Contrastive086

Learning (InstruCL) as a training objective to su-087

pervise source tokens in the second stage.088

We evaluate the proposed methodologies on two089

datasets, TED-19 (Ye et al., 2018), and OPUS-100090

(Zhang et al., 2020a; Yang et al., 2021), using091

four automatic evaluation metrics: BLEU (Pap-092

ineni et al., 2002; Post, 2018), chrF++ (Popović,093

2015, 2017), BERTScore (Zhang et al., 2020b) and094

COMET (Rei et al., 2020). Experimental results095

show that, compared to encoder-decoder models,096

our models perform competitively in supervised097

translations and achieve improvements of up to098

3.39 BLEU, 6.99 chrF++, 3.22 BERTScore, and099

4.81 COMET in zero-shot translations. We also an-100

alyze the variation of layer-wise representations at101

the sentence level to demonstrate the effects of our102

proposed methods. Results prove that the gains of103

proposed methods in the decoder-only architecture104

derived from improving language transfer.105

2 Related Work106

Although the large language model based on the107

decoder-only architecture performs satisfactorily108

in the multilingual translation (Zhu et al., 2023;109

Xu et al., 2024), the SOTA models specialized on110

MNMT are still based on the encoder-decoder ar- 111

chitecture (Fan et al., 2020; Team et al., 2022) due 112

to the balance between costs and performances. 113

Gao et al. (2022); Zhang et al. (2022) empirically 114

show that the decoder-only architecture does not 115

have a distinct advantage in MNMT, and Dabre 116

et al. (2020); Raffel et al. (2023) demonstrate that 117

the reason could be the onefold style of training 118

data comprising only translations, degrading the 119

zero-shot ability of the decoder-only architecture 120

(Brown et al., 2020; Wang et al., 2022). 121

Recent investigations of the encoder-decoder 122

architecture in MNMT reveal the deficiency of 123

the decoder-only architecture at the representation 124

level. Kudugunta et al. (2019); Stap et al. (2023) 125

point out that the sentence representations translat- 126

ing to two different target languages are gradually 127

separated with the increase of layers. Qu et al. 128

(2024) demonstrate that the encoder of MNMT 129

model transfers the source sentence representation 130

to the target side, leading to the representation of 131

source tokens used in the generation with more 132

target language features. This finding aligns with 133

the prior empirical studies (Wu et al., 2021; Qu 134

and Watanabe, 2022; Pires et al., 2023), which 135

shows that increasing target language information 136

can lead to performance improvements. Moreover, 137

this also supports our hypothesis that the weakness 138

of the decoder-only architecture can be attributed 139

to the lack of language transfer. 140

3 Backgrounds 141

3.1 Multilingual Neural Machine Translation 142

A parallel multilingual corpus, denoted by C, con- 143

sists of translation pairs in the form of (x,y). Here, 144

x = x1, . . . , xI is the source sentence comprising 145

I tokens, and y = y1, . . . , yJ is the target sentence 146

with J tokens. We also denote language tags by 147

l = l1, . . . , lK , where each tag is an artificial token 148

uniquely corresponding to one of the K languages 149

in C. To serve as a translation instruction, we add 150

the language tag specifying the target language at 151

the beginning of the source tokens (Johnson et al., 152

2017; Wu et al., 2021), denoted by ly.3 Thus, the 153

training data comprises instances in the form of 154

(ly,x,y). The model is trained over all instances 155

in C by the standard cross-entropy objective: 156

Lce = −
∑

ly ,x,y∈C

J∑
j=1

log p(yj | ly,x,y<j), (1) 157

3Appendix B shows the comparison between different
strategies of translation instructions in MNMT.
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Figure 2: Illustration of the encoder-decoder architec-
ture and the decoder-only architecture.

where p(yj | ly,x,y<j) is a probability distribu-158

tion for each token generated by MNMT model.159

160
3.2 Architectures161

All architectures discussed in this work follow the162

Transformer architecture (Vaswani et al., 2017),163

and almost all MNMT models are based on the164

encoder-decoder architecture (Johnson et al., 2017;165

Fan et al., 2020; Team et al., 2022; Raffel et al.,166

2023), as illustrated in Figure 2. It comprises an en-167

coder and a decoder in which both are composed of168

N layers with each encoder layer comprising a self-169

attention mechanism and a feed-forward network170

(FFN), and with each decoder layer comprising a171

masked self-attention mechanism, a cross-attention172

mechanism, and an FFN. The encoder receives I+1173

tokens combining by (ly,x)
4, and output the rep-174

resentations H = {h1, ...,hI+1},h ∈ Rd, d is the175

model dimension. Then, the decoder relies on H176

and y<j to generate the next token:177

HN = encoder(ly,x), (2)178

yj = decoder(HN ,y<j), (3)179

where HN is an intermediate state used in the cross-180

attention mechanism in each decoder layer without181

further transformation. Thus, Equation 1 implicitly182

aligns the output of the encoder in the represen-183

tational subspace of the target language, i.e., the184

language transfer as shown in the red line of Figure185

1b, because the ideal decoder should translate two186

sentences xa and xb, which have the same target187

language, parallel semantics, and different source188

languages, to the same target sentence y. Formally,189

an ideal encoder meets the following:190

encoder(ly,x
a) = encoder(ly,x

b). (4)191

A decoder-only architecture refers to a model192

that consists solely of a decoder (Figure 2). Each193

4The operation of combining means adding ly at the be-
ginning of x. Appendix C shows the specific forms in detail.

decoder-only layer consists of a masked self- 194

attention mechanism and an FFN (Radford et al., 195

2018), and each model has 2N layers to approx- 196

imately match the parameter size of an encoder- 197

decoder architecture. We define the decoder-only 198

process as follows: 199

yj = decoder-only(ly,x,y<j). (5) 200

Notably, the difference between decoder-only(·) 201
and decoder(·) is that decoder-only(·) fuses the 202

source and target information by a concatenated 203

input, namely, ly,x, and y are equally treated5, in- 204

stead of using a cross-attention mechanism. Thus, 205

there exists no intermediate state to align differ- 206

ent source languages as Equation 4, resulting in 207

the blue and green lines of Figure 1b. More- 208

over, we follow Gao et al. (2022); Raffel et al. 209

(2023) to distinguish the decoder-only by the man- 210

ner of masked self-attention mechanism as causal 211

decoder-only and prefix decoder-only (Appendix 212

D). Finally, compared to the encoder-decoder ar- 213

chitecture, the decoder-only architecture requires 214

around 10% fewer parameters (Appendix E). 215

4 Methodologies 216

4.1 Two-stage Decoder-only Architecture 217

The limitations of the decoder-only architecture 218

in MNMT likely arise from inadequate language 219

transfer capabilities, i.e., the absence of Equation 4. 220

To address this issue, we propose the Two-stage 221

Decoder-only (TDO) architecture, which divides 222

the decoder-only process into two stages to im- 223

plicitly align representations of different source 224

languages in the subspace of the target language. 225

Specifically, as illustrated in Figure 3, the target 226

tokens are explicitly excluded in the first stage, i.e., 227

the first M layers, and these target tokens are fused 228

in the second stage, i.e., the subsequent 2N −M 229

layers. The process of TDO is formally expressed: 230

HM = decoder-only1(ly,x), (6) 231

yj = decoder-only2(H
M ,y<j), (7) 232

where decoder-only1(·) enables the implicit align- 233

ment as done in Equation 4. Notably, the first stage 234

logically acts as an encoder when prefixed masking 235

is applied to the self-attention mechanism. How- 236

ever, the first and second stages remain unified 237

structures, and the fusing of source and target in- 238

formation follows the manner of decoder-only(·) 239

5Appendix C compares the difference of the input and out-
put forms between encoder-decoder and decoder-only models.
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(a) Two-stage Decoder-only

[de] Hello, world! Hallo, Welt!
[fr] 每天开⼼! Heureux chaque jour!

Negative Instances:

[zh] Happy everyday! 每天开⼼!

···

[fr] Hello, world! Bonjour, le monde!

Anchor:

[fr] Bonjour, le monde! Bonjour, le monde!

Positive Instance:

Identity Pair
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Dec-only
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(layer index > M)

Dec-only 
(layer index > M+1)

···

···

Figure 3: Illustration of proposed methods. Notably, the term, Token, not only means the real token before and after
the processing of model, but also refers to the representation in the corresponding position. (a) shows the Two-stage
Decoder-only and shows the Adaption, i.e., using an additional FFN to narrow the gap between source and target
representations by non-linear transformation. (b) shows the Instruction-level Contrastive Learning. Underline marks
target tokens, and [*] means the instruction of this instance. For the anchor, negative instances in this figure meet at
least one of two features: 1) different target language and 2) unparallel semantics.

rather than decoder(·). Therefore, TDO architec-240

ture preserves the decoder-only architecture.241

Notably, a representational gap arises at the242

M + 1 layer due to our imbalance design where243

the source tokens have passed through the preced-244

ing M layers, while the target tokens are not. To245

bridge this gap, as shown in Figure 3, we employ246

an additional FFN as an adaption module6 at the247

output of the M layer to nonlinearly transform the248

representation of source tokens. Similarly, since249

the source and target tokens share the same repre-250

sentational space in the second stage, we employ251

another adapter at the output of the 2N layer to en-252

sure that the output representation of target tokens253

remains unaffected by the source language.254

4.2 Instruction-level Contrastive Learning255

Although Equation 6 transfers H, i.e., the represen-256

tation of source tokens, to HM , which aligns with257

the target language, H potentially tends to degrade258

towards the source language in Equation 7 because259

Equation 1 does not supervise H directly.7260

Contrastive learning, which is a technique to en-261

courage representations towards the target states262

(Jaiswal et al., 2021), is helpful to mitigate this263

degradation. However, two challenges remain in264

this process. The first is the lack of optimization265

objectives for aligning H with the target language.266

For instance, the H derived by a translation from267

German to English cannot be considered an anchor268

to optimize another H derived by a translation from269

French to English because neither adequately rep-270

6Adaptation module is shared for all languages instead of
a language-specific component (Bapna and Firat, 2019).

7Although the language modeling loss (Radford et al.,
2018) can provide supervision for the representation of source
tokens, Gao et al. (2022) show that supervising the representa-
tion of source tokens does not benefit MNMT.

resents the optimal state of English. The second 271

challenge is that the optimization at the sentence 272

representation level potentially leads to suboptimal 273

results. For instance, Pan et al. (2021) suggest aver- 274

aging representations of all tokens to get a sentence 275

representation for contrastive learning, which loses 276

the syntactic information. 277

We propose Instruction-level Contrastive Learn- 278

ing (InstruCL), which only aligns ly, i.e., the 279

translation instruction, of each instance, given 280

that MNMT remains sensitive to ly (Wu et al., 281

2021). As shown in Figure 3, given an anchor 282

(ly,x,y), we establish an identity pair in the form 283

of (ly,y,y), namely a pseudo pair translating the 284

target sentence to itself, as the positive instance 285

because the identity pair can serve as a proxy for 286

the target language (Qu et al., 2024). Specifically, 287

in a training batch, we have a set of representations 288

B = {h1
1,h

2
1, . . . } where h1 is the representation 289

of ly collected from H. Then, we designate one 290

instance of B as the anchor, denoted by hanc. Other 291

instances are treated as negative instances, which 292

meet one or both of the following features com- 293

pared to the anchor: different target languages or 294

unparallel semantics. Subsequently, the identity 295

pair established by the anchor would be fed into 296

the model and we collect the representation of ly at 297

the same layer, and denote it by hpos. The objective 298

of InstruCL is formulated as: 299

Lctr = −
∑
h∈B

log
exp(s+)

exp(s+) +
∑|B|−1

i=1 exp(s−i )
,

s+ = sim(hanc,hpos),

s−i = sim(hanc,hi
1),h

i
1 ̸= hanc,

(8)

300

where sim(·) calculates the similarity of representa- 301
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tions using the cosine similarity. The final training302

objective is simply jointed as:303

L = Lce + Lctr. (9)304

5 Experiments305

5.1 Datasets and Evaluations306

Following prior works (Wu et al., 2021; Zhang307

et al., 2022; Tan and Monz, 2023; Stap et al., 2023;308

Qu et al., 2024), we use English-centric datasets in309

our experiments, where the training and validation310

data consist of translation pairs both from English311

and to English. It is an ideal setup for the evalua-312

tion of zero-shot translation capabilities, because313

non-central languages have never seen each other.314

We utilize two datasets in our experiments: 1) TED-315

19 (Qu et al., 2024), a sub-collection of TED Talks316

(Ye et al., 2018), comprising 6.5 million instances317

across 19 languages from various language fami-318

lies; and 2) OPUS-100 (Zhang et al., 2020a; Yang319

et al., 2021), which includes 95 languages and a320

total of 92 million instances. Detailed information321

about these datasets is provided in Appendix F.322

We set the beam size to 4 during inference and323

evaluate the output quality using four automatic324

evaluation metrics for a comprehensive assessment:325

SacreBLEU (Papineni et al., 2002; Post, 2018),326

chrF++ (Popović, 2015, 2017), BERTScore (Zhang327

et al., 2020b), and COMET (Rei et al., 2020). Addi-328

tionally, we employ fasttext-langdetect8 to measure329

the target-off ratio on zero-shot pairs, i.e., the ratio330

of cases where the source sentence is not translated331

into the correct target language, as a secondary332

metric. Our selection criteria for these evaluation333

metrics are further described in Appendix G.334

5.2 Experimental Setups335

We conduct experiments from two perspectives:336

training from scratch and fine-tuning. Based on the337

findings by Gao et al. (2022); Zhang et al. (2022),338

which empirically demonstrate that the decoder-339

only architecture underperforms compared to the340

encoder-decoder architecture in MNMT, and our341

motivation, which aims to improve the decoder-342

only architecture, our baselines are vanilla models343

with the encoder-decoder and decoder-only archi-344

tectures. Specifically, we train models with the345

encoder-decoder architecture from scratch using346

TED-19 and OPUS-100 as baselines. Addition-347

ally, we fine-tune three pre-trained models with the348

8https://pypi.org/project/fasttext-langdetect

encoder-decoder architecture, namely M2M-418M 349

(Fan et al., 2020), NLLB-600M (Team et al., 2022), 350

and M2M-1.2B (Fan et al., 2020), using TED-19 as 351

baselines. Moreover, although the proposed meth- 352

ods are not restricted to a specific architecture, the 353

adaptation modules are not implemented for the 354

models with the encoder-decoder architecture, be- 355

cause, when the hyper-parameters are consistent, 356

the decoder-only architecture with adaptation mod- 357

ules still contains fewer learnable parameters9 to en- 358

sure fairness, i.e., models have the same magnitude 359

of parameters. We further conduct experiments 360

that apply InstruCL to models with different archi- 361

tectures. The experimental results and discussions 362

are provided in Appendix I as assisted evidence 363

to support the motivation in Section 4.2, namely, 364

InstruCL supplements the inadequate supervision 365

of Equation 1 in the second stage. 366

Our models in this work conform to the manner 367

of the Transformer (Vaswani et al., 2017). For 368

training from scratch, we configure the models 369

with N = 6, d = 512, and an FFN inner size 370

of 4d for models trained on TED-19. The FFN in 371

the adaptation module is dimensionally matched 372

to the FFN in the main network. For OPUS-100, 373

we explore both a deeper model with N = 12 374

and a wider model with N = 6 and d = 1024. 375

Fine-tuning experiments are conducted solely on 376

TED-19. Given that pre-trained models for MNMT 377

typically employ an encoder-decoder architecture, 378

we initialize our model’s parameters from the de- 379

coder, freezing the embedding layer during training. 380

For M2M-418M and NLLB-600M, we set N = 6, 381

and for M2M-1.2B, we set N = 12, maintaining 382

the original settings for d and the FFN inner size. 383

To ensure comparability across different architec- 384

tures, we consistently set M = N and the layer 385

index of InstruCL to 1.5N in the main experiments. 386

Detailed settings for training and the count of learn- 387

able parameters can be found in Appendix H. 388

5.3 Results: Training from scratch 389

Table 1 shows the experimental results. The com- 390

parison between the basic architectures shows that, 391

first, the prefix decoder-only consistently outper- 392

forms the causal decoder-only, which aligns with 393

Raffel et al. (2023). Second, the decoder-only ar- 394

chitecture consistently underperforms the encoder- 395

decoder architecture in supervised pairs of all three 396

settings, with maximum deficits of -4.17, -5.78, - 397

9Appendix H lists the count of modeling parameters for
different cases in detail.
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓

Pref. Adap. CL en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

TED
N=6
d =512

Enc-Dec 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26 3.82

Dec-only
22.54 24.14 7.33 42.84 45.08 23.36 82.96 92.31 74.38 76.60 72.99 57.50 6.01

✓ 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74 5.51

TDO

25.47 28.88 13.56 45.98 51.33 34.04 84.11 93.45 78.90 80.41 78.42 69.74 3.54
✓ 25.55 28.98 13.61 46.03 51.49 34.11 84.15 93.50 78.94 80.56 78.65 70.09 3.49

✓ 25.37 28.46 13.95 45.99 51.13 34.41 84.09 93.40 79.15 80.35 78.26 70.43 3.45
✓ ✓ 25.60 28.82 14.16 46.11 51.35 34.76 84.13 93.45 79.29 80.52 78.47 70.98 3.43

✓ 25.53 28.76 14.26 46.01 51.09 34.72 84.13 93.41 79.27 80.43 78.18 70.82 3.43
✓ ✓ 25.61 28.52 14.51 46.04 50.89 35.01 84.16 93.40 79.41 80.60 78.16 71.48 3.49
✓ ✓ 25.62 28.94 14.70 46.15 51.46 35.34 84.15 93.47 79.57 80.55 78.55 71.94 3.39
✓ ✓ ✓ 25.61 28.66 14.81 46.05 51.01 35.35 84.16 93.41 79.60 80.61 78.22 72.07 3.42

OPUS
N=12
d =512

Enc-Dec 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51 64.21

Dec-only
23.09 26.80 5.42 42.18 45.05 13.55 82.19 91.72 72.48 74.66 73.65 58.17 60.22

✓ 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56 58.91

TDO

✓ 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30 51.56
✓ ✓ 24.79 29.22 5.97 44.69 48.35 14.30 82.87 92.34 72.97 76.04 76.25 58.33 53.80
✓ ✓ 24.35 29.52 7.93 44.44 48.74 18.65 82.84 92.37 73.97 75.93 76.23 58.71 48.37
✓ ✓ ✓ 24.73 29.70 8.52 44.60 48.72 19.94 82.90 92.38 74.32 76.16 76.59 58.82 43.38

OPUS
N=6
d =1024

Enc-Dec 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99 57.15

Dec-only
26.09 29.09 7.55 44.51 47.44 16.98 82.93 92.12 73.94 76.77 75.80 61.21 63.80

✓ 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32 55.67

TDO

✓ 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60 52.43
✓ ✓ 27.51 31.64 7.70 46.87 50.39 17.32 83.58 92.58 74.32 78.05 77.58 61.24 49.87
✓ ✓ 27.12 31.49 9.28 46.55 50.23 21.33 83.50 92.65 75.04 77.63 77.64 60.84 39.71
✓ ✓ ✓ 27.45 31.36 9.36 46.79 50.06 21.05 83.52 92.64 74.88 77.97 77.75 61.78 43.36

Table 1: Averaged scores of results in the experiments of training from scratch. Enc-Dec and Dec-only are
abbreviations of encoder-decoder and decoder-only, respectively. Pref., Adap., and Cl abbreviates Prefix, Adaption
and InstruCL, respectively. ✓in the Prefix column means the masked self-attention mechanism follows Prefix
manner, conversely, follows Causal manner. en→ and →en means the supervised pairs translating from English
to non-central languages and translating from non-central languages to English, respectively. zero abbreviates
zero-shot pairs, off abbreviates the target-off ratio. The best score in each column and block is in bold.

1.14, and -5.16 on the BLEU, chrF++, BERTScore,398

and COMET respectively. On the other hand, while399

the decoder-only architecture shows weaker per-400

formance on TED-19 for zero-shot translation, it401

achieves higher scores in two settings on OPUS-402

100. This suggests that the zero-shot capability of403

the decoder-only architecture in MNMT relates to404

the amount of data and parameters.405

In comparison with the encoder-decoder archi-406

tecture, TDO, firstly, achieves competitively su-407

pervised capabilities using fewer parameters, and,408

specifically, TDO is slightly stronger when trans-409

lating to en and slightly weaker when translating410

from en. Secondly, our method exhibits stronger411

zero-shot translation scores, achieving scores im-412

provements of +2.49, +3.22, +1.57, and +4.81;413

+3.39, +6.99, +1.88, and +0.31; +2.41, +5.16,414

+0.76, +1.79 across three settings for the four main415

metrics respectively. We also find that the Adap-416

tation module enhances both supervised and zero-417

shot translation performance.10 On the other hand,418

InstruCL significantly boosts zero-shot capability,419

though there is a degradation in supervised transla-420

10Appendix J shows the improvement is not because of
increased parameters.

tion performance. Additionally, with the Adapta- 421

tion module implemented, the degree of degrada- 422

tion in supervised performance is reduced. 423

Moreover, the prefix decoder-only architecture 424

achieves the highest COMET score on OPUS-100, 425

though, it remains weaker on BERTScore com- 426

pared to TDO, where both two metrics are based on 427

semantics. This phenomenon can be explained by 428

the target-off ratio, in which models with decoder- 429

only architecture still have a high target-off ratio 430

with biasing towards English primarily (Chen et al., 431

2023) to hamper the evaluation of COMET by con- 432

sidering the source sentence at the same time. 433

5.4 Results: Fine-tuning 434

Table 2 shows the experimental results by fine- 435

tuning the pre-trained models, which shows a 436

similar tendency to Table 1 in general. First, 437

since we initialize the model using parameters 438

from the decoder, the training processes for the 439

encoder-decoder, decoder-only, and TDO architec- 440

tures are relatively fair. Thus, we can conclude 441

that, when compared with the decoder-only archi- 442

tecture, the proposed TDO architecture supports an 443

efficient transformation from pre-trained encoder- 444
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑ off ↓

en→ →en zero en→ →en zero en→ →en zero en→ →en zero zero

M2M
418M

Enc-Dec 26.59 31.62 15.73 46.79 54.07 36.25 84.48 94.02 80.12 82.39 81.30 75.11 3.24
Dec-only 25.72 30.06 14.67 45.88 52.52 34.51 84.12 93.70 79.45 81.61 79.89 73.33 3.51
TDO 26.63 32.44 15.96 46.90 54.80 36.56 84.49 94.15 80.28 82.31 81.80 75.45 3.24
+Adap. 26.87 31.93 16.12 47.08 54.21 36.73 84.58 94.08 80.35 82.62 81.54 75.80 3.31
+CL 26.61 32.34 16.01 47.03 55.07 36.87 84.51 94.16 80.37 82.29 81.82 75.70 3.31
+Adap.,+CL 26.75 31.83 16.20 46.98 54.09 36.82 84.56 94.07 80.41 82.56 81.52 75.95 3.30

NLLB
600M

Enc-Dec 26.39 32.04 15.44 46.90 54.51 36.09 84.46 94.07 79.96 81.98 81.16 74.05 3.42
Dec-only 26.35 30.20 14.69 46.36 51.96 34.16 84.35 93.72 79.45 82.20 79.94 73.62 3.63
TDO 25.82 32.15 15.48 46.42 54.76 36.35 84.30 94.10 80.09 81.34 81.28 74.17 3.28
+Adap. 26.60 32.47 15.82 47.04 54.83 36.62 84.54 94.15 80.23 82.08 81.48 74.89 3.41
+CL 25.87 32.29 15.48 46.44 54.71 36.21 84.31 94.11 80.09 81.43 81.27 74.18 3.47
+Adap.,+CL 26.58 32.37 15.85 46.94 54.69 36.52 84.52 94.14 80.24 82.12 81.44 74.93 3.36

M2M
1.2B

Enc-Dec 27.02 31.75 16.21 47.05 53.82 36.51 84.60 94.03 80.29 82.93 81.38 76.13 3.20
Dec-only 26.47 29.99 15.40 46.47 52.01 35.10 84.36 93.72 79.83 82.51 80.21 75.33 3.46
TDO 27.17 31.95 16.45 47.37 54.66 37.24 84.64 94.11 80.48 82.96 81.71 76.47 3.29
+Adap. 27.32 31.05 16.57 47.53 53.76 37.47 84.68 93.99 80.56 83.11 81.29 76.72 3.31
+CL 27.27 31.83 16.57 47.32 54.42 37.08 84.67 94.11 80.54 83.04 81.75 76.72 3.32
+Adap.,+CL 27.41 30.72 16.60 47.49 53.38 37.23 84.70 93.96 80.55 83.24 81.21 76.88 3.28

Table 2: Averaged scores of results in the experiments of fine-tuning. Abbreviations align with Table 2. Notably, the
decoder-only and TDO architectures use Prefix masked self-attention only. The best score is in bold.

decoder models. Secondly, when compared with445

the encoder-decoder models, TDO models achieve446

the highest scores across four metrics, reaching up447

to +0.39, +0.48, +0.10, and +0.31 for pairs translat-448

ing to en, up to +0.82, +1.00, +0.14, and +0.52 for449

pairs translating from en, and up to +0.47, +0.96,450

+0.29, and +0.88 for zero-shot pairs. TDO models451

also show an improvement in the off-target ratio452

compared to the decoder-only models and keep the453

same level as the encoder-decoder models. More-454

over, we observe that InstruCL does not show sig-455

nificant improvements in the case of NLLB-600M,456

whereas it remains effective in the two M2M cases.457

This may be attributed to that NLLB supports 205458

languages, compared to 100 languages of M2M,459

implying a denser representational space that af-460

fects the effectiveness of InstruCL in aligning rep-461

resentations across languages.462

6 Discussion463

6.1 Representation Analysis464

The limitation of the decoder-only architecture in465

MNMT is due to the lack of language transfer,466

which is shown in Figure 1b. To verify whether our467

proposed methods can address this issue, we ana-468

lyze the layer-wise sentence representations of five469

models trained on TED-19: (i) a prefix decoder-470

only model with N = 6; (ii) a TDO model with471

M = 6; (iii) a TDO model with Adaption mod-472

ules; (iv) a TDO model with InstrucCL; (v) a TDO473

model with Adaption modules and InstrucCL.474

As illustrated in Figure 4, the representation of475

(i) only exhibits a preference for the target language476

in the last two layers. However, (ii) shows a prefer-477
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(i) Prefix Decoder-only
(ii) Two-stage Decoder-only
(iii) Two-stage Decoder-only + Adaption
(iv) Two-stage Decoder-only + InstruCL
(v) Two-stage Decoder-only + Adaption + InstruCL

Figure 4: Illustration of linguistic preference, which
follows Figure 1b. All cases in this figure use the Prefix
manner for the masked self-attention mechanism. The
marker of prefix decoder-only is square, and our pro-
posed methods are round. The x-axis is the index of
layers, and the vertical line indicates the value range.

ence for the target language from the fourth layer, 478

and this trend continues into the second stage. Al- 479

though (iii) exhibits a more stable layer-wise trend 480

compared to (ii), it shows significant differences 481

in the final output across languages. Meanwhile, 482

(iv) exhibits smaller differences across languages. 483

Finally, (v) incorporates all the advantages of (iii) 484

and (iv). Therefore, we can conclude that the TDO 485

enables better language transfer by aligning dif- 486

ferent languages in the representational subspace 487

of the target language. Meanwhile, the Adaption 488

module and InstrucCL improve the transferability 489

of multilingual representations. 490

6.2 How to balance two stages? 491

In Section 5, we always set M equals N to en- 492

sure a fair comparison between the TDO and the 493

encoder-decoder architectures. However, the bal- 494

anced design is not optimal (Kasai et al., 2021; 495
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Figure 5: Variation in different values of M. The y-axis
is the variation ratio compared to the performance of
the model with prefix decoder-only architecture, and the
x-axis is the value of M. The values of N are 6 and 12
in TED-19 and OPUS-100 respectively. Additionally,
the line and the dotted line indicate supervised and zero-
shot translations respectively.

Pires et al., 2023). Thus, we test different M on496

TED-19 and OPUS-100 to investigate balancing497

two stages. As shown in Figure 5a, the perfor-498

mance is always improved with the increase of M499

on TED-19. On OPUS-100, as depicted in Figure500

5b, the case with M = 3 achieves the best zero-501

shot translation scores, but there is a noticeable502

decline in zero-shot translation performance with503

the increase of M , although supervised translation504

scores continue to rise.505

Those results align with our expectations. As506

shown in Table 1: 1) models with the decoder-only507

architecture consistently underperform compared508

to those with the encoder-decoder architecture in509

supervised translation; 2) models with the decoder-510

only architecture underperform in zero-shot trans-511

lation on TED-19 but outperform on OPUS-100.512

Moreover, based on the trends in Figure 5b, we can513

state that the first stage enhances language transfer514

but at the cost of learning linguistic diversity, and515

the second stage benefits linguistic diversity. This516

statement aligns with Zhang et al. (2022) and is517

further proven by Table 1 where incorporating In-518

struCL can significantly improve the performance519

of zero-shot translation on OPUS-100. Thus, we520

conclude that the first stage is crucial in small-scale521

datasets, whereas the second stage becomes more522

significant in large-scale datasets.523

6.3 How to set layer index for InstruCL?524

In Section 5, we set the layer index for InstruCL525

to 1.5N to prevent the degradation of language526

transfer in the second stage. Given that Section 6.2527

shows the different roles of the first and second528

stages, we test the performance of models with529

different layer indexes of InstruCL for the decoder-530

only and the TDO models. Figure 6a demonstrates531
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Figure 6: Variation in different layer index of InstruCL.
The y-axis is the variation ratio compared to the perfor-
mance of the model without InstruCL, and the x-axis is
the index of the layer where InstruCL is employed.

that InstruCL consistently yields positive gains for 532

the decoder-only architecture. On the other hand, 533

Figure 6b shows a decline in the first stage but 534

benefits in the second stage. These results indicate 535

that InstruCL primarily affects layers that follow 536

the decoder-only manner, namely, the second stage 537

of TDO, which is further supported by Appendix 538

I11. Moreover, another observation aligning our 539

motivation is that an excessively high index leads 540

to reduced gains. Therefore, we can conclude that 541

the optimal position for implementing InstruCL is 542

the middle layer of the second stage. 543

7 Conclusions 544

In this work, we analyzed the reasons behind the 545

underperformance of the decoder-only architecture 546

in MNMT, identifying the lack of language transfer 547

capability as the primary challenge. To address 548

this, we introduced the Two-stage Decoder-only 549

architecture. We also proposed Instruction-level 550

Contrastive Learning to overcome the issue from 551

the perspective of representation optimization. We 552

conducted experiments on two settings, i.e., train- 553

ing from scratch and fine-tuning, using the TED-19 554

and OPUS-100 datasets, and the results validate the 555

effectiveness of our approach. Through further ex- 556

periments and representation analysis, we confirm 557

that the improvements in our methods are derived 558

from enhanced language transfer capabilities. 559

11Appendix I shows experiments on implementing InstruCL
in different architectures and datasets as a supplement.
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8 Limitations560

As mentioned in Section 1, this work primarily fo-561

cused on addressing the challenges faced by mod-562

els with a decoder-only architecture in multilin-563

gual neural machine translation (MNMT), rather564

than exploring how to apply large language models565

(LLMs), which also have the decoder-only architec-566

ture. This focus is because small models in MNMT567

still offer the advantages of low training and deploy-568

ment costs while remaining competitive with LLMs569

(Zhu et al., 2023). With the increasing interest in570

improving multilingual translation with LLMs (Xu571

et al., 2024), further exploration is needed to deter-572

mine whether the representation-level methods pro-573

posed in this work can be extended to LLMs. How-574

ever, this is beyond the scope of the current study,575

as the data used to train MNMT models signifi-576

cantly differs from that used to train LLMs. There-577

fore, we leave this question for future research.578

9 Ethical Considerations579

All datasets and toolkits used in this work are pub-580

lic, common, and general in the research on mul-581

tilingual neural machine translation, meanwhile,582

the usage of those datasets and toolkits follows the583

license. Moreover, this work is foundational re-584

search and is not a report of specific applications.585

Therefore, this work is harmless and has no ethical586

risks.587
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A Introduction of Illustrating Linguistic897

Preference898

Overview In this work, we only quantify the lan-899

guage features of the sentence representation by900

the similarity scores, although the analysis of Qu901

et al. (2024) further quantified the semantic fea-902

tures of representations. Specifically, the score903

presents whether the sentence representations at a904

certain state exhibit more features related to the tar-905

get language or more features related to the source906

language.907

Setup First, quantifying the language features of908

the sentence representation requires a semantically909

parallel dataset. Therefore, we conduct analysis910

experiments on TED-19, which provides six fully911

parallel languages, including ar, he, zh, hr, vi,912

and ja. We connect these languages to generate 30913

zero-shot translation pairs, each pair consisting of914

967 sentences. The model setup is consistent with915

our main experiments (Section 5).916

Computing the similarity score First, we follow917

the process of Qu et al. (2024) to measure repre-918

sentation similarity in MNMT, employing singular919

value canonical correlation analysis (Raghu et al.,920

2017). As the definition in Section 3, we obtain921

the token-wise hidden representations of the source922

sentence, i.e. H, from a translation pair. Notably,923

for a decoder-only model, we cut out the source924

part, namely, |H| is always I + 1. Then, we derive925

the sentence-level representation h using average926

pooling h =
∑q

i=1 hi

q . Given Ha and Hb derived927

from two sentences, we first perform singular value928

decomposition on h
a

and h
b

to obtain subspace929

representations h
a ∈ Rda and h

b ∈ Rdb . Then930

we perform canonical correlation analysis to deter-931

mine Wa ∈ Rd′×da and Wb ∈ Rd′×db . Formally,932

we compute correlation ρ between h
a

and h
b

as933

ρ =
⟨Wah

a
,Wbh

b⟩
∥Wah

a∥∥Wbh
b∥
, (10)934

where ⟨·, ·⟩ indicates the inner product. We use935

ρ to represent the similarity of two sentences.936

Subsequently, we get the similarity ρx between937

(ly,x,y) and (lx,x,x) and the similarity ρy be-938

tween (ly,x,y) and (ly,y,y), respectively. There-939

fore, a similarity score of linguistic preference is940

computed as follows:941

s(ly ,x,y) =
ρy

ρy + ρx
, (11)942
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Figure 7: Averaged BLEU scores in different architec-
tures. The palette follows Figure 1, i.e., red is encoder-
decoder, green is causal decoder-only, and blue is prefix
decoder-only.

where s(ly ,x,y) is the similarity score for the given 943

translation pair. Finally, we compute the set-level 944

score by taking the average scores of all sentences 945

over the test set. 946

Meaning of the similarity score Equation 11 947

simply compares the importance of source infor- 948

mation and target information in the representation. 949

Therefore, a value higher than 0.5 means the repre- 950

sentation prefers the target language, otherwise the 951

representation prefers the source language. More- 952

over, the value reflects the degree of linguistic pref- 953

erence, for example, compared to 0.6, 0.7 means 954

the representation presents much more features of 955

the target language or fewer features of the source 956

language. In addition, we also denote the high- 957

est and lowest values by the vertical lines on each 958

point in Figures 1b and 4 to show the value range, 959

which can present stability. Finally, we can find 960

that models with decoder-only architecture cannot 961

align the representation of the source tokens in the 962

representational subspace of the target language, 963

and they try to align source and target languages to 964

be a language-agnostic state. 965

B Comparison between Different 966

Instruction Strategies in MNMT 967

MNMT is sensitive to the strategy of translation in- 968

struction (Wu et al., 2021). We summarize the pos- 969

sible strategies as follows: (1) Adding a language 970

tag specified to the target language at the beginning 971

of source tokens; (2) Adding a language tag speci- 972

fied to the target language at the beginning of target 973

tokens; (3) Based on the (2), using the language tag 974

to replace the [eos] token, which is used to be the 975

trigger of inference; (4) Adding two language tag 976

specified to the target language at the beginning of 977

source tokens and the beginning of target tokens, si- 978

multaneously; (5) Adding a language tag specified 979
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Encoder Decoder

y1 y2 y3 

ly x1 x2 x3 [eos] [eos] y1 y2 y3 

Decoder-only

y1 y2 y3 

[eos] y1 y2 y3 ly x1 x2 x3 [eos] 

ly x1 x2 x3 [eos] 

(a) Encoder-Decoder

(b) Decoder-only
[eos] 

[eos] 

Figure 8: Illustration of input and output forms in
MNMT. Subfigures are for the encoder-decoder archi-
tecture and the decoder-only architecture, respectively.
[eos] is a special token, which means the end of a sen-
tence and is regarded as a token of x and y.

to the source language and a language tag specified980

to the target language at the beginning of source981

tokens and target tokens, respectively. Then, we982

conduct preliminary experiments on three architec-983

tures: encoder-decoder, causal decoder-only, and984

prefix decoder-only, to support the validity of using985

approach (1). As shown in Figure 7, the perfor-986

mance of encoder-decoder architecture meets the987

analysis of Wu et al. (2021). However, a language988

tag at the beginning of target tokens, i.e., (2), (3),989

and (4), is more beneficial for the zero-shot capa-990

bility in Decoder-only architecture. Considering991

that (1) also benefits decoder-only architectures in992

the supervised translation, using (1) in this work is993

reasonable.994

C Different Input and Output Forms995

Figure 8 illustrates input and output forms for two996

architectures involved in this work. Initially, within997

the encoder-decoder architecture, the encoder re-998

ceives parallel input from source tokens, including999

ly, x, and a special token [eos]. As a supplement1000

of Section 3.2, for the I + 1 tokens feeding to the1001

encoder, ly is the first token and corresponds to the1002

h1, then, each index of x is shifted, namely, x cor-1003

responds to {h2, ...,hI+1}. Furthermore, the input1004

of the decoder is shifted. Specifically, in training,1005

[eos] is placed at the beginning of the target tokens,1006

and the output at each position always points to1007

the token in the next position; in inference, [eos]1008

serves as the trigger, and the model would gener-1009

ate the next token step by step until the predicted1010

token is [eos]. Finally, the output of the encoder-1011

decoder architecture only includes target tokens,1012

x1 x2 x3 y1 y2

y2

y1

x3

x2

x1
x1 x2 x3 y1 y2

Causal Prefix

y2

y1

x3

x2

x1

Figure 9: Different manners of the masked self-attention
mechanism in the decoder-only architectures. Black
blocks mean visible and white blocks mean masked.
Thus, source tokens are masked in the causal decoder-
only while are visible in the prefix decoder-only.

i.e., y. On the other hand, the decoder-only archi- 1013

tecture combines source tokens and target tokens 1014

as the input. In this work, we follow Zhang et al. 1015

(2022); Gao et al. (2022) to employ MNMT loss 1016

instead of language modeling loss, namely, cutting 1017

off the source tokens and saving the target tokens 1018

only in the ouput, 1019

D Attention Mechanisms of 1020

Decoder-Only Architectures 1021

As illustrated in Figure 9, the causal attention mech- 1022

anism in the decoder-only architecture treats source 1023

and target tokens equally, meaning that each token 1024

is influenced solely by preceding tokens and it- 1025

self. In contrast, the prefix attention mechanism 1026

maintains bi-directional attention for source tokens 1027

where source tokens are influenced by each other, 1028

while target tokens use mono-directional attention, 1029

meaning they are influenced only by prior tokens 1030

and themselves. 1031

E Estimation of Parameters 1032

We follow the notation in Section 5.2, that is, d 1033

is the dimension of the model and the inner size 1034

of FFN is 4d. Therefore, each attention mecha- 1035

nism has 4d2 parameters because there are 4 ma- 1036

trices with dimensions of d × d, and each FFN 1037

has 8d2 parameters (Vaswani et al., 2017). Then, 1038

all layers have the structure illustrated in Figure 1039

2. Given N =1, the model with encoder-decoder 1040

architecture has 28d2 parameters and the model 1041

with Decoder-only architecture has 24d2 parame- 1042

ters. Thus, considering the fixed parameters of nor- 1043

malization modules and embedding layer, Decoder- 1044

only architecture is implemented with around 10% 1045

fewer parameters than encoder-decoder architec- 1046

ture. 1047
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F Detailed Information of Datasets1048

First, the language codes used in our descriptions1049

adhere to ISO 639-112. As described in Section1050

5.1, the first dataset is TED-19 (Qu et al., 2024),1051

a subset of TED Talks (Ye et al., 2018) contain-1052

ing 6.5 million instances across 19 languages from1053

various language families. This dataset includes1054

32 supervised translation pairs and 306 zero-shot1055

translation pairs. Detailed information about TED-1056

19 is provided in Table 5. The second dataset is1057

the revised version of OPUS-100 (Zhang et al.,1058

2020a; Yang et al., 2021), which includes 95 lan-1059

guages and a total of 92 million instances. No-1060

tably, the zero-shot translation in OPUS-100 in-1061

volves only six languages (ar, nl, de, zh, ru, and1062

fr), resulting in 30 translation pairs. Additionally,1063

we further cleaned the dataset by removing noisy1064

instances containing unreadable characters, even1065

though Yang et al. (2021) had already removed1066

repetitions from the original OPUS-100 dataset1067

(Zhang et al., 2020a). Detailed information about1068

OPUS-100 can be found in Table 6. Generally, each1069

pair of validation and test sets in these two datasets1070

contains 2,000 instances, though several pairs in1071

OPUS-100 have fewer instances. Finally, we used1072

SentencePiece (Kudo and Richardson, 2018) to1073

generate the vocabulary for training, with the vo-1074

cabulary size set to 50,000 for TED-19 and 64,0001075

for OPUS-100.1076

G Selection Standards of Evaluation1077

Metrics1078

First, SacreBLEU (Post, 2018), an implementa-1079

tion of BLEU (Papineni et al., 2002), measures the1080

lexical overlap between generated translations and1081

reference translations. chrF++ evaluates overlap at1082

the character level and accounts for a balance be-1083

tween precision and recall. These two metrics can1084

corroborate each other’s results. On the other hand,1085

BERTScore13 (Zhang et al., 2020b) measures the1086

similarity between generated translations and refer-1087

ences at the representation level. COMET14 (Rei1088

et al., 2020) also evaluates representational simi-1089

larity, with an additional emphasis on the source1090

12https://www.loc.gov/standards/iso639-2/php/
code_list.php

13For BERTScore, en is computed using xlmr.large (Con-
neau et al., 2019; Goyal et al., 2021), while other languages are
computed using bert-base-multilingual-cased (Devlin et al.,
2018).

14All COMET scores are computed using Unbabel/wmt22-
comet-da (Rei et al., 2022).

text for enhanced semantic relevance. Intuitively, 1091

BERTScore may penalize instances that do not 1092

translate into the expected target language, while 1093

COMET is more sensitive to semantic relevance. 1094

To validate this intuition, we also introduce the 1095

target-off ratio as a secondary evaluation metric. 1096

Notably, it is considered secondary because the 1097

testing tools are not entirely accurate, particularly 1098

when recognizing low-resource languages, as they 1099

rely on language-specific tokens. 1100

H Detailed Model Settings 1101

We implement models by Fairseq (Ott et al., 2019), 1102

an open-source toolkit. First of all, in this work, 1103

we apply independent sinusoidal positional embed- 1104

dings for source tokens and target tokens (Vaswani 1105

et al., 2017) for the input of the decoder-only archi- 1106

tecture. Notably, the estimation of parameters in 1107

modeling is introduced in Appendix E. 1108

Model settings of training from scratch In the 1109

case of training from scratch on TED-19, we set 1110

N to 6, d to 512, inner size of FFN to 4d. Thus, 1111

the model with an encoder-decoder architecture 1112

has 70 million parameters, while the model with a 1113

decoder-only architecture has 63 million parame- 1114

ters. Moreover, the FFN in the adaptation module 1115

matches the dimensions of the FFN in the main part, 1116

so in this case, the model has 67 million parameters. 1117

In the training, we set the learning rate to 0.0005 1118

and the model is trained for 30 epochs on eight 1119

NVIDIA V100 GPUs with a batch size of 4,000 1120

per GPU to ensure full convergence. Moreover, we 1121

set the head number of the attention mechanism 1122

to 8, the dropout rate to 0.1, label smoothing to 1123

0.1, and weight decay to 0.0001. We also employ 1124

Adam (Kingma and Ba, 2017) as our optimizer and 1125

set share-all-embeddings of Fairseq. We evaluate 1126

by averaging the top-5 best checkpoints selected 1127

based on validation loss. In the case of training 1128

from scratch on OPUS-100, we first increase N to 1129

12, resulting in parameter counts of 121 million, 1130

108 million, and 113 million, respectively. In the 1131

training, we set the number of gradient accumula- 1132

tion steps to 16 to increase the batch size and train 1133

for 50,000 steps with a learning rate of 0.0007. We 1134

also consider a wider model where N is 6, d is 1135

1024, and the head number of the attention mech- 1136

anism is 16, resulting in parameter counts of 242 1137

million, 217 million, and 234 million, respectively. 1138

When, we additionally set an attention dropout to 1139

0.05 and reduce the learning rate to 0.0005 for a 1140

15
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BLEU ↑ chrF++ ↑ BERTScore ↑ COMET ↑

#enc #dec idx. en→ →en zero en→ →en zero en→ →en zero en→ →en zero

TED
d =512

Enc-Dec
6 6 - 25.46 28.31 12.32 45.96 50.86 32.13 84.10 93.37 78.03 80.49 78.15 67.26
6 6 6 24.92 28.39 12.96 45.56 50.97 33.42 83.94 93.68 79.10 79.99 78.21 70.37

Dec-only
0 12 - 24.00 26.97 8.18 44.49 48.93 25.35 83.54 92.97 74.52 78.46 76.10 56.74
0 12 6 24.16 27.18 10.12 44.61 49.11 28.49 83.63 93.01 76.32 78.80 76.30 61.41
0 12 9 24.26 27.31 10.94 44.69 49.24 29.55 83.69 93.05 77.05 79.08 76.45 63.77

TDO
0 12 - 25.53 28.76 14.26 46.01 51.09 34.72 84.13 93.41 79.27 80.43 78.18 70.82
0 12 6 25.46 29.02 14.06 45.98 51.44 34.38 84.10 93.48 79.15 80.47 78.54 70.51
0 12 9 25.62 28.94 14.70 46.15 51.46 35.34 84.15 93.47 79.57 80.55 78.55 71.94

OPUS
d =512

Enc-Dec
12 12 - 25.18 29.79 5.13 44.75 48.40 12.95 82.98 92.33 72.44 76.59 76.21 58.51
12 12 12 24.98 29.61 6.56 44.65 48.30 15.49 82.97 92.34 73.45 76.46 76.23 59.61

Dec-only
0 24 - 23.96 28.41 6.62 42.98 47.22 15.36 82.47 92.06 73.57 75.48 75.34 59.56
0 24 12 24.22 28.26 6.99 43.23 46.83 15.98 82.49 92.04 73.66 75.55 74.94 59.42
0 24 18 23.98 28.22 6.73 43.18 46.80 16.17 82.52 92.07 73.67 75.60 75.12 59.37

TDO
0 24 - 24.88 29.97 5.32 44.72 49.39 13.29 82.91 92.41 72.50 76.26 76.73 58.30
0 24 12 24.61 29.37 6.46 44.68 48.72 15.14 82.87 92.37 73.30 76.16 76.21 59.41
0 24 18 24.35 29.52 7.93 44.44 48.74 18.65 82.84 92.37 73.97 75.93 76.23 58.71

OPUS
d =1024

Enc-Dec
6 6 - 27.71 31.60 6.95 46.84 50.31 15.89 83.55 92.62 74.12 78.10 77.58 59.99
6 6 6 27.74 31.52 7.75 46.92 49.91 18.06 83.56 92.66 74.44 78.07 77.69 60.43

Dec-only
0 12 - 26.79 30.42 8.15 45.48 48.92 17.65 83.21 92.37 74.17 77.53 76.69 62.32
0 12 6 26.87 30.72 8.47 45.58 49.18 17.78 83.53 92.51 74.38 77.74 77.82 61.61
0 12 9 26.72 30.09 8.42 45.34 48.52 17.33 83.16 91.83 74.23 77.31 76.61 61.55

TDO
0 12 - 27.22 31.58 7.06 46.54 50.59 15.96 83.44 92.64 73.78 77.68 77.89 60.60
0 12 6 26.72 31.05 7.43 45.49 49.54 16.25 83.19 92.40 74.00 77.45 77.49 61.89
0 12 9 27.12 31.49 9.28 46.55 50.23 21.33 83.50 92.65 75.04 77.63 77.64 60.84

Table 3: Averaged scores of results in experiments of training from scratch and verifying InstruCL across different
architectures. Both the decoder-only and TDO architectures adopt the prefix attention mechanism. All terms,
settings, and abbreviations follow the Table 1. Moreover, #enc, #dec, and idx. indicate the number of encoder
layers, the number of decoder layers, and the layer index where to implement InstruCL, respectively. In addition,
the placeholder (-) in the collum of idx. means that InstruCL is not implemented in this row. The best score in each
column and block is in bold.

stable gradient. Moreover, we reduce the batch1141

size per GPU to 2,000, set the number of gradient1142

accumulation steps to 32, and train for 100,0001143

steps due to GPU memory constraints. For two1144

cases of OPUS-100, we test the checkpoint with1145

the best validation loss. Additionally, in training1146

on OPUS-100, we set encoder-normalize-before1147

and decoder-normalize-before in Fairseq and re-1148

duce the weight decay to 0, which lead to a quick1149

convergence in a complex data condition (Liu et al.,1150

2020; Fan et al., 2020; Team et al., 2022).1151

Model settings of fine-tuning In the model set-1152

tings of fine-tuning, M2M-418M has 12 layers1153

for encoder and decoder, respectively, where d of1154

M2M-418M is 1024, and the inner size of FFN1155

is 4096, based on the description in Section 5.2,1156

we set N to 6, resulting in parameter counts of1157

307 million, 282 million, and 299 million, respec-1158

tively. In the training, the label smoothing is 0.2,1159

the dropout is 0.3, the attention dropout is 0.05,1160

and the batch size and the learning rate keep the1161

settings of training from scratch. Then, given that1162

NLLB-600M has the same configuration as M2M-1163

418M but with a larger vocabulary size, the same 1164

setting of hyper-parameters leads to the count of 1165

parameters increased to 439 million, 413 million, 1166

and 430 million, respectively, and, we reduce the 1167

batch size to 2000 and set gradient accumulation 1168

to 2 for NLLB-600M because of the GPU memory 1169

constraints. In M2M-1.2B, which has 24 decoder 1170

layers and a larger inner size of FFN compared to 1171

M2M-418M, we set N to 12, leading to parameter 1172

counts of 685 million, 635 million, and 668 million, 1173

respectively, and our experiments are conducted on 1174

four NVIDIA A6000 GPUs, and we set gradient 1175

accumulation to 2. We also reduce the learning rate 1176

to 0.0002 and the number of training epochs to 10 1177

because of more parameters. 1178

I The Effectiveness of InstruCL on 1179

Encoder-Decoder Architecture 1180

As a supplementary trail for Sections 5.3 and 6.3, 1181

we conduct experiments on applying InstruCL to 1182

the encoder-decoder, the prefix decoder-only, and 1183

TDO architectures, and then compare their per- 1184

formances on three cases of training from scratch 1185
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described in Section 5.2. The layer index where1186

InstruCL is implemented at the TDO is 1.5N . We1187

also implement InstruCL for the decoder-only ar-1188

chitecture at the same layer as a comparison. How-1189

ever, given that the number of encoder layers in an1190

encoder-decoder architecture is N , InstruCl is im-1191

plemented at the output of the encoder, namely, the1192

layer index is N . Therefore, as comparison groups,1193

we also implement InstruCL for the decoder-only1194

and TDO architectures at the N layer.1195

Tabel 3 shows the experimental results. The first1196

observation is that the encoder-decoder architec-1197

ture can be gained from InstruCL due to the im-1198

proved performance in all cases. Notably, the first1199

observation is not violated from the statement in1200

Section 6.3 that InstruCL mainly affects the layer1201

following the decoder-only manner, because of the1202

performance of TDO in TED-19 and OPUS-100.1203

Specifically, considering the decoder-only architec-1204

ture, first, in the TED-19, when the index is set to1205

N , Dec-only shows a significant improvement in1206

zero-shot translations with BLEU scores increas-1207

ing by 1.94, while TDO degraded by 0.64. Second,1208

in two cases from the OPUS-100, when the index1209

is set to 1.5N , TDO achieves significant improve-1210

ments of 2.61 and 2.22, respectively. Third, in1211

three cases, compared to setting the index to N , the1212

decoder-only model showed smaller gains or even1213

degradations when the index is set to 1.5N , with1214

scores increasing by 0.82, -0.26, and -0.05.1215

These results are consistent with our statement1216

in Section 4.2. Specifically, the first stage of TDO1217

overlaps with InstruCL in terms of facilitating the1218

learning of target language representations, which1219

explains the suboptimal performance when both1220

are used together. Additionally, InstruCL is most1221

effective when applied in the middle layers, which1222

align with the decoder-only manner. On the other1223

hand, considering the performance of the vanilla1224

models, i.e., Enc-Dec and Dec-only, we can assert1225

that InstruCL, which does not require additional1226

data costs, generally benefits all architectures.1227

J Adaption Modules Do Not Equal1228

Simply Increasing Parameters1229

Adding adaptation modules increases the number1230

of parameters, so it is crucial to determine whether1231

the gains from these modules are primarily due to1232

the increased parameters. As shown in Table 4,1233

we directly increased the parameters of the TDO1234

model using various strategies, ensuring that the1235

d d1ffn d2ffn en→ →en zero

TDO+adapt. 512 2048 2048 25.61 28.52 14.51

TDO

544 2048 2048 25.55 28.28 14.22
512 2432 2432 25.51 28.51 14.31
512 2048 2816 25.32 27.98 13.89
512 2816 2048 25.56 28.95 14.01

Table 4: Averaged BLEU scores of models with TDO
architecture trained on TED-19. Abbreviations in this
table follow Table 1. In addition, d1ffn is the inner size
of FFN in the first stage, and d2ffn is in the second stage.
The best score is in bold.

number of parameters is comparable to or even 1236

greater than that of the TDO model with adapta- 1237

tion modules. The results demonstrate that the 1238

TDO model with adaptation modules outperforms 1239

in zero-shot translation and in translating super- 1240

vised pairs from English to non-central languages. 1241

Notably, considering the previous point, the reason 1242

why adaptation modules do not achieve the best 1243

performance when translating from non-central lan- 1244

guages to English can be attributed to their effec- 1245

tiveness in preventing overfitting of English, which 1246

dominates the multilingual representations due to 1247

most of the training data being in English (Gu et al., 1248

2019; Qu and Watanabe, 2022). Therefore, the re- 1249

sults in this table support our assertion that the 1250

gains from adaptation modules cannot be simply 1251

attributed to increasing parameters. 1252
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Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

es Spanish Indo-European Romance 196026 ar Arabic Afro-Asiatic Semitic 214111
fr French Indo-European Romance 192304 he Hebrew Afro-Asiatic Semitic 211819
ro Romanian Indo-European Romance 180484 ru Russian Indo-European Slavic 208458
nl Dutch Indo-European Germanic 183767 ko Korean Koreanic 205640
de German Indo-European Germanic 167888 it Italian Indo-European Romance 204503
pl Polish Indo-European Slavic 176169 ja Japanese Japonic 204090
hr Croatian Indo-European Slavic 122091 zh Chinese Sino-Tibetan Sinitic 199855
cs Czech Indo-European Slavic 103093 tr Turkish Turkic 182470
fa Persian Indo-European Iranian 150965 vi Vietnamese Austroasiatic Vietic 171995

Table 5: Detailed information of TED-19 datasets. #Train indicates the number of training instances.

Code Language Family Sub-Family #Train Code Language Family Sub-Family #Train

fa Persian Indo-European Iranian 934413 yi Yiddish Indo-European Romance 1865
bn Bengali Indo-European Iranian 724719 ga Irish Indo-European Celtic 187967
ur Urdu Indo-European Iranian 724226 br Breton Indo-European Celtic 96951
si Sinhala Indo-European Iranian 613702 cy Welsh Indo-European Celtic 92615
hi Hindi Indo-European Iranian 374472 gd Scottish Gaelic Indo-European Celtic 11104
tg Tajik Indo-European Iranian 183216 lt Lithuanian Indo-European Baltic 797693
ne Nepali Indo-European Iranian 144520 lv Latvian Indo-European Baltic 779972
gu Gujarati Indo-European Iranian 108564 tr Turkish Turkic 918838
ku Kurdish Indo-European Iranian 107110 az Azerbaijani Turkic 237533
pa Punjabi Indo-European Iranian 72160 uz Uzbek Turkic 148319
as Assamese Indo-European Iranian 58009 tt Tatar Turkic 97746
mr Marathi Indo-European Iranian 26117 ug Uyghur Turkic 71241
ps Pashto Indo-European Iranian 14254 kk Kazakh Turkic 62227
or Oriya Indo-European Iranian 13410 ky Kyrgyz Turkic 12724
de German Indo-European Germanic 968252 tk Turkmen Turkic 98
nl Dutch Indo-European Germanic 936611 ar Arabic Afro-Asiatic Semitic 959868
sv Swedish Indo-European Germanic 916259 he Hebrew Afro-Asiatic Semitic 913493
no Norwegian Indo-European Germanic 914187 mt Maltese Afro-Asiatic Semitic 672134
da Danish Indo-European Germanic 911156 ha Hausa Afro-Asiatic Chadic 91869
is Icelandic Indo-European Germanic 813820 am Amharic Afro-Asiatic Semitic 64369
nn Norwegian Nynorsk Indo-European Germanic 172187 el Greek Indo-European Hellenic 932811
af Afrikaans Indo-European Germanic 146600 sq Albanian Indo-European Albanian 855095
nb Norwegian Bokmål Indo-European Germanic 128374 ml Malayalam Dravidian 633920
fy Frisian Indo-European Germanic 42372 ta Tamil Dravidian 184699
li Limburgish Indo-European Germanic 3331 te Telugu Dravidian 37792
ru Russian Indo-European Slavic 951611 kn Kannada Dravidian 13777
sr Serbian Indo-European Slavic 935342 xh Xhosa Niger-Congo Bantu 231708
hr Croatian Indo-European Slavic 927541 rw Kinyarwanda Niger-Congo Bantu 62159
pl Polish Indo-European Slavic 926940 zu Zulu Niger-Congo Bantu 6834
bg Bulgarian Indo-European Slavic 925647 ig Igbo Niger-Congo Volta-Niger 691
cs Czech Indo-European Slavic 924282 fi Finnish Uralic Finnic 938601
bs Bosnian Indo-European Slavic 921232 et Estonian Uralic Finnic 893074
sl Slovenian Indo-European Slavic 912248 hu Hungarian Uralic Finno-Ugric 920592

mk Macedonian Indo-European Slavic 881176 se Northern Sami Uralic Sami 32289
sk Slovak Indo-European Slavic 878540 vi Vietnamese Austroasiatic Vietic 883581
uk Ukrainian Indo-European Slavic 759826 id Indonesian Austronesian Malayo-Polynesian 881198
sh Serbo-Croatian Indo-European Slavic 209379 ms Malay Austronesian Malayo-Polynesian 819431
be Belarusian Indo-European Slavic 61862 mg Malagasy Austronesian Malayo-Polynesian 292520
fr French Indo-European Romance 963140 km Khmer Austroasiatic Khmeric 101294
es Spanish Indo-European Romance 929677 zh Chinese Sino-Tibetan Sinitic 954358
it Italian Indo-European Romance 928427 my Burmese Sino-Tibetan Lolo-Burmese 5326
pt Portuguese Indo-European Romance 919755 th Thai Kra-Dai Tai 892433
ro Romanian Indo-European Romance 913451 ko Korean Koreanic 892064
ca Catalan Indo-European Romance 633826 ja Japanese Japonic 886850
gl Galician Indo-European Romance 353596 eu Basque Language isolate 786645
wa Walloon Indo-European Romance 48894 eo Esperanto Constructed 257560
oc Occitan Indo-European Romance 27773 ka Georgian Kartvelian 240335

Table 6: Detailed information of OPUS-100 datasets. #Train indicates the number of training instances.
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