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ABSTRACT

The problem of optimization on Stiefel manifold, i.e., minimizing functions of
(not necessarily square) matrices that satisfy orthogonality constraints, has been
extensively studied. Yet, a new approach is proposed based on, for the first time,
an interplay between thoughtfully designed continuous and discrete dynamics.
It leads to a gradient-based optimizer with intrinsically added momentum. This
method exactly preserves the manifold structure but does not require additional
operation to keep momentum in the changing (co)tangent space, and thus has low
computational cost and pleasant accuracy. Its generalization to adaptive learning
rates is also demonstrated. Notable performances are observed in practical tasks.
For instance, we found that placing orthogonal constraints on attention heads of
trained-from-scratch Vision Transformer (Dosovitskiy et al., 2020) could markedly
improve its performance, when our optimizer is used, and it is better that each head
is made orthogonal within itself but not necessarily to other heads. This optimizer
also makes the useful notion of Projection Robust Wasserstein Distance (Paty and
Cuturi, 2019; Lin et al., 2020) for high-dim. optimal transport even more effective.

Code: https://github.com/konglk1203/VariationalStiefelOptimizer

1 INTRODUCTION

Matrices that satisfy orthogonal constraints play important roles in various areas including machine
learning. A range of studies showed this both theoretically (Saxe et al., 2013; Xiao et al., 2018) and
experimentally – for example, orthogonality can boost the performances of many architectures1, e.g.,
MLP (Cisse et al., 2017), CNN and ResNet (Li et al., 2020; Wang et al., 2020), RNN (Arjovsky et al.,
2016; Wisdom et al., 2016; Helfrich et al., 2018), Transformer (Zhang et al., 2021). The training of
such models amounts to optimization under orthogonal constraints, whose applications to machine
learning, however, are not restricted to just improving deep learning models. For example, such
optimization helps construct optimal low-dim. projection of high-dim. data, which can be used for,
e.g., robust and efficient approximation of Wasserstein distance (Paty and Cuturi, 2019; Lin et al.,
2020). Therefore, this article will focus on this non-Euclidean / Riemannian optimization problem.
In fact, matrices that contain orthogonal columns constitute a Riemannian manifold known as the
Stiefel manifold. Given integers n ≥ m > 0, it is defined as St(n,m) := {X ∈ Rn×m : X⊤X =
Im×m} (see Apdx. B.3 for the n = m special case which is almost SO(n)). Then, given a C1
function f : St(n,m)→ R, we consider, under gradient oracle, the smooth optimization problem

min
X∈St(n,m)

f(X), which is equivalent to min
X∈Rn×m,X⊤X=Im×m

f(X). (1)

Due to the importance of this problem, a wide range of approaches have been proposed. Methods
based on regularizers, which approximate the constraints (and hence the manifold structure), for
example, have been popular in the machine learning literature (Cisse et al., 2017; Bansal et al., 2018;
Wang et al., 2020; Zhang et al., 2021). Meanwhile, efforts have been continuously made to construct
algorithms that truly preserve the constraints (i.e. the manifold structure), although challenges such
as computational scalability and how to add momentum still remain; see the 2nd next paragraph for
how our method addresses them, and more discussions on existing milestones in Sec. 1.1.
Our strategy toward a good Stiefel optimizer is the following: first, formulate a variational principle
and use that to construct an optimizing dynamics in continuous time, which is described by a system

1It helped computer vision applications prior to the deep learning era as well (e.g., Liu et al., 2003).
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of ODEs corresponding to damped mechanical systems on a constrained manifold; then, design
a delicate time discretization of these ODEs, which yields optimization algorithms that precisely
preserve the constraints and mimic the continuous dynamics.
Our optimizer has several pleasant properties: 1) It is exactly preserving the manifold structure, not
only of the Stiefel manifold, but in fact of its tangent bundle. In other words, throughout the course
of optimization, the position variable remains exactly on the Stiefel manifold, and the momentum
variable remains exactly in the (co)tangent space. 2) Typically, in order to maintain the manifold
structure, some kind of projection/retraction/exponential-map operation is needed, and since we
have both position and momentum, such operation is needed for both variables (i.e. to maintain
the cotangent bundle structure). However, our carefully designed ODE and its discretization make
the structure preservation of momentum automatic, meaning that no extra operation (projection,
retraction, parallel transport, etc.) is needed for the momentum variable. This not only leads to
improved computational efficiency, but also serves an indirect evidence of having a reduced overall
(i.e. both position and momentum) local error. 3) We used a quadratic-convergent iterative solver
for our specific position retraction operation, which makes it fast. 4) Due to 2)+3), our per iteration
computational complexity, O(nm2), has a small constant factor (see Sec. C for details). 5) Our
discretization is also numerically stable so that it well preserves the structure even under low machine
precision and numerous iterations, which are beneficial in machine learning contexts. 6) Because our
algorithm is derived from a variational framework that unify both Euclidean and Stiefel variables,
the same hyperparameters can be used for both these parameters; see Sec.3 and note this difference
from previous milestones (e.g., Li et al. (2020)) significantly reduces tuning efforts. 7) Our algorithm
works for a range of Riemannian metrics, allowing extra flexibility in choosing suitable geometry to
optimize the performance for a specific problem.
Selected (due to space) experimental tests of our optimizer are: (1) We consider the simple problem of
leading eigenvalues, which is yet practically important in data sciences. It systematically investigates
algorithmic performances under different parameters. (2) We show the elegant idea of approximating
optimal transport distance in high-dim. via a good low-dim. projection (Paty and Cuturi, 2019; Lin
et al., 2020) can be made even more efficacious by our optimizer. (3) We note that Vision Transformer
(ViT) can be further improved by imposing attention heads to be orthogonal; more precisely:
Consider training ViT from scratch. We discover that 1) requiring each head to be orthogonal in
itself improves both training and testing accuracies the most. An important recent work by Zhang
et al. (2021) applied orthogonality to transformers and demonstrated improved performance in NLP
tasks. It concatenates each of the WQ

i , WK
i , WV

i matrices in attention across all heads, and applies
orthogonal constraint to each of the three, via regularizer. This makes each head (approximately)
orthogonal, not only within itself, but also to other heads. Orthogonal constraint is also applied, via
regularizer, to each weight matrix of feed-forward layers in their case. With our Stiefel optimizer
which are not restricted to square matrices, we can now make each head exactly and only orthogonal
within itself, which leads to further improvements at least in CV tasks. Meanwhile, 2) having
orthogonality both in and across heads is found less effective than 1), but it is still better than
requiring no orthogonality (i.e. vanilla ViT). No orthogonality on feed-forward layers was used in
either 1) or 2). In addition, 3) to achieve these improvements, our Stiefel optimizer needs to be used;
methods that do not have momentum or not exactly preserve structure (e.g., regularizer-based) are
seen not fully exploiting the benefit of orthogonality.

1.1 MORE ON RELATED WORK

Orthogonality in deep learning Initialization: Orthogonal initialization is both theoretically and
experimentally shown good for deep neural networks (Saxe et al., 2013). CNN: Cisse et al. (2017)
used regularizer to make weight matrices orthogonal when training MLP and CNN, and showed both
improved accuracy and robustness. Rodríguez et al. (2017) showed that posing orthogonality to CNN
reduces overfitting. Bansal et al. (2018) experimentally compared several orthogonal regularizers on
ResNet. RNN: Arjovsky et al. (2016); Wisdom et al. (2016); Helfrich et al. (2018); Vorontsov et al.
(2017); Lezcano-Casado and Martınez-Rubio (2019) showed orthogonalilty helps plain RNN achieve
long term memory and even out-perform advanced models such as LSTM. Transformer: Despite of
its success, transformer is actually a recent model; to the best of our knowledge, the community just
started applying orthogonal constraint to Transformer for NLP tasks (Zhang et al., 2021). Our work
is the first to apply it to Vision Transformer (Dosovitskiy et al., 2020).

Optimization algorithms Manifold optimization is a profound field. General approaches for
1st-order (i.e. gradient based) optimization on (Riemannian) manifold typically involve retraction
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(see Apdx.D) which is not present in Euclidean cases. Thus we categorize 1st-order Stiefel optimizers
into 2 types: O1) retraction-based, and O2) non-retraction-based.

O1) Retraction-based. Given a point and a tangent vector, exponential map gives how the point moves
along the tangent vector on the manifold. In practice, an approximation of the exponential map,
known as a retraction, is often used for reducing the computational cost. The exponential map and
various retractions on Stiefel manifold are well-studied. For Stiefel, the exponential map can be
computed with complexityO(nm2) (Edelman et al., 1998), whose constant prefactor is however large
as the map is essentially matrix exponentiation. A well-known retraction is Cayley map (Eq. (32)),
and Wen and Yin (2013) proposed a gradient descent method2 with smartly lowered computational
cost of Cayley map (will be referred to as Momentumless Stiefel (S)GD). SVD can also
help construct a retraction; Li et al. (2019) did so by first following the gradient out of the manifold
and then projecting back via modifying the singular values, which is interesting but expensive.
Meanwhile, a remaining challenge is to add momentum, which is nontrivial in a manifold setting but
helpful for improved speed of convergence (Zhang and Sra, 2018; Ahn and Sra, 2020; Alimisis et al.,
2021). In this case, the geometry that needs to be maintained is that of the augmented state-space,
known as the tangent bundle; i.e., position has to be in Stiefel manifold and momentum in its tangent
space. One could follow a general Riemannian retraction idea (e.g., Absil and Malick (2012)) and
use retraction that projects both position and momentum to the tangent bundle to ensure manifold
preservation. This was done for example in Li et al. (2020) (will be referred to as Projected
Stiefel SGD/Adam). Another cool technique to maintain the structure of momentum is parallel
transport (e.g., Bécigneul and Ganea (2019)), which is however computationally expensive and
possibly inexact (Edelman et al., 1998). Our work could be viewed as a retraction-based approach,
because our position variable is projected back to St at each step; however, it doesn’t require any
retraction or projection on the momentum variable — thanks to our variational approach and delicate
discretization, position and momentum intrinsically move together, and once the position X is placed
on St, the momentum Q automatically finds itself in TXSt. This leads to better computational
efficiency, as well as improved accuracy because variables stay closer to the tangent bundle.

O2) Non-retraction-based. In some sense one can always call an exact manifold preserving method
retraction-based, but approximate structure preservation is also a possibility. Regularizers for instance
could be used to approach X⊤X = I . Between exact and approximate structure preserving, which
one works better is theoretically still an open question, and task-dependent but insightful empirical
results exist. For example, regularizer-based methods usually need more hyperparameter tuning, and
the final result is likely sensitive to the regularization strength (Wang et al., 2020). Lai and Osher
(2014) also discussed their slow convergence and possible improvements. Regularizer-based methods
typically have low computational costs, but due to trajectory not exactly on the manifold, they may
converge to (the neighborhood of) a local min. different from the one an exact algorithm converges
to for multimodal problems. Similar observation was made for non-regularizer-based approximate
method too; e.g., Vorontsov et al. (2017) suggested that at least in certain cases ‘hard’ constraint
is better than ‘soft’. The aforementioned Li et al. (2020) is actually inexact too, because in their
practical implementation the retraction was inexactly performed for the sake of speed. Meanwhile, we
also note an interesting, non-regularizer-based recent result (Ablin and Peyré, 2022) that converges to
the manifold despite of being approximate prior to convergence.

Additional. We also mention the existence of useful algorithms for electronic structure calculations
that can be viewed as Stiefel optimizers (e.g., Zhang et al. (2014); Dai et al. (2017); Gao et al. (2018;
2019); Hu et al. (2019); Dai et al. (2020)). They did not use momentum. Another inexact-manifold-
preserving but interesting result is Bu and Chang (2022). The problem can also be approached via a
constrained optimization formulation (e.g., (Leimkuhler et al., 2021)). In addition, there are other
interesting optimizers also based on discretizing damped mechanical systems but not via the splitting
approach used here, e.g., Lee et al. (2021); Duruisseaux and Leok (2021); however they are mostly
implicit and not always scalable to deep learning applications. Finally, it is possible to represent a
matrix by other matrices and optimize those matrices instead. A special case of SO(n) was considered
by Lezcano-Casado and Martınez-Rubio (2019); Helfrich et al. (2018) where X = expm(A) or
X = Cayley(A) was used and then one optimized skew symmetric A instead. Although these authors
did not consider a Stiefel generalization, this could be possible, but even without the generalization
the computational cost is already high.

2Their setting was deterministic, but an extension to use stochastic gradient descents is straightforward.
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This paper considers exact structure preservation. For applications included here, this is either
empirically more beneficial (Sec.3.2) or a necessity (Sec.3.1 & Apdx.Q). See comparisons of most
relevant approaches in Tab. 2 and more on complexity in Apdx. C.

2 DERIVATION OF THE OPTIMIZERS AND THEIR PROPERTIES
We represent Stiefel manifold as St(n,m) := {X ∈ Rn×m : X⊤X = Im×m} where n ≥ m3, i.e.
matrices with orthonormal columns. This is a natural embedding in Euclidean space. Based on
identity isomorphism between cotangent & tangent spaces (see Apdx. B.2), it also gives:
Proposition 1. The (co)tangent space of St at X ∈ St is TXSt := {∆ ∈ Rn×m : X⊤∆+∆⊤X =
0} ; its (co)tangent bundle is TSt := {(X,∆) : X ∈ St,∆ ∈ TXSt}.
Throughout this paper, we focus on a family of Riemannian metrics on St defined in the following.
Definition 1 (canonical-type metric). For a fixed constant a < 1, the canonical-type metric gX :
TXSt× TXSt→ R is defined as

gX(∆1,∆2) = Tr(∆⊤
1 (I − aXX⊤)∆2), ∀∆1,∆2 ∈ TXSt. (2)

The following are two commonly used examples of the canonical-type metric (Tagare, 2011):

• When a = 0, gX(∆1,∆2) = Tr(∆⊤
1 ∆2), which corresponds to the Euclidean metric.

• When a = 1/2, gX(∆1,∆2) = Tr(∆⊤
1 (I − 1

2XX⊤)∆2), which is known as the canonical metric.

Notation. Denote Euclidean gradient in ambient space by ∂f
∂X :=

(
∂f

∂Xij
(X)

)
ij

. Denote by ⊙, ⊘,
and A◦c element-wise product, division, and cth power. Denote expm to be the matrix exponential.

2.1 OPTIMIZATION DYNAMICS IN CONTINUOUS TIME

In this section, we study the Stiefel optimization problem (1) from a variational perspective. The
manifold setup yields a constrained variational problem, which is hard to handle due to nonlinear
geometry of the function space. Thus we introduce an alternative variational formulation based on
functional Lagrange multiplier to bypass this difficulty. It generates an ODE that never escapes from
the manifold TSt and is guaranteed to converge to a local minimizer of the function f on St.

In Euclidean space, momentum has long been used to accelerate gradient descent (Nesterov, 1983).
More recently, continuous time limit brought useful tools to complement the classical analyses for
such optimizers (e.g., Su et al. (2014)), and a variational formulation was then established to unify a
large family of momentum-based Euclidean optimizers (Wibisono et al., 2016). This formulation
can also provide a powerful and intrinsic way to generalize momentum-based optimization to non-
Euclidean settings. One demonstration is, for example, accelerated optimization on Lie groups (Tao
and Ohsawa, 2020). Following the same line of thoughts, we consider Stiefel optimization by first
defining a time-dependent Lagrangian L : TSt× R+ → R as

L(X, Ẋ, t) := r(t)
[1
2
gX(Ẋ, Ẋ)− f(X)

]
= r(t)

[1
2

Tr
(
Ẋ⊤(I − aXX⊤)Ẋ

)
− f(X)

]
. (3)

Without r(t), this would be a standard Lagrangian for mechanics on manifold, and it would generate
dynamics in which the kinetic energy 1

2gX(Ẋ, Ẋ) and the potential energy f(X) continuously
exchange with each other. Choosing r(t) to be an increasing function, however, will break time
translational symmetry and introduce dissipation in the system; consequently, the total energy
1
2gX(Ẋ, Ẋ)+f(X) will monotonically decrease in time, leading to the minimization of f . Given this
Lagrangian, we can define a variational problem (VP) on manifold whose corresponding stationarity
condition (known as Euler-Lagrange equation) yields an ODE that optimizes f in continuous time

Constrained VP: δ
∫ T

0

L(X(t), Ẋ(t), t)dt = 0, s.t.
(
X(t), Ẋ(t)

)
∈ TSt, ∀ 0 ≤ t ≤ T. (4)

However, to obtain concrete algorithms, this constrained VP is very difficult to handle because
the variation of X(·) has to keep it in a nonlinearly constrained function space. Tao and Ohsawa
(2020) applied a tool of reduction via Lie algebra to solve the case of Lie group manifold, but for
Stiefel manifold St(n,m), unless n = m, there is no group structure and this technique no longer
applies. Therefore, we transfer (4) into an unconstrained variational problem, using tools described
in, e.g., Chen et al. (2021). By adding a Lagrange multiplier4 Λ(t) ∈ Rm×m for the constraints
X(t)⊤X(t)− I = 0, we augment the Lagrangian to be

L̂(X, Ẋ,Λ, t) = r(t)
[1
2

Tr
(
Ẋ⊤(I − aXX⊤)Ẋ

)
− f(X)

]
− 1

2
Tr
(
Λ⊤(X⊤X − I)

)
, (5)

3The problem is harder when n > m, which thus will be our focus. For the n = m case, see Sec. O.
4It differs from the seminal work (Wen and Yin, 2013) as our setup (and the Lagrange multiplier) is dynamical.
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where Λ(t) ∈ Rm×m is a symmetric matrix. The benefit is that now X can be varied in an
unconstrained, flat function space, corresponding to

Unconstrained VP: δ
∫ T

0

L̂(X(t), Ẋ(t),Λ(t), t)dt = 0, ∀ 0 ≤ t ≤ T. (6)

To sum up the above discussion, problem (1) can be resolved through (un)constrained variational
problem (4),(6), i.e., (1)⇐= (4)⇐⇒ (6), in the sense that the solutions of (4),(6) solve problem (1);
meanwhile, (6) can be explicitly solved, as detailed in the following (proof is in Apdx. G):
Theorem 1 (Optimization dynamics on TSt). To use problem (6) for solving problem (1), we have:
1. The solution of the unconstrained variational problem (6) is the following ODE{

Ẋ = Q

Q̇ = −γQ−XQ⊤Q− 3a
2 (I −XX⊤)QQ⊤X − ∂f

∂X + 1+b
2 XX⊤ ∂f

∂X + 1−b
2 X ∂f

∂X

⊤
X

(7)

where (X(t), Q(t)) = (X(t), Ẋ(t)) ∈ Rn×m × Rn×m is the tuple of state variable and its
momentum, γ(t) := ṙ(t)/r(t) is the scalar friction coefficient, and b := a

a−1 is a constant
depending on the canonical-type metric (2).

2. For any isolated local minimum X∗ ∈ St of f , there exists a neighbourhood U ⊂ TSt of (X∗, 0)
s.t., for any initial condition (X0, Q0) ∈ U , the solution (X(t), Q(t)) of the system (7) converges
to (X∗, 0) as t→∞.

One feature of ODE (7) is the preservation of constraints: even though the ODE is defined in the
Euclidean space, as long as it starts on the manifold, it will never leave the manifold:
Theorem 2 (Constrained optimization with unconstrained dynamics). If the initial condition of
(7) is on TSt, the cotangent bundle of Stiefel manifold, then dynamics (7) automatically stays
on TSt, i.e., if X(0)⊤X(0) = Im×m, X(0)⊤Q(0) + Q(0)⊤X(0) = 0m×m,, then for all t ≥ 0
X(t)⊤X(t) = Im×m, X(t)⊤Q(t) +Q(t)⊤X(t) = 0m×m. Proof is in Apdx. H.

2.2 STRUCTURE-PRESERVING DISCRETIZATION VIA VARIABLE DECOMPOSITION AND
OPERATOR SPLITTING

Although the continuous dynamics (7) preserves the constraints, such preservation is in general not
guaranteed when time is discretized. The construction of our discretization briefly follows four
steps: a geometric decomposition of momentum, a carefully designed operator splitting scheme to
approximate the ODEs, structure-preserving approximations of the split system, and a structure-
preserving relaxation that further reduces the computational cost. Details now follow.

Preparation: from a static decomposition of the tangent space to a decomposition of Q dynamics.
To retain the preservation of geometric structures through a time discretization, we first decompose
the tangent space TXSt into X and X⊥ components (see more details in Tagare (2011)); more
precisely, given a tangent vector Q represented by an n×m matrix, we rewrite it as Q = XY + V
for Y ∈ Rm×m, V ∈ Rn×m, and use Y, V to replace Q. This transformation changes the constraint
X⊤Q + Q⊤X = 0 to {Y ⊤ + Y = 0, X⊤V = 0} instead (see Apdx E.1). Another advantage of
this decomposition is that Y, V naturally split the canonical-type metric (2) (see Apdx E.2).

Although a fixed tangent Q can be uniquely decomposed into Y and V , when we start to consider a
dynamical Q(t) and make the decomposition at each t, we need to understand how the corresponding
Y (t) and V (t) evolve. This is not a trivial question, but it can be proved that the new dynamics is

Ẋ = XY + V, Ẏ = −γY − 1− b

2

(
X⊤ ∂f

∂X
− ∂f

∂X

⊤
X
)
,

V̇ =− γV +
3a− 2

2
V Y −XV ⊤V −

(
I −XX⊤) ∂f

∂X
, (8)

with initial condition satisfying X(0)⊤X(0) = I, Y (0)⊤+Y (0) = 0, X(0)⊤V (0) = 0. This system
is equivalent to (7) via Q(t) = X(t)Y (t) + V (t) and preserving X(t)⊤X(t) = I, Y (t)⊤ + Y (t) =
0, X(t)⊤V (t) = 0 for all t (Thm.8). Moreover, it will be amenable to a good discretization and is
thus the base for constructing our optimizer.
With this decomposition defined, we can finally make the phrase ‘structure preservation’ precise:
Definition 2. Structure preservation means variables exactly satisfying all constraints for all
time. That is, for ‘XQ’-system, X(t)⊤X(t) = I,X(t)⊤Q(t) = 0, ∀t; for ‘XY V ’-system,
X(t)⊤X(t) = I, Y (t)⊤ + Y (t) = 0, X(t)⊤V (t) = 0, ∀t. In comparison, staying exactly on
Stiefel, i.e. X(t)⊤X(t) = I is termed ‘feasible’ (Wen and Yin, 2013; Ablin and Peyré, 2022), but
we have additional constraints due to momentum.
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Step I: operator splitting of the ODEs. To handle the high nonlinearity of ODE (8) and maintain
the preservation of constraints after discretization, we adopt an operator splitting method, based
on a general fact that a numerical discretization of an ODE can be obtained by composing the
(approximate) flow maps of split ODEs (McLachlan and Quispel, 2002). More precisely, we split the
vector field of (8) as a sum of three vector fields, each associated with one of the following ODEs:

Ẋ = XY

Ẏ = −γY

− 1−b
2

(
X⊤ ∂f

∂X
− ∂f

∂X

⊤
X
)

V̇ = 0

(9)


Ẋ = 0

Ẏ = 0

V̇ = −γV + 3a−2
2

V Y

−(I −XX⊤) ∂f
∂X

(10)


Ẋ = V

Ẏ = 0

V̇ = −XV ⊤V

(11).

Define the corresponding time-h evolution maps ϕ1, ϕ2, ϕ3 of Eq.(9)(10)(11) to be ϕj :
[X(t), Y (t), V (t)] 7→ [X(t + h), Y (t + h), V (t + h)] for system j = 1, 2, 3. Note ϕ1, ϕ2, ϕ3

give the exact solutions of these split ODEs. Then we see our specific split honors all constraints:

Theorem 3. ϕ1, ϕ2, ϕ3 are all structure preserving. Proof is in Apdx. J.
Step II: structure-preserving approximation of exact flow maps. Due to the nonlinearity, ϕ1

and ϕ3 do not admit analytical expressions; ϕ2 does have an explicit expression (Eq. (30)), but an
approximation will still reduce computational costs while maintaining certain accuracy (see Fig.
4). Therefore we first denote the 1st-order approximation of the exact flow maps ϕ1, ϕ2, ϕ3 to be
ϕ̄1, ϕ̄2, ϕ̄3, where ϕ̄j : [X0, Y0, V0] 7→ [Xh, Yh, Vh] = ϕj([X0, Y0, V0]) +O(h2), j = 1, 2, 3. Then

ϕ̄1 :


Xh = X0 expm(hYh)

Yh = exp(−γh)Y0

− (1−b)(1−exp(−γh))
2γ

(
X⊤

0
∂f
∂X0
− ∂f

∂X0

⊤
X0

)
Vh = V0

(12) ϕ̄3 :


X† = X0 + hV0X

⊤
0 X0

Xh = X†(X
⊤
† X†)

−1/2

Yh = Y0

Vh = V0 − hX0V
⊤
0 V0.

(13)

ϕ̄2 : Xh = X0, Vh = (1− γh)V0 +
3a− 2

2
hV0Y0 − h

(
I −X0X

⊤
0

) ∂f

∂X
(X0), Yh = Y0. (14)

Theorem 4. ϕ̄1, ϕ̄2, ϕ̄3 are all structure preserving. Proof is in Apdx. K.
This shows not only the split flow maps but their decently designed discretizations maintain the
constraints of X,Y, V . There are several specially designed features to enable the numerical stability
of the integrators: 1) ‘X†(X

⊤
† X†)

−1/2’ in ϕ̄3 is part of a nontrivial discretization scheme and the
same as polar retraction (Absil et al., 2009). It directly leads to the preservation of the geometry of
the position variable by ϕ̄3, i.e., even the input of ϕ̄3 has error that X⊤

0 X0 ̸= I , the output always
satisfies X⊤

h Xh = I , but it will not impair the order of the O(h2) local discretization error. See more
about its connection to numerically stability to arithmetic errors in Apdx. M.1. 2) In the first equation
of ϕ̄3, X0 +hV0X

⊤
0 X0 is used instead of X0 +hV0, even though most of the time X⊤

0 X0 = I . This
guarantees that even if X⊤

0 X0 ̸= I , the constraint X⊤
0 V0 = 0 itself still leads to X⊤

h Vh = 0, which
improves numerical stability. What’s more, when combined with 1), this property will also enable
us to use a cheaper ϕ̃1 in the following Step III. 3) The ‘forward Euler’-like discretization for ϕ3

is carefully chosen,and updating Vh using Xh instead of X0, for example, will destroy its structure
preservation. 4) No extra handling except forward Euler is applied to the momentum variables Y, V ;
i.e. this discretization itself is beneficial enough to guarantee momentum structure preservation.

Step III: relaxation and composition of the operators. Our goal is to obtain a structure preserving
scheme for the original ODE (8) instead of requiring structure preservation of each operator for the
split ODEs (9)(10)(11). The latter will ensure the former as we have:
Theorem 5. The composition of any ordering of ϕ̄1, ϕ̄2, ϕ̄3, e.g., ϕ̄1◦ϕ̄2◦ϕ̄3, is a structure-preserving,
1st-order (in h) numerical integrator of (8). Proof is in Apdx. L.
However, the latter (all operators preserving structure) is not needed for the former (their composition
preserves structure). We can still eventually obtain a structure-preserving integrator, however without
the costly ‘expm’, by relaxing some of the structure preservation requirements for ϕ̄1.
Theorem 6. Consider a consistent approximation of ϕ̄1 by ϕ̃1 (i.e. ϕ̃1 = ϕ̄1 + O(h2)). Assume
ϕ̃1 satisfies that if initially X⊤

0 X0 = I, Y ⊤
0 + Y0 = 0, X⊤

0 V0 = 0, then Y ⊤
h + Yh = 0, X⊤

h Vh = 0.
Then the specific composition ϕ̄3 ◦ ϕ̃1 ◦ ϕ̄2 is structure preserving. Moreover, the composition of any
ordering of ϕ̃1, ϕ̄2, ϕ̄3 is a 1st-order (in h) integrator of (8). Proof is in Apdx. M.3

Therefore, our default recommendation is to use ϕ̄3 ◦ ϕ̃1 ◦ ϕ̄2, where ϕ̃1 is Xh = X0 + hX0Yh,
Yh = (1− γh)Y0 − 1−b

2 h
(
X⊤

0
∂f
∂X0
− ∂f

∂X0

⊤
X0

)
, Vh = V0, mainly approximating the expm in ϕ̄1
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by forward Euler. The result is concretely summarized in Algo. 1. In order to match commonly
used notations in machine learning, we rescale the parameters: learning rate η := 1−exp(−γh)

γ h,

momentum parameter µ := exp(−γh), Z := Y/ 1−exp(−γh)
γ , and U := V/ 1−exp(−γh)

γ . See
Apdx M.4 for more information.
A few side remarks are listed in the following. If m is small, then ϕ̄1 ◦ ϕ2 ◦ ϕ̄3 (or any permutation)
can also be used, although experimentally no clear advantage was observed (Fig. 4); otherwise, the
computational cost of expm can become prohibitive.
Moreover, the computational cost of matrix inverse square root in the polar retraction (X⊤

† X†)
−1/2

should not be a concern since it is only for m×m matrices instead of n× n (n ≥ m). Meanwhile,
it can be computed to machine precision rapidly using a quadratically convergent iterative method
(Higham, 1997); see Algo. 3 in Apdx. M.1 for details, and Apdx.C for computational complexity.

Algorithm 1: Momentum (S)GD on St(n,m) (SGD: ∂f/∂X replaced by a stochastic estimator)
Hyperparameter :η ∈ (0,+∞), µ ∈ [0, 1), maximum number of iterations N
Initialization :X0, U0, Z0 s.t. X⊤

0 X0 = I , X⊤
0 U0 = 0, Z0 + Z⊤

0 = 0
1 for i = 0, · · · , N − 1 do
2 Compute ‘gradients’: fi = 1−b

2

(
X⊤

i
∂f
∂X (Xi)− ∂f

∂X

⊤
(Xi)Xi

)
; gi = (I −XiX

⊤
i ) ∂f

∂X (Xi)

3 Update ϕ̄2: Ui+ 1
2
= µUi − 3a−2

2 ηUiZi − gi

4 Update ϕ̃1: Zi+1 = µZi − fi; Xi+ 1
2
= Xi + ηXiZi

5 Update ϕ̄3: X† = Xi+ 1
2
+ ηUi+ 1

2
X⊤

i+ 1
2

Xi+ 1
2

; Compute (X⊤
† X†)

− 1
2 using Algo. 3;

Xi+1 = X†(X
⊤
† X†)

− 1
2 ; Ui+1 = Ui+ 1

2
− ηXi+ 1

2
U⊤
i+ 1

2

Ui+ 1
2

6 end
7 return XN

2.3 AN ADAPTIVE LEARNING RATE VERSION

Tuning for the best SGD learning rate can be labor intensive and computationally unafforable, and
sometimes SGD even performs worse than adaptive methods (Zhang et al., 2020). Thus in this
section, we propose an adaptive version of our Stiefel optimizer. More precisely, we will establish,
as an example, a Stiefel version of Adam (Kingma and Ba, 2015), which estimates the 1st and 2nd
moments of gradients to obtain element-wise adaptive step sizes.
The algorithm is established via the following ideas. The ‘gradient’ in this Adam-version method is
constructed from our Stiefel SGD with momentum (Alg.1) where the ‘gradients’ in Y/Z and V/U

direction can be interpreted as 1−b
2

(
X⊤ ∂f

∂X −
∂f
∂X

⊤
X
)

and (I −X(X⊤X)−1X⊤) ∂f
∂X respectively.

The main difficulty of extending Stiefel SGD to Stiefel Adam that does not appear in Euclidean
case is that element-wise operation on momentum loses tangent vector structure. We solve this
respectively: (1) For Y/Z-direction, the skew-symmetry is preserved after a symmetric element-wise
operation Z ⊘ (p◦

1
2 + ϵ). (2) For V/U -direction, we apply a projection I −X(X⊤X)−1X⊤ to the

element-wisely rescaled momentum U ⊘ (q◦
1
2 + ϵ), making sure ‘X⊤V = 0’. Combining all the

above, we obtain the Adam-Stiefel optimizer. Denote ϕ̂1, ϕ̂2, ϕ̂3 to be the modification of ϕ1, ϕ2, ϕ3

in the Adam version (see detailed expressions in Apdx. M.5). Then the integrator is defined as
ϕ̂3 ◦ ϕ̂1 ◦ ϕ̂2. The overall method is shown in Algo. 2.
Theorem 7. The Adam-Stiefel ϕ̂3 ◦ ϕ̂1 ◦ ϕ̂2 is structure-preserving. Proof is in Apdx. N.

3 EXPERIMENTS

This section demonstrates our Stiefel optimizers on Projection Robust Wasserstein Distance (Paty and
Cuturi, 2019; Lin et al., 2020) and trained-from-scratch Vision Transformer (Dosovitskiy et al., 2020).
They will also be compared with other popular Stiefel optimizers summarized in Tab. 2. Canonical
metric (i.e. a = 1/2 in Eq.2) is used in both examples to show that the gained performance is due to
algorithmic innovation but not an extra tuned knob. An additional experiment on leading eigenvalue
problem is deferred to Apdx. Q, where we also compare the convergence rates and time consumptions
of different algorithms, test various choices of metrics, and study why our retraction is tailored to our
algorithm. Good performance is observed in all three examples.
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Algorithm 2: Adam on Stiefel manifold St(n,m)

Hyperparameter :η ∈ (0,+∞), β1 ∈ [0, 1), β2 ∈ [0, 1), 0 < ϵ≪ 1, number of iterations N
Initialization :X0, V0, Y0, p0, q0 s.t. X⊤

0 X0 = I , X⊤
0 U0 = 0, Z0 + Z⊤

0 = 0, p0 = p⊤0
1 for i = 0, · · · , N − 1 do
2 Compute ‘gradients’: fi = 1−b

2

(
X⊤

i
∂f
∂X (Xi)− ∂f

∂X (Xi)
⊤Xi

)
; gi = (I −XiX

⊤
i ) ∂f

∂X (Xi)

3 2nd-moment estimation: pi+1 = β2pi + (1− β2)f
◦2
i ; qi+1 = β2qi + (1− β2)g

◦2
i

4 Update ϕ̂2: Ui+ 1
2
= β1Ui − 3a−2

2 ηUiZi − (1− β1)gi

5 Update ϕ̂1: Zi+1 = β1Zi − (1− β1)fi;

Xi+ 1
2
= Xi + η

√
1− βi+1

2 Xi

(
Zi+1 ⊘ (p

◦ 1
2

i+1 + ϵ)
)

6 Update ϕ̂3: Ũ =
√
1− βi+1

2 (I −Xi+ 1
2
(X⊤

i+ 1
2

Xi+ 1
2
)−1X⊤

i+ 1
2

)(Ui+ 1
2
⊘ (q

◦ 1
2

i+1 + ϵ));

X† = Xi+ 1
2
+ ηŨX⊤

i+ 1
2

Xi+ 1
2

; Xi+1 = X†(X
⊤
† X†)

− 1
2 ; Ui+1 = Ui+ 1

2
− ηXi+ 1

2
Ũ⊤Ui+ 1

2

7 end
8 return XN

Figure 1: Projection Robust Wasserstein Distance (PRW) tested on MNIST and Shakespeare plays. Data points
are features extracted by a pre-trained model. The mean optimal transport value is taken among all digits or
movie pairs; larger mean optimal transport value means more effective orthogonal projection. Our method makes
PRW more effective by getting the best local minimum (largest optimal transport value) and fast convergence.

More experimental details are in Apdx. P.

3.1 PROJECTION ROBUST WASSERSTEIN DISTANCE

Projection Robust Wasserstein Distance (PRW) (Paty and Cuturi, 2019; Lin et al., 2020) is a notion
recently proposed to improve the robustness of standard Wasserstein metric, especially in high-
dim settings. The idea is to simultaneously look for a best projection from high-dim data (xi, yj ,
respectively with weights ri, cj) to low-dim ones, and an entropic regularized optimal transport plan
between projected data, i.e.

max
U∈St(d,k)

min
π∈Rn×n

+ ,
∑

j πij=ri,
∑

i πij=cj

n∑
i=1

n∑
j=1

πi,j∥U⊤xi − U⊤yj∥2 + η⟨π, log(π)− 1n1
⊤
n ⟩

This problem is geodesically-nonconvex w.r.t. the Stiefel variable U (Jordan et al., 2022), thus
computationally extra-challenging to Stiefel optimizers. Lin et al. (2020) proposed an effective
method based on alternations between a full Sinkhorn step (Cuturi, 2013), given the current projection,
and an optimization step that improves the projection. In particular, they developed Riemmanian
optimizer with projection and retraction (RGAS) and its adaptive learning rate version (RAGAS). We
replace RGAS and RAGAS by our optimizer and others, and test on the hardest experiments in Lin
et al. (2020), namely MNIST and Shakespeare.
Results are in Fig.1. Our method is observed to find the largest value of PRW and thus the best
projection among the tested, which implies the best performance. Details of setup are in Apdx. P.2.

3.2 HOW COULD ORTHOGONALITY IMPROVE VANILLA VISION TRANSFORMER (VIT)?
This section explores the possibility of making self-attention in Transformer models (Vaswani et al.,
2017) orthogonal. The intuition is, if we interpret each attention head as a characterization of interac-
tions between tokens, maybe linearly dependent interactions shouldn’t be double-counted so that the
characterization can be more efficient and robust. In addition, there is unlikely just one way in which
tokens relate to each other, and multiple heads handle different characterizations in parallel. So our
second question is, should different heads also be orthogonal to each other? To formulate precisely,
we follow the notation of Vaswani et al. (2017) and only review relevant parts: a Scaled Dot-Product
Multihead Attention is given by MultiHead(Q,K, V ) = Concat(head1, ..., headnhead)W

O, where

8
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ViT trained from scratch (6.3M parameters) test error (mean ± std of 5 tests, in percentage)
Method CIFAR 10 CIFAR 100

Orthogonality
across heads

Stiefel SGD (ours, same as Tao and Ohsawa (2020)
in this case)

8.85 ± 0.35 31.51 ± 0.39

Projected Stiefel SGD(Li et al., 2020) 9.65 ± 0.23 32.14 ± 0.48
Regularizer SGD 9.58 ± 0.21 32.77 ± 0.23
Stiefel Adam (ours) 8.81 ± 0.22 32.48 ± 0.24
Projected Stiefel Adam(Li et al., 2020) 11.58± 0.24 33.98 ± 0.12
Regularizer Adam 11.09± 0.26 33.90 ± 0.24

Orthogonality
only within
each head

Stiefel SGD (ours) 8.32 ± 0.39 30.20 ± 0.55
Projected Stiefel SGD (Li et al., 2020) 8.90 ± 0.18 31.71 ± 0.26
Regularizer SGD 9.78 ± 0.14 33.08 ± 0.42
Momentumless Stiefel SGD (Wen and Yin, 2013) ⋄ 12.90± 0.22 34.84 ± 0.24
Stiefel Adam (ours) 8.46 ± 0.20 31.04 ± 0.35
Projected Stiefel Adam (Li et al., 2020) 10.77± 0.30 33.73 ± 0.54
Regularizer Adam 11.53± 0.28 34.72 ± 0.67

No constraints
(baseline)

SGD 9.75 ± 0.37 32.61 ± 0.30
Adam 9.52 ± 0.32 33.15 ± 0.50
AdamW(Loshchilov and Hutter, 2017) 9.05 ± 0.43 33.11 ± 0.47

Advanced methods
with known error

PVT-T (12.8M parameters) Wang et al. (2021) 9.49 30.38
DeiT-T (5.3M parameters) Touvron et al. (2021) 11.62 32.48

⋄: only tested for ‘within each head’ because it becomes ortho. SGD (Tao and Ohsawa, 2020) with 0 momentum
for ‘across head’.
Table 1: Orthogonal Vision Transformer (Stiefel-ViT) trained from scratch for CIFAR. For each of the 4 classes
({across, only within}×{SGD,Adam}), blue is best within that class. Underlined is the best over all classes, and
bold faced are methods from this paper.

headi = Attention(QWQ
i ,KWK

i , V WV
i ), Attention(Q̃, K̃, Ṽ ) = softmax( Q̃K̃⊤

√
dk

)Ṽ , matrices

WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk , WV
i ∈ Rdmodel×dv and WO ∈ Rnheaddv×dmodel correspond to train-

able parameters. The three input matrices Q, K and V all have dimension sequence_length×dmodel.
dk and dv are usually smaller than dmodel.

For orthogonality only within head, we require that WQ
i , WK

i are in St(dmodel, dk). This needs
dmodel ≥ dk, which holds in most cases. For orthogonality across heads, we need dmodel ≥ nheaddk,
which is satisfied in many popular models, and require Concat(WQ

i , i = 1..., nhead), Concat(WK
i , i =

1..., nhead) to be in St(dmodel, nheaddk), which means it contains not only ‘orthogonality only within
head’, but also extra cross-head orthogonality.

We test these two types of constraints on vanilla ViT (Dosovitskiy et al., 2020), trained from scratch.
Results summarized in Tab. 1 (and Fig. 2 in Apdx. P.3) show: (1) requiring each head to be orthogonal
just within itself leads to the most significant improvement of performance; (2) additionally requiring
heads to be orthogonal to each other will actually be less effective, although that is still better than
requiring no orthogonality; (3) the choice of optimizer matters: our methods give the best results and
out-perform non-constrained baselines in all cases, but not all existing Stiefel optimizers can beat
non-constrained baselines in all cases; (4) momentum significantly helps train orthogonal ViT; (5)
simply imposing orthogonal constraint (with our optimizer) makes ViT outperform some carefully
designed models of the same size that are trained from scratch (Tab. A3 in Zhang et al. (2022)).
Note models trained from scratch are very different from pre-trained ViT. To have some realistic
expectation of the performance of trained-from-scratch ViT, recall, for example, an improved ViT,
PVT-T (Wang et al., 2021), has 9.49% and 30.38% error on CIFAR 10 and CIFAR 100, using
12.8M parameters, and another improvement, DeiT-T (Touvron et al., 2021), achieves 11.62% and
32.48% respectively with 5.3M parameters. Our model in Tab.1 (and Fig.2 in Apdx. P.3) uses 6.3M
parameters. More details about this experiment can be found in Apdx. P.3.
Remark 1 (No additional hyperparameters needed for the Stiefel part). Our Stiefel-ViT model has
both non-Euclidean and Euclidean parameters, the latter due to the reason that we don’t impose
orthogonality on feedforward layers and WV

i . Our optimizer can use the same learning rate for both
sets of parameters. This is because the optimizer is the time discretization of ODEs, and synchronous
discretization is sufficient for convergence. This contrasts with other approaches such as projected
Steifel SGD/Adam (Li et al., 2020), where learning rates for these two sets of parameters need to be
adjusted separately and could differ by 40 times in some tasks. See Apdx. P.1 for more discussion.
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Notation For simplicity, we denote G := ∂f
∂X when there is no confusion.

A A QUICK SUMMARY OF OPTIMIZERS WE EXPERIMENTALLY COMPARED TO
IN THIS PAPER

manifold
preserving

Optimizer Pros and Cons

✓
Stiefel SGD/Adam
(Ours)

✓ allows a family of metrics
✓ fast iterative method for position retraction
✓ momentum needs no retraction
✓ learning rate can be made adaptive
✓ same learning rate for Stiefel & Euclidean parameters

✓
Projected Stiefel
SGD/Adam (Li
et al., 2020)

✓ learning rate can be made adaptive
✗ slower iterative method for position retraction; fast if early
stopped but then manifold preservation is lost
✗ momentum needs projection every iteration
✗ different learning rates for Stiefel & Euclidean parameters

✓
Momentumless
Stiefel (S)GD (Wen
and Yin, 2013)

✗ no momentum

✗
Regularizer (Cisse
et al., 2017)

✓ fast computation
✗ sensitive to regularization strength

Table 2: A summary of pros and cons of existing optimizers.

B TECHNICAL REMARKS ON GEOMETRIC MECHANICS

B.1 INTUITION OF THE COTANGENT BUNDLE

If we require exact Stiefel manifold preservation for all time, i.e., X(t)⊤X(t) = I , a simple time
differentiation gives a 2nd-order constraint X(t)⊤Q(t) +Q(t)⊤X(t) = 0 for Q = Ẋ . This is why
momentum Q has the additional structure Q(t) ∈ T ∗

X(t)St.

B.2 WHAT EXACTLY IS MOMENTUM?

Through this paper, we abused notation and called Q := Ẋ momentum, following the common
practice of the community. It really should be called velocity instead, because although in canonical
Euclidean spaces this doesn’t make much a difference, for mechanical systems on manifolds they are
not the same thing. For example, for our case, the geometrically intrinsic momentum variable should
be given by Legendre transform

P :=
∂L

∂Ẋ
= r(I − aXX⊤)Ẋ (15)

instead, and velocity Q is in the tangent space while momentum P is in the cotangent space. In the
paper we used the identity map for an isomorphism between the tangent and cotangent spaces, but if
we’d like to make our variational formulation more elegant by viewing the kinetic energy as a natural
pairing between the velocity and momentum variables, then the isomorphism should be given by the
metric as in (15).

None of these affect the correctness or the efficacy of results in this paper. This discussion is just
about terminology.

B.3 THE SPECIAL CASE OF St(n, n) AND ITS RELATION WITH O(n) AND SO(n)

When n ≥ m, St(n,m) ∼= O(n)/O(n − m); when n > m strictly, we also have St(n,m) ∼=
SO(n)/SO(n − m). However, in the special case of n = m, St(n, n) ∼= O(n) is not connected
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unlike the n > m cases. Since our optimizer is based on the discretization of continuous dynamics, it
cannot make jumps and thus just optimizes on a connected component of St(n,m), which means for
the special case of n = m, it is, to be precise, optimizing on SO(n) but not O(n), although a similar
complication is nonexistent when n > m.

C DETAILS ABOUT THE PER-ITERATION COMPLEXITY AND COMPUTATIONAL
COST FOR OUR ALGORITHMS

The most costly operation in our algorithms is the n×m matrix multiplication (note n > m). The
computation for the matrix exponential and square root of matrix inversion, is cautiously designed to
only deal with matrices of dimension m×m (see Apdx. M.1M.2), and thus admits at mostO(m3) at
each step (particularly, forward Euler only has the complexity ofO(m2) while Cayley map isO(m3)).
For the inner loop of the square root of matrix inversion (Algo. 3), due to its quadratic convergence
(Higham, 1997), it takes O(log log(1/u)) number of steps to achieve the machine precision u. Note
early stopping can be applied to this loop so that the complexity can be further reduced while the
order of the overall method (1st-order) is still maintained. The combination of all the above gives
complexity O(nm2) +O(m3 log log(1/u))5.

Commonly used optimizers on Stiefel manifold (e.g. Tab. 2) also have per-iteration complexity of
O(nm2). Although it is difficult to compare them with our method in terms of the constant prefactors
in respective complexity bounds, we can do some heuristics to estimate these prefactors, which
will demonstrate the low-cost advantage of our method. For our Stiefel SGD (Algo. 1), we
count the numbers of matrix multiplications needed per iteration, each of which costs nm2. Namely,
step 2: 2 multiplications; step 3: 1; step 4: 1; step 5: 6. In step 6 we need to call Algo. 3 for
computing matrix root inversion, and a closer look gives 3 m3-cost matrix multiplications in each
iteration of Algo. 3. Since Fig. 5(c) shows that 8 inner iteration is enough for this inner loop to
converge under double precision, in total, 10 nm2-cost matrix multiplications and 24 m3-cost matrix
multiplications are needed in each (outer) iteration of our optimizer (Algo. 1). We also count the
number of matrix multiplications needed for other aforementioned algorithms. For Momentumless
Stiefel (S)GD (Wen and Yin, 2013), the smartly designed Cayley map retraction takes about 10
times of nm2-cost matrix multiplications and one inversion for a (2m)× (2m)-sized matrix in each
iteration. In comparison, Projected Stiefel SGD Li et al. (2020) needs 9 nm2-cost matrix
multiplications for projecting momentum and 6 nm2-cost matrix multiplications each iteration of
Cayley loop. Since 8 iterations are needed to compute the Cayley transform to single precision (see
fig. 5; note it is just single precision instead of double precision by our inner loop), a total of 57
nm2-cost matrix multiplications are needed per outer iteration.

The above estimation is just for the part on maintaining the structure of the position variable. Let’s now
also discuss the momentum variable. Our carefully designed way of introducing momentum bypasses
the costly moving momentum while keeping it in tangent spaces. Note Projected Stiefel
SGD first moves momentum in the Euclidean space and then uses a cleverly designed projection,
which markedly improves computational efficiency, but it still devotes 9 matrix multiplications to just
the momentum projections, let alone the fact that needing projection means less accuracy. To add to
this discussion, parallel transport is another existing way of moving momentum, but it cannot even be
solved with O(nm2) complexity.

Altogether, the above estimations heuristically show that our prefactor is close to that in
Momentumless Stiefel (S)GD but much smaller than those in existing methods that have
momentum. This matches the experimental evidence in Fig. 3.

D TERMINOLOGIES OF RIEMANNIAN OPTIMIZATION

In each iteration of optimization, gradient needs to be a vector in tangent space, and the operation that
maps nonintrinsic gradient to the tangent space is called projection. Then, the variable goes one step
on manifold given the tangent vector, ideally via the exponential map, which is, however, expensive
or even not admitting a closed form computation, and approximation known as retraction is used.

5u stands for machine precision, which is a very small number
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When momentum, a tangent vector, is involved, at the same time we update the position, tangent
space is also changed. An intrinsic way to move tangent vectors is by parallel transport, which is an
isomorphism of the tangent spaces of two points connected by a geodesic.

E ABOUT THE Y, V DECOMPOSITION

E.1 THE GEOMETRIC VERSION AND THE DYNAMICAL VERSION OF THEIR STRUCTURAL
CONSTRAINTS

A tangent vector Q ∈ TXSt can be decomposed, as studied in Edelman et al. (1998); Absil et al.
(2009), into

Q =
(
X X⊥)(Y

Z

)
= XY +X⊥Z, (16)

where X ∈ St(n,m), Y ∈ Rm×m, Z ∈ R(n−m)×m; X⊥ ∈ Rn×(n−m) is a matrix in the orthogonal
complement of X , i.e., X⊤ ·X⊥ = 0m×(n−m). Let V = X⊥Z. We have X ⊥ V and{

Y =X⊤Q

V =Q−XY = (I −XX⊤)Q.
(17)

The above representation immediately implies Y is a skew-symmetric matrix since

X⊤Q+Q⊤X = 0⇒ Y ⊤ = −Y. (18)

In our derivation, however, X and Q are variables (they really should be X(t) ∈ St, Q(t) ∈ TX(t)St)
that change with time, and this poses a new challenge. More precisely, given the Q dynamics, i.e. Q̇,
there could be infinitely many ways of assigning Ẏ and V̇ so that they together produce the given
Q̇; however, in general they do not maintain the tangent decomposition structures. More precisely,
starting with

Y (0)⊤ + Y (0) = 0 and X(0)⊤V (0) = 0

(and hence X(0)⊤Q(0) +Q(0)⊤X(0) = 0), one may not have

Y (t)⊤ + Y (t) = 0 and X(t)⊤V (t) = 0 for t > 0

despite that X(t)⊤Q(t) + Q(t)⊤X(t) = 0 will still be guaranteed. However, we have found a
nontrivial choice of Ẏ and V̇ (Eq.8), so that the (static) geometric constraint becomes dynamically
true, i.e. Y (t)⊤ + Y (t) = 0 and X(t)⊤V (t) = 0 for all t. Therefore we can simply maintain the
decomposition {

Y (t) =X(t)⊤Q(t)

V (t) =Q−XY = (I −X(t)X(t)⊤)Q(t).

E.2 THE ADVANTAGE OF THE Y, V DECOMPOSITION

The Y, V decomposition is near ‘orthogonal’ in the sense that XY ⊥ V and it makes the metric
separable. More precisely, consider our Y, V representation. ∀∆i ∈ TXSt, i = 1, 2, if we denote
Y∆,i = X⊤∆i and V∆,2 = (I −XX⊤)∆i, which means ∆i = XY∆,i + V∆,i, then the metric (2)
can be rewritten as

gX(∆1,∆2) =Tr((XY∆,1 + V∆,1)
⊤(I − aXX⊤)(XY∆,2 + V∆,2))

=(1− a)Tr(Y ⊤
∆,1Y∆,2) + Tr(V ⊤

∆,1V∆,2).

This means the metric of the tangent space is a linear combination of the metrics of Y and V -directions.
Therefore, this gives an intuition why our continuous dynamics and numerical discretization in the
following can handle the family of canonical-type metrics.
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F CHOICE OF γ

Although monotonicity of r suffices for the convergence, choices of γ = ṙ/r affect the convergence
speed just like in Euclidean cases (e.g.,Wibisono et al. (2016); Wilson et al. (2021)). Popular choices
include constant γ and γ(t) = 3/t, but methods proposed here work for all γ’s (e.g., γ = 3/t+ ctp

for variance reduction Tao and Ohsawa (2020)). However, for simplicity we will use constant γ from
now on.

G PROOF OF THEOREM 1

Proof of Theorem 1, Part 1. Given the Lagrangian

L(X, Ẋ,Λ, t) = r(t)

[
1

2
Tr
(
Ẋ⊤(I − aXX⊤)Ẋ

)
− f(X)

]
− 1

2
Tr
(
Λ⊤(X⊤X − I)

)
, (19)

Legendre transform gives momentum P as

P :=
∂L

∂Ẋ
= r(I − aXX⊤)Ẋ.

One can equivalently switch the Hamiltonian picture, and the corresponding Hamiltonian is H :
T ∗St→ R with H(X,P ) := Tr(P⊤Ẋ)− L

H(X,P ) =
1

2r
Tr
[
P⊤(I − bXX⊤)P

]
+ rf(X) +

1

2
Tr
[
Λ⊤(X⊤X − Im×m)

]
(20)

where b := a
a−1 solves (I − aXX⊤)(I − bXX⊤) = I . Hence we get the following Hamilton’s

equations 
Ẋ =

∂H

∂P
=

1

r
(I − bXX⊤)P

Ṗ =− ∂H

∂X
=

b

2r

(
PP⊤X +XP⊤P

)
− r

∂f

∂X
−XΛ

(21)

Since X⊤X ≡ I , which gives Ẋ⊤X +X⊤Ẋ = 0. So we have X⊤P + P⊤X = 0. Take derivative
to get Ẋ⊤P +X⊤Ṗ + Ṗ⊤X + P⊤Ẋ = 0, and use the condition that Λ is symmetric, we can solve
Λ is

Λ =
b+ 2

2r
P⊤P − b

2r
X⊤PP⊤X − r

2
(X⊤G+G⊤X) (22)

And (X,P ) system becomes
Ẋ =

∂H

∂P
=

1

r
(I − bXX⊤)P

Ṗ =− ∂H

∂X
=

b

2r
PP⊤X − 1

r
XP⊤P +

b

2r
XX⊤PP⊤X − rG+

r

2
(XX⊤G+XG⊤X)

(23)
By a coordinate change Q := 1

r (I − bXX⊤)P ∈ TXSt and define friction parameter γ := ṙ/r,
Eq. (23) becomes

Q̇ =− ṙ

r2
(I − bXX⊤)P +

1

r
(I − bXX⊤)Ṗ − b

r
ẊX⊤P − b

r
XẊ⊤P

=− γQ−XQ⊤Q− 3a

2
(I −XX⊤)QQ⊤X −G+

1 + b

2
XX⊤G+

1− b

2
XG⊤XẊ =Q

Q̇ =− γQ−XQ⊤Q− 3a

2
(I −XX⊤)QQ⊤X −G+

1 + b

2
XX⊤G+

1− b

2
XG⊤X

(24)

In order to prove the second part of Thm. 1, we need the following lemma.
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Lemma 1 (First-order stationary point). If X ∈ St s.t. G− 1+b
2 XX⊤G− 1−b

2 XG⊤X = 0, then
∀∆ ∈ TXSt, we have Tr(G⊤∆) = 0, which means X is a first-order stationary point of f .

Proof. Left multiply both side of G− 1+b
2 XX⊤G− 1−b

2 XG⊤X = 0 by XX⊤, we have XX⊤G =

XG⊤X , further we also have G = XG⊤X .

So we have

Tr(G⊤∆) =Tr(X⊤GX⊤∆)

=− Tr(X⊤G∆⊤X)

=− Tr(∆⊤XX⊤G)

=− Tr(∆⊤G)

Thus we have Tr(∆⊤G) = 0,∀∆ ∈ TXSt, which means X is a 1-order stationary point of f .

Proof of Theorem 1, Part 2. Let t → (X(t), Q(t)) be a solution of Eq. (7). Define the ‘energy’
function E : TSt→ R as

E(X,Q) :=
1

2
Tr(Q⊤(I − aXX⊤)Q) + f(X) (25)

This gives a Lyapunov function. So we have a neighbourhood U of (X∗, 0) such that E(X,Q) ≥
f(X) ≥ f(X∗) for any (X,Q) ∈ U . More over, since X⊤Q+Q⊤X ≡ 0, we have

dE

dt
(X(t), Q(t)) =Tr(Q⊤(I − aXX⊤)Q̇)− aTr(Q⊤(ẊX⊤)Q) + Tr

(
∂f

∂X

⊤
Ẋ

)
(26)

Using the fact that X⊤Q + Q⊤X ≡ 0, we have Tr(Q⊤XQ⊤Q) = 0 and Tr(Q⊤XX⊤G) +
Tr(Q⊤XG⊤X) = 0, which gives

dE

dt
(X(t), Q(t)) =− γTr(Q⊤(I − aXX⊤)Q) ≤ 0 (27)

Since we have r monotonely increasing, which means γ = r′/r > 0,∀t. Then we have the energy is
decreasing monotonically, implying that Q = 0 when converged. By lemma 1 that the limiting point
for X(t) is a first order stationary point, which is X∗ since it is an isolated local minimum.

Remark 2. For the sake of length, rate of convergence in specific situations (e.g., under geodesic
convexity) will not be quantified, but it should be obtainable via tools in Wilson et al. (2021);
Duruisseaux and Leok (2021).

H PROOF OF THEOREM 2

Proof. We can derive a new system of ODEs as

d

dt
(X⊤X) =X⊤Q+Q⊤X

d

dt
(X⊤Q) =− γX⊤Q− (I −X⊤X)Q⊤Q− 3a

2
X⊤(I −XX⊤)QQ⊤X

−X⊤G+
1 + b

2
X⊤XX⊤G+

1− b

2
X⊤XG⊤X

with viewing X⊤G as a matrix function of t following Eq. (7). By the uniqueness and existence of
ODE, we have that this system of ODE with variable (X⊤X,X⊤Q) and initial condition (I, 0) has
the unique solution X⊤X ≡ I,X⊤Q ≡ 0.
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I XYV SYSTEM IS STRUCTURE PRESERVING

Theorem 8 (Constrained optimization with unconstrained dynamics). As long as the initial condition
of (8) satisfies

X(0)⊤X(0) = Im×m, Y (0) + Y (0)⊤ = 0m×m, X(0)⊤V (0) = 0m×m,

then the dynamics automatically satisfies the same constraint, i.e.,

X(t)⊤X(t) = Im×m, Y (t) + Y (t)⊤ = 0m×m, X(t)⊤V (t) = 0m×m, (28)

Proof. By the uniqueness of solution of ODE, we know that the following ODE for (X⊤X,Y ⊤ +
Y,X⊤V ), derived from Eq. (8), has a unique solution if view V ⊤V as an independent variable.

d

dt

(
X⊤X

)
=X⊤XY + Y ⊤X⊤X +X⊤V + V ⊤X

d

dt
(Y ⊤ + Y ) =− γ(Y ⊤ + Y )

d

dt
(X⊤V ) =− γX⊤V + Y X⊤V +

3a− 2

2
X⊤V Y + (I −X⊤X)V ⊤V

(29)

We can see that given initial condition (X⊤
0 X0, Y

⊤
0 + Y0, X

⊤
0 V0) = (I, 0, 0), the unique solution

is (X⊤X,Y ⊤ + Y,X⊤V ) ≡ (I, 0, 0). So we know that the constraint in Eq. (28) are preserved by
continuous dynamics Eq. (8).

J PROOF OF THEOREM 3

Proof. We assume the initial condition (X0, Y0, V0) satisfies constraint (28).

For Eq. (9), we check X⊤(t)X(t) ≡ 0, Y (t) + Y ⊤(t) ≡ 0 and X⊤(t)V (t) ≡ 0.

d

dt
(Y ⊤ + Y ) =Ẏ ⊤ + Ẏ

=− γ(Y + Y ⊤)

with initial condition Y0 + Y ⊤
0 = 0, we have Y + Y ⊤ ≡ 0

d

dt
X⊤V =Ẋ⊤V +X⊤V̇

= Y ⊤XV

with initial condition X⊤
0 V0 = 0, we have X⊤V ≡ 0

d

dt
X⊤X =X⊤Ẋ + Ẋ⊤X

=X⊤XY +X⊤V + Y ⊤X⊤X + V ⊤X

=X⊤XY + Y ⊤X⊤X

Using the conclusion Y + Y ⊤ ≡ 0 that we have just proved and initial condition X⊤
0 X0 = I , we

have X⊤X ≡ 0.

For Eq. (10), we have the exact solution of ϕ2 is given by X(t) = X(0), Y (t) = Y (0), and with
M := γIm×m − 3a−2

2 Y (t),

V (t) = V (0) expm(−Mt)−
(
I −X(0)X(0)⊤

) ∂f

∂X
(X(0))M−1(I − expm(−Mt)), (30)
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For Eq. (11), we need to check d
dt

(
X⊤(t)X(t)

)
= 0 and d

dt (X
⊤(t)V (t)) = 0.

By the uniqueness of solution of ODE, we know that the following ODE for (X⊤X,X⊤V, V ⊤V ),
derived from Eq. (11), has a unique solution

d

dt

(
X⊤X

)
=X⊤V + V ⊤X

d

dt
(X⊤V ) =(I −X⊤X)V ⊤V

d

dt
(V ⊤V ) =− V ⊤XV ⊤V − V ⊤V X⊤V

(31)

We can see that given initial condition (X⊤
0 X0, X

⊤
0 V0, V

⊤
0 V0) = (I, 0, V ⊤

0 V0), the unique solution
is (X⊤X,X⊤V, V ⊤V ) ≡ (I, 0, V ⊤

0 V0). So we know that the constraint X⊤X = I , X⊤V = 0 are
preserved by continuous dynamics Eq. (11).

K PROOF OF THEOREM 4

Proof. Eq. (12) is structure preserving. We use the idea from Tao and Ohsawa (2020). Assume the
initial value X0, Y0 and V0 satisfies the constraint, i.e., X⊤

0 X0 = I , Y0 + Y ⊤
0 = 0 and X⊤

0 V0 = 0.
For the first step updating Y , due to the special form of the derivative of Y that is always skew-
symmetric, we can tell that Yh is also skew-symmetric and Yh+Y ⊤

h = 0. And the skew-symmetricity
of Yh gives us that

X⊤
h Xh = expm(hY ⊤

h )X⊤
0 X0expm(hYh)

⊤ = 0

X⊤
h Vh = expm(hY ⊤

h )X⊤
0 V0 = 0

so all 3 conditions in Eq. (28) are satisfied, meaning Eq. (12) is structure preserving.

Eq. (14) is structure preserving.

Given initial condition X⊤
0 X0 = I and X⊤

0 V0 = 0, we check constraint X⊤
h Vh = 0.

X⊤
h Vh = (1− γh)X⊤

0 V0 +
3a− 2

2
hX⊤

0 V0Y0 − hX⊤
0

(
I −X0X

⊤
0

) ∂f

∂X
(X0) = 0

Eq. (13) is structure preserving. First, we show that the discretization is a one order approximation
of the exact solution. We get Vh and X† by forward Euler. And since X0 and V0 satisfies the
constraint 28, we have

X⊤
† X† =(X0 + hV0)

⊤(X0 + hV0)

=(X⊤
0 X0 + hX⊤

0 V0 + hV ⊤
0 X0 + h2V ⊤

0 V0)

=I + h2V ⊤
0 V0

which means Xh = X† +O(h2) = X0 + hV0 +O(h2), indeed a one order approximation of exact
solution.

Next we show the numerical discretization is structure preserving. For constraint X⊤V = 0, we can
check that

X⊤
† Vh = X⊤

0 V0 + hX⊤
0 X0V

⊤
0 V0 − hX⊤

0 X0V
⊤
0 V0 − h2V ⊤

0 X0V
⊤
0 V0 = 0

which gives us X⊤
h Vh = 0. For restriction X⊤X = I , we have

X⊤
h Xh = (X⊤

† X†)
− 1

2X⊤
† X†(X

⊤
† X†)

− 1
2 = I

20



Published as a conference paper at ICLR 2023

L PROOF OF THEOREM 5

Proof. The composition of structure-preserving maps is structure preserving. ϕ1◦ϕ2◦ϕ3 is a 1st-order
integrator due to operator splitting theory McLachlan and Quispel (2002), and its convergence order
is kept after any ϕj gets replaced by ϕ̄j as long as the difference between ϕ̄j and ϕj is higher-order
Tao (2016).

M DISCUSSIONS ON OUR NUMERICAL INTEGRATOR

M.1 BENEFITS OF THE STEP X†(X
⊤
† X†)

− 1
2

To remain the position X on the manifold, certain techniques that pull point back to manifold are
used. For example, in Li et al. (2020); Lin et al. (2020) for an n-by-m matrix X that is not on the
manifold, they perform QR decomposition X = QR and update the new X to be the first m columns
of Q. However, the QR decomposition is not unique and such step does not have a closed form
expression. More importantly, it cannot help design a structure-preserving scheme.

Instead, our algorithm has a similarly functioned step via the square root of the inverse matrix
Xh = X†(X

⊤
† X†)

−1/2. In this case, it follows that X⊤
h Xh = I . This step is carefully designed

from discretization of ODE ensuring the structure of X , Y , V is preserved at the same time. Through
this update, we are able to obtain a structure-preserving method with a closed form expression (see
the proof of Theorem 4 in Apdx. K). Note that the square root of the inverse matrix can be iteratively
solved with low computational cost (see Algo. 3; Higham (1997)). It was proved to be quadratically
convergent, which means only a couple of iterations are needed to reach machine precision, and
only matrix multiplications are needed. This lead to our inner loop is more efficient in both cost per
iteration and convergence speed comparing to Li et al. (2020). See Sec. Q for more details.

Algorithm 3: Algorithm for matrix root and matrix root inversion (Eq. (2.6) in Higham (1997))
Input: Symmetric m-by-m matrix A, tol
Initialization :Y0 = A, Z0 = Im×m, k = 0

1 while ∥Y 2
k −A∥ ≥ tol do

2 Yk+1 = 1
2Yk(3I − ZkYk)

3 Zk+1 = 1
2 (3I − ZkYk)Zk

4 k ← k + 1
5 end
6 return Yk ≈ A

1
2 and Zk ≈ A− 1

2

Another benefit of this step is that it is more stable to the truncation error produced by finite machine
precision (which can become a significant issue if the model is trained in single accuracy on consumer
graphic cards or even quantized). Although X⊤

† X† follows the expression

X⊤
† X† =(X0 + hV0)

⊤(X0 + hV0)

=(X⊤
0 X0 + hX⊤

0 V0 + hV ⊤
0 X0 + h2V ⊤

0 V0)

=I + h2V ⊤
0 V0,

the stability of X†(X
⊤
† X†)

−1/2 is much better than X†(I + h2V ⊤
0 V0)

−1/2. Particularly, when
n = m, it is an identical map if there is no machine error.

M.2 SIMPLIFICATION OF MATRIX EXPONENTIAL

There are two steps in the discretizations (30) and (12) that use the matrix exponential of m ×m
matrices. Similar matrix exponential is also shown in Li et al. (2020); Wen and Yin (2013) but
with matrices of much larger size n× n (note n > m). We introduce two ways of simplifying the
computation of the matrix exponential. First, note that Cayley transform is a 2nd-order structure-
preserving approximation of the matrix exponential, defined as follows

Cayley(hY ) = (I − hY/2)−1(I + hY/2) = exp(hY ) +O(h3). (32)
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By applying the Cayley transform, the computation is reduced to an inversion of matrix and matrix
multiplication while it still keeps the variable on the manifold.

Additionally, we can use the first-order forward Euler to discretize the ODEs for the two steps, which
is also the first-order truncation of the matrix exponential. In this case, the X update in scheme (12)
is just Xh = X0 + hYh and is no longer structure-preserving but structure-preserving property of the
overall algorithm is not affected (see Thm. 6).

For scheme (30), its Cayley map approximation is structure preserving and defined as follows

Vh = V0 Cayley(−γhI + 3a− 2

2
hV0Y0)−

1− exp(−γh)
γ

(I −X0X
⊤
0 )

∂f

∂X0
. (33)

Note the variable V will still satisfy the constraint (28) even if we change the update of V to forward
Euler

Vh = V0 − γhV0 +
3a− 2

2
hV0Y0 −

1− exp(−γh)
γ

(I −X0X
⊤
0 )

∂f

∂X0
. (34)

In fact, the above two ways and the original matrix exponential share the same complexity per
iteration. Also, we do not find any significant difference in the convergence in numerical experiments
(Apdx. Q). Hence we will always use forward Euler as default, which has the lowest computational
cost.

M.3 PROOF OF THEOREM 6

Proof. The composition of ϕ̄1, ϕ̄2, ϕ̄3 in any order will give a structure preserving scheme, because
in Sec. K we proved that each of them is structure preserving.

When we apply it in specific order ϕ̄3 ◦ ϕ̄1 ◦ ϕ̄2, we prove when X⊤X = I is no longer preserved by
ϕ̄2, the assembled scheme is still structure preserving. We only need to prove that [Xh, Yh, Vh] =
ϕ̄3(x0, Y0, V0) satisfies the following: when initial condition satisfies Y ⊤

0 + Y0 = 0 and X⊤
0 V0 = 0,

we have X⊤
h Xh = I , Y ⊤

h + Yh = 0 and X⊤
h Vh = 0.

Since we have the step Xh = X†(X
⊤
† X†)

−1/2, we have X⊤
h Xh = I . Y is not updating so

Yh + Y ⊤
h = 0.

X⊤
† Vh = X⊤

0 V0 − hX⊤
0 X0V

⊤
0 V0 + hX⊤

0 X0V
⊤
0 V0 − h2X⊤

0 X0V
⊤
0 X0V

⊤
0 V0 = 0

As a result, X⊤
h Vh = (X⊤

† X†)
−1/2X⊤

† Vh = 0

M.4 THE INTEGRATOR IN RESCALED COORDINATES USED IN ALGORITHM 1

ϕ̃1 :


Xη =X0 + ηZh

Zη =µZ0 −
1− b

2

(
X⊤

0

∂f

∂X0
− ∂f

∂X0

⊤
X0

)
Uη =U0

ϕ̄2 :



Xη =X0

Zη =Z0

Uη =µU0 +
3a− 2

2
ηU0Z0

−
(
I −X0X

⊤
0

) ∂f

∂X0
,

ϕ̄3 :


X† =X0 + ηU0X

⊤
0 X0

Xη =X†(X
⊤
† X†)

−1/2

Zη =Z0

Uη =U0 − ηX0U
⊤
0 U0
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M.5 THE INTEGRATOR IN RESCALED COORDINATES USED IN ALGORITHM 2

‘gradient’ and 2-order momentum :



fi =
1− b

2

(
X⊤

i

∂f

∂X
(Xi)−

∂f

∂X
(Xi)

⊤Xi

)
gi =(I −XiX

⊤
i )

∂f

∂X
(Xi)

pi+1 =β2pi + (1− β2)f
◦2
i

qi+1 =β2qi + (1− β2)g
◦2
i

ϕ̂1 :


Xi+1 = Xi + η

√
1− βi+1

2 Zi+1 ⊘ (p
◦1/2
i+1 + ϵ)

Zi+1 = β1Zi − (1− β1)fi
Ui+1 = Ui

ϕ̂2 :


Xi+1 = Xi

Zi+1 = Zi

Ui+1 = β1Ui − 3a−2
2 ηUiZi − (1− β1)gi

ϕ̂3 :



Ũ =

√
1− βi+1

2 (I −Xi(X
⊤
i Xi)

−1X⊤
i )(Ui ⊘ (q

◦1/2
i+1 + ϵ))

X† =Xi + ηŨX⊤
i Xi

Xi+1 =X†(X
⊤
† X†)

−1/2

Zi+1 =Zi

Ui+1 =Ui − ηXiŨ
⊤Ui

N PROOF OF THEOREM 7

Proof. We will use the same notation as in algorithm 2. Assume X⊤
i Xi = I , Y ⊤

i + Yi = 0,
X⊤

i Vi = 0, pi = p⊤i . Our initialization satisfies these conditions. We prove that these conditions are
satisfied after mapped by ϕ̂3 ◦ ϕ̂1 ◦ ϕ̂2 in the following. Step 1: Due to the skew-symmetricity of fi,
we have pi+1 is symmetric.

Step 2: Xi, Zi, Ui+ 1
2
:= ϕ̂2(Xi, Zi, Ui), where Ui+ 1

2
= β1Ui − 3a−2

2 ηUiZi − (1 − β1)gi. Since
X⊤

i Ui = 0 and X⊤
i gi = 0, we can check

X⊤
i Ui+ 1

2
= β1X

⊤
i Ui −

3a− 2

2
ηX⊤

i UiZi − (1− β1)X
⊤
i gi = 0

Step 3:Xi+ 1
2
, Zi+1, Ui+ 1

2
:= ϕ̂1(Xi, Zi, Ui+ 1

2
), where Zi+1 = β1Zi − (1 − β1)fi and Xi+ 1

2
=

Xi + η
√

1− βi+1
2 Xi

(
Zi+1 ⊘ (p

◦ 1
2

i+1 + ϵ)
)

.

Since we have X⊤
i Ui+ 1

2
= 0 We can have directly X⊤

i+ 1
2

Ui+ 1
2
= 0. And due to fi is symmetric,

Zi+1 is still skew-symmetric. Note that X⊤
i+ 1

2

Xi+ 1
2
= I no longer stands now but it satisfied until

the algorithm finishes.

Step 4 Xi+1, Zi+1, Ui+1 := ϕ̂3(Xi+ 1
2
, Zi+1, Ui+ 1

2
). First we can see from Xi+1 = X†(X

⊤
† X†)

− 1
2

that X⊤
i+1Xi+1 = I as long as X† = Xi+ 1

2
+ ηŨX⊤

i+ 1
2

Xi+ 1
2

is full rank, which is always true since
Xi is full rank and η is small.

Since we have X⊤
i+ 1

2

Ũ = 0 by the special form of matrix I −Xi+ 1
2
(X⊤

i+ 1
2

Xi+ 1
2
)−1X⊤

i+ 1
2

X⊤
† Ui+ 1

2
= ηX⊤

i+ 1
2
Xi+ 1

2
Ũ⊤Ui+ 1

2

Since X⊤
† X† = I ,

X⊤
i+1Ui+1 = (X⊤

† X†)
− 1

2X⊤
i+ 1

2

(
Ui+ 1

2
− ηXi+ 1

2
Ũ⊤Ui+ 1

2

)
= 0

So we proved all the constrain are satisfied again, which means X⊤
i+1Xi+1 = I , Y ⊤

i+1 + Yi+1 = 0,
X⊤

i+1Vi+1 = 0, pi+1 = p⊤i+1
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O OPTIMIZATION ON SO(n) AS A SPECIAL CASE FOR n = m ON St(n,m)

Our method for Stiefel optimization can naturally be applied on the special orthogonal group SO(n)
(Apdx. B.3) and is defined as follows

SO(n) := {X ∈ Rn×n : X⊤X = In, detX = 1}. (35)

Tao and Ohsawa (2020) proposed an efficient algorithm based on Lie group structure for the opti-
mization on SO(n) although it cannot be generalized to Stiefel case. Our method restores the same
integrator in Tao and Ohsawa (2020) while using different approach applied to a family of metrics.

In greater detail, for SO(n), the canonical-type metric (2) degenerates to Euclidean metric up to
constant scaling, i.e., g(∆1,∆2) = (1− a)Tr(∆⊤

1 ∆2). Then the corresponding Lagrangian is

L(X, Ẋ, t) = r(t)

[
1− a

2
Tr
(
Ẋ⊤Ẋ

)
− f(X)

]
− 1

2
Tr
(
Λ⊤(X⊤X − I)

)
, (36)

which results in the following position-momentum (X,Q) dynamics
Ẋ(t) =Q(t)

Q̇(t) =− γ(t)Q(t)−X(t)Q(t)⊤Q(t)

− ∂f

∂X
(t) +

1 + b

2
X(t)X⊤(t)

∂f

∂X
(t) +

1− b

2
X(t)

∂f

∂X
(t)⊤X(t)

(37)

with the same initialization as (7). Next, apply the same Y, V decomposition of Q. Since I−XX⊤ =
0, we have V = 0, i.e., the momentum Q is purely in Y -direction. Hence the equivalent dynamics
to (37) is the following

Ẋ(t) =X(t)Y (t)

Ẏ (t) =− γY (t)− 1− b

2

(
X⊤(t)

∂f

∂X
(t)− ∂f

∂X

⊤
(t)X(t)

)
.

(38)

Note when we take b = −1 (namely, a = 1/2), (38) is identical to the continuous dynamics in Tao
and Ohsawa (2020), although Tao and Ohsawa (2020) uses an intrinsic form which is coordinate-free
but not explicit enough.

The numerical integrator corresponding to (S)GD is defined the same as Section M.4 and is summa-
rized in Alg.4. Note Step 5 is optional in the n = m case. It gives the identity map if no arithmetic
error due to machine precision is incurred. However, this step is beneficial under low precision (see
Apdx. M.1).

Algorithm 4: Momentum SGD on SO(n) (generalization to Tao and Ohsawa (2020))
Hyperparameter :η ∈ (0,+∞), γ ∈ [0,+∞), a < 1, maximum number of iteration N
Initialization :X0, V0, Y0 s.t. X⊤

0 X0 = I , X⊤
0 V0 = 0, Y0 + Y ⊤

0 = 0, b = a
a−1

Output: Local minimum X of f
1 for i = 0, ..., N − 1 do
2 fi =

1−b
2

(
X⊤

i
∂f
∂X (Xi)− ∂f

∂X (Xi)
⊤Xi

)
3 Yi+1 = µYi − fi
4 X† = Xiexpm(ηYi+1)

5 Xi+1 = X†(X
⊤
† X†)

− 1
2

6 end
7 return XN

In addition, we also have an adaptive version which was absent in Tao and Ohsawa (2020):

O.1 ADAM ON SO(n)

In this section, we extend the above optimizer to an Adam version. Note it can be derived from either
the special case of the Stiefel optimizer, or the structure of Lie algebra so(n), i.e., left-trivialization
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(see Tao and Ohsawa (2020)) such that the momentum Y can be recognized as an element in
TISO(n), the tangent space at the identity. In the latter interpretation, the momentum will always stay
in the same tangent space TISO(n) which passes on a message that trivialization almost reproduce
the convenience in Euclidean space for SO(n). Hence unlike the general Adam-Stiefel optimizer
(Algo. 2), no extra technique, for example projection, is needed for Adam-SO(n). Detailed iterations
are shown in Algo. 5. Note this is also a structure preserving scheme (see Thm. 7).

Algorithm 5: Adam on SO(n)

Hyperparameter :η ∈ (0,+∞), β1 ∈ [0, 1), β2 ∈ [0, 1), 0 < ϵ≪ 1, maximum number of
iteration N

Initialization :X0, V0, Y0 s.t. X⊤
0 X0 = I , X⊤

0 V0 = 0, Y0 + Y ⊤
0 = 0, p0 = 0, q0 = 0

1 for i = 0, ..., N − 1 do
2 fi =

1−b
2

(
X⊤

i
∂f
∂X (Xi)− ∂f

∂X (Xi)
⊤Xi

)
3 pi+1 = β2pi + (1− β2)f

◦2
i

4 Yi+1 = β1Yi − (1− β1)fi

5 X† = Xiexpm
(
η
√

1− βi+1
2 Yi+1 ⊘ (p

◦− 1
2

i+1 + ϵ)

)
6 Xi+1 = X†(X

⊤
† X†)

− 1
2 .

7 end
8 return XN

P EXPERIMENTAL DETAILS

Note: codes are provided in supplementary materials.

Experiments are conducted on a high-performance computing cluster whose name shall be revealed
post anonymous period. Single v100 GPU was used.

P.1 GENERAL DISCUSSION

Initialization For variable X with the initial X0, in fact, any initialization with full rank is valid,
including the non-orthogonal X0 such that X0 does not start on the manifold. This is due to the
structure-preserving property of our algorithm (both SGD and Adam versions, see Apdx. M). After
just one iteration, X will stay on the manifold. Here we suggest one way of obtaining orthogonal
X0 which is performed in Saxe et al. (2013). After randomly generating an entry-wise i.i.d. normal
distributed n-by-m matrix, we can perform the QR decomposition. Denote the orthogonal matrix
from QR decomposition as Q̃ and denote the diagonal matrix which is the sign of the diagonal
elements of R as R̃. Then we can take X0 = Q̃R̃ and thus have X⊤

0 X0 = I .

For the variables U , Z in Stiefel SGD and U , Z, p, q in Stiefel Adam, we would use zero matrices as
their initialization since zero matrices always satisfy these constraints (28).

No need to tune learning rate separately for constrained and unconstrained parameters For
problems with both constrained and unconstrained parameters (Stiefel and Euclidean spaces), for
example, the ViT test in Sec. 3, existing literatures using projection, retraction, and intermediate
matrices (see Sec. 1.1) requires separate adjustments of learning rates for the two types of parameters.
As an illustration, in projected SGD and Adam on Stiefel manifold Li et al. (2020), learning rate may
vary 10s of times for constrained and unconstrained parameters. This can be intuitively understood
as the result of applying different optimization methods for different parameters. However, using
various learning rates may lead to the divergence of the algorithms.

In contrast, our Stiefel method can be established for both the constrained and unconstrained parame-
ters with the same learning rate. Due to the same derivation of numerical methods for these two types,
the effort in tuning hyperparameters is reduced while there is still good performance. In practice,
the learning rate need to be adjusted in Stiefel SGD and momentum can be chosen as 0.9 for most
machine learning tasks. For Stiefel Adam, we recommend to use 10−3 to be the learning rate and
(β1, β2) = (0.9, 0.999).
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Method MNIST Shakespear
Original (RGAS) η = 8e− 4 η = 2
Original (RAGAS) η = 0.01, β = 0.8 η = 0.08, β = 0.9
Stiefel SGD (ours)) η = 1e− 3, µ = 0.5 η = 2, µ = 0.5
Projected Stiefel SGDLi et al.
(2020)

η = 7e− 4, µ = 0.5 η = 15, µ = 0.5

Momentumless Stiefel SGD
Wen and Yin (2013)

η = 6e− 4 η = 2

Table 3: Details for hyperparameters of optimizers in PRW test. η stands for learning rate, µ stands for
momentum parameter and β stands for the parameter that adjusts stepsize automatically.

How to choose between Adam-Stiefel and momentum SGD-Stiefel Generally, we recommend
choosing momentum SGD-Stiefel for traditional optimization and small scale neural networks that
hyperparameters can be carefully adjusted while for large scale neural networks, use Adam-Stiefel as
default.

P.2 DETAILS OF PRW

For MNIST experiment, we use a pretrained CNN to extract 128-dim. features of figures in MNIST.
For Shakespeare’s plays experiment, we compute the PRW distances between all pairs of items in
a corpus of eight Shakespeare’s operas embedded into 200-dim. space using word2vec. For each
digit or play pair, we use the extracted features as point sets {xi} and {yi}. We choose the dimension
of the target space of the projection to be k = 2 in both experiments. The mean optimal transport
values are taken among all digits or movie pairs at the specific iteration. All the setting are same as
the original paper Lin et al. (2020) except that early termination is removed.6 The hyperparameters
for each optimizer are listed in Tab. 3.

P.3 DETAILS OF VIT EXPERIMENTS

The structure of ViT and training process is exactly same as https://github.com/
omihub777/ViT-CIFAR but we use a different ViT implementation from https://github.
com/lucidrains/vit-pytorch. The hyperparameters are carefully adjusted for each opti-
mizer to obtain the best performance. For projected Stiefel SGD/Adam Li et al. (2020), we tune the
learning rates for constrained and unconstrained parameters separately. For regularizer SGD/Adam,
the regularizer scaling parameter is also carefully chosen. The largest learning rate for momentumless
Stiefel SGD Wen and Yin (2013) is applied but momentum methods still admit faster convergence.
Additional experimental results can be seen in Fig. 2.

Model structure The images are cut into 4×4 patches. dmodel = dfeedforward = 384, nhead = 12.
dq = dk = dv = 32 (which also equals dmodel/nhead, so ‘orthogonality across heads’ constraint can
be applied; see Section 3.2). The ‘classification token’ in Dosovitskiy et al. (2020) is used. Total
number of layer of our ViT model is 7.

Data augmentation Following https://github.com/omihub777/ViT-CIFAR, we use
the implementation of (Cubuk et al., 2018) from https://github.com/DeepVoltaire/
AutoAugment .

Training All the training uses the same scheduler, which is to let the learning rate linearly increase
from 0 to the target learning rate in 5 epochs, followed by cosine annealing learning rate Loshchilov
and Hutter (2016) with no restart, and minimum learning rate as 0.01 times max learning rate. Label
smoothing with parameter 0.1 is used. weight decay = 5e− 5 unless specified.

All the hyperparameters used for optimizers are listed in Tab. 4.

6Adam-type methods are not included since they are not suitable for this problem.
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Figure 2: Test errors of Stiefel-ViT on CIFAR. We can see that our optimizer has the best test accuracy in
both cases. Meanwhile, when our optimizer is used, orthogonality only within each head performs better than
orthogonality across heads.

Method Hyperparameters
Stiefel SGD (Algo. 1)) ηorth = ηnon−orth = 0.15, µ = 0.9
Projected Stiefel SGD(Li et al.,
2020)

ηorth = 1, ηnon−orth = 0.1, µ = 0.9

Regularizer SGD η = 0.1, µ = 0.9, penalty weight = 1e-6
Momentumless Stiefel SGD
(Wen and Yin, 2013)

ηorth = 0.1. For non-orth parameters, ηnon−orth = 0.1, µ = 0.9

Stiefel Adam (Algo. 2) ηorth = ηnon−orth = 0.001, β1 = 0.9, β2 = 0.999
Projected Stiefel Adam(Li et al.,
2020)

ηorth = 0.001, ηnon−orth = 0.01, β1 = 0.9, β2 = 0.999

Regularizer Adam η = 0.001, β1 = 0.9, β2 = 0.999, penalty weight = 1e-6
SGD ηorth = 0.1, µ = 0.9
Adam (Kingma and Ba, 2015) η = 0.001, β1 = 0.9, β2 = 0.999
AdamW (Loshchilov and Hutter,
2017)

η = 0.001, β1 = 0.9, β2 = 0.999, weight decay = 0.2

Table 4: Details for hyperparameters of optimizers in ViT training. η stands for learning rate, µ stands for
momentum parameter and β1, β2 are parameters in Adam.
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Method Hyperparameters
Stiefel SGD (ours) η = 0.1, µ = 0.9
Stiefel Adam (ours) η = 0.001, β1 = 0.9, β2 = 0.999
Projected Stiefel SGDLi et al.
(2020)

η = 0.2, µ = 0.9

Momentumless Stiefel SGD
Wen and Yin (2013)

η = 0.1

Table 5: Details for hyperparameters of optimizers in leading eigenvalue problem. η stands for learning rate, µ
stands for momentum parameter and β1 and β2 stands for the hyperparameters in Adam.

Q ADDITIONAL EXPERIMENT: SYSTEMATIC TESTS ON THE LEADING
EIGENVALUE PROBLEM

In this section, we consider the leading eigenvalue problem: given an n-by-n matrix A, find the m
largest eigenvalues of A. This problem is at the core of many data sciences tasks, where n can be
very large but m remains small. Due to its relative simplicity and the existence of exact solution,
it’s possible to implement a large amount of experiments in order to systematically investigate the
convergence, manifold perseverance, and time consumption of various approaches. Particularly, this
problem can be formulated as an optimization problem on St(n,m) as follows

arg max
X∈St(n,m)

Tr(X⊤AX). (39)

The idea is one seeks an optimal m-dimensional subspace, represented by X via m orthonormal
bases in Rn corresponding to its m columns, so that eigenvalues projected onto this subspace sums
up to a maximum value.

Such formulation is not unique. For example, Tao and Ohsawa (2020) consider applying their
momentum-accelerated SO(n) optimizer to argminR∈SO(n) Tr(E⊤R⊤ARE), where the constant
padding matrix E := [Im×m; 0(n−m)×m]. However, their setting is computationally less efficient
than our Stiefel simplification. In fact, our formulation will be particularly suitable to cases when m
is small but n is very large.

Our test uses a deterministic matrix A generated by A = (Ξ + Ξ⊤)/2/
√
n, where Ξ is an instance

of n-by-n matrix with i.i.d. random normal elements. The exact solution is obtainable from matrix
decomposition so that the error can be quantified. As is mentioned above, several aspects of our
algorithm are examined, including convergence speed, manifold perseverance, and computational
complexity in Fig. 3, as well as other exact manifold-preserving methods. We can conclude that
our (S)GD-Stiefel method has the fastest convergence rate and exact manifold perseverance with the
lowest computational complexity.

Additionally, in Fig. 4, we test the influence of different canonical-type metric, i.e., different a in
Def. 1, and the three different ways to ‘compute’ matrix exponential in Apdx. M.2, i.e., the matrix
exponential itself, Cayley map, and forward Euler. No significant difference is found in leading
eigenvalue test and as a result, the most commonly used canonical metric and the cheapest forward
Euler are chosen as default in all the other experiments. The hyperparameter used for each algorithm
are listed in Tab. 5

We also experimentally prove that better manifold preservation leads to better convergence, for both
our algorithm 1 and Projected Stiefel SGD (Li et al., 2020) in Fig 5. What’s more, this experiment
shows our (inner) iterative solver is quadratically convergent (as opposed to the linearly convergent
Cayley approximation in Li et al. (2020)), and therefore a smaller number of iteration is needed to
reach machine precision.

7The time recorded excludes the corresponding part of computing gradients.
Both the algorithm in paper Li et al. (2020) and their code has O(n2m) computational complexity per iteration.

However, this can be improved by changing the order of computing matrix production by associative law. Also,
this O(n2m) is the complexity under a fixed number of iterations for approximating Cayley map according to
their setup. It will be changed to O(nm2(1 + log(1/u))) if Cayley map is computed to machine precision.
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Figure 3: Comparison of exact manifold preserving methods on leading eigenvalue problem. The algorithms
are performed on CPU with learning rate of each one adjusted to its best performance. The upper two figures
show that our Stiefel SGD optimizer has the fastest convergence and best manifold perseverance. The lower
two figures experimentally prove that we have the lowest O(nm2) complexity per iteration, which matches our
complexity analysis in Apdx. C and table 2. Notice that our algorithm and Momentumless Stiefel SGD
have almost coinciding curves when m → ∞ in (c) and when n → ∞ in (d), while both algorithms have much
lower curves than Projected Steifel SGD when m → ∞. This means that our algorithm has a similar
constant factor as the complexity of Momentumless Stiefel (S)GD (Wen and Yin, 2013), indicating
that the introduction of momentum in our algorithm is almost ‘free’, and meanwhile, Projected Steifel
SGD (Li et al., 2020) has a much larger prefactor. Please see Apdx. C for more discussions. 7
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Figure 4: Comparision of different canonical-type metrics (Euclidean and canonical metrics are tested) and
different ways to approximate matrix exponential in Apdx. M.2.

Though our special retraction on tangent bundle (polar retraction for position and no extra handling
for momentum) is cheap, it must be used with our specially designed algorithm and cannot be applied
to other algorithms even if the position will still stay on Stiefel manifold. The reason is that the loss
of structure of momentum will lead to slow convergence. Fig 6 shows that projected Stiefel SGD
with our retraction for tangent bundle convergences slower than not only our algorithm but also the
original projected Stiefel SGD.
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Figure 5: (a) shows that on Projected Stiefel SGD, performing more inner iterations that leads to a more accurate
Cayley transform gives a better optimized function value; (b) shows that more frequently applying QR retractions,
i.e., projecting the variable, provides better accuracy; (c) shows that more accurate matrix root inversion for
polar retraction in our algorithm 4 leads to more accurate solution. We can see performing 8 iterations (note this
curve coincides with 100 iterations) of matrix root inversion gives perfect accuracy for our method, compared to
(a) where 16 iterations of Cayley transform only give an error ∼ 106 times bigger.
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Figure 6: Convergence and manifold preservation when our low-cost retraction (polar retraction for position
and no extra handling for momentum) is applied to projected Stiefel SGD (Li et al., 2020). Though our design
also helps the projected Stiefel SGD to preserve the manifold structure with only machine precision error, the
convergence to minimum is slower than both our algorithm and original projected Stiefel SGD.
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