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Abstract

Network quantization, one of the most widely
studied model compression methods, effectively
quantizes a floating-point model to obtain a fixed-
point one with negligible accuracy loss. Although
great success was achieved in reducing the model
size, it may exacerbate the unfairness in model
accuracy across different groups of datasets. This
paper considers two widely used algorithms: Post-
Training Quantization (PTQ) and Quantization-
Aware Training (QAT), with an attempt to under-
stand how they cause this critical issue. Theoret-
ical analysis with empirical verifications reveals
two responsible factors, as well as how they in-
fluence a metric of fairness in depth. A compar-
ison between PTQ and QAT is then made, ex-
plaining an observation that QAT behaves even
worse than PTQ in fairness, although it often pre-
serves a higher accuracy at lower bit-widths in
quantization. Finally, the paper finds out that
several simple data augmentation methods can
be adopted to alleviate the disparate impacts of
quantization, based on a further observation that
class imbalance produces distinct values of the
aforementioned factors among different attribute
classes. We experiment on either imbalanced
(UTK-Face and FER2013) or balanced (CIFAR-
10 and MNIST) datasets using ResNet and VGG
models for empirical evaluation.
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1. Introduction
In recent years, with the advancements in computer perfor-
mance and the maturation of data processing technologies,
deep neural networks have made significant strides in fields
such as computer vision and natural language processing,
achieving impressive results. However, high computational
time consumption and large memory overheads pose sig-
nificant challenges to the efficient implementation of deep
neural networks on resource-limited devices. To address
these challenges, neural network quantization (Huang et al.,
2024; Jha et al., 2024; Gholami et al., 2022) is one of the
highly effective methods to reduce the power and latency of
neural network inference.

To achieve these savings, quantization stores weights and
activation tensors as low-bit fixed-point numbers (e.g. 4 or
8-bit) instead of original 32-bit floating-point representation.
This greatly reduces data storage requirements, as well as
the size and energy consumption of MAC operations, speed-
ing up network execution. There are generally two main
classes of algorithms: Post-Training Quantization (PTQ)
(He et al., 2024; Yao et al., 2022) and Quantization-Aware
Training (QAT) (Xie et al., 2024; Nagel et al., 2022). While
PTQ quantizes the model after training and requires no re-
training, QAT requires fine-tuning and access to training
data. Notably, Nagel et al. (2021) show that both methods
do not suffer significantly in terms of model accuracy when
compared to their original floating-point counterparts.

Although quantization causes little degradation to overall
accuracy on a test set, previous studies (Hooker et al., 2019;
2020) observe that disproportionately high errors may ap-
pear among different groups of datasets. As a first glimpse,
we experiment on a facial recognition task with UTK-Face
dataset (Zhang et al., 2017) and VGG19 model (Simonyan
& Zisserman, 2014), focusing on the accuracy of quantized
models by PTQ and QAT from 32-bit to 4-bit.

We summarize our key observations in Figure 1 as follows:

• While models are unfair in accuracy before quantiza-
tion among different groups of individuals, quantiza-
tion exacerbates such unfairness as bit-widths get lower.
For example, 4-bit QAT barely decreases accuracy in
group White, but group Others suffers a dramatic drop.

1



Understanding the Unfairness in Network Quantization

float 32 int 16 int 8 int 4

(a) PTQ

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
A

cc
ur

ac
y

White
Black
Indian
Asian
Others

float 32 int 16 int 8 int 4

(b) QAT

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

White
Black
Indian
Asian
Others

(c) Percentages of five samples groups

White
42.0%

Black
19.0%

Indian
17.0%

Asian
15.0%

Others
7.0%

Figure 1. Experiments on UTK-Face dataset on the accuracy of each subgroup of individuals using ResNet50 for an ethnicity classification
task. Both PTQ and QAT are evaluated as bit-widths get lower.

• Though QAT has a better guarantee of accuracy than
PTQ, PTQ behaves better in fairness preservation. For
example, from 32-bit to 4-bit, accuracy in group Others
decreases with a smaller percentage in PTQ than QAT.

These observations should receive great attention, because
such facial recognition tasks have been deployed in some
resource-limited devices, e.g., mobile phones or access con-
trol systems, and they could potentially harm fairness and
privacy. This constitutes our biggest motivation in this paper
for a better understanding and elimination of such unfairness
caused by quantization for equality protection and privacy
preservation. An intuitive understanding seems not difficult:
quantization involves loss of parameter information by rep-
resenting weights and activation tensors as low-precision
fixed-point numbers, and thus for underrepresented groups,
whose available feature information is already relatively lim-
ited, the loss of parameter information can further prevent
accurate learning of their features. For an in-depth study,
our paper makes a step toward answering the following
questions:

Our Research Questions

• What are the factors that exacerbate the unfairness
in model quantization?

• How do these factors influence the disparate pro-
portions of accuracy degradation among different
groups of data?

• How can we mitigate such unfairness to address
the effect of these factors?

Our contributions. We present a theoretical analysis in
disparate impacts of both PTQ and QAT on models’ fairness
separately. Our main findings are:

• accuracy disparities come from two main factors: (1)

the gradient norm of the group loss function and (2)
the trace of the group loss function’s Hessian matrix,
regardless of whether PTQ or QAT is used,

• class imbalance induces distinct values of both factors
among classes. Both the gradient norm and trace of
the Hessian matrix increase as the size of a subgroup
decreases, indicating a positive correlation between
the two factors,

• the unfairness caused by QAT is more severe than PTQ,
because besides being influenced by the above two
factors separately, QTA is additionally influenced by
their interactions.

Based on the theoretical analysis, we empirically validate
our findings on different datasets (UTK-Face, FER2013,
CIFAR-10 and MNIST) and models (ResNet and VGG). Fi-
nally, to mitigate the unfairness caused by quantization and
validate our main findings that a balanced dataset is crucial
for fairness preservation, a natural idea is to utilize data
augmentation techniques for training data. Two simple but
effective augmentation methods are empirically evaluated
for both PTQ and QAT.

2. Related Work
As two main keywords of this paper, both quantization (Jha
et al., 2024; Yang et al., 2024b; Gholami et al., 2022; Nagel
et al., 2021; Jacob et al., 2018) and fairness (Caton & Haas,
2024; Lalor et al., 2024; Zhang et al., 2024a; Mehrabi et al.,
2021) are well studied separately. For quantization, exten-
sive efforts have been devoted to improving quantization
performance using either QAT (Liu et al., 2023; Nagel et al.,
2022; Esser et al., 2020; Choi et al., 2018) or PTQ (Xiao
et al., 2023; Frantar & Alistarh, 2022; Wei et al., 2022; Li
et al., 2021). For fairness, studies vary in research fields,
for example, federated learning (Badar et al., 2024; Li et al.,
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2019), graph neural networks (Yang et al., 2024a; Dong
et al., 2022), generative adversarial networks (Zhang et al.,
2024b; Xu et al., 2018), and etc.

Our work falls under the broad umbrella of studying the so-
cial impacts of ML techniques. Much more related to ours,
previous studies have observed through empirical experi-
ments that various neural network compression techniques
can cause unfairness in different learning tasks, where the
classification accuracy of certain categories may be more
affected than others (Jha et al., 2019; Joseph et al., 2020).
Most of these observations lie in CV tasks. Hooker et al.
(2020) use visualization methods to study the disparate bi-
ases introduced by quantization and pruning on different
datasets; Tran et al. (2022) elucidate the theoretical factors
that exacerbate model unfairness due to pruning in face
recognition classification tasks and proposes a mitigation
strategy; Hooker et al. (2019) compare the different fairness
impacts of pruning and quantization and find that high lev-
els of pruning incur a far higher disparate impact than is
observed for the quantization techniques; and Blakeney et al.
(2021) propose two simple yet effective metrics, Combined
Error Variance (CEV) and Symmetric Distance Error (SDE),
to quantitatively evaluate the induced bias prevention quality
of pruned models and demonstrate that knowledge distilla-
tion can mitigate induced bias in pruned neural networks,
even with imbalanced datasets. The fairness impact of com-
pression has also been evaluated in NLP tasks. For example,
Du et al. (2021) and Xu et al. (2021) measure the robustness
of compressed large language models based on experience,
while Ahia et al. (2021) study how compression schemes
affect data restriction mechanisms. Xu & Hu (2022) in-
vestigate a method to improve fairness by compressing the
generated language model.

Mitigating unfairness through data augmentation is a widely
used strategy, particularly effective in addressing accuracy
disparities arising from data imbalances. For datasets en-
compassing a protected attribute, Sharma et al. (2020) de-
fine an “ideal world dataset” as data where different groups
within the protected attribute attain the same label, irrespec-
tive of other feature values. By implementing this data aug-
mentation technique, it effectively reduces bias in line with
two key fairness metrics: statistical parity difference and
average odds difference. Furthermore, to improve the gener-
alizability of fair classifiers, Mroueh et al. (2021) propose
“Fair Mixup”, a data augmentation strategy for imposing the
fairness constraint. In particular, they show that fairness can
be achieved by regularizing the models on paths of interpo-
lated samples between the groups. However, distinct from
the aforementioned methods, based on our theoretical and
empirical findings, we extend data augmentation techniques
geometric transformation and random erasing (Zhong et al.,
2020) by empirically demonstrating the utility of data aug-
mentation in mitigating bias in quantized models, especially

in the realms of QAT and PTQ.

Building upon the experimental observations mentioned
above, this article delves deeper into the specific factors
behind the degradation of model fairness caused by neural
network quantization and provides an effective mitigation
strategy to alleviate this unfairness.

3. Preliminaries
This section presents necessary background on model quan-
tization, a formal definition of our research problem and the
metric we use for fairness measure.

3.1. Quantization and Error Bound

Signed symmetric uniform quantization. In this pa-
per, we focus on quantizations only on weights w ∈
[wmin,wmax] rather than activations. Since the distribu-
tion of the neural network parameters is usually symmetric
about 0 (Glorot & Bengio, 2010), we assume wmin =
−wmax. Thus, we base on a widely-used signed symmet-
ric uniform quantizer, which is parameterized by a scale
s = wmax

2b−1−1
(0 < s < 1) which specifies the step size of the

quantizer, and the bit-width b. It maps a real-valued vector
w to an integer-valued vector wint by 1:

wint = clamp
(
⌊w
s
⌉;−2b−1, 2b−1 − 1

)
,

where clamp(w; a, c) =


a w < a ;

w a ≤ w ≤ c ;

c w > c .

(1)

Note that Eqn. (1) maps floating-point 0 to integer 0.
Floating-point weight vector w is stored as integral wint.
An approximation of w, denoted as w̃, can be de-quantized
from wint by:

w̃ = s ·wint ≈ w . (2)

Combining Eqn. (1) and Eqn. (2) gives a quantization func-
tion q from w to w̃:

w̃ = q(w; s, b) = s ·clamp
(
⌊w
s
⌉;−2b−1, 2b−1−1

)
. (3)

Quantization error. Eqn. (3) indicates a certain error, de-
fined as ∆w = w̃−w, between w and w̃ after quantization.
The error comes from two parts. One comes from the ⌊·⌉
operator, lying within a range of

[
− 1

2si,
1
2si
]

(Nagel et al.,
2021) for each component i of w. The other comes from
the clipping error, but our quantization scheme does not
introduce this error, as the quantization factor s = wmax

2b−1−1

1⌊·⌉ is the round-to-nearest operator.
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ensures that the quantized integers lie between −2b−1 and
2b−1 − 1. Thus the ℓ2 norm 2 of ∆w can be upper bounded
by:

∥∆w∥ ≤ 1

2

√
ns2max , (4)

where n is the number of dimensions of w and smax is the
largest scale used in the quantization among all parameters.
See Appendix A.1 for detailed proof of Eqn.(4). We point
out that readers may easily verify that s is inversely pro-
portional to b, meaning that quantization to lower bits will
induce larger errors.

3.2. Problem Definition and Fairness Metric

Empirical risk minimization (ERM). We consider a
classification task over a dataset D that learns a classifier
fw : X → Y parameterized by w using ERM. D consists
of m individual data points (xi, ai, yi) for each i ∈ [m],
drawn i.i.d. from an unknown distribution. xi ∈ X repre-
sents an input feature vector, ai ∈ A represents a (private or
protected) attribute of subgroups, and yi ∈ Y represents the
label. We take the facial recognition task on UTK-Face in
Figure 1 as an example for explanations. xi is a face photo
of an individual, ai is the ethnicity (White, Black, Indian,
Asian, and Others) of each individual, and yi is also the
label of ethnicity attributes. (In this task, we let A = Y , but
they are not necessarily identical.) w is an n-dimensional
real-valued vector, and it is trained by:

w∗ = argmin
w

L(w;D) = argmin
w

1

m

m∑
i=1

ℓ(fw(xi), yi) ,

(5)
where ℓ : Y × Y → R+ is a non-negative loss function.

Metric of fairness. To measure the fairness impacts
caused by quantization, first recall that w∗ can only be
approximated as in Eqn. (3), the error leads to a difference
between risk functions, which is called an excessive loss.
That is, for each group a ∈ A, we define:

G(a) = L(w̃∗;Da)− L(w∗;Da) , (6)

where Da denotes the subset of D containing exclusively
samples whose group attribute ai = a, w̃∗ denotes the quan-
tized model parameters while w∗ = argminwL(w;D).
Further, fairness can be measured by the largest gap of ex-
cessive losses among all pairs of protected attributes in A:

φ(D) = max
a,a′∈A

|G(a)− G(a′)| . (7)

Eqn. (7) gives our metric of fairness. Our main goal in
this paper is to study: (1) What factors are responsible for
quantized models with φ(D) > 0? (2) Why does G(a)

2Unless stated otherwise, ∥ · ∥ means ℓ2 norm in this paper.

vary among all protected attributes a ∈ A? (3) Do QAT
and PTQ behave differently with respect to φ(D)? (4) Any
mitigation strategies can be proposed to minimize φ(D)?
The following sections address all these issues.

4. Fairness in Post-Training Quantization
In this section, we discuss the degradation of fairness caused
by PTQ, which takes a pre-trained 32-bit floating-point
network and converts it directly into a fixed-point network
without fine-tuning. Recall that in Eqn. (1) the weight vector
w is first quantized into wint, and then calculations are
based on the approximation w̃ defined in Eqn. (2), inducing
an error bound of 1

2

√
ns2max in Eqn. (4). We assume that

the loss function ℓ is twice differentiable, e.g., MSE loss.
To see what factors influence the excessive loss G(a) of a
specific group a ∈ A, the following upper bound 3 is useful:

Theorem 4.1. Let ℓ be a twice differentiable loss function
and consider w∗ is quantized to low bits using PTQ. The
excessive loss for group a ∈ A is upper bounded by:

G(a) ≤ 1

2

√
ns2max · ∥gDa

w∗ ∥+
1

8
ns4max · Tr(HDa

w∗ )

+O
(
∥∆w∗∥3

)
,

(8)

where gDa
w∗ = ∇wL(w∗;Da) is the vector of gradient

associated with the ERM function L evaluated at w∗ and
computed using group data Da, Tr(HDa

w∗ ) is the trace of
the Hessian matrix HDa

w∗ = ∇2
wL(w∗;Da) of the ERM

function L, at the optimal parameter vector w∗, computed
using the group data Da, and ∆w∗ is the quantized error
of the optimal parameter vector w∗.

The main ingredient of our proof for Theorem 4.1 is a
second-order Taylor expansion of the objective function
L at w∗ with the assistance of several inequalities and the
consistency of ℓ2 norms between matrices and vectors.

Relationship to φ(D). In Theorem 4.1, except for a neg-
ligible term, G(a) is related to the sum of: (1) the product
of error bounds determined by smax and the gradient norm
∥gDa

w∗ ∥ for group Da; (2) the product of a term positively
correlated to error bounds and the trace of the Hessian ma-
trix Tr(HDa

w∗ ) for group Da. Let’s consider a data group
Da with protected attribute a. If the corresponding gra-
dient norm ∥gDa

w∗ ∥ and trace of Hessian matrix Tr(HDa
w∗ )

are larger than other attributes, G(a) grows faster as the
bit-width b gets lower (because smax ∝ 1

b ). Conversely, if
∥gDa

w∗ ∥ and Tr(HDa
w∗ ) are small, G(a) is not that sensitive

to smax (or b). As a consequence, as the quantization bit-
width b decreases, the gap in G(a) values between different
groups will further widen, leading to an increase in φ(D)

3All proofs in this paper are presented in Appendix A.
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Table 1. Fairness metric φ(D) across various quantization methods and bit-widths for different models and datasets. A higher φ(D)
indicates more severe unfairness. Note: φ(D) are presented as percentages due to their originally small magnitudes for improved clarity.

Quantization
Method

Bit-width

φ(D) (%)

ResNet50 VGG19 ResNet18

UTK-Face FER2013 UTK-Face FER2013 CIFAR-10 MNIST

PTQ
int 16 2.4 2.9 11.2 0.6 0.9 0.8
int 8 3.6 6.9 12.4 1.5 1.0 1.1
int 4 18.8 13.4 54.6 50.7 1.3 1.2

QAT
int 16 3.3 3.6 11.7 1.4 1.1 1.0
int 8 6.0 9.9 18.9 2.9 1.3 1.1
int 4 25.4 44.4 84.1 65.7 1.5 1.4

and consequently exacerbating unfairness. The results are
consistent with those shown in Table 1.

Our experimental results echo the arguments above. 4 We
set up experiments using ResNet50 on the UTK-Face dataset
for an ethnicity classification task. Experiments in Fig-
ure 1(a) and Figure 2 are towards the relationship between
the gradient norm, the trace of the Hessian matrix, and the
model accuracy, for five demographic attributes and their
corresponding subgroups, at three different bit-widths in
PTQ. Figure 1(a) and Figure 2 illustrate Theorem 4.1 in
the following way 5: (1) Consider a specific bit-width, for
example, int 8. While the gradient norms and the traces of
the Hessian matrices are larger over different groups, e.g.,
comparing group White and Indian, there is an opposite
numerical relationship in accuracy; (2) Consider a specific
demographic group, for example, group White. While its
gradient norm accounts for the smallest percentage, its accu-
racy decreases the most slowly. Similar phenomena happen
in traces of the Hessian matrices. Based on Theorem 4.1 and
the observations from Figure 1(a) and Figure 2, we conclude
our main findings as follows:

Takeaway 1: In post-training quantization, gradient
norms and traces of the Hessian matrices should pay
for the exacerbation of unfairness. As bit-widths get
lower, the accuracy after quantization on a demographic
group with larger values of the two factors drops more
dramatically.

Taking a further step, we introduce that both ∥gDa
w∗ ∥ and

Tr(HDa
w∗ ) are negatively correlated to the size of the dataset

4We only present the accuracy results for training on UTK-
Face dataset using ResNet50 in the main body of the paper for
illustration, and leave similar experiments on other datasets and
models to Appendix C.3.

5For a clear presentation, both gradient norms and traces of the
Hessian matrices are scaled as a proportion of the sum among all
demographic groups in this paper.

of subgroups, i.e., |Da|. Details will be discussed in the rest
of this section.

The effect of gradient norms. The next lemma provides
an upper bound for ∥gDai

w∗ ∥, revealing the factor contribut-
ing to the disparity in gradient norms among different
groups.
Lemma 4.2. For a given group Dai

with a protected at-
tribute ai ∈ A = {a1, a2, · · · , ak}, its gradient norm as-
sociated with the ERM function L evaluated at w∗ can be
upper bounded by:

∥gDai
w∗ ∥ ≤ 1

2|Dai |

k∑
j=1

|Daj | · ∥g
Daj

w∗ ∥ , (9)

where i ∈ [k] and k = |A| ≥ 2.
Corollary 4.3. Consider two groups a and b in A. If
|Da| ≤ |Db|, then ∥gDa

w∗ ∥ ≥ ∥gDb
w∗∥.

Lemma 4.2 associates the gradient norm of a specific group
with its size, followed by a direct corollary when A only con-
tains two subgroups. Figure 2 illustrates Corollary 4.3 by re-
vealing the relationship between gradient norms ∥gDai

w∗ ∥ and
sizes of groups |Dai | on the UTK-Face dataset. There exists
a strong trend between decreasing group sizes and increas-
ing gradient norms for such groups, i.e., ∥gDai

w∗ ∥ ∝ 1
|Dai

| .
This demonstrates that groups with smaller sizes of data
points tend to have larger gradient norms than larger groups
and vice-versa, leading to severer unfairness for underrep-
resented groups. The observation is actually not surprising
because of an intuitive understanding: when a model con-
verges at a local optimal, it learns little features from a
disadvantaged group, inducing a low accuracy on this group.
Now if we fine-tune the model individually on this disadvan-
taged group, the loss is large at the beginning and declines
sharply, indicating a large norm of the corresponding gradi-
ent in this group.

5



Understanding the Unfairness in Network Quantization

White Black Indian Asian Others
0.0

10.0

20.0

30.0

40.0

50.0
Pr

op
or

tio
n 

(%
)

Gradient Norm
Trace of Hessian
Group Size

Figure 2. Proportions of gradient norms, traces of Hessian and
group sizes for five demographic groups using the full-precision
ResNet50 (fw∗ ) on the UTK-Face dataset in an ethnicity classifi-
cation task.

The effect of traces of the Hessian matrices. A simi-
lar lemma establishes a connection between the trace of a
group’s Hessian and the size of the corresponding dataset.

Lemma 4.4. For a given group Dap
with a protected at-

tribute ap ∈ A = {a1, a2, · · · , ak}, its trace of Hessian
associated with the ERM function L evaluated at w∗ can
be upper bounded by:

Tr(H
Dap

w∗ ) ≤ 1

|Dap
|

(
n|D|λmax(H

D
w∗)

−
k∑

j ̸=p,q

|Daj
|Tr(H

Daj

w∗ )
)
,

(10)

where i ∈ [k], k = |A| ≥ 2 and aq is any attribute in A
except ap.

Lemma 4.4 also indicates that the trace of the Hessian ma-
trix for a specific group is related to the size of that group.
Experiments in Figure 2 give evidence: groups with smaller
sizes have larger traces of Hessians and vice-versa, i.e.,
Tr(H

Dai
w∗ ) ∝ 1

|Dai
| . This suggests that groups with fewer

data points generally exhibit larger traces of Hessians com-
pared to larger groups and vice-versa, resulting in more
pronounced unfairness towards underrepresented groups.

Experiments on a balanced dataset. To further support
our findings in Lemma 4.2 and Lemma 4.4, we experiment
on a balanced dataset 6 CIFAR-10 (Krizhevsky et al., 2010)

6We also experiment on another balanced dataset MNIST with
similar findings. Besides, for a clear comparison, we set up experi-
ments on artificial Imbalanced-CIFAR-10 and Imbalanced-MNIST,
whose training data is constructed by sampling different portions
of images among different classes. Details and results are in Ap-
pendix C.1 and Appendix C.2.

with 10 groups and 10% of the total for each group. Fig-
ure 4(a) in Appendix C.1 reports our results and shows that
as the bit-width gets lower in PTQ, accuracy gaps between
10 groups on the CIFAR-10 are relatively stable, while they
grow larger on UTK-Face in Figure 1(a). As summarized in
Table 1, the deterioration of unfairness on the two datasets is
as follows: on CIFAR-10, the increase in φ(D) is minimal,
rising from 0.9% to 1.3%, whereas on the UTK-Face dataset,
the increase in φ(D) is much more substantial, rising from
2.4% to 18.8%.

Takeaway 2: Class imbalance is to blame for unfairness,
because of negative correlations between the group size
and the gradient norm as well as the trace of Hessian.

5. Fairness in Quantization-Aware Training
This section extends the analysis to the context of QAT. QAT
models quantization during training and usually provides
higher accuracy than PTQ schemes at lower bit-widths. The
bound of excessive loss in QAT shares a large similarity
to that in PTQ, but differs in two additional terms that are
not negligible. To see details, let us consider one iteration
t+ 1 of updating parameters using a widely-used optimizer,
mini-batch SGD.

Recall that quantization stores the floating-point parameter
vector w as a fixed-point wint and computations are based
on w̃. The update 7 is given by Krishnamoorthi (2018):

wt+1 = w̃t −
η

|B|

|B|∑
i=1

∂ℓ

∂w̃t

(
fw̃t

(xi), yi

)
, (11)

where ℓ is assumed as a twice differentiable and convex loss
function, η is the learning rate, and B is the mini-batch.
And wt is approximated by w̃t after the quantization and
de-quantization process, which is given by:

w̃t = s · clamp
(
⌊wt

s
⌉;−2b−1, 2b−1 − 1

)
, (12)

where s is the scale inversely proportional to bit-width b.
Further, recall that this induces an error ∆wt = w̃t −wt

upper bounded by 1
2

√
ns2max.

The following result sheds light on the unfairness induced
by QAT and provides a useful upper bound for a group’s
excessive loss.

Theorem 5.1. Let ℓ be a twice differentiable loss function
and consider a training process as defined in Eqn. (11) and
a quantization process as defined in Eqn. (12). Then, the
excessive loss gap for group a ∈ A at iteration t + 1 is

7The update relies on a straight-through estimator (STE) (Ben-
gio et al., 2013), i.e. ∂w̃t/∂wt = 1. Details are in the proof of
Theorem 5.1.
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upper bounded by:

Gt+1(a) ≤
1

2

√
ns2max · ∥gDa

wt
∥+ 1

8
ns4max · Tr(HDa

wt
)︸ ︷︷ ︸

the upper bound of G(a) under PTQ

(13a)

+
1

2

√
ns2max · ∥gDa

wt
∥ ·
(
1 + 3η · Tr(HDa

wt
)
)

+
1

2
ns4maxη · Tr2(HDa

wt
) +O(η2) , (13b)

where ∥gDa
wt

∥ and Tr(HDa
wt

) are defined in the same way
as in Theorem 4.1.

Although Eqn. (13a) and Eqn. (13b) give a larger bound
than that in Theorem 4.1, they also shed light on a relation
between fairness and the gradient norm ∥gDa

wt
∥ and the trace

of the Hessian Tr(HDa
wt

) in QAT. Similar theoretical con-
clusions can be carried over from Theorem 4.1, Lemma 4.2,
and Lemma 4.4. We only present our empirical results here
as a verification.

Figure 1(b) and Figure 2 show the relationship between
the gradient norm, the trace of the Hessian matrix, and
the model accuracy, for five demographic attributes and
their corresponding subgroups, at three different bit-widths
in QAT. Observations are quite similar to those from Fig-
ure 1(a) and Figure 2: (1) For a fixed bit-width, groups with
smaller gradient norms and traces of Hessians tend to have
higher accuracy and vice-versa; (2) The accuracy of each
group decreases as the bit-width gets lower, however, the
accuracy decreases faster for groups with larger gradient
norms and traces of the Hessian matrices and vice-versa. In
addition, we also conduct an experiment on CIFAR-10 in
Figure 4(b), in which unfairness in accuracy is not worsened
significantly. As presented in Table 1, the value of φ(D)
only increases slightly, from 1.1% to 1.5%.

Comparison to PTQ: a larger gap in Eqn. (13b). Recall
that Theorem 5.1 decomposes the excessive loss Gt+1(a) at
t + 1-th iteration into two key components: the first term
(13a) is identical to that in PTQ in Theorem 4.1, and the
extra term (13b) relates together with gradient norms and
traces of Hessian, which gives a larger bound than PTQ.
To provide a clear comparison of this, we demonstrate in
Table 1 on how fairness metric φ(D) changes as bit-widths
get lower. As shown, φ(D) in QAT grow significantly
larger than PTQ, echoing the difference in the theoreti-
cal bound. For instance, on the UTK-Face dataset with
ResNet50, φ(D) rises from 2.4% at int 16 to 18.8% at int 4
for PTQ, while for QAT, it increases from 3.3% to 25.4%.
To provide more intuition, QAT exacerbates unfairness more
than PTQ due to the dynamic interaction between gradient
norms and Hessian traces under quantization constraints.
Since QAT applies quantization throughout training, gradi-

ent updates must adapt to quantization-induced noise, lead-
ing to optimization in a more distorted loss landscape. In
regions with high Hessian traces, the steep loss surface am-
plifies the effect of large gradient norms, causing uneven
updates across subgroups. In contrast, PTQ quantizes only
after full-precision training, avoiding these interaction ef-
fects and resulting in relatively lower unfairness.

Takeaway 3: Although quantization-aware training al-
ways provides a better overall performance guarantee,
deterioration in fairness induced by imbalanced datasets
towards protected attributes is much more severe than
that in post-training quantization.

6. Mitigation Scheme and Evaluation
To further validate our main findings from theoretical and
experimental analyses, that is, imbalanced datasets induce
unfairness in model quantization, we adopt several data
augmentation techniques as mitigation schemes. Data aug-
mentation is viewed as a very powerful method to improve
the generalizability of a deep model, especially in vision
tasks, basically because the augmented data often provides
a more comprehensive representation of data points, thus
minimizing the distance between the training and validation
set. In addition, data augmentation is also investigated as an
effective way to alleviate class imbalance. We refer readers
to a survey by Leevy et al. (2018) for details.

We consider two commonly used methods for image aug-
mentations: geometric transformations and random erasing
(Zhong et al., 2020) :

Geometric Transformations (GT). For each class,
randomly pick an image each time, and adopt one
transformation from: (1) a rotation with a maximum
degree of 20; (2) zooming with a factor between 1.1
and 1.2; (3) horizontal flipping, until enough images
are generated.

Random Erasing (RE). For each class, randomly pick
an image to be augmented each time. How to choose a
mask of size n×m is crucial in the effectiveness of such
method. To simplify the process, we adopt a random
strategy for selecting the mask size by enforcing a
square mask, i.e., setting n = m. This is appropriate
for datasets such as UTK-Face and FER2013, where
images are uniformly sized at 48× 48 pixels. During
each augmentation step, a mask size parameter n is
randomly sampled from the set {3, 4, . . . , 20}, derived
from the optimal configuration in (Zhong et al., 2020).
A patch of size n× n is then randomly selected from
the image and masked with random values.

We evaluate the effectiveness of both methods by training
ResNet-50 and VGG19 on UTK-Face and FER2013. We
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(c) Geometric Transformations in QAT
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Figure 3. Mitigation schemes: Accuracy across five groups using ResNet50 on UTK-Face dataset by PTQ ((a) and (b)) and QAT ((c) and
(d)). Both GT and RE are adopted on for data augmentation.

Table 2. Fairness metric φ(D) for ResNet50 with data augmentation methods (GT and RE) applied.

Augmentation
Method

Quantization
Method

φ(D) (%)

UTK-Face FER2013

int 16 int 8 int 4 int 16 int 8 int 4

Non-Mitigation PTQ 2.4 3.6 18.8 2.9 6.9 13.4
QAT 3.3 6.0 25.4 3.6 9.9 44.4

GT PTQ 0.8 1.1 2.6 1.8 2.3 2.9
QAT 1.3 1.7 2.7 2.1 2.5 3.2

RE PTQ 1.0 1.2 1.7 2.0 3.2 4.8
QAT 1.1 1.3 2.0 2.8 3.9 4.9

present the results of training ResNet50 on UTK-Face using
both PTQ and QAT, and leave other empirical evaluations
to Appendix C.4. The UTK-Face dataset contains 18,964
images in training set, with 8,108 for White, 3,611 for Black,
3,176 for Indian, 2,718 for Asian, and 1,351 for Others. We
balance them by augmenting training images until each
containing 8,108 images.

Figure 3 presents the accuracy across five groups by PTQ
((a) and (b)) and QAT ((c) and (d)). Both GT and RE are
adopted for data augmentation. Comparing to Figure 1,
unfairness is significantly mitigated for both cases. For ex-
ample, in QAT, the accuracy of group Others drops from
42% for 32-bit to 7% for 4-bit without data augmentation,
while they drop from 82% and 83.2% for 32-bit to 80.3%
and 82% for 4-bit when GT and RE are adopted, respec-
tively. Furthermore, as shown in Table 2, the values of φ(D)
are significantly reduced after applying data augmentation
methods, effectively mitigating unfairness.

Besides, as another evidence, our experiments on CIFAR-10
(and Imbalanced-CIFAR-10) and MNIST (and Imbalanced-
MNIST) also support the effectiveness of data augmentation.
See Appendix C.1 and Appendix C.2 for details.

We also compare the above random selection strategy of RE
to some fixed choices of n, including n = 3, n = 10 and
n = 20. The corresponding results are presented in Table 3.

As shown, whether under PTQ or QAT, fixing n = 3 or
n = 20 is almost ineffective in mitigating unfairness. The
fixed n = 10 strategy offers a slight improvement in fairness,
but none of these fixed approaches are as effective as the
random selection strategy for n. This suggests that, beyond
the amount of augmented data, its quality also plays a crucial
role in mitigating unfairness.

Takeaway 4: Data augmentation helps mitigate the un-
fairness caused by quantization.

7. Conclusion and Future Work
Starting from an observation in an experiment on quantiza-
tion and accuracy across different subgroups of UTK-Face,
we are aware of a significant concern for equality protection
and privacy preservation. To the best of our knowledge, this
is the first paper to both address this issue and go in-depth
on its causes and mitigation theoretically and empirically.
Our main findings are concluded in “Takeaways”. For fu-
ture work, we will validate our findings in other vision tasks,
such as detection, or other areas where compressed deep
models are needed, such as NLP. Besides, we aim to explore
solutions beyond data augmentation to mitigate unfairness.

8
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Table 3. Fairness metric φ(D) for ResNet50 with fixed patch sizes n over the range {3, 10, 20}, compared with the random selection
strategy of n from the range {3, 4, . . . , 20} (referred to as the Optimal Strategy) and no data augmentation (referred to as the Baseline), in
random erasing.

Patch Size Quantization
Method

φ(D) (%)

UTK-Face FER2013

int 16 int 8 int 4 int 16 int 8 int 4

Baseline PTQ 2.4 3.6 18.8 2.9 6.9 13.4
QAT 3.3 6.0 25.4 3.6 9.9 44.4

Optimal Strategy PTQ 1.0 1.2 1.7 2.0 3.2 4.8
QAT 1.1 1.3 2.0 2.8 3.9 4.9

n = 3 PTQ 2.2 3.3 18.8 2.5 6.3 12.1
QAT 3.1 5.8 25.0 3.2 8.7 40.3

n = 10 PTQ 1.4 2.1 10.6 2.3 4.3 8.7
QAT 1.5 2.4 11.9 3.0 5.6 10.5

n = 20 PTQ 2.3 3.6 18.7 2.7 6.5 12.8
QAT 3.3 5.9 25.2 3.3 9.1 41.9
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A. Missing Proofs
A.1. Proof of Eqn. (4)

Proof. Let w = (w1,w2, · · · ,wi, · · · ,wn) be an n-dimensional vector whose component wi is a real number. w̃ is the
approximate vector of w obtained after w has been quantized and de-quantized.

Since the distribution of the parameters w ∈ [wmin,wmax] of the neural network is usually symmetric about 0, i.e.,
wmin = −wmax, selecting a scaling factor s = wmax

2b−1−1
ensures that the quantization Eqn. (3) does not incur clipping errors.

The reason is as follows:
wmax

s
= 2b−1 − 1 ,

wmin

s
= −2b−1 + 1 ,

−2b−1 < −2b−1 + 1 ≤ ⌊w
s
⌉ ≤ 2b−1 − 1 .

Thus, the quantization error of this method comes only from the ⌊·⌉ operator, i.e.:

|∆wi| = |w̃i −wi| ≤ si ·
1

2
si =

1

2
s2i ,

where si in the inequality comes from the coefficient of the de-quantization formula Eqn. (2) (0 < si < 1), 1
2si comes from

the error of the ⌊·⌉ operator.

For the ℓ2 norm of the error vector ∆w:

∥∆w∥ = ∥(∆w1,∆w2, · · · ,∆wi, · · · ,∆wn)∥

=

√√√√ n∑
i=1

∆w2
i ≤

√√√√ n∑
i=1

1

4
s4i ≤

√
1

4
ns4max =

1

2

√
ns2max ,

where smax is the largest scale used in the quantization among all parameters.

A.2. Proof of Theorem 4.1

Proof. First recall that we assume the loss function ℓ(·) is twice differentiable. We use a second-order Taylor expansion
around w∗. The ERM function L(w̃∗;Da) for a group a ∈ A can be stated as:

L(w̃∗;Da) = L(w∗;Da) + (∆w∗)TgDa
w∗ +

1

2
(∆w∗)THDa

w∗ (∆w∗) +O
(
∥∆w∗∥3

)
.

The excessive loss G(a) for a group a ∈ A is then given by definition:

G(a) = L(w̃∗;Da)− L(w∗;Da)

= (∆w∗)TgDa
w∗ +

1

2
(∆w∗)THDa

w∗ (∆w∗) +O
(
∥∆w∗∥3

)
.

Further recall in Eqn. (4), the quantizaton error ∥∆w∗∥ = ∥w̃∗ −w∗∥ is upper bounded by:

∥∆w∗∥ ≤ 1

2

√
ns2max .

Combining with a Cauchy-Schwarz inequality, it follows by:

(∆w∗)TgDa
w∗ ≤ ∥∆w∗∥ · ∥gDa

w∗ ∥ ≤ 1

2

√
ns2max · ∥gDa

w∗ ∥ . (14)

For the second-order derivative term, combining Eqn. (4) and the consistency between the matrix ℓ2 norm and the vector ℓ2
norm, we have:

1

2
(∆w∗)THDa

w∗ (∆w∗) ≤ 1

2
∥∆w∗∥2 · ∥HDa

w∗ ∥ ≤ 1

8
ns4max · ∥HDa

w∗ ∥ .

12



Understanding the Unfairness in Network Quantization

Besides, since HDa
w∗ is a real symmetric matrix, ∥HDa

w∗ ∥ = maxi |λi|, where λi is the eigenvalue of HDa
w∗ . Moreover, the

matrix HDa
w∗ is positive semi-definite, meaning all eigenvalues of the matrix HDa

w∗ are greater than or equal to 0. This
property holds for convex loss functions and also for non-convex ones, as the second-order Taylor expansion at a local
optimum approximates the loss as convex (Nocedal & Wright, 1999). So ∥HDa

w∗ ∥ = maxi λi. According to the property of
the trace of the matrix that the trace of a matrix is equal to the sum of all eigenvalues of the matrix, we have:

∥HDa
w∗ ∥ = max

i
λi ≤

∑
i

λi = Tr(HDa
w∗ ) .

Thus,
1

2
(∆w∗)THDa

w∗ (∆w∗) ≤ 1

8
ns4max · Tr(HDa

w∗ ) . (15)

The upper bound for the excessive loss G(a) is thus obtained by combining Eqn. (14) and Eqn. (15).

A.3. Proof of Lemma 4.2

Proof. By the assumption that the model converges to a local minimum, it follows that:

gD
w∗ = ∇wL(w∗;D)

=
1

|D|

|D|∑
i=1

g
(xi,yi)
w∗

=
1

|D|

k∑
j=1

|Daj
|∑

i=1

g
(xi,yi)
w∗

=

k∑
j=1

(
|Daj

|
|D|

1

|Daj |

|Daj
|∑

i=1

g
(xi,yi)
w∗

)

=

k∑
j=1

|Daj |
|D|

g
Daj

w∗

= 0 .

(16)

Thus, for group ai ∈ A, we have:

g
Dai
w∗ = − 1

|Dai |

k∑
j ̸=i

|Daj
|g

Daj

w∗ .

Besides, by the trigonometric inequality property of the vector norm, it follows that:

∥gDai
w∗ ∥ ≤ 1

|Dai
|

k∑
j ̸=i

|Daj
| · ∥g

Daj

w∗ ∥ . (17)

Add ∥gDai
w∗ ∥ to both sides of Eqn.( 17):

2∥gDai
w∗ ∥ ≤ 1

|Dai
|

k∑
j=1

|Daj
| · ∥g

Daj

w∗ ∥ . (18)

Divide both sides of Eqn. (18) by 2:

∥gDai
w∗ ∥ ≤ 1

2|Dai
|

k∑
j=1

|Daj
| · ∥g

Daj

w∗ ∥ .
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A.4. Proof of Corollary 4.3

Proof. For two groups a and b in A, by the assumption that the model converges to a local minimum, it follows that:

gD
w∗ = ∇wL(w∗;D)

=
1

|D|

|D|∑
i=1

g
(xi,yi)
w∗

=
1

|D|

|Da|∑
i=1

g
(xi,yi)
w∗ +

1

|D|

|Db|∑
i=1

g
(xi,yi)
w∗

=
|Da|
|D|

1

|Da|

|Da|∑
i=1

g
(xi,yi)
w∗ +

|Db|
|D|

1

|Db|

|Db|∑
i=1

g
(xi,yi)
w∗

=
|Da|
|D|

gDa
w∗ +

|Db|
|D|

gDb
w∗

= 0 .

Thus, we have:

gDa
w∗ = − |Db|

|Da|
gDb
w∗ , ∥gDa

w∗ ∥ =
|Db|
|Da|

∥gDb
w∗∥ .

If |Da| ≤ |Db|, then ∥gDa
w∗ ∥ ≥ ∥gDb

w∗∥.

A.5. Proof of Lemma 4.4

Proof. In the same way as the derivation of gD
w∗ in Eqn. (16), we have:

HD
w∗ =

k∑
j=1

|Daj |
|D|

H
Daj

w∗ .

By the simple property of the trace of the matrix and the relationship between the trace and eigenvalues of the matrix, it
follows that:

Tr(HD
w∗) = Tr

( k∑
j=1

|Daj
|

|D|
H

Daj

w∗

)
=

k∑
j=1

|Daj
|

|D|
Tr(H

Daj

w∗ ) ≤ nλmax(H
D
w∗)

For group ap, we have:

|Dap
|

|D|
Tr(H

Dap

w∗ ) ≤ nλmax(H
D
w∗)−

k∑
j ̸=p

|Daj
|

|D|
Tr(H

Daj

w∗ )

≤ nλmax(H
D
w∗)−

k∑
j ̸=p,q

|Daj
|

|D|
Tr(H

Daj

w∗ ) .

Thus,

Tr(H
Dap

w∗ ) ≤ 1

|Dap |

(
n|D|λmax(H

D
w∗)−

k∑
j ̸=p,q

|Daj |Tr(H
Daj

w∗ )
)
.

A.6. Proof of Theorem 5.1

Proof. The proof of Theorem 5.1 relies on the following two second order Taylor approximations: (1) The first approximates
the ERM function at iteration t + 1 under non-quantized training, i.e., wt+1 = wt − ηgB

wt
, where B ∈ D denotes the

14



Understanding the Unfairness in Network Quantization

mini-batch. (2) The second approximates the ERM function under quantized training, where the parameter vector is updated
by:

wt+1 = w̃t −
η

|B|

|B|∑
i=1

∂ℓ

∂wt

(
fw̃t

(xi), yi

)

= w̃t −
η

|B|

|B|∑
i=1

∂ℓ

∂w̃t

(
fw̃t

(xi), yi

)
·∂w̃t

∂wt

= w̃t −
η

|B|

|B|∑
i=1

∂ℓ

∂w̃t

(
fw̃t

(xi), yi

)
= w̃t − ηgB

w̃t
,

where ∂w̃t

∂wt
= 1 by the straight-through estimator (STE) (Bengio et al., 2013; Nagel et al., 2021). Finally, the result is

obtained by taking the difference of these approximations under quantized and non-quantized training.

1. Approximation of non-quantized ERM. The approximation of non-quantized ERM can be derived using a second
order Taylor approximation as follows:

L(wt+1;Da) = L(wt − ηgB
wt

;Da) ≈ L(wt;Da)− η(gB
wt

)TgDa
wt

+
1

2
η2(gB

wt
)THDa

wt
gB
wt

. (19)

2. Approximation of quantized ERM. Consider one iteration t+ 1 of updating parameters using the mini-batch SGD,
i.e., wt+1 = w̃t − ηgB

w̃t
. Recall that quantization stores the float-point parameter vector w as a fixed-point wint and

computation is based on w̃. wt+1 is approximated by w̃t+1 when participating in the next round of iterations of the
computation. Hence,

w̃t+1 = wt+1 +∆wt+1 = w̃t − ηgB
w̃t

+∆wt+1 = wt +∆wt − ηgB
w̃t

+∆wt+1 .

Applying a second order Taylor approximation around wt allows us to estimate the quantized ERM function at iteration t +
1 as:

L(w̃t+1;Da)

=L(wt +∆wt +∆wt+1 − ηgB
w̃t

;Da) (20a)

≈L(wt;Da) + (∆wt +∆wt+1 − ηgB
w̃t

)TgDa
wt

(20b)

+
1

2
(∆wt +∆wt+1 − ηgB

w̃t
)T ·HDa

wt
(∆wt +∆wt+1 − ηgB

w̃t
)

≈L(wt;Da) + (∆wt +∆wt+1 − ηgB
wt

− ηHB
wt

∆wt)
TgDa

wt
(20c)

+
1

2
(∆wt +∆wt+1 − ηgB

wt
− ηHB

wt
∆wt)

THDa
wt

· (∆wt +∆wt+1 − ηgB
wt

− ηHB
wt

∆wt)

=L(wt;Da) + (∆wt +∆wt+1)
TgDa

wt
− η(gB

wt
)TgDa

wt
− η(HB

wt
∆wt)

TgDa
wt

(20d)

+
1

2
(∆wt +∆wt+1)

THDa
wt

(∆wt +∆wt+1) +
1

2
η2(gB

wt
)THDa

wt
gB
wt

− η(∆wt +∆wt+1)
THDa

wt
gB
wt

− η(∆wt +∆wt+1)
THDa

wt
(HB

wt
∆wt) +O(η2) ,

where Eqn. (20c) follows from the first-order Taylor expansion approximation of gB
w̃t

at wt:

gB
w̃t

≈ gB
wt

+∆wtH
Da
wt

.

The upper bound for the excessive loss Gt+1(a) can be obtained by combining Eqn. (19) and Eqn. (20d):
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Gt+1(a)

=L(w̃t+1;Da)− L(wt+1;Da) (21a)

≈(∆wt +∆wt+1)
TgDa

wt
− η(HB

wt
∆wt)

TgDa
wt

+
1

2
(∆wt +∆wt+1)

THDa
wt

(∆wt +∆wt+1) (21b)

− η(∆wt +∆wt+1)
THDa

wt
gB
wt

− η(∆wt +∆wt+1)
THDa

wt
(HB

wt
∆wt) +O(η2)

≤∥∆wt +∆wt+1∥ · ∥gDa
wt

∥+ η∥∆wt∥ · ∥HB
wt

∥ · ∥gDa
wt

∥+ 1

2
∥∆wt +∆wt+1∥2 · ∥HDa

wt
∥ (21c)

+ η∥∆wt +∆wt+1∥ · ∥HDa
wt

∥ · ∥gB
wt

∥+ η∥∆wt +∆wt+1∥ · ∥HDa
wt

∥ · ∥HB
wt

∥ · ∥∆wt∥+O(η2)

≈∥∆wt +∆wt+1∥ · ∥gDa
wt

∥+ η∥∆wt∥ · ∥HDa
wt

∥ · ∥gDa
wt

∥+ 1

2
∥∆wt +∆wt+1∥2 · ∥HDa

wt
∥ (21d)

+ η∥∆wt +∆wt+1∥ · ∥HDa
wt

∥ · ∥gDa
wt

∥+ η∥∆wt +∆wt+1∥ · ∥HDa
wt

∥2 · ∥∆wt∥+O(η2)

≤
√
ns2max · ∥gDa

wt
∥+ 1

2

√
ns2maxη · Tr(HDa

wt
) · ∥gDa

wt
∥+ 1

8
ns4max · Tr(HDa

wt
) (21e)

+
√
ns2maxη · Tr(HDa

wt
) · ∥gDa

wt
∥+ 1

2
ns4maxη · Tr2(HDa

wt
) +O(η2)

=
1

2

√
ns2max · ∥gDa

wt
∥+ 1

8
ns4max · Tr(HDa

wt
) +

1

2

√
ns2max · ∥gDa

wt
∥ ·
(
1 + 3η · Tr(HDa

wt
)
)

(21f)

+
1

2
ns4maxη · Tr2(HDa

wt
) +O(η2) .

The Eqn. (21d) follows from that the mini-batch B is randomly selected from Da, so the average gradient norms and
average Hessian matrices in B are approximate to those in Da. And Eqn. (21e) follows from the upper bound of ∥∆w∥
and the relationship between the trace and eigenvalues of the matrix.

B. Experimental Settings
B.1. Datasets

Table 4. Datasets used in our experiments.

Dataset Description Training Set Test Set Labels

UTK-Face Face image 18,964 4,741 Age, gender, ethnicity

FER2013 Facial expression image 28,708 7,178 Seven facial expressions

CIFAR-10 RGB image 50,000 10,000 Ten object classes

Imbalanced-CIFAR-10 RGB image 19,375 10,000 Ten object classes

MNIST Handwritten-digits image 60,000 10,000 0-9

Imbalanced-MNIST Handwritten-digits image 23,782 10,000 0-9

Table 4 shows all datasets used in this paper. We experiment on the imbalanced UTK-face and FER2013 and the balanced
CIFAR-10 and MNIST. Besides we artificially construct two imbalanced datasets Imbalanced-CIFAR-10 and Imbalanced-
MNIST by randomly and proportionally discarding images from each class. Details for usage of each dataset are presented
in the corresponding subsection in Appendix C.

B.2. Models and Training Details

The paper adopts the following models to verify the results of the main paper:

• ResNet18 (He et al., 2016). This model consists of 17 convolution layers, 1 AvgPool layer and 1 fully connected layer
and has ∼ 11.7 million parameters.
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• ResNet50 (He et al., 2016). This model contains 50 convolution layers, 1 AvgPool layer and 1 fully connected layer
and has ∼ 25 million parameters.

• VGG19 (Simonyan & Zisserman, 2014). This model consists of 19 layers (16 convolution layers, 3 fully connected
layers,5 MaxPool layers and 1 SoftMax layer) with ∼ 143 million parameters.

The datasets and corresponding models used for all experiments in this paper are as follows:

• Experiments on the UTK-Face dataset using the ResNet50 and VGG19 models.

• Experiments on the CIFAR-10 and MNIST datasets using the ResNet18 model.

• Experiments on the FER2013 dataset using the ResNet50 and VGG19 models.

• Experiments on the Imbalanced-CIFAR-10 and Imbalanced-MNIST datasets using the ResNet18 model.

The training process is performed using an NVIDIA 3090Ti device. The hyperparameters for all the models are set with an
initial learning rate of 0.001, which is gradually reduced based on the number of epochs during training to optimize the
models. The VGG19 model is trained for epochs ranging from 40 to 60, the ResNet18 model also undergoes training for
100 epochs, while the ResNet50 model is trained for approximately 200 epochs.

All experiments are conducted in a Python 3.10 environment using the PyTorch framework. For each experiment, the overall
classification accuracy is calculated, along with the classification accuracy on different protected group sets, as well as the
gradient norms and the traces of the Hessian matrices. Each experiment is repeated ten times to calculate the average results.

C. Additional Experimental Results
C.1. Experiments on (balanced) CIFAR-10 and MNIST using ResNet18

In this section, we conduct experiments on ResNet18 for two balanced datasets CIFAR-10 (Krizhevsky et al., 2010) and
MNIST (Deng, 2012), and further support our findings in the main paper by observing the fairness phenomena in balanced
datasets. Figure 4 reports our results and shows that as the bit-width gets lower in PTQ and QAT, accuracy gaps between 10
groups on both CIFAR-10 and MNIST is relatively stable, while they grow larger on UTK-Face in Figure 1. Furthermore,
as summarized in Table 1, the fairness metric φ(D) for the two datasets remains quite small across all bit-widths, indicating
the model performs more fairly on these datasets compared to others with higher fairness metric values.
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Figure 4. Experiments on CIFAR-10 and MNIST datasets on the accuracy of each subgroup of individuals using ResNet18. Both PTQ
and QAT are evaluated as bit-widths get lower.

C.2. Experiments on Imbalanced-CIFAR-10 and Imbalanced-MNIST

To further validate the impact of imbalanced datasets in quantization on the fairness of the model, we manually construct two
imbalanced datasets, Imbalanced-CIFAR-10 and Imbalanced-MNIST datasets, based on CIFAR-10 and MNIST datasets,
respectively, and experiment on the ResNet50 model.

We construct the Imbalanced-CIFAR-10 dataset by randomly selecting a total of 19375 images from the CIFAR-10 dataset
in the ratio of 16 : 16 : 8 : 8 : 4 : 4 : 2 : 2 : 1 : 1 from the 10 object categories of Plane, Car, Bird, Cat, Deer, Dog, Frog,
Horse, Ship and Truck, respectively. Similarly, we construct the Imbalanced-MNIST dataset by randomly selecting a total of
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23250 images from the MNIST dataset in the ratio of 16 : 16 : 8 : 8 : 4 : 4 : 2 : 2 : 1 : 1 from the 10 handwritten digit
categories of ”0”, ”1”, ”2”, ”3”, ”4”, ”5”, ”6”, ”7”, ”8” and ”9”, respectively.
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(c) Group sizes vs. Gradient norms vs. Traces of Hessians
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Figure 5. (a) and (b) represent the experiments on CIFAR-10 dataset on the accuracy of each subgroup of individuals using ResNet18 for a
gender classification task; (c) represents the proportions of gradient norms, traces of Hessian and group sizes for four demographic groups.
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(c) Group sizes vs. Gradient norms vs. Traces of Hessians
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Figure 6. (a) and (b) represent the experiments on MNIST dataset on the accuracy of each subgroup of individuals using ResNet18 for a
gender classification task; (c) represents the proportions of gradient norms, traces of Hessian and group sizes for four demographic groups.

The experiments in Figure 5 and Figure 6 show the relationships between the gradient norm, the trace of the Hessian matrix,
and the model accuracy at three different bit-widths in PTQ and QAT, with Figure 5 corresponding to Imbalanced-CIFAR-10
and Figure 6 to Imbalanced-MNIST. The experimental results also show very similar trends to those reported in the main
body of the paper. Taking Figure 5 as an example, groups Frog, Horse, Ship and Truck with larger gradient norms and traces
of Hessians compared to the other groups, the accuracy drops off faster. And for a specific bit-width, for example int 4, the
accuracy is lower on these groups. Consequently, as the quantization bit-width b decreases, the disparity in G(a) values
across groups becomes more pronounced, leading to an increase in φ(D) and further exacerbating unfairness.

C.3. Experiments on different models using different imbalanced datasets
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(c) Group sizes vs. Gradient norms vs. Traces of Hessians

0.0

10.0

20.0

30.0

40.0

50.0

Pr
op

or
tio

n 
(%

)

Gradient Norm
Trace of Hessian
Group Size

Figure 7. (a) and (b) represent the experiments on UTK-Face dataset on the accuracy of each subgroup of individuals using VGG19 for a
gender classification task; (c) represents the proportions of gradient norms, traces of Hessian and group sizes for four demographic groups.
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To further validate the theoretical and experimental analyses in the main paper, we conduct experiments on different datasets
and models to evaluate the impact of quantization on model fairness. In addition to the experiments on the UTK-Face dataset
on the ResNet50 model in the main paper, we additionally conduct experiments on the UTK-Face dataset using VGG19
model, and the FER2013 dataset using ResNet50 and VGG19 models.

For the UTK-Face dataset, we set up an ethnicity classification task on the VGG19 model with a protected group that
coincides with the target label, i.e., White, Black, Indian, Asian and Others.

For the FER2013(Goodfellow et al., 2013) dataset, we performed facial expressions classification tasks on the ResNet50 and
VGG19 models with a protected group set that coincides with the target label set, i.e., Happy, Sad, Neutral, Fear, Angry,
Surprise and Disgust.
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(c) Group sizes vs. Gradient norms vs. Traces of Hessians
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Figure 8. (a) and (b) represent the experiments on FER2013 on the accuracy of each subgroup of individuals using ResNet50 for a gender
classification task; (c) represents the proportions of gradient norms, traces of Hessian and group sizes for four demographic groups.
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(c) Group sizes vs. Gradient norms vs. Traces of Hessians
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Figure 9. (a) and (b) represent the experiments on FER-2013 dataset on the accuracy of each subgroup of individuals using VGG19 for a
gender classification task; (c) represents the proportions of gradient norms, traces of Hessian and group sizes for four demographic groups.

The experiments in Figures 7-9 show the relationships between the gradient norm, the trace of the Hessian matrix, and the
model accuracy at three different bit-widths in PTQ and QAT. The experimental results show very similar trends to those
reported in the main body of the paper: (1) Consider a specific bit-width, for example, int 8 in Figure 7. While the gradient
norms and the traces of the Hessian matrices are larger over different groups, e.g., comparing group White and Others,
there is an opposite numerical relationship in accuracy; (2) Consider a specific demographic group, for example, group
Others in Figure 7. While its gradient norm accounts for the largest percentage, its accuracy decreases the most fast. Similar
phenomena happen in traces of the Hessian matrices. As a consequence, the reduction in quantization bit-width b causes the
gap in G(a) values among different groups to widen further, resulting in a higher φ(D) and thereby intensifying unfairness.
These results align with those presented in Table 1.

In a similar manner, to clearly compare the unfairness in PTQ and QAT, Table 1 demonstrates how the fairness metric φ(D)
evolves as the bit-width decreases. As evident, φ(D) in QAT increases substantially more than in PTQ.
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C.4. Supplementary experiments on mitigation schemes

Evaluating our mitigation scheme on different (imbalanced) datasets using different models. To further illustrate
the effectiveness of GT and RE in mitigating unfairness, We also conduct experiments using ResNet50 and VGG19 on the
(imbalanced) FER2013 for both PTQ and QAT as follows:

• Experiments for an ethnicity classification task with ethnicities as the protected attributes on the UTK-Face dataset and
VGG19 model. The specific augmentation methods for the five ethnicity groups in UTK-Face are consistent with those
described in the main paper.

• Experiments on the ResNet50 and VGG19 models using the FER2013 dataset. The FER2013 dataset consists of 28,708
training images, distributed as follows: 7,091 images for Happy, 4,966 for Neutral, 4,937 for Sad, 4,162 for Fear, 3,818
for Angry, 3,301 for Surprise and 431 for Disgust. To address this imbalance, we augment the training images so that
each age group contains 7,091 images.

As shown in Table 5, the values of φ(D) are considerably reduced, highlighting the effectiveness of data augmentation in
mitigating unfairness.

Table 5. Fairness metric φ(D) for VGG19 with data augmentation methods (GT and RE) applied.

Augmentation
Method

Quantization
Method

φ(D) (%)

UTK-Face FER2013

int 16 int 8 int 4 int 16 int 8 int 4

Non-Mitigation PTQ 11.2 12.4 54.6 0.6 1.5 50.7
QAT 11.7 18.9 84.1 1.4 2.9 65.7

GT PTQ 0.4 1.0 1.9 1.4 1.7 2.5
QAT 1.2 1.5 2.4 1.4 1.8 3.0

RE PTQ 0.5 1.2 1.5 1.7 2.0 3.7
QAT 1.0 1.3 2.0 1.8 2.2 4.1
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