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ABSTRACT

Online Continual Learning (OCL) studies learning over a continuous data stream
without observing any single example more than once, a setting that is closer to the
experience of humans and systems that must learn “on-the-wild”. Yet, commonly
available benchmarks are far from these real world conditions, because they ex-
plicitly signal different tasks, lack latent similarity structure or assume temporal
independence between different examples. Here, we propose a new benchmark
for OCL based on language modelling in which input alternates between differ-
ent languages and domains without any explicit delimitation. Additionally, we
propose new metrics to study catastrophic forgetting in this setting and evaluate
multiple baseline models based on compositions of experts. Finally, we intro-
duce a simple gating technique that learns the latent similarities between different
inputs, improving the performance of a Products of Experts model.

1 INTRODUCTION

Machines, like humans, can learn to perform multiple different tasks from feedback alone (Caru-
anal [1997). On the other hand, humans, but not machines, can benefit from settings in which tasks
are presented repeatedly for multiple trials before switching to the next one (Flesch et al., |2018)),
whereas machines require examples to be presented in a shuffled (i.i.d) order to learn effectively.
Otherwise, they suffer from an effect known as “catastrophic forgetting” or “catastrophic interfer-
ence” (McCloskey & Cohen, [1989; Ratcliff, [1990). While there has been a considerable amount
of work focused on solving this problem, an endeavour that also goes by the name of ‘Continual’,
‘Incremental’ or ‘Life-long’ Learning, a large part of it is evaluated on settings in which there is
an explicit delimitation signal for every new task presented to the model (Kirkpatrick et al.|, 2017;
Zenke et al.| 2017; |Sodhani et al., 2018; [Serra et al.,|2018}; [Lopez-Paz & Ranzatol 2017} Fernando
et al., 2017} |Lee et al.,|2017; |Rusu et al., |2016} |L1 & Hoiem, [2018} [Aljundi et al.,[2017} |Adel et al.
2020; Titsias et al., [2020; [Ebrahimi et al., [2020; lvon Oswald et al., [2020; |Li et al., [2020; Yoon et al.,
2020). However, humans do not need any such signalling at all. Consider, for example, the case
of a child growing up in a multi-lingual environment. Even though it is not entirely clear whether
the child would rely on environmental cues (for instance, the identity of the speaker) to distinguish
different input languages or not (De Houwer, 2017), any mechanism must be necessarily inferred
from the context. Moreover, even the concept of “task” could be vacuous, as it could be represented
by shifting data distributions (Lesort et al.| 2020).

Even though the emerging field of Online Continual Learning (Parisi & Lomonaco, 2020; |Aljundi
et al., 2019a) or Task-Free Continual Learning (Aljundi et al.| [2019b} [Lee et al., |2020) has started
to propose solutions to these problems, commonly available benchmarks make assumptions that are
far from the real world conditions, such as lacking latent similarity structure on the data stream (e.g.
orthogonal permutations of an image pixels) or assuming temporal independence between different
examples (e.g. an image of a chair can be classified as “chair” independently of any previous exam-
ples). Consider, instead, the challenge of natural language learning which requires making sense of
a highly correlated and temporally interdependent data stream. We argue that the notable scarcity
of benchmarks featuring temporally correlated sequences of examples, with short and long-term
dependencies, latent similarities between different classes of examples, and no explicit delimitation
when transitioning between different classes has left a blind spot in the Online Continual Learning
community, which we address here. Moreover, almost none of the commonly used benchmarks
deals with language, further limiting the amount of research that extends to this modality.
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Here, we make a two-fold contribution towards studying online continual learning in neural
networks in a linguistic setting. First, we bring CALM (Class-Agnostic Continual Language
Modelling) to the community, a continual language modelling evaluation framework containing text
that alternates between different classes of input (e.g. different languages or domains) with latent
similarities to which the models could adapt. We introduce two variants. The first is a character-
based language modelling benchmark featuring five different languages that randomly switch be-
tween one another. The second one is a word-based language modelling task, where the text al-
ternates between four different domains. No segmentation signal is given when a switch happens,
thus requiring models to learn to adapt to these changes. We also propose novel metrics that capture
the impact of catastrophic forgetting in an online learning setting by measuring how efficiently can
models adapt to class switches. In line with|Aljundi et al.| (2019b)), we note that when a distribution
shift occurs, a neural network that suffers from catastrophic forgetting will display a spike in the loss
signal, even when the distribution had been observed in the past (see Figure [Ta). Thus, we propose
catastrophic forgetting metrics based on characterizing the size of these peaks. The benchmark is
provided as a Python library that can be easily imported into a PyTorch projectP_-] Second, we eval-
uate multiple baselines based on expert architectures and propose a novel albeit simple mechanism
that we call plastic gates, which we show to improve the performance of Products of Experts. Our
post-hoc analysis shows that this mechanism is effective in producing a gating strategy that helps to
circumvent catastrophic interference while also uncovering latent similarities in the input classes.

2 RELATED WORK

The field of Continual Learning, Incremental Learning or Lifelong Learning has grown to encom-
pass a large body of work, which is better summarized in respective reviews (Parisi et al., [2019;
Lesort et al 2020). An overwhelming majority of this work concerns image classification prob-
lems or object recognition. Some evaluation datasets are derived from traditional machine learn-
ing datasets by manipulating the input examples in more or less artificial ways —like Permuted
MNIST (Kirkpatrick et al., |2017) or Rotated MNIST (Lopez-Paz & Ranzato, 2017)— while others
keep examples unchanged but present them in a specific non-i.i.d. order, like for instance, iCIFAR-
100 (Rebuffi et al.l [2017) or split-MNIST (Zenke et al., 2017). All of these datasets comprise
single-input classification problems in which there are no temporal dependencies nor correlations
between two consecutive examples. To better approximate the conditions of real-world experiences,
Fanello et al.| (2013)), Lomonaco & Maltoni (2017 and |[Roady et al.[(2020)) introduced iCubWorld,
CORe50, and Stream-51 respectively, which comprise short videos of objects from different angles
(further including naturalistic scenes in the latter case). These datasets address the problem of cor-
related examples, but not of temporal dependencies, which we do address in this work. |L1 et al.
(2020) and|de Masson d’ Autume et al.|(2019) proposed the only benchmarks dealing with language
that we know of, in which the former adopts a sequence to sequence paradigm to study incremental
learning of new vocabulary items on simplified or artificial datasets, while the latter adapted existing
text classification and QA benchmarks analogously to above-mentioned work in image classifica-
tion. Our work instead uses naturalistic textual data containing natural latent similarities between
distributions that can drive information transfer or forgetting.

By and large, work directed to address catastrophic forgetting in neural networks presumes the
existence of a task identifier to signal different learning units. However, recent work has aimed at
tackling catastrophic forgetting even in conditions in which no task boundaries are provided (Aljundi
et al.|[2019b} Lee et al.,2020), going under the name of “Task-Free Continual Learning” or “Online
Continual Learning” (Parisi & Lomonacol [2020; /Aljundi et al., 2019a). Of these works, only|Aljundi
et al.| (2019b)) uses naturalistic data to classify actors appearing in soap-opera episodes (Aljundi et al.,
2016), while others resort to artificially modified datasets like split or permuted MNIST. Here, we
complement this resource with a text-based benchmark for Task-Free Continual Learning, while
arguing for more work on more naturalistic non-i.i.d. datasets.

Another aspect of Continual Learning deals with how models are evaluated. Most often, this is done
by measuring accuracy on a dedicated test set (Lopez-Paz & Ranzato, 2017; Diaz-Rodriguez et al.,
2018 Hayes et al., 2018} (Chaudhry et al., 2018}; /de Masson d’ Autume et al., 2019). However this

!Code and materials included in the supplementary materials will be made publicly available upon accep-
tance.
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evaluation protocol is tailored for batch learning conditions, in which a model is fit to a training
dataset, and then stops learning. Here, instead, we argue in favour of situated evaluation protocols
adapted to far-from-equilibrium learning conditions (Holland, 1992)) by adopting an Online Learning
framework (Hoi et al.| [2018), which is also known as the prequential approach (Dawid, |1984; Gama
et al.l[2013)).

On the modelling side, this work explores Mixture of Experts (Jacobs et al.l [1991) and Product
of Experts (Hinton, [1999) architectures. Variations thereof are at the base of many architectural
proposals for addressing catastrophic forgetting (Rusu et al.,2016;|Li & Hoiem, 2018;|Aljundi et al.,
2017; |Lee et al.l [2020). However, often they are accompanied by other mechanisms, such as the
growth of new modules, freezing of weights or generative modelling of the input. Here we examine
the simplest enactments of these architectures and propose an easy-to-implement gating mechanism
which can be learned online and provides a strong baseline for more complex architectures.

Finally, our study falls within the line of language modelling using neural network models (Bengio
et al., 2003; Mikolov et al.,[2010). In this context, adaptation to the recent past has been studied in
the context of cache models (Grave et al.,[2017; Merity et al.,2017)). There, a non-parametric model
deals with capturing high-frequency recent statistics while a parametric model captures the more
stable aspects of the distribution. These solutions, however, are not well-adapted for cases in which
the whole distribution changes over time. Moreover, language modelling is generally studied in a
train-test split, where a model is fitted to the training data and asked to generalize over the unseen
test data. Here, instead, we study how a model can adapt to incoming data in an online fashion.

3 THE CALM BENCHMARK

We designed a benchmark for evaluating Online Continual Learning algorithms having in mind
the following three desiderata: 1) naturally correlated sequential data, 2) task agnosticism and 3)
temporally situated evaluation. [Parisi & Lomonaco|(2020) discusses the first two. The first requires
that on the one hand, data is observed in a potentially infinite data stream with high-dimensional,
non-stationary, and temporally correlated examples. The second, that learning systems should not be
fed external task boundaries to help them learn in these conditions. Furthermore, we also introduce a
third desideratum, by which we ask models to be evaluated in-situ on each example presented to the
model, following the classical Online Learning setting (Hoi et al.| 2018};/Sahoo et al.,[2018)). We thus
propose an Online Continual Learning benchmark featuring a language modelling objective where
the data stream can switch between different distributions. Because switches are not announced
to the model, this is a “Single-Incremental-Task* or “No task label” scenario under the framework
proposed by [Lesort et al.|(2020).

More precisely, consider a sequence of observations x; € X’ that are fed to a model M parametrized
by ©,, which makes the prediction g; € ). Then, the true target iy, € ) will be revealed and the loss
Li = L(§:,y:) is observed and later used to compute the model’s performance from a given time S
until time 7" as the average loss in that span L% = %75 ZtT: g Ly for evaluation purposes. Only after
reporting the loss can the model be trained based on the received feedback, preventing data leakage.
In practice, these examples are presented as mini-batches (X;,Y;) € XPX% x YP*% containing b
parallel streams, and chunked into small windows of length w for efficiency considerations related
to the training of neural networks (Parisi & Lomonaco, 2020).

The data stream is composed of N sequences of consecutive mini-batches of length 77, 75, . . ., Tn,
and starting at positions S; = Z;;Il T}. In turn, each of these sequences belong to one of n different
classes [Dy, ..., D,], presented in random order.

To characterize the effect of forgetting we note that a model that becomes disadapted to a given
distribution will display a spike in the loss after the stream switches to this distribution, even if it has
been observed before (see Figure[Ta). For a model to be resilient to catastrophic forgetting, it must
adapt quickly to every new distribution, which can be characterized by the height and width of these
peaks. We thus propose the following metrics to complement the standard online performance:

* Loss after switch: Tracks the loss for the first k£ times-steps after a switch occurs to quan-
tify the height of the peak. Formally, L@sw = & S  L3+F
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* Recovery time after switch: Counts the number of time-steps that it takes the model to
reach the mean loss observed for the last seen sequence of the current class. In this way,
we can quantify the length of the peak.

3.1 DATASET

In this work, we created two datasets for CALM. One is character-level and multilingual, whereas
the other is word-level and multi-domain. Both benchmarks feature conflicting learning signals
when moving between domains or languages, making the learning systems susceptible to catas-
trophic forgetting.

For our first dataset (MultiLingual and character-based), we propose a language modelling bench-
mark in which incoming text data can alternate between different languages. This benchmark is
character-based because there would hardly be any forgetting at the word level, as the word dis-
tributions hardly share any support. Concretely, we build on parts of the news corpus developed
for the 2009 Workshop of Machine Translation (Callison-Burch et al.l 2009). We extracted text
from five languages: English, French, Spanish, German, and Czech (containing 1.8B, 572M, 160M,
715M and 439M characters, respectively) because they all have similar character sets, while also
showing interesting linguistic variability. In particular, they belong to three different Indo-European
branches: Romance (French and Spanish), Germanic (English and German), and Slavic (Czech). As
a consequence, there is a latent similarity structure between the different classes that models could
learn to recognize. Compared to earlier multilingual corpora (Kawakami et al., |2017), our dataset
was carefully constructed to include only linguistically valid characters, in order to prevent non-
linguistic noise from interfering with our experiments. For this, we removed all lines from the input
that contained characters appearing less than 100 times on the full corpus. The resulting character
vocabulary consists of 211 characters.

The second dataset is an English word-level MultiDomain dataset. For this, we used four different
source corpora: news (same as above), europarl (Koehn, 2005)), the British National Corpus (Con-
sortium et al [2007), and Wikipedia (Merity et al|2017). They each have 300M, 54M, 100M and
101.4M tokens, respectively. In contrast with the previous dataset, word-level is the most appropri-
ate choice here, as differences between the distributions at the character level would be too nuanced
to drive any forgetting. We kept in the vocabulary the top 25K words for each corpus, which after
merging yielded a vocabulary size of 58K words. Samples from all source corpora are included in
the appendix.

We then created the final MultiLingual and MultiDomain corpora by joining N = 100 different frag-
ments evenly distributed among the different classes (languages or domains) with lengths sampled
from a (truncated) exponential distribution: T; ~ Exp(\). Thanks to this distribution’s memoryless-
ness property, it is virtually impossible to estimate when the next switch is going to happen. While
we do not constrain switches to occur at word or sentence boundaries, but rather after an integer
number of sequences of length w, the noise introduced at transition points for this reason is rela-
tively mild and does not affect the distribution-alternating nature of the dataset. In benefit, training
and further analysis become considerably simplified by removing the need to handle variable-length
input. We constructed two different variations with shorter or longer fragments. For MultiLingual,
we constructed 1M and 10M-characters-long corpora with expected fragment lengths of A = 10k
and A = 100k characters, respectively. For MultiDomain we followed the same procedure, extract-
ing 100 alternating sequences with mean lengths of A = 10k and \ = 20k, for a total of 1M and 2M
words. These relatively modest sizes allow for faster iteration and exploration of different models,
while still allowing us to observe forgetting (or lack thereof) dynamics in the studied models. To
facilitate further research, we release a Python librar providing a data iterator for both datasets in
which a researcher can experiment with different variations by picking parameters N and \.

4 BASELINE MODELS

To endow CALM with simple and yet, strong baselines, we explored architectures based on
(Weighted) Product of Experts or PoE (Hinton, [1999) and Mixture of Experts or MoE (Jacobs
et al., 1991} [Eigen et al.l 2013), henceforth generically denoted expert architectures. Thanks to

?Available athttp: //anonymized
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combining predictions from different experts, they can potentially learn different parts of the latent
distributions. Moreover, gating weights can avert catastrophic forgetting on the individual experts
by modulating the learning signal, making them an excellent candidate to model Online Continual
Learning problems. Indeed, while variations thereof have been explored before (see Section[2), here
we emphasize simplicity as it would befit baseline models, yet not neglecting performance.

In the standard implementation of expert architectures, mixture weights are produced by a third
“gating” module as a function of the current inputs. While this gating model could quickly adapt
to changes in the environment, learning to do so is far from trivial in a continual learning setup,
sometimes requiring pre-training to distinguish input classes (Aljundi et al.l 2017). The problem
comes from the fact that the gating network must learn a latent classifier to pick the experts best
adapted to the current class, but classes are observed non-i.i.d. as long sequences of examples from
one class at a time. Thus, the gating network can easily settle for a constant function for any given
current class, which only changes when examples of a different class start to be observed, making
experts vulnerable to catastrophic forgetting. In order to alleviate this issue and make experts more
stable, we propose plastic gates, by which the gates are fast-adapting parameter values that are
trained on recent experience.

More formally, an expert architecture is composed of a set of modules M = {Mj, ..., M,} with
parameters Opy,,...,0,,, used to compute a unique prediction as follows. When an input x
(with target y) is observed, it is fed to all modules M; . ,, obtaining log-linear outputs )7(1) =
M (z),...,§™ = M,(z). Then, an additional vector of mixture weights w € R™ is used to
combine them. This vector is computed by a separate gating module w = G(z) with parameters
O¢, jointly trained with the rest of the network. The output of the full model y is then a linear
combination of the individual modules outputs Y = [57(1)7 ey Sf(”)] weighted by after or before
normalizing, depending on whether the model is MoE or PoE:

FME (w Z softmax(w (softmax 5,(1‘)) 77F (w) = softmax (?Tw)

Note that in contrast to MoE, PoE are more efficient to compute because they do not require to
normalize the output of each individual model. Once the loss is computed on a mini-batch (X;, Y})
and kept for evaluation (see Section E]), all sub-networks G and M are trained for one or more
gradient steps to reduce this loss, and the system moves to the next mini-batch.

Plastic Gates Rather than learning a gating network, which can be challenging, we propose to
continually learn the gating coefficients that best fit the recent experience:

Wep1 = argmin L(Y;(w),Y;)

In practice, we perform a (hyperparameter) number k of gradient descent steps on the above objec-
tive to allow for some regularization of the gates over time.

Parametrization for Language Modelling We instantiate the expert modules M; to be double-
layered LSTM networks (Hochreiter & Schmidhuber, [1997), with predictions yi”,ht““) =

LSTM, (x4, ht(i)). For the regular gating network, we use a single-layer LSTM network. That
iS, W, h;:-‘,—l = LSTM(It, h;)

5 EXPERIMENTS

We explored the performance of different baseline models while they made a single pass over the
CALM datasets. Following standard practice, rather than reporting the cross-entropy loss, we use
the perplexity at each time step, given by exp(L;). Furthermore, we allowed the models to learn
over the first half of the datasets without being evaluated, and only start computing metrics on the
second half. Otherwise, we use the measures discussed in Section E] to track models’ performance,
namely, average perplexity (ppl), average perplexity for £k = 10 batches after a switch (ppl@sw)
and recovery time after a switch (rec).

3Note that the since §™°F linearly combines the logits is is effectively computing a geometric combination
of each individual module’s unnormalized probabilities: exp(§5°) o< []1, exp(¥; G Jywi,
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We explored models featuring different degrees of modularization, varying their hidden size vectors
to make them all have an approximately equal total number of parameters. On one extreme, we
had a large two-layers LSTM network. Next, we considered standard PoE and MoE models with
mixture weights computed by an LSTM gating network, plus their plastic weights variants (+PW),
as described in Section[d] Moreover, we trained ensemble models (Ensemble), which are equivalent
to a MoE where all mixture weights are % for all n modules. We studied both a more centralized
network composed of 5 modules and larger hidden dimensionality (marked with 5) and a more dis-
tributed network with 30 modules but with smaller hidden sizes (marked with 30). As reference
points (but not as real contenders), we also trained independent LSTMs (Ind. LSTM), one for each
class, which enabled us to compare the performance of our model to a situation where there is no
forgetting from conflicting learning signals, but also where there is no possibility of transferring
learned representations across possibly related domains. Furthermore, we compare a Mixture-of-
Softmax (MoS) model (Yang et al.l|2018), in which multiple softmax layers are combined to extract
the predictions from a single LSTM module. While we were also interested in applying state-of-the-
art online continual learning methods (Lee et al., [2020; |Aljundi et al.,|2019a)), having these systems
being designed for image classification datasets they would require non-trivial adaptations signif-
icantly departing from the original models, which would limit any possible conclusions we could
draw. Similarly, we experimented extensively on validation data with Transformer models (Vaswani
et al., 2017). However, due to these models sensitivity to dataset size and learning rates scheduling
schemes which have been studied extensively for batch-learning (Popel & Bojar, 2018)), but not for
these far-from-equilibrium (Holland, |1992) conditions, their performance was worse than expected.
We give a detailed account of our attempts in the appendix and leave a study on how to adapt these
models for Online Continual Learning for future work.

We controlled the number of model parameters to remain constant for each of the MultiLingual
(about 21M parameters) and the MultiDomain (about 600M parameters) experimental setups. (The
difference in size is explained by the larger vocabulary sizes in the latter.) For this, we adjusted the
hidden dimensionality of different models accordingly, which, together with all explored hyperpa-
rameters, are reported in the appendix. We kept the size of the incoming batches fixed at w = 20
and b = 10 for all models and used PyTorch (Paszke et al.l|2017) with the standard implementations
for the underlying models.

5.1 RESULTS

MultiLingual MultiDomain
A = 10k A = 100k A = 10k A = 20k
ppl ppl@sw rec ppl ppl@sw rec ppl ppl@sw rec ppl ppl@sw rec
Ind. LSTM 7.1 716 115 47 473 1.18 356 349 1.11 295 292 1.15
Large LSTM 7.78 104 6.82 4.86 858 189 352 406 3.61 457 619 6.56

MoS 8.13 10.6 6.6 543 10.3 19 343 443 4.6 298 409 6.08
Ensemble 5 884 11.3 741 5.6 10.2 247 418 519 3.89 317 411  4.83
MoE 5 8.656 109 7.11 5.55 9.86 24 425 524 3.76 335 439 4.94
MoE+PW S5 874 11.1 7.2 5.58 10 23.3 446 557  3.94 331 432 4.63
PoE 5 768 10.1 7.06 532 979 255 297 389 5.18 404 505  4.47

PoE+PW 5 7.2 846 3.67 502 754 149 320 361 282 270 322 335
Ensemble 30 11.9 14.8 8.08 7.05 142 309 509 623 3.72 391 511 5.14

MoE 30 11.1 13.7 7.54 6.89 13.7 30 539 651 347 436 572 497
MoE+PW 30 11.2 13.8 7.97 6.92 13.7 29.7 555 675 3.49 419 561 5.43
PoE 30 796 10.7 733 517 9.9 248 315 375 3.89 297 389 5.18

PoE+PW 30 7.41 9.17 4.76 5.04 7 9.03 285 316 2.68 241 287 3.54

Table 1: Average perplexity (ppl), perplexity for 10 batches after a switch (ppl@sw), and recovery
time after a switch in batches (rec) for both datasets per mean sequence length ().

Results are averaged over ten different runs and reported in Table[T] Standard deviations are reported
on the Supplementary Materials.
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Figure 1: (a) CALM: A model’s loss (L) is tracked as it observes text pertaining to different classes,
while catastrophic interference provokes spikes in this signal. (b-c) Mean cross-entropy for the
first 15 batches after a switch averaged over all occurrences in MultiLingual and MultiDomain,
respectively, under different random seeds. (d) Mixture weights produced by the POE+PW 30 model
on multilingual data (A = 10k). (e) Correlation coefficients between mixture weights corresponding
to different languages for the POE+PW 30 model collected during the last 100 batches (A = 10k).

We begin by observing that higher values of A\ correspond to lower perplexities, as expected from
the fact that these corpora with longer sequence lengths are also proportionally larger in total length.

Second, we note that Ensemble and MoE systems with 5 modules and larger hidden vectors out-
performed models with 30 modules and smaller hidden dimensionality, but this is not the case for
PoE, which show comparable performance between the two variants or even the opposite trend.
Furthermore, the PoE’s performance is considerably better than the former two, which can be at-
tributed to a combination of multiple factors. On the one hand, we note that, in agreement with
previous work (Shen et al.||2019), MoE models are often sensitive to a Winner-Takes-All (WTA) ef-
fect in which only one single expert gets trained at the end. Thus, models with larger dimensionality
per module can benefit from having a larger capacity. However, also ensembles show comparable
performance, showing that this effect is not only caused by a single module being trained. Per-
haps, more important is the fact that, as hypothesized by Hinton| (1999)), PoE can use their capacity
to learn complementary parts of the distribution, and thus it makes a smaller difference for them
whether there are a few high-capacity modules or many of them, but with smaller capacity.

Next, we note that while PW does not strongly alter performance on MoE architectures, as expected
from the WTA effect influencing these models, they significantly improve the vanilla PoE counter-
parts, confirming the effectiveness of the proposed mechanism in this task. This observation holds
not only for overall perplexity but also in terms of the metrics quantifying adaptation efficiency at
class switches (ppl@sw and rec). Indeed, Figures [Tb| and [Tc| show this fact in more detail, by rep-
resenting the mean cross-entropy of each different model for the 15 batches occurring immediately
after a switch. As we can see, the POE+PW model shows a large spike on the first batch because
its adaptation mechanism that depends on this error signal has not kicked in yet. However, in the
subsequent batch, its performance increases sharply outperforming comparable models.

In comparison to a monolithic LSTM model, PoE and PoE+PW models perform on-par on Multi-
Lingual (although with better adaptation records), and better on MultiDomain. In the latter case, we
can observe that the version with 30 modules yields better performance than the one with just 5. One
possible explanation is related to word-level language modelling being a higher rank problem than
character-level language modelling, and thus it can be better fitted by combining the judgements
from multiple lower-rank experts (Yang et al.l [2018). This explanation is also consistent with the
comparatively better performance of the MoS model.
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Finally, we note that the model with Independent LSTMs for each class performs best on MultiLin-
gual, but it is outperformed by a large margin on MultiDomain. We note that this model does not
suffer from forgetting when switching classes but also misses the training signal from transferable
training data. As a consequence, it has an edge on MultiLingual, which switches between classes
that have considerably different statistical properties, but not on MultiDomain where the differences
between the classes are much more nuanced. All in all, this shows that while, in consonance with
previous results (Dhar & Bisazzal 2018)), there is little room for transferring knowledge in the Mul-
tiLingual case, the MultiDomain setting provides plenty of opportunities for transferring knowledge
across each domain. Thus domain-agnostic systems can benefit from them.

5.2 ANALYSIS

Next, we turned to analyze the gating strategies acquired by the more successful models to under-
stand whether they have captured the latent similarities between classes and how might they help
them in coping with catastrophic forgetting. For this, we focused on the POE+PW 30 modules oper-
ating on the MultiLingual dataset (A = 10k) because its 30-dimensional gate vectors can represent
more nuanced similarities.

Figure [Id) shows a heatmap of the mixture weights as the model processes different language se-
quences. High absolute values represent the activation of a module, regardless of whether these
are negative or positive values. It can be seen that upon language switches, the model reconfigures
itself to a different set of mixture weights that are maintained more or less consistently within the
sequence. Furthermore, we note that modules that receive mixture weights close to 0 are protected
from forgetting, as this gating value is also multiplied to the module’s gradients. Moreover, we
hypothesize that modules are protected even when their corresponding weight is set to the oppo-
site sign (see, for instance, module 16 on English and Spanish), because the incoming training data
serves as negative training data, namely, something not-to-be-predicted. Thus, this should not affect
what the model does predict when used with a positive weight. Instead, this allows for dual use of
the modules, encoding information both when it is weighted positively and negatively.

Finally, recall from Section [3.1] that the languages in our MultiLingual dataset are derived from dif-
ferent linguistic families with a latent similarity structure. To uncover whether the learned latent
similarities reflect this structure, we computed the correlations between the mixture weights pro-
duced while processing the last 100 batches of each class. The results are displayed in Figure
and show that the similarities are indeed well-reflected in the gating values. Notably, we observe
that Czech seems to be using the most distinct set of modules. Spanish and French correlate quite
strongly in the modules they use, and while English also correlates with French, it also does so with
German, with the latter correlating to a lesser extent with the other languages. Indeed, applying a
simple hierarchical clustering algorithm over this matrix recovers the underlying linguistic families!

6 CONCLUSIONS

In this paper, we have introduced the class-agnostic continual language modelling task (CALM),
together with a Python library with MultiLingual and MultiDomain datasets, which allows multiple
parameter configurations and can also be easily adapted to different corpora. We expect that it
will foster more empirical work on continual learning in a language-centred setup in which there
is a natural latent similarity structure between different tasks. We have argued that in addition to
measuring the overall performance of models in an online learning fashion, their susceptibility to
catastrophic forgetting can be observed in terms of adaptation speed to changes in the input class,
and proposed measures to capture it. Finally, we have evaluated multiple simple baselines to serve as
references for future work on this benchmark and introduced a simplification of the gating strategy
for a Product of Experts, which improves its performance significantly by allowing it to distribute
effectively different distributions across different experts so that the resulting system can act as a
strong baseline for future work on this task.

While addressing catastrophic forgetting is still a major challenge for Online Continual Learning, it
is by no means the only one. In the future, we would like to understand how learning systems can
also bootstrap on their knowledge to improve their learning skills, so that they will not only be able
to acquire knowledge from different sources in a seamless way but also get better at it as they go.
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A CORPUS EXAMPLES

Figure 2]and[3| present samples from the corpora used for our dataset. As stated in the paper, we can
notice a much bigger difference between input class in the case of the multilingual setup, while the
differences in the case of the multidomain setup are more subtle and nuanced.

Dataset samples
czech Mad’arskd iNFINITY Coliseum Lan je pokracovanim
“ uspésného BECUPu, z néhoz si nejeden nds tym v minulosti odvezl medaili.
nolish If Hofmann played the role of paterfamilias, Anais Nin was the
englis bad mother to Admiral and De Niro’s group. This one wasn’t close.
Le Beatle s’en est alors emparé pour créer un chef-d’oeuvre psychédélique
french T
longtemps associé a I’'usage du LSD.
Im ersten Jahr hatten sie schon 278 Anfragen, fast
german 60 ehemalige Manager und Unternehmer wollten mitmachen.
. Los despidos serdn realizados por medio del plan de GM de cese de empleo, por
spanish . . ..
lo que no se ofrecerdn jubilaciones anticipadas

Figure 2: Samples from the multilingual dataset

Multidomain dataset samples
Good weather for the crops. Have your sheep been suffering much from the staggers ?
Have you contributed a great deal this year to the butter mountain ?
I would like your advice about Rule 143 concerning inadmissibility.
My question relates to something that will come up on Thursday
If Hofmann played the role of paterfamilias, Anais Nin was the
bad mother to Admiral and De Niro’s group. This one wasn’t close.
Otto , Prince of Bavaria , was chosen as the first King of Greece in 1832 , under the name Othon .
His arrival in Nafplio , then the Greek capital, was hailed enthusiastically by Makriyannis

bnc

euro

news

wiki

Figure 3: Samples from the multi-domain dataset

B FURTHER ANALYSIS

B.1 POE WEIGHTS BEHAVIOUR

We also inspected the gate values produced by LSTM-gated PoE models observing that the models
are indeed not learning a class-switching mechanism. We hypothesized that this is due to the fact
that when the experts are still untrained, the LSTM produces some arbitrary but consistent gating
values, making those selected modules being the only ones to be trained, and thus falling into a
vicious cycle. As a sanity check that supports this hypothesis, we first pre-trained a set of modules
while still using our simple gating mechanism. Then, we initialized with these modules a network
that now used LSTM mixture weights, but training on very short sequences to avoid the effect of
catastrophic forgetting affecting the network. In this context, the network learned the appropriate
gating as expected.

B.2 MULTIDOMAIN MODULE CORRELATION

In comparison with the Multilingual setup, correlations in the MultiDomain case are much weaker.
Moreover, they are weak even within the same class: When we measure the autocorrelation between
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weights pertaining to the last 100 batches with the preceding 100 ones we obtain values in the order
of 0.65, much lower than for the MultiLingual experiments, where they are in the order of 0.96 (see
Figure[db)). This shows that model usage is less consistent per-class, which could be explained by the
fact that classes are much more nuanced than in MultiLingual and their corresponding distributions
are far more complex. These results are also consistent with our experimental observation that the
MultiDomain dataset was more amenable to transfer between different classes than the MultiLin-
gual, as these classes could be distributed more evenly across the model and could be characterized
with multiple mixture weights configurations.

i |
books " B-1.0
| i) 0.16 0.00 -0.17 -News
euro o [ o [0-5
g " JRO[R 0.06 -0.27 -Europarl
-0.0
a
news
L B | -0.5 -BNC
| |
| |
wiki | i If—m - Wiki
[ = [S) z
. . s & 2 =
(a) Heatmap of weights with rows 5
. w
sorted by domain and columns sorted
by similarity (b) Weight correlations

Figure 4: MultiDomain (A=10k) analysis

C TRANSFORMER EXPERIMENTS

We experimented extensively with Transformer models. One difference with respect to LSTM mod-
els is that Trasnformers, at least in their vanilla versions, are not autoregressive, and thus they cannot
transfer information from the past. In standard NLP tasks, they largely overcome this problem by
using a large context window on which they can operate effectively. Thus, to afford them similar
memory capabilities, we kept a buffer of the last b x 512 consecutive examples that was continually
updated with each incoming mini-batch.

Vaswani et al| (2017) describes a learning rate scheduling scheme in which the learning rate is
linearly increased until reaching a number of warmup steps, and then annealed from that point on.
Considering that in a Continual Learning setup the model is not expected to converge, annealing
might not be appropriate. Thus, we also experimented with keeping the learning rate flat after that
point on. We experimented with both learning rate schedules, plus no scheduling at all. Furthermore,
we considered both training with default Adam parameters (o« = 1073, 3 = (0.9,0.999)) or the
ones reported by Vaswani et al.|(2017) and base learning rates of dnul;del ,1le™3,5e73,0.01. Also, we
tuned the warmup steps among 400, 2000 and 4000 steps. The best perplexity results we obtained
in the Multilingual validation data were 13.2 for A = 10k and 6.02 for A = 100k, whereas in the
Multidomain validation data we got 686 average perplexity for A = 10k and 527 for A = 20k.

D GENERATED OUTPUT

In Figure 5] we present generated samples from different stages of training. These generated exam-
ples are produced by sampling one character at a time from the models, and using them as input for
the next time step. As quantitatively observed in the paper, it adapts much faster to the current input
type (French) in comparison with an LSTM, which generates text resembling the language of the
previously seen class even after 10 batches.
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PoE+PW 30 LSTM
for a release was the week in Troust Tvice. (Relators had the state’s
end . . .
) Pglates in George Services are annual annual Call Statua plannting
english . : ; .
claimed whet this could get one more years’ physical cost
5 batches lement Filmarian Roads. Aus cadres eau political but the room of Noxe
french et temps disputer Lileana Maan. Common Electrical Taladei Baritef.
Institution, le provinces, unbieut BAG - Runey premium begai maki
10 batches Definit werde a 1’équipe pass, attempted Jueves Mo., unit encome
french libertant Youth Losier Chavez and ergarded a next post television
Jean-Pierro. «Vu entre fascal publ genetical dangere tet. For hemous
ive commune services au el-Bilanze extranger a la fin de
end . N p P .. N
french championnat ot qui se sont renfovées | 1‘Etat: "Yens ni irneu a Show Joban
de la hierre du 23,4er est dit doubles ? 11 vio, les grandes hommes de

Figure 5: Generated text at different stages
of training

E MODEL SIZES

As it is shown in Table [2] the number of hidden units varies for most of the models. We vary the
hidden size in order to keep a similar number of parameters across the models: around 22 million
for the multilingual setup and around 600 million for the multidomain one.

MultiLingual MultiDomain
Model Hidden size  #Parameters Hidden size  #Parameters
LSTM 1300 21.66M 5200 605.2M
Ind. LSTM 550 20.2M 1800 571.2M
PoE/MoOE (+PW) 5 550 21.2M 1600 621.8M
PoE/MOoE (+PW) 30 200 21.85M 200 635.3M
MoS 500 22M 2620 572M

Table 2: Model sizes

F HYPERPARAMETER SEARCH

Table 3] present the explored hyperparameters for LSTM and PoE. The parameters in bold are the
ones chosen for the final models, with the exception of PoE-5 and PoE+PW 5 which are marked
with italics.

The meaning of the different hyperparameters for Table [3]is:

* nhid: the size of the hidden state of the base LSTM
¢ dropout: the dropout value used in the base module of the LSTM

* learn iter.: how many learning iterations over each batch are done before moving to the
next batch

* adapt. iter.: it is used in the case of POE+PW and it shows how many iterations to train the
gating weights are done for each learning iteration.

* modules: how many modules does the PoE models contain

* gating nhid: the size of the hidden state for the LSTM used to calculate the gating weights
in the case of PoE

* clear gating: it is a boolean value which clears the hidden state of the LSTM used for gating
weights in the case of PoE

Also, MoS was tuned following the hyperparameters: 1 or 2 learning iterations, learning rate le-
3 or 5e-4. For the domain setup, we considered the combinations: (nsoftmaxes=2, nhid=4750)
or (nsoftmaxes=50, nhid=2620). On the other hand, for the multilingual dataset, we considered
(nsoftmaxes=2, nhid=1200) or (nsoftmaxes=75, nhid=500).
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task A model nhid dropout I.eam afiapt. modules gating cle;lr
iter. iter. nhid gating
Istm 200, 1300 0.1,0.2, 1,2,5 - - - -
0.4
10k 50, 700
MoE/PoE 200, 550 0.2 2,5 1 5,30 ) 0,7
lang. 200
MoE/PoE+PW | 200, 550 0.2 2,5 1,10, 700 5,30 - -
Istm 200, 1300 0.1,02, 1,25 - - - -
04
100k 50, 100
MoE/PoE 200, 550 0.2 1,25 1 5,30 2’00 0,1
MoE/PoE+PW 200, 550 0.2 1,2,5 | 1,10, 100 5,30 - -
Istm s200 | OL02 1 05 - - - -
04
10k 30,100
MoE/PoE 200, 1600 0.2 1,2,5 1 5,30 , 0,1
dom. 200
MOoE/PoE+PW | 200, 7600 0.2 1,2,5 | 1,10,100 5,30 - -
200, 1300, | 0.1,0.2,
Istm 5200 0.4 1,2,5 - - - -
20k 50, 100
MoE/PoE 200, 1600 0.2 1,2,5 1 5,30 2’00 0,1
MOoE/PoE+PW | 200, 1600 0.2 1,2,5 | 1,10,100 5,30 - -

Table 3: Table with the hyperparameters tested on the models: LSTM, PoE, and PoE+PW. The bold
parameters are the ones chosen for LSTM, MoE/PoE-30, MoE/PoE+PW 30 and the italic parameters
are the ones chosen for MoE/PoE-5 and MoE/PoE+PW 5

G STANDARD DEVIATIONS

MultiLingual MultiDomain
A =10k A =100k A =10k A =20k
ppl ppl@sw rec ppl ppl@sw rec ppl ppl@sw rec ppl ppl@sw rec

Ind. LSTM  0.42 0.41 0.44 0.12 0.05 0.3 28.5 25.5 0.2 171 16.6 0.22
Large LSTM 1.08 1.81 0.98 0.28 0.87 2.84 51 981 0.64 — — —

MoS 0.5 0.8 0.87 0.15 0.55 1.82 324 40.7 0.2 199 185 0.4
PoE 5 0.23 0.2 0.7 014 024 251 229 332 0.32 188 19.6 0.5
PoE 30 028 028 072 012 021 15 277 144 022 154 151 0.48
PoE+PW 5  0.17 0.33 09 011 048 3.2 264 221 0.52 157 19.6 0.62
PoE+PW 30 0.21 0.2 044 0.1 0.1 0.66 23.7 16.5 03 143 122 0.28
Ensemble 5 0.249 0.301 0.85 0.12 0.35 232 545 764 0419 276 32.6 0.407
Ensemble 30 0.375 0.525 0.923 0.203 0.549 2.01 35.1 45.9 0.287 24.5 27.8 0.545
MoE 5 0.255 0.274 0.855 0.12 0.426 1.75 64.2 84.4 0.447 424 56  0.464
MoE 30 0.21 0.22 0.3 0.1 0.16 217 21 232 053 18 172 0.45
MoE+PW 5 0.264 0.377 0.806 0.101 0.322 2.36 53.2 71.6 0.36 344 404 0.445
MoE+PW 30 0.326 0.561 0.753 0.195 0.543 2.24 43.5 43.8 0.315 26.6 40.3 0.74

Table 4: Standard deviation for Average perplexity (ppl), perplexity for 10 batches after a switch
(ppl@sw), and recovery time after a switch in batches (rec) for both datasets per mean sequence
length (X).
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