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ABSTRACT

The widespread adoption of AI systems in the economy hinges on their ability
to generate economic value that outweighs their inference costs. Evaluating this
tradeoff requires metrics that account for both performance and costs. We propose
a framework grounded in production theory for evaluating language models by
combining accuracy and inference cost. We introduce cost-of-pass, the expected
monetary cost of generating a correct solution. We then define the frontier cost-
of-pass as the minimum cost-of-pass achievable across available models or the
human-expert, using the approximate cost of hiring an expert. Our analysis reveals
distinct economic insights. First, lightweight models are most cost-effective for
basic quantitative tasks, large models for knowledge-intensive ones, and reasoning
models for complex quantitative problems, despite higher per-token costs. Second,
tracking this frontier cost-of-pass over the past year reveals significant progress,
particularly for complex quantitative tasks where the cost has roughly halved every
few months. Third, to trace key innovations driving this progress, we examine coun-
terfactual frontiers—estimates of cost-efficiency without specific model classes.
We find that innovations in lightweight, large, and reasoning models have been
essential for pushing the frontier in basic quantitative, knowledge-intensive, and
complex quantitative tasks, respectively. Finally, we assess the cost-reductions
from common inference-time techniques (majority voting and self-refinement), and
a budget-aware technique (TALE-EP). We find that performance-oriented methods
with marginal performance gains rarely justify the costs, while TALE-EP shows
some promise. Overall, our findings underscore that complementary model-level
innovations are the primary drivers of cost-efficiency, and our economic framework
provides a principled tool for measuring this progress and guiding deployment.

1 INTRODUCTION

The recent progress in generative AI, particularly language models (LMs), has sparked significant
interest in their potential to transform industries, automate cognitive tasks, and reshape economic
productivity (Brynjolfsson et al., 2025; Eloundou et al., 2024; Acemoglu, 2024). The widespread
adoption of these AI systems in the economy hinges on whether the economic benefits generated by
the tasks they can perform outweigh the associated inference costs, and whether those inference costs
are lower than the cost of equivalent human labor. Consequently, two priorities have emerged at the
forefront of LM research: advancing capabilities and reducing costs. These goals, however, often
involve trade-offs with more powerful models or test-time techniques that offer higher accuracy at the
expense of greater computational and monetary cost (Chen et al., 2024; Parashar et al., 2025; Madaan
et al., 2023; Wang et al., 2023; Kapoor et al., 2024). While standard metrics capture accuracy or
other system capabilities, they fail to account for cost, leading to an incomplete picture of progress.
Ultimately, what matters to the users is not just raw capability, but the value delivered relative to cost
and the standard has been to interpret and report these separately. As the ecosystem of models grows,
it is essential to assess new models not in isolation, but in the context of a broader ecosystem, where
marginal improvements may or may not justify higher costs, and do so in an easy-to-interpret manner.

To systematically investigate the trade-off between cost and performance and analyze the LM
ecosystem as a whole, we draw insights from a well-established and foundational framework from
economics: production frontiers. Economists have long studied these frontiers, which map a set of
inputs to the maximum output attainable under a given technology (Farrell, 1957). In Farrell’s original
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Figure 1: Highlights of the cost-of-pass framework and empirical analyses. Core concepts (left) set
foundations for: (A) Comparing the Human Expert Baseline to the frontier achieved by the single most effective
LM per task category. (B) Tracking the reduction in frontier cost-of-pass over time, indicating progress driven
by new model releases (color-coded by family). (C) Quantifying the essential contribution of each model
family: lightweight (less than $1 per million tokens), large, and reasoning; to the current cost-efficiency frontier,
measured by the percentage of each family’s contribution. (D) Assessing the economic benefit (relative cost
reduction) achieved by applying common inference-time techniques over the baseline model frontier (which
rarely results in meaningful gains).

formulation, a producer is technically efficient if no input can be reduced without lowering output,
and price efficient if the input mix minimizes cost given input prices. Together, these conditions
yield the lowest possible cost per unit of output. Extending this framework, Aigner et al. (1977)
introduced stochastic frontier production functions, in which the relationship between inputs and
output is modeled as stochastic rather than deterministic, practically accounting for potential defective
outputs that do not pass evaluation criteria due to factors beyond the producer’s control.

These economic concepts are highly relevant to modern LMs, which inherently function as stochastic
producers: for a given input, they yield a desired output (e.g., a correct solution) stochastically (Brown
et al., 2024). Common practices such as employing scaffolds or more computationally intensive
inference techniques (Snell et al., 2024; Madaan et al., 2023; Wang et al., 2023) represent efforts to
manipulate this production process. These strategies seek to increase the probability of success but
typically do so at the expense of higher computational cost, directly mirroring the economic trade-offs
inherent in production efficiency. Motivated by these parallels and the economic goal of minimizing
cost per successful output under uncertainty, we develop a quantitative framework tailored to LMs.

We summarize our contributions as follows.

Concepts. We introduce cost-of-pass (§2.2), which quantifies the expected monetary cost to achieve
a successful output for a given problem. Building on this concept and incorporating a human-expert
cost baseline, we define the frontier cost-of-pass (§2.4) as the minimum achievable cost-of-pass
across all available options (LMs and human-expert) for that problem. We show these reveal distinct
economic niches for model families (e.g., lightweight vs. reasoning models) on different tasks, which
accuracy comparisons alone obscure (§3.2).

Tracking progress with frontier cost-of-pass. Using the cost-of-pass and frontier cost-of-pass,
we analyze economic improvements across three task categories from May 2024 to February 2025.
We observe an exponential decrease in frontier cost-of-pass across all tasks, though the trends vary.
Notably, we observe that, over the past year, the expected cost of generating a correct solution to
complex quantitative problems has been cut in half every few months. We find that the frontier
cost-of-pass is driven primarily by lightweight models and reasoning models (§3.3).

Counterfactual frontier in the absence of model families. We show that our analysis reveals the
complementary roles of different model types in driving recent progress. Innovations in lightweight
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models have been instrumental in reducing costs on basic quantitative tasks. Large models, by
contrast, have been most impactful for knowledge-based benchmarks like GPQA-Diamond (Rein
et al., 2024). Meanwhile, reasoning models have been central to advances on complex quantitative
reasoning challenges such as AIME (MAA, 2024) and MATH (Hendrycks et al., 2021) (§ 3.4).

Impact of post-hoc inference time techniques. We observe that common test-time techniques such
as self-refinement (Madaan et al., 2023) and majority voting (self-consistency; Wang et al., 2022) to
improve performance offer either limited or no economic benefits, while a budget-aware technique
TALE-EP (Han et al., 2024) delivers some benefits. These indicate that the recent reductions in
frontier cost-of-pass have been mostly driven by model-level innovations (§ 3.5).

2 SETUP

2.1 ECONOMIC THEORY OF PRODUCTION EFFICIENCY

Classical production theory examines how producers efficiently convert inputs (resources) into
outputs. A central concern is understanding the maximum output attainable with a given set of inputs,
or conversely, the minimum inputs (and thus cost) required to achieve a specific target output level.

Consider a set of producers F = {fi}ni=1 such that each producer fi ∈ F can transform an input
vector x ∈ Rk

≥0 (e.g., quantities of different resources) into an output. The inputs used by producer
fi have associated prices, represented by a price vector wi ∈ Rk

≥0. When focusing on achieving
a specific target output level, say u units, economists are interested in the frontier cost Vu. This
represents the absolute minimum monetary cost required to produce at least u units, considering all
input vectors x capable of achieving this output across all available producers with their respective
pricings. This frontier cost is formally defined as:

Vu = min
fi∈F

{
w⊤

i x
∣∣ fi(x) ≥ u

}
, (1)

Farrell (1957) used these core concepts to formalize definitions for technical and price efficiency in
a production ecosystem for producers. Critically, Aigner et al. (1977) extended this framework to
handle stochastic production functions, where output is probabilistic for a given input.

Building on this economic foundation, we adapt the core concept of a frontier cost (Vu) to represent
the minimum achievable cost for obtaining a correct solution using LMs. To better reflect LM
behavior, which is inherently stochastic, we incorporate this variability into our cost-efficiency metric.
This aligns our framework with core production concepts and enables assessment of the economic
impact of stochastic LM producers.

2.2 COST-OF-PASS: AN EFFICIENCY METRIC FOR LMS

Here we instantiate the economic framework for language models (LMs). Consider a specific problem
p, where the unit of production is a correct solution. We define a model m as an inference pipeline
using an LM, acting as a stochastic producer. Two quantities characterize its efficiency on problem p:

Rm(p) = Prob. of m producing a correct answer on p,

Cm(p) = Expected cost of one inference attempt by m on p.

In the context of LMs, the inputs x correspond to resources like prompt and generated tokens, while
the input prices w represent the costs per token charged by the provider. The total cost of these
inputs for a single inference attempt by model m on problem p is captured by Cm(p), effectively
instantiating the term w⊤x from the theory in the previous section.

Since the model output is stochastic, the expected number of attempts to obtain the first correct
solution is 1/Rm(p), assuming independent trials. This yields the cost-of-pass, defined as the
expected monetary cost to obtain one correct solution for problem p:

v(m, p) =
Cm(p)

Rm(p)
. (2)

The cost-of-pass integrates both performance (Rm(p)) and cost (Cm(p)) into a single economically
interpretable metric: it quantifies how efficiently financial resources are converted into correct outputs.
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This formulation mirrors classical production theory, where the goal is to assess the cost of achieving a
specific target output (Farrell, 1957); in our case, the target is a correct solution. When a model cannot
produce one (Rm(p) = 0), the cost-of-pass becomes infinite, appropriately signaling infeasibility.

2.3 THE LM FRONTIER COST-OF-PASS

While cost-of-pass (§ 2.2) evaluates a single model’s efficiency, understanding the overall state of LM
capabilities for a given problem requires assessing the collective performance of the entire available
LM ecosystem. Therefore, analogous to the frontier cost Vu (Eq. 1), we define the LM frontier
cost-of-pass for problem p as the minimum cost-of-pass achievable using any available LM strategy
m from the set M:

Vp(M) = min
m∈M

v(m, p). (3)

Vp(M) quantifies the minimum expected cost to solve problem p using the most cost-effective model
currently available within the set M. If no LM in M can solve p (i.e., Rm(p) = 0 for all m ∈ M),
then Vp(M) = ∞.

2.4 GROUNDING EVALUATION: ESTIMATED HUMAN-EXPERT BASELINE

The LM frontier cost-of-pass Vp(M) reveals the best LM performance but lacks context: it does
not show if LMs are economically advantageous over human labor. Moreover, the LM frontier
cost-of-pass can be infinite if no LM succeeds. To address both, we introduce human-expert baseline
as a reference point, by considering a human-expert annotator as a specific strategy: mexpert. Let
M0 = {mexpert} represent this baseline set. We assume experts typically achieve near-perfect
correctness (Rexpert(p) ≈ 1) for tasks they are qualified for. Thus, the cost-of-pass for a qualified
expert is approximately their labor cost per problem:

v(expert, p) ≈ Cexpert(p). (4)

The estimation of Cexpert(p) involves considering required expertise, time per problem, and appropriate
compensation rates (detailed in § 2.6.1). By incorporating this baseline, we define the frontier cost-of-
pass for problem p, considering both LMs (M) and the human-expert alternative (M0):

Vp(M∪M0) = min
(
Vp(M), v(expert, p)

)
. (5)

This frontier cost-of-pass represents the true minimum expected cost to obtain a correct solution for
problem p using the best available option, whether it’s an LM or a human. Crucially, Vp(M∪M0)
is always finite (assuming finite human-expert cost and capability).

2.5 MEASURING PROGRESS AND VALUE GAIN

To track improvements against the best available option over time, let Mt denote the total set of
available strategies at time t, encompassing both the set of LM strategies released up to time t and
the human-expert baseline M0, that is, Mt = {m≤t} ∪M0. The frontier cost-of-pass achievable at
time t can be calculated as:

Vp(Mt) = min
m∈Mt

v(m, p). (6)

As new LM models {mt} are released, the set expands such that Mt = Mt−1∪{mt}. Consequently,
the frontier cost-of-pass Vp(Mt) forms a non-increasing sequence over time t, tracking the reduction
in the minimum cost needed to solve a particular problem p.

To quantify the economic impact of new developments, we define the gain. When a new set of models
{mt} becomes available at time t (often a single model), the gain for problem p is the reduction it
causes in the frontier cost-of-pass:

Gp({mt},Mt−1) = Vp(Mt−1)− Vp(Mt−1 ∪ {mt}). (7)

Note that Gp measures how much cheaper the new model(s), {mt}, make solving p compared to
prior best options, including humans. Hence, a large Gp value indicates a significant economic
contribution in solving p. This notion underlies our experiments, analyzing the value generated by
models relative to the human baseline and tracking the evolution of the overall frontier.
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Extending to a distribution. Although measuring frontier cost-of-pass and value gain for individual
problems can be informative, particularly through a fine-grained perspective, we often care about
more than a single instance. Let P = {pi}ni=1 be n problems drawn i.i.d. from D. We treat P as the
empirical distribution that puts mass 1/n on each element. We can then extend our definitions for
such a distribution through the following:

Vp∼D(Mt) ≈ Ep∼P [Vp(Mt)], (8)
Gp∼D({mt},Mt−1) ≈ Ep∼P [Gp({mt},Mt−1)]. (9)

2.6 ESTIMATING THE ECONOMIC EFFICIENCY

To operationalize our overall framework for any given distribution of problems, we introduce the
following recipe:

(1) Estimate success rates. For each model-problem pair (m, p), generate a number of independent
attempts to approximate Rm(p). Use the same prompt and model settings across these attempts,
varying only factors necessary to ensure independence (e.g., internal sampling randomness).

(2) Estimate per-attempt cost. Track the average number of tokens (prompt + generation) consumed
per attempt, multiply by the current token price (which can differ by model provider or usage level),
and add any extra charges (e.g., third-party API calls, external reasoning modules, etc.). This sum
yields Cm(p).

(3) Compute cost-of-pass. For each model m, calculate v(m, p) = Cm(p)/Rm(p). (Rm(p) = 0
yields v(m, p) = ∞.)

(4) Determine frontier cost-of-pass. Estimate human-expert cost v(expert, p) (see below). Find
Vp(M∪M0) for a given set of strategies M.

(5) Analyze over benchmarks. Aggregate Vp(M) across problems p ∼ D to estimate Vp∼D(Mt).
Track progress over time (for Mt) and compute gain Gp∼D for new models.

2.6.1 ESTIMATING HUMAN-EXPERT COST

To estimate v(expert, p), the plausible cost of obtaining a correct human-expert answer, we systemati-
cally determine the required qualifications, appropriate hourly compensation, and average time for a
typical problem p per dataset. We determine these quantities based on a hierarchy of evidence by
prioritizing the dataset’s creation process or associated studies (e.g., reported annotation pay/time
(Parrish et al., 2022)). When direct data is absent, we leverage findings from closely related work
(Zhang et al., 2024) or infer parameters from the dataset’s context (e.g., deriving time-per-problem
from contest rules (Art of Problem Solving, 2023)). Compensation rates are informed by reported
study payments (Rein, 2024) or relevant market rates for comparable expertise (e.g., specialized
tutoring rates (TutorCruncher, 2025; Wyzant Tutoring, 2025)).*

3 EXPERIMENTS

3.1 EXPERIMENT SETUP

Models. We consider three categories of models:

(1) Lightweight models: We use the per-token cost as a proxy and select models with a cost less than
$1 per million input and output tokens (see Table 4): Llama-3.1-8B (Grattafiori et al., 2024), GPT-4o
mini (OpenAI, 2024), and Llama-3.3-70B (Meta-AI, 2024).

(2) Large models: We select large general-purpose LMs: Llama-3.1-405B (Grattafiori et al., 2024),
Claude Sonnet-3.5 (Anthropic, 2024), and GPT-4o (Hurst et al., 2024).

(3) Reasoning models: We select models with special reasoning post-training, including OpenAI’s
o1-mini (OpenAI et al., 2024), o1 (OpenAI et al., 2024), and o3-mini (OpenAI, 2025), as well as
DeepSeek R1 (Guo et al., 2025).

*The full derivation, justification, and sources for our approach are detailed in Appendix A. The resulting
estimates are in Table 3.
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Model Category Basic Quantitative Knowledge Based Complex Quantitative
2-Digit Add. GSM8K BBQ GPQA Dia. MATH 500 AIME24

Lightweight Models
Llama-3.1-8B 4.8e−5 0.19 2.7e−2 18.58 3.38 15.33
GPT-4o mini 5.4e−5 0.22 1.3e−2 25.38 2.06 14.67
Llama-3.3-70B 1.6e−4 0.16 7.4e−3 18.58 1.31 10.67

Large Models
Llama-3.1-405B 6.9e−4 0.14 6.7e−3 10.43 1.13 8.67
Claude Sonnet-3.5 2.1e−3 0.19 6.4e−3 14.06 2.54 14.67
GPT-4o 2.3e−3 0.17 6.2e−3 14.07 0.96 14.01

Reasoning Models
OpenAI o1-mini 5.4e−3 0.17 1.3e−2 12.27 0.50 4.80
OpenAI o1 1.9e−2 0.22 4.3e−2 8.07 0.90 2.85
DeepSeek-R1 1.8e−3 0.17 1.5e−2 14.57 0.21 3.41
OpenAI o3-mini 1.1e−3 0.11 1.1e−2 8.18 0.76 2.03

Table 1: Frontier dollar cost-of-pass per model / dataset. Each entry is the expected dollar cost of a problem
p ∼ D with the presence of the model m and a human expert: Vp∼D({m} ∪M0). Per column, the 3 entries
with the lowest value (i.e. best frontier cost-of-pass) have blue highlights. Different model families emerge as
cost-effective at different task categories, highlighting the strengths of our evaluation.

Within each category, we select three to four representative models released between the second half
of 2024 and early 2025. To preserve the integrity of our temporal analysis, we prioritize the earliest
stable releases and exclude research previews or experimental versions.

Datasets. We evaluate models across three sets of tasks:

(1) Basic quantitative tasks: These involve basic numerical reasoning. We include an arithmetic
dataset (Two Digit Addition) to assess basic numerical computation, and GSM8K (Cobbe et al.,
2021) to evaluate multi-step grade-school level problem solving.

(2) Knowledge-based tasks: These require recalling and reasoning over factual knowledge. We
include a scientific knowledge-intensive question answering task (GPQA-Diamond (Rein et al., 2024))
to evaluate models’ ability to recall and utilize complex scientific facts, and a bias benchmark
(BBQ (Parrish et al., 2022)) to evaluate whether models rely on stereotypical knowledge or can
disambiguate factual responses from biased defaults.

(3) Complex quantitative reasoning tasks: These require complex mathematical reasoning and
problem solving. We use MATH-500 (Hendrycks et al., 2021; Lightman et al., 2023) to assess
models on competition-level maths problems, and AIME-24 (MAA, 2024) to evaluate performance
on challenging problems from the 2024 American Invitational Mathematics Examination.

Evaluation protocol. All implementation details including model API providers, per-token pricing,
prompt template, sampling budget, and accuracy/cost calculation details are shared in Appendix B.

3.2 FRONTIER COST-OF-PASS WITH A SINGLE MODEL

In this experiment, we aim to quantify the economic value each model m generates on different
distributions of problems p ∼ D. For this, we take human-expert as a baseline and quantify the
frontier cost-of-pass of a problem in the presence of the model m: Vp∼D({m} ∪M0).

The results in Table 1, highlighting the lowest three instances per dataset, show that our frontier
cost-of-pass effectively captures how different model families offer economic advantages across
various task categories. We find that lightweight models yield the lowest frontier cost-of-pass on
basic quantitative tasks, such as Two Digit Addition. This outcome aligns with the observation
that all model families achieve high accuracy on this dataset (see Table 5), which in turn makes the
least expensive models appear most cost-effective. In contrast, for knowledge-based tasks, larger
models achieve a lower frontier cost-of-pass compared to lightweight ones. While the reasoning
models, such as o1, are priced significantly more expensively compared to both large and lightweight
models, they lead to significant performance improvements, which, overall, result in reductions in the
cost-of-pass mainly in complex quantitative tasks.

6
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Figure 2: The frontier dollar cost-of-pass (i.e. Vp∼D(Mt) steadily decreases with new model releases, spanning
models released between May 2024 and February 2025. Y-axes are normalized (divided by Vp∼D(M0), shown
in percentage (%)).

In contrast, when either task performance (Rm(p ∼ D)) or cost (Cm(p ∼ D) is solely taken into
account (Tables 5 and 6) such metrics tend to favor either reasoning or lightweight models respectively
due to their significant edge per criteria, without assessing the nuances in the economic impact they
induce. This effectively highlights the sophistication of our metric and evaluation framework.

3.3 TRACKING FRONTIER COST-OF-PASS WITH NEW RELEASES

In this experiment, we track the improvements on the frontier cost-of-pass for a problem. Figure 2
shows the trends of the cumulative gain per dataset (Vp∼D(Mt)), each updated by the corresponding
model release (Mt−1 ∪ {mt}). We observe a steady decline in the frontier cost-of-pass for complex
quantitative tasks. In contrast, knowledge-based and basic quantitative tasks typically exhibit a sharp
initial drop in frontier cost-of-pass with the early releases of models, followed by a plateau. To
quantify the cost reduction trends, we empirically fit an exponential decay curve of the form:

Vp(Mt) ≈ a e−b t + c, (10)

where t denotes time in months since the first model release, and a, b, and c are fit parameters. From
this, we compute the time for the exponential component of the cost to drop by 50%: T1/2 = ln(2)/b.
Using this formulation, we find that for complex quantitative tasks, between May 2024 and February
2025, the frontier cost-of-pass for MATH-500 halved approximately every 2.6 months, whereas for
AIME-2024, the halving time was 7.1 months; indicating consistent cost reductions over the past year.

3.4 ESSENTIALNESS OF MODEL FAMILIES: COUNTERFACTUAL FRONTIER COST-OF-PASS

Section 3.3 showed the frontier cost-of-pass decreasing over time with new model releases. To
understand which model families were most critical to this progress, we conduct a counterfactual
analysis that quantifies the impact of removing each family. Defining Mg as a family of models
(lightweight, large, or reasoning), we measure the counterfactual contribution of family g on dataset
D by calculating the relative improvement in frontier cost-of-pass attributable to its inclusion:

Gp∼D(Mg,MT \Mg)

Vp∼D(MT \Mg)
. (11)

Here, MT includes all models used in our experiments. This metric represents the relative improve-
ment in the final frontier cost-of-pass Vp∼D(MT ) attributable to the model family Mg , with higher
values indicating greater essentialness of that family for achieving the current frontier.
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Figure 3: The relative improvement (%) in frontier cost-of-pass attributable to each model family g, calculated
under a counterfactual setting where Mg is removed. Higher values signify greater essentialness for maintaining
the current frontier.

Figure 3 illustrates our main findings, revealing distinct roles across model families. Lightweight
models help reduce the frontier cost-of-pass on basic quantitative tasks, while large models are only
essential in knowledge-intensive tasks. Reasoning models play a key role in advancing the frontier for
complex quantitative reasoning and also improve performance on GPQA-Diamond, as well as GSM8K,
which benefits from small reasoning models like o3-mini.

These findings highlight that progress on different task types is driven by different model paradigms.
While large models have brought clear gains on knowledge-intensive tasks (e.g. GPQA), improvements
in cost-efficiency, especially in more quantitative domains, appear largely driven by advances in
lightweight and reasoning models. Together, these suggest that the current cost-efficiency frontier, as
reflected in our framework, is shaped mainly by (i) lightweight models and (ii) reasoning models.

3.5 IMPACT OF INFERENCE TIME TECHNIQUES ON FRONTIER COST-OF-PASS

We now assess whether common inference-time techniques provide meaningful economic benefits.
Specifically, we ask: is it cost-effective to improve model performance through these techniques,
compared to relying on the models’ baseline performance? To explore this, we focus on the set of
lightweight and large models, denoted by ML. First, we determine the frontier cost-of-pass achieved

Inference Time Technique Basic Quantitative Knowledge Based Complex Quantitative

Two Digit Addition GSM8K BBQ GPQA Diamond MATH500 AIME24

TALE-EP 1.5 66.6 24.5 50 0.2 16.6
Self-Refinement 0 0 6.7 24.9 0 0
Majority Voting (k=3) 0 0 0 0 0 0
Majority Voting (k=4) 0 0 0 0 0 0

Table 2: Relative performance gains (%) from different inference time techniques across datasets.

by ML without any modifications. We then apply a given inference-time technique uniformly across
all models in ML, yielding a modified set M∗

L. The gain from this technique, measured relative to
the original frontier cost-of-pass, can be computed as follows:

Gp∼D(M∗
L, ML)

Vp∼D(ML)
. (12)

We consider two popular techniques: self-refinement Madaan et al. (2023) and majority voting (a.k.a.
self-consistency; Wang et al., 2023), with 3 and 4 votes. Moreover, we evaluate a budget-aware
inference-time technique: TALE-EP Han et al. (2024) as well. As shown in Table 2, self-refinement
shows some economic benefit on knowledge-intensive tasks, considerably 24.9% improvement on
GPQA-Diamond. In contrast, majority voting (despite potentially enhancing accuracy) does not offer
relative economic improvement across the tested models and datasets. Meanwhile, the budget-aware
technique contributes meaningfully in many more of the tasks to reducing the frontier cost-of-pass.

Collectively, these findings suggest that, for the evaluated techniques, the costs by performance-
oriented methods often outweigh accuracy gains when measured by the frontier cost-of-pass. By
contrast, TALE-EP (conditioning generation on a self-predicted token budget) yields visible reductions
on a subset of tasks, though benefits are uneven. This implies that such common inference-time
approaches may currently offer limited economic benefits within our evaluation framework.
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4 RELATED WORKS

Economic perspectives and broader impacts. The efficiency of LMs carries significant economic
implications, as they are viewed as general-purpose technologies impacting productivity and labor
(Eloundou et al., 2024; Brynjolfsson et al., 2025). Complementary economic analyses explore
provider strategies regarding pricing and product design Bergemann et al. (2025), and user-side
decision-making involving ROI, token costs, and success probabilities.

Our cost-of-pass metric serves as a crucial bridge between these technical realities of model per-
formance and their economic consequences. By providing a fundamental measure, the expected
monetary cost to successfully complete a task, it allows for quantifying the economic contribution
of specific AI systems and informs rational model selection for achieving economic viability, and
provides quantitative perspective on the economic evolution of the LM ecosystem.

LM resource consumption, efficiency optimization and benchmarking. Research increasingly
recognizes the importance of LM resource consumption and efficiency. Studies have quantified
operational costs like tokens (Chen et al., 2023) and energy (Maliakel et al., 2025), revealing task-
dependent performance and potential diminishing returns from high expenditure (Miserendino et al.,
2025). This focus has intensified with the rise of reasoning methodologies (Sui et al., 2025) and
inference-time techniques (e.g., Madaan et al. (2023); Wang et al. (2023)), which often trade increased
computational cost for potential accuracy gains.

Concerns like “overthinking,” where lengthy processing fails to improve results (Chen et al., 2024;
Cuadron et al., 2025), have spurred efforts to optimize resource use through methods like dynamic
token budgeting (Han et al., 2025), specialized training (Arora & Zanette, 2025), prompt engineering
(Xu et al., 2025; Aytes et al., 2025) or researching optimal reasoning lengths (Wu et al., 2025;
Yang et al., 2025). Concurrently, evaluation methodologies have evolved beyond pure accuracy or
correctness measures.

Recognizing its insufficiency, researchers have incorporated cost via fixed budgets (Wang et al., 2024),
performance heuristics (McDonald et al., 2024), or non-monetary metrics like conciseness (Nayab
et al., 2024). Kapoor et al. (2024) strongly advocated for using real dollar costs and accounting
for stochasticity—factors central to our approach. Benchmarking efforts have also highlighted
diminishing returns from simply scaling inference computation (Parashar et al., 2025). While these
works underscore the need for cost-aware analysis, they often rely on specific constraints (e.g., fixed
budgets) or heuristic metrics.

Our cost-of-pass framework seeks to advance this by providing a single, interpretable metric grounded
in economic production principles, offering a unified way to assess the economic viability of different
models and techniques without predefined budget assumptions or proxy metrics.

5 CONCLUSION

We introduced an economic framework designed to evaluate language models by integrating their
performance with inference cost. Drawing from production theory, we conceptualize language models
as stochastic producers, and assess their efficiency using our proposed cost-of-pass metric, which
measures the expected cost per correct solution. Our analysis utilizes this metric alongside the frontier
cost-of-pass, defined as the minimum achievable cost compared to an human expert baseline. This
approach reveals distinct economic roles played by different model classes. For instance, retrospective
and counterfactual evaluations demonstrate that lightweight models primarily drive efficiency on
basic tasks, whereas reasoning models are essential for complex problem-solving. Critically, our
findings show that common inference-time techniques typically increase the cost-of-pass, thus failing
to provide net economic benefits when compared to the progress made by improving the underlying
models themselves. We discuss the limitations of our methodology, outline directions for future work,
and consider practical implications of our framework in Appendix D. Taken together, these insights
underscore the value of our framework in offering a principled foundation for measuring language
model innovation in economic terms. It serves as a valuable tool for guiding model selection and
aligning AI development with real-world value.
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A DETAILS OF HUMAN EXPERT COST ESTIMATION

In this section, we introduce the detailed analysis of how the human expert costs in Table 3 are
calculated per dataset.

Dataset Qualification Requirements Hourly Rate Time per Question Est. Cost

AIME Advanced high-school contest
math skills

$45–$100 ∼12 minutes $9–$20

BBQ General familiarity with social
biases

$15 ∼0.4 minutes (24 sec) $0.10

GPQA Dia. Graduate-level domain exper-
tise

$100 ∼35 minutes $58

GSM8K Basic arithmetic reasoning $33–$55 ∼3.7 minutes $2–$3.50
MATH500 Strong competition-level

problem-solving
$35–$60 ∼12 minutes $7–$12

Two-Digit Add. Basic numeracy $10–$20 ∼0.04 minutes (3 sec) $0.01–$0.02

Table 3: Estimated costs of hiring a human expert to solve one question from each dataset, based on typical
qualifications, hourly rates, and time per question.

AIME (American Invitational Mathematics Examination) consists of 15 challenging math problems
in a 3-hour contest (administered in two separate sections: AIME I & II), giving an average of
about 12 minutes per problem (Art of Problem Solving, 2023). In practice, expert math tutors for
competitions like AIME command high hourly fees in the range of $45–$100, reflecting intensive
test-preparation rates (TutorCruncher, 2025). This rate range aligns with specialized test prep tutoring
in the US, which is higher than regular tutoring due to the advanced problem-solving skills required
(TutorCruncher, 2025). At roughly 12 minutes per AIME question on average, a solver could handle
about five such problems per hour under exam conditions (Art of Problem Solving, 2023).

BBQ (Bias Benchmark for QA) contains short question-answer scenarios targeting social bias.
Crowdworkers annotating BBQ have been paid around $15 per hour, a rate chosen to exceed U.S.
minimum wage (Parrish et al., 2022). Because each task includes multiple BBQ questions, workers
were able to answer roughly 5 questions in 2 minutes (Parrish et al., 2022) – i.e. ∼24 seconds per
question, or about 0.4 minutes per question. This fast per-question time reflects the fact that BBQ
items are short multiple-choice queries, allowing a human annotator to complete approximately 150
BBQ questions in an hour at that pay rate (Parrish et al., 2022).

GPQA-Diamond consists of extremely difficult graduate-level science questions, so human experts
demand high compensation. In one case, domain experts were paid about $100 per hour to contribute
and validate GPQA questions (Rein et al., 2024). These questions are “Google-proof” and time-
consuming: skilled non-expert participants spent over 30–35 minutes on average per question
when attempting to solve GPQA problems with unrestricted web access (Rein et al., 2024). This long
duration per question underscores GPQA’s complexity: at most 2 questions could be solved in an hour
even by motivated annotators, which justifies the premium expert hourly rate (Rein, 2024).

GSM8K contains grade-school level math problems. Solving these is relatively time-efficient for
adults: in one study, crowdworkers under time pressure managed to solve about 4.07 GSM8K problems
in 15 minutes on average (Zhang et al., 2024), or roughly 3.7 minutes per question. The required
skill is comparable to general math tutoring at the K-8 level, for which typical U.S. tutor rates are
about $33–$55 per hour on platforms like Wyzant (Wyzant Tutoring, 2025). At such a rate, paying a
person to solve GSM8K problems would be economical, given that a proficient solver can complete
approximately 16 questions in one hour (Zhang et al., 2024).

MATH-500 is a set of 500 advanced competition math problems (drawn from the harder tier of a
larger MATH dataset). These are similar in difficulty to top-level contest questions such as late AIME
or Olympiad qualifying problems. As with AIME, a well-prepared human might spend on the order of
10–15 minutes per problem, roughly ∼12 minutes on average for a hard competition question (Art
of Problem Solving, 2023). Tutors capable of solving and teaching such Olympiad-level problems
often charge rates on the order of $50 per hour (with a typical range of $35–$60 for competition math
tutoring) (Wyzant Tutoring, 2025). Therefore, solving roughly five MATH-500 problems could cost
about $50 and take around an hour, consistent with the per-question time and high skill required.
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Two-Digit Addition consists of simple two-digit addition problems, which are very quick for humans
to solve. Early elementary students are often expected to complete about 20-25 basic addition
problems in one minute in “mad minute” drills (Fas, 2021). This corresponds to roughly 2–3 seconds
per addition (0.04 minutes per question). Because the task is so elementary, the labor to solve large
numbers of such problems can be valued at a lower hourly rate. Simple data-entry style work or
basic math tasks on freelance platforms pay on the order of $10–$20 per hour (Upwork, 2025). At
$15/hour, for example, a worker could theoretically solve several hundred 2-digit additions within the
hour, given the ∼3-second average solution time (Fas, 2021).

Category Model Release Date Cost (per million tokens)

Input Tokens Output Tokens

Lightweight Models
Llama-3.1-8B 7/23/2024 $0.18 $0.18
GPT-4o Mini 7/18/2024 $0.15 $0.60
Llama-3.3-70B 12/6/2024 $0.88 $0.88

Large Models
Llama-3.1-405B 7/23/2024 $3.50 $3.50
GPT-4o 5/13/2024 $2.50 $10.00
Claude Sonnet-3.5 6/20/2024 $3.00 $15.00

Reasoning Models

OpenAI o1-mini 9/12/2024 $1.10 $4.40
OpenAI o3-mini 1/31/2025 $1.10 $4.40
DeepSeek-R1 1/20/2025 $7.00 $7.00
OpenAI o1 12/5/2024 $15.00 $60.00

Table 4: Per-token inference costs with release dates. Each model name links to the utilized provider.

B DETAILS OF EVALUATION

For each dataset in our evaluation, we sample up to 128 instances and run each model†. n = 8 times
to estimate the expected runtime cost and accuracy per sample. We use a temperature of 0.7 and
top p of 1.0 for all models except OpenAI’s reasoning models, for which we set the temperature
to 1.0 without applying top p. Additionally, we use the default maximum token generation limits
provided by each model. Following Suzgun et al. (2025), we use a concise but descriptive instruction
prompt for models to follow:

Experiment Prompt
Please solve the following question. You can explain your solution before
presenting the final answer. Format your final answer as:

<answer>
...
</answer>

Instructions:
- For multiple-choice: Give only the letter (e.g., (A)).
- For numeric: Give only the number (e.g., 42).
- For free-response: Provide the full final answer text.

INPUT:

’’’
{input}

’’’

†Here, the short-form ”model” refers to the underlying model together with its inference pipeline (prompt,
decoding settings, etc.). Comparisons throughout the paper are done at this basis, and Appendix B shares the
adopted details.
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In our experiments, we define the pass rm(p) as whether the model obtains a correct answer after a
single run or not (0 or 1), and the cost cm(p) as:

cm(p) = nin(m, p) · cin(m) + nout(m, p) · cout(m) (13)

where n*(m, p) denotes the number of input / output tokens consumed / generated by the model m
on problem p, and c*(m) denotes the dollar costs per input / output tokens consumed / generated
by the model m (see Table 4 for the pricing). For the expert costs, we utilize the estimations from
Table 3, and set the rates to the upper-bound value to ensure the approximation of the expert accuracy
being 1. Finally, as shown in Table 4, we access proprietary models via their original providers, while
open-source models are queried through a single provider for consistency and simplicity (TogetherAI,
in our case).

C ADDITIONAL RESULTS

C.1 EXPECTED ACCURACY AND INFERENCE COSTS

As discussed in Section 3.2, we report the expected accuracy and cost for each model per dataset,
denoted as Rm(p ∼ D) and Cm(p ∼ D). To compute these, following the methodology in
Section 2.5, we use the i.i.d. sampled set P ∼ D of problems per dataset and approximate the
expectation by averaging the accuracy Rm(p) and cost Cm(p) across problem instances. The results
in Tables 5 and 6 reveal a skewed preference for particular model families under each metric,
suggesting that these metrics alone are insufficient to capture the economic impact of models.

Model Category Basic Quantitative Knowledge Based Complex Quantitative

2-Digit Add. GSM8K BBQ GPQA Dia. MATH 500 AIME24

Lightweight Models
Llama-3.1-8B 89.45 75.78 21.48 17.87 37.30 12.50
GPT-4o mini 99.90 88.57 53.32 18.07 70.02 14.58
Llama-3.3-70B 99.90 92.09 85.06 46.48 72.75 33.33

Large Models
Llama-3.1-405B 99.71 93.95 85.74 44.14 67.87 31.67
Claude Sonnet-3.5 100 94.43 92.58 55.37 64.75 15.83
GPT-4o 99.71 91.99 90.04 47.07 73.14 14.58

Reasoning Models
OpenAI o1-mini 99.51 92.58 85.74 49.12 85.94 53.33
OpenAI o1 100 94.04 95.02 73.83 89.45 72.50
DeepSeek-R1 100 93.36 83.69 54.88 93.85 60.83
OpenAI o3-mini 100 92.77 83.79 71.68 88.57 77.08

Table 5: Accuracy (%) per model per dataset: Rm(p ∼ D). In each column, the 3 entries with the highest
accuracy have blue highlights.

C.2 EVALUATION ON A REAL-WORLD DOMAIN

We evaluate our framework on Tau-bench (Yao et al., 2024), a benchmark that targets tool use, agent
behavior, and user interaction in real-world domains. We sample 8 tasks per category (airline, retail),
totaling 16 tasks, and run each model as an agent under the evaluation protocol described in the
original paper. We exclude DeepSeek-R1 due to its visible chain-of-thought being mixed with user
messages, which contaminates responses under this protocol. We apply the cost modeling based
on total tokens consumed or generated per round, and we aggregate costs over interaction rounds.
Estimates are averaged over 4 independent trials per run.

For the human-expert baseline, we consider the “retail or call-center communication” qualification,
with an hourly wage of $20.59 (U.S. Bureau of Labor Statistics, 2025) and an average of 6 minutes
per task (Zendesk, 2025), which yields $2.06 per task.
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Model Category Basic Quantitative Knowledge Based Complex Quantitative

2-Digit Add. GSM8K BBQ GPQA Dia. MATH 500 AIME24

Lightweight Models
Llama-3.1-8B 4.2e−5 7.4e−5 5.2e−5 1.8e−4 1.5e−4 2.2e−4
GPT-4o mini 5.4e−5 1.9e−4 1.0e−4 3.9e−4 3.7e−4 5.6e−4
Llama-3.3-70B 1.6e−4 3.3e−4 3.1e−4 9.6e−4 6.7e−4 1.1e−3

Large Models
Llama-3.1-405B 6.9e−4 1.4e−3 1.0e−3 3.0e−3 2.4e−3 3.7e−3
Claude Sonnet-3.5 2.1e−3 3.7e−3 3.0e−3 6.9e−3 5.9e−3 7.5e−3
GPT-4o 2.3e−3 4.5e−3 2.7e−3 0.01 8.7e−3 0.01

Reasoning Models
OpenAI o1-mini 5.4e−3 8.4e−3 7.6e−3 0.02 0.02 0.07
OpenAI o1 0.02 0.03 0.04 0.25 0.13 0.52
DeepSeek-R1 1.8e−3 5.1e−3 4.6e−3 0.04 0.01 0.04
OpenAI o3-mini 1.1e−3 2.1e−3 2.6e−3 0.01 5.4e−3 0.02

Table 6: Dollar cost incurred per model per dataset: Cm(p ∼ D). In each column, the 3 entries with the lowest
cost have blue highlights.

Lightweight Models Large Models Reasoning Models

Llama-3.1-8B 1.6770 Llama-3.1-405B 1.8875 OpenAI o1-mini 1.8230
GPT-4o mini 1.2944 Claude Sonnet-3.5 1.5135 OpenAI o1 1.6406
Llama-3.3-70B 1.6897 GPT-4o 1.2247 OpenAI o3-mini 1.2703

Table 7: Frontier dollar cost-of-pass per model on Tau-bench real-world tasks. Each pair of columns lists
models (left) and their frontier cost-of-pass with respect to the human expert baseline (right): Vp∼D({m}∪M0).
The lowest three values are highlighted in blue, indicating that all the model families have an economic merit in
this task.

We repeat the analyses in Sections 3.2, 3.3, and 3.4; and share the results in Tables 7, 8, 9 respectively.
Our overall findings indicate that (1) all model families have a merit in this task, (2) the evolution of
the frontier cost-of-pass still follows an exponential decay (similar to other tasks), and (3) none of the
model families are significantly essential in driving progress.

C.3 RELATIVE GAIN PER MODEL RELEASE

Figure 4 presents the relative improvement in temporal frontier cost-of-pass for each model release,
illustrated using bar plots. Namely, we calculate:

Gp∼D({mt},Mt−1)

Vp∼D(Mt−1)
(14)

The results indicate that the reasoning models demonstrate notable advancements, particularly on
complex quantitative tasks. In contrast, lightweight models exhibit marked gains on basic tasks.
These findings support the observations from our experiments (Sections 3.2, 3.4). Notably, The
substantial improvement observed for GPT-4o is likely due to it being the first model included in our
analysis, resulting in a pronounced leap relative to the baseline cost associated with human expert
annotation.

May 13 Jun 20 Jul 18 Jul 23 Sep 12 Dec 5 Dec 6 Jan 31

GPT-4o
Claude

Sonnet-3.5
GPT-4o

mini
Llama-3.1-8B

Llama-3.1-405B
OpenAI
o1-mini

Llama-3.3
70B

OpenAI
o1

OpenAI
o3-mini

1.2247 1.1900 0.8411 0.8127 0.8127 0.8021 0.7668 0.7311

Table 8: Frontier dollar cost-of-pass over model release dates on Tau-bench. Each column reports the best-
to-date frontier value Vp∼D(Mt) after incorporating models released on the indicated date. The trajectory
continues to follow an exponential decay, consistent with other tasks. This table is the tabular version of the
time-evolution figure (see Fig. 2 for example).
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Lightweight Large Reasoning

Essentialness (%) 22.5 13.2 6.0

Table 9: Essentialness of model families on Tau-bench (metric from Section 3.4). The results show that
Lightweight models are the most essential, but overall, none of the families are strongly essential in driving
progress for the frontier cost-of-pass.
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Figure 4: Bar plot showing the percentage of change in frontier cost-of-pass per model release (i.e.
Gp∼D({mt},Mt−1)

Vp∼D(Mt−1)
)

C.4 ESSENTIALNESS OF HUMAN EXPERT BASELINE

Adapting the methodology in Section 3.4, we quantify the essentialness of the human-expert baseline
for each task. We treat the human-expert baseline as a separate family, M0, and compare it to the
remaining models, MT \M0, via

Gp∼D(M0,MT \M0)

Vp∼D(MT \M0)
. (15)

Under this definition, essentialness is 100% if there exists at least one instance in the distribution
that no model in MT \M0 can solve, so the frontier requires M0 on some part of the distribution.
Conversely, if every instance is solved at strictly lower cost by the LMs, essentialness is 0%.

Applying this analysis, we find that human experts remain fully essential for GSM8K, GPQA-Diamond,
MATH-500, and AIME-2024, and non-essential (0%) for BBQ and Two-Digit Addition. Interestingly,
there is no task where human experts are partially necessary (in between 0-100%).

C.5 ESSENTIALNESS OF SINGLE MODELS

In this section, following the methodology outlined in Section 3.4, we quantify the relative improve-
ment in frontier cost-of-pass using a counterfactual approach. Specifically, for each model m∗, we
calculate the following:

Gp∼D({m∗}, MT \ {m∗})
Vp∼D(MT \ {m∗})

, (16)

quantifying the essentialness of the model m∗. The results presented in Figure 5 demonstrate that
the contributions of most individual models are largely compensable by the remaining models.
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Furthermore, we observe a similar coarse-level trend, as noted in Section 3.4, indicating that different
model families provide greater benefits in specific task categories.
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Figure 5: The relative improvement (%) in frontier cost-of-pass under a counterfactual setting, removing a
model m∗ from the model set MT . High values mean that the model is essential for maintaining the current
frontier.

D PRACTICAL IMPLICATIONS, LIMITATIONS, AND FUTURE DIRECTIONS

In this section, we acknowledge the limitations of our framework and evaluations, share practical
perspectives together with directions for future extensions.

D.1 EXTENDING MODELING ACROSS COMPLEX AND DIVERSE DIMENSIONS

Our experiments consider a common but relatively simple cost and performance modeling, which
may not seem clear for practitioners to adapt to their more complex settings. To start with, our
analyses use per-token API prices that can be represented by Cp(m) = w⊤xm(p) (Section 2.2),
where w contains prices (input/output tokens) and xm(p) contains the corresponding quantities. In
practical scenarios, one may include other components of the evaluation pipeline by placing their unit
cost in w and their per-attempt quantity in x to enrich the definition. Examples include: verification
costs per attempt (e.g. human or automatic checks), tool-usage fees, orchestration overhead (e.g.
queue time, cold-start penalties, inter-service latency), and amortized fixed costs per attempt (training,
hardware depreciation, maintenance).

Regarding the success metric, one may replace accuracy with a stricter reliability-oriented metric
(e.g., passˆk (Yao et al., 2024), requiring k consecutive successes) or a more lenient metric (e.g.,
pass@k (Chen et al., 2021), rewarding any success within k attempts). Such alternatives are useful in
settings where consistency, robustness, or partial correctness matter.

Our evaluations mostly focus on single input/output tasks. More complex settings (multiple turns, tool
usage, human verification) can still be handled within our framework by the same extension principle
above. We present an instance in Section C.2 on Tau-Bench, where we accumulate consumed and
generated tokens across multiple rounds of interaction to fit the framework’s setup.

For some applications, alternative units per attempt (FLOPs, time, latency, energy) may matter more
than dollar cost, and the application of our framework may not be immediately visible. If an oracle
system m′ guarantees a non-zero success rate Rm′(p ∼ D) with a measurable expenditure, one
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may treat it as a baseline (analogous to the human expert baseline for costs) and apply our analyses,
yielding an alternative unit to dollars. If such an oracle does not exist, assuming that for each p ∼ D
there exists some m ∈ M with Rm(p) > 0, several analyses in this paper (e.g. essentialness and
impact) still apply.

D.2 INTERPRETABILITY OF OUR FRAMEWORK

Since our cost-of-pass metric is v(m, p) = Cm(p)
Rm(p) for a given problem instance p and model m,

with Cm(p) = w⊤xm(p), improvements can arise from (i) lowering unit prices w, (ii) reducing
resource use xm(p), or (iii) increasing success probability Rm(p). In practice, cheaper tokens reduce
w via pricing changes, distillation, quantization, or optimized serving; fewer tokens reduce xm(p)
via prompt compaction, dynamic budgets, or instructions that promote concise generation; and higher
accuracy increases Rm(p) through better prompting, light test-time techniques, or improved model /
training. Thus, the metric and framework capture these practical dimensions and quantify them in an
interpretable way.

While these dimensions explain directional changes, the formulation still only reports expectations
and therefore does not incorporate variance. Two strategies with identical expected cost-of-pass may
entail very different variances, and hence different risks. Augmenting the metric with variance or
risk-adjusted objectives would enhance interpretability and practical usefulness, and left for future
work.

D.3 LIMITATIONS

We present limitations associated with both the framework and our evaluations. While covered in
Section D.1, our evaluations instantiate simple formulations for costs and success. This is a reasonable
proxy from a user perspective and extends gracefully, but it still omits indirect and context-specific
terms (like evaluation/verification overheads, wait times, invocation retries, tool-call charges etc.).
Our framework remains compatible with these terms via the vectorized cost view, but we do not
include them in our core results. Regarding the success metric, our framework assumes a binary
success/failure criterion, thus continuous or composite notions of success are not modeled directly.

Both pricing and performance can vary across API providers (Gao et al., 2025), especially for open-
source models hosted by third parties. Treating each provider–model (ie. inference pipeline) pair
as a distinct strategy and either (i) reporting all results from the same provider consistently or (ii)
providing multiple provider snapshots per model can make benchmarking and comparisons more
robust.

Throughout our evaluations, we fix a single concise instruction and sampling arguments (e.g.,
temperature, top-p). We chose this to reduce degrees of freedom and enable comparability across
models. However, results may be sensitive to these choices. Future work can study prompt and
decoding sensitivity by evaluating small prompt ensembles per model and conducting sweeps over
decoding settings.

Model selection in our evaluations can introduce temporal and categorical bias. Due to budget,
compactness, and coverage considerations; we evaluated a subset of releases. For this, we fixed a
short time window and chose representative models per major family to capture broad trends. A more
exhaustive design is beyond our scope, but two extensions are natural: (i) broadening coverage to
include historical and subsequent releases, and (ii) sampling more densely within a fixed horizon
(more models at closely spaced release dates).

Our family distinction between lightweight and large models is based on per-token prices. Alternative
categorizations (parameter count, open/closed status, deployment modality) are possible. We prioritize
transparency and reproducibility; as sizes are often undisclosed, and openness does not map directly to
user-incurred costs. We also keep the analysis prototypical by focusing on user-facing, common-case
models (omitting quantizations or distillations). Future work can adopt alternative categorizations to
quantify economic impact under different groupings.

The human expert baseline assumes that qualified annotators always succeed given sufficient time
and compensation. Extremely challenging problems (or scarce expertise) may violate this assumption.
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Rigorous human subject studies could estimate a “human cost-of-pass,” capturing both success
probability and variance.

Despite these caveats, the framework’s abstract, modular design means each of the above extensions
can be implemented by plugging in refined cost functions, richer success metrics, or additional
variability terms. At the same time, our core analysis remains a practical baseline, as per-token
API pricing reflects actual user-side costs, and binary pass/fail captures minimal utility in many
applications. We hope future work adapts the framework along these lines and develops datasets that
jointly stress cost and performance dimensions.

22


	Introduction
	Setup 
	Economic Theory of Production Efficiency
	Cost-of-Pass: An Efficiency Metric for LMs
	The LM Frontier Cost-of-Pass
	Grounding Evaluation: Estimated Human-Expert Baseline
	Measuring Progress and Value Gain
	Estimating the Economic Efficiency
	Estimating Human-Expert Cost


	Experiments
	Experiment Setup
	Frontier Cost-of-Pass with a Single Model
	Tracking Frontier Cost-of-Pass with New Releases
	Essentialness of Model Families: Counterfactual Frontier Cost-of-Pass
	Impact of Inference Time Techniques on Frontier Cost-of-Pass

	Related Works
	Conclusion
	Details of Human Expert Cost Estimation
	Details of Evaluation
	Additional Results
	Expected Accuracy and Inference Costs
	Evaluation on a Real-World Domain
	Relative Gain per Model Release
	Essentialness of Human Expert Baseline
	Essentialness of Single Models

	Practical Implications, Limitations, and Future Directions
	Extending Modeling Across Complex and Diverse Dimensions
	Interpretability of Our Framework
	Limitations


