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Abstract

The linear representation hypothesis states that language models (LMs) encode concepts
as directions in their latent space, forming organized, multidimensional manifolds. Prior
work has largely focused on identifying specific geometries for individual features, limiting
its ability to generalize. We introduce Supervised Multi-Dimensional Scaling (SMDS), a
model-agnostic method for evaluating and comparing competing feature manifold hypotheses.
We apply SMDS to temporal reasoning as a case study and find that different features
instantiate distinct geometric structures, including circles, lines, and clusters. SMDS reveals
several consistent characteristics of these structures: they reflect the semantic properties of
the concepts they represent, remain stable across model families and sizes, actively support
reasoning, and dynamically reshape in response to contextual changes. Together, our findings
shed light on the functional role of feature manifolds, supporting a model of entity-based
reasoning in which LMs encode and transform structured representations. Our code is
publicly available at: https://github.com/UKPLab/tmlr2026-manifold-analysis.

1 Introduction

There is increasing evidence from recent work in mechanistic interpretability that language models develop
structured representations of entities in their latent space. Notably, Heinzerling & Inui (2024) find that
numerical entities (e.g., Karl Popper was born in 1902) are represented in a monotonic, “pseudo-linear” fashion.
Increasing or decreasing specific neuron activations can lead the model to output a higher or lower value.
More recently, Engels et al. (2025) discover non-linear modes of structural entity representation, which form
strikingly interpretable patterns. They show that days of the week (Sunday, Monday) and months (December,
January), for example, form a circular structure. Concurrent work by Modell et al. (2025) provides formal
definitions of these feature manifolds and explores how they arise in LMs.

Nevertheless, several fundamental questions remain unanswered: we do not know if and how LMs make use
of these manifolds during reasoning, or how to reliably detect their presence (Engels et al., 2025; Modell
et al., 2025). Answering these questions can help improve LMs and how we control them. This is particularly
important in light of current limitations of LMs, such as poor temporal reasoning (Yuan et al., 2023; Niu
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Figure 1: Our Main Contributions. Supervised Multi-Dimensional Scaling is a novel dimensionality
reduction method for identifying subspaces with known geometry (left). Using it, we show that temporal
entities in LMs form task- and prompt-dependent feature manifolds that support reasoning (right).

et al., 2024), difficulty in alignment (Wang et al., 2023), bias (Gallegos et al., 2024), and vulnerability to
distraction (Shi et al., 2023; Niu et al., 2025).

In this paper, we address these questions by introducing Supervised Multi-Dimensional Scaling (SMDS),
a novel method to systematically analyze feature manifolds. Unlike commonly used dimensionality reduction
methods, which enforce a fixed structural assumption and cannot be directly compared, SMDS provides a
unified way to specify arbitrary geometric assumptions and a quantitative metric to evaluate their fit. SMDS
reframes the identification of a feature manifold as a model selection problem, and thus offers quantitative
support for claims about the underlying structure of learned representations. Moreover, this method enables
observing how a feature manifold evolves across different layers and reasoning steps.

We focus on temporal reasoning through short-form QA tasks, such as identifying recency, ordering events and
estimating durations, as we consider them an ideal test bed for manifold analysis. This choice is motivated
by three factors: (1) LMs display poor performance in such tasks (Yuan et al., 2023; Huang et al., 2023; Niu
et al., 2024); (2) initial evidence has found temporal feature manifolds to vary widely across tasks (Heinzerling
& Inui, 2024; Engels et al., 2025); and finally, (3) there is a gap in analyses targeting the atomic structures of
temporal reasoning from a mechanistic standpoint.

Our main findings can be summarized as follows:

F1: Temporal entities form feature manifolds with intuitive structures, and this pattern is
consistent across model architectures and sizes. We find that the manifolds associated with various
temporal concepts (e.g., days of the year, hours, durations, and historical events) align with interpretable
geometries such as circles, lines, and clusters, thus substantially extending Engels et al.’s (2025) findings.
Our SMDS experiments cover over sixty thousand recovered manifolds and confirm that the identified feature
structures are robustly shared across different model sizes and architectures.

F2: Feature manifolds are dynamically adjusted depending on the task. SMDS enables us to
compare manifold structures across different token positions. We analyze prompts that share the same context
but differ in their final completion cue, and find that LMs alter feature manifolds based on the cue and task
in an intuitive way.

F3: Feature manifolds actively support reasoning. We find that LMs actively utilize feature manifolds
to perform reasoning tasks, supported by two pieces of crucial evidence. First, perturbing manifold-aligned
subspaces consistently impairs reasoning performance, while equivalent noise applied to random subspaces
has a negligible effect. Second, we observe that manifold quality significantly correlates with downstream
performance.
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When combined with previous results on the binding problem (Feng & Steinhardt, 2023), our findings suggest
an explanation for the mechanism by which LMs perform reasoning. We hypothesize an entity-based
reasoning pipeline in LMs that:

1. Represents entity properties in coherent locations on a manifold within the residual stream;

2. Applies a transformation to this manifold, guided by the question or task context;

3. Selects an appropriate output based on the transformed representation.

Finally, we extend our analysis beyond mono-dimensional temporal features into two separate experiments
(§5.4): the first is an entity-based reasoning task on geography that similarly uncovers manifold structures
shared across models; the second studies a pair of temporal features to locate a multidimensional manifold.
These experiments show our analysis can be extended beyond the temporal domain and to higher-dimensional
features. Overall, these results suggest that feature manifolds play an important role in how LMs represent
and reason about entities. We view this work as a step towards better understanding the mechanisms behind
reasoning in modern language models.

Contributions We first present a survey of previous feature manifold analysis methods, providing an
overview of their limitations (§2). We then introduce the novel SMDS method in §3. Next, we present our
results in §5, where we outline three major findings: (§5.1) manifold geometry for the same type of entity is
shared across models; (§5.2) LMs adapt structures in context for different tasks; and (§5.3) LMs actively
use feature manifolds for reasoning. Moreover, we show that our approach extends to other domains and to
multidimensional manifolds (§5.4). Finally, we conclude the paper with a discussion (§6).

2 Feature Manifold Analysis Alice was born on the 16th of May.
Bob was born on the 10th of March.
Charles was born on the 29th of June.

The oldest is...
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Figure 2: Feature Manifold Analysis and Limitations of
Previous Methods.

Existing methods for dimensionality reduction
in manifold analysis often rely on fixed as-
sumptions about the data distribution, without
providing a principled way to compare results
across different structural hypotheses. This gap
motivates us to introduce our SMDS method
in Section 3. In this section, we set up the
problem with relevant background and survey
existing feature manifold analysis methods.

Preliminaries We illustrate our method us-
ing a temporal reasoning task as a running
example (Figure 2a). Performing temporal reasoning requires a model to understand both explicit mentions
of temporal expressions (Jia et al., 2018b) and implicit knowledge of temporal calculus (Allen, 1981). Our
analysis focuses on how LMs process temporal expressions, which are central to temporal reasoning and define
precise, measurable quantities that can reveal underlying feature manifolds. Temporal reasoning also offers
good diversity: different types of temporal expressions demand different reasoning skills (e.g., comparing
frequencies, ordering events, or identifying recency) and models vary widely in how well they handle these
tasks (Chu et al., 2024).

In particular, we seek to start from confirming Engels et al.’s (2025) finding that LMs tend to represent
calendar dates in a circular topology, placing December near January in their latent space. Consider a prompt
comprising several sentences following the template “<name> was born on the <day> of <month>.” When asked
“The oldest is,” the task is answered correctly if the model uses contextual information to produce the correct
answer <name>.

By querying the LM with several such prompts varying the reference date, we elicit internal representations
that collectively reside on the feature manifold of calendar dates. In this case, our quantity of interest is
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the birthday of the correct person (e.g., Bob’s birthday: 10th of March in Figure 2a), which we collectively
represent as a set of labels y. We map these labels onto the [0, 1] interval, where 0 corresponds to Jan 1st
and 1 to Dec 31st. We then extract the hidden states corresponding to the last token of the date (e.g., the
“<month>” token1), yielding a collection of hidden states X ∈ Rn×d, with n number of samples and d the
hidden size of the LM. Next, we use dimensionality reduction to project the high-dimensional hidden states
X onto an interpretable, low-dimensional space.

Existing Methods We identify three primary methods used in previous works: PCA, LDA, and PLS
(Wold et al., 2001; Park et al., 2024a; El-Shangiti et al., 2025; Modell et al., 2025, inter alia).2 From observing
the visualisations in Figure 2b, we can see that each method has crucial limitations when trying to detect
arbitrary geometries such as the circular one we seek. LDA finds interpretable clusters but has no notion of
order; PCA fails to identify feature subspaces if they are not aligned with the directions of maximum variance;
and PLS is limited to linear features unless a suitable transformation is applied to the data (AlquBoj et al.,
2025). As a result, each method can only detect specific types of structure. Moreover, without quantitative
metrics to assess the goodness-of-fit across different methods, it is unclear which of the manifolds best reflects
the original representations.

3 Supervised Multi-Dimensional Scaling

To overcome these limitations, we propose a novel dimensionality reduction technique: Supervised Multi-
Dimensional Scaling (SMDS). It extends classical Multi-Dimensional Scaling (MDS; Ghojogh et al., 2020) by
incorporating supervision, under the assumption that labels can parametrize the underlying feature manifold
formed by the model’s hidden states. The method first uses MDS to build an ideal geometry representing
the manifold, and then learns a linear mapping from model embedding to this manifold structure. SMDS is
flexible, as varying the assumption enables recovering multiple different structures, and provides a common
basis to quantify their fit and thus identify a preferential one.

Formally, we assume that activations X forming the feature manifold can be located using labels y that
represent a numerical property. SMDS first computes ideal pairwise distances d(yi, yj) between yi, yj ∈ y
that encode the geometry of the desired manifold (e.g., circular, linear, or clustered). It then finds a linear
projection W ∈ Rm×d such that the Euclidean distances between projected points Wxi and Wxj best match
d(yi, yj), with xi, xj ∈ X. SMDS minimises the loss:

L =
∑
i<j

(
∥W (xi − xj)∥2 − d(yi, yj)2)2

. (1)

d(yi, yj) is task-dependent and implicitly defines the hypothesis structure. For example,

d(yi, yj) :=2 sin (π min (δij , 1 − δij)) , δij := |yi − yj |, (2)

these two formulas represent the chord distance between two points on a unit circle, thereby defining a
circular structure. As shown in Figure 2c, SMDS finds a clear circular projection of calendar dates, consistent
with Engels et al.’s (2025) findings.

We assess the quality of a recovered projection W trained on activations X by computing a variant of
normalized stress (Amorim et al., 2014), adapted for a supervised task. In particular, we compute stress over
a held-out set of points X̂, ŷ and corresponding ideal distances d̂ij = d(ŷi, ŷj):

S :=
∑
i<j

[
∥Wx̂i − Wx̂j∥ − d̂ij

]2
/

∑
i<j

d̂2
ij . (3)

This metric measures how well distances in the recovered projection align with those of a hypothesized
manifold. High-dimensional activations that originally exhibit a particular geometric structure can often

1For readability, we omit space tokens in the examples. Tokenization is still performed as usual.
2We provide a review of relevant works in §A.
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be projected into a low-dimensional space that preserves this geometry, thereby yielding low stress. By
comparing stress values across multiple distance functions, one can identify the best-fitting manifold. In
practice, however, selecting a single best hypothesis can be challenging, as stress scores for different manifolds
frequently cluster closely together. In such cases, additional evidence is needed to discriminate among
candidates, for example via statistical testing, as performed in §5.

Distance Functions We propose a set of distance functions for SMDS to detect a heterogeneous variety of
manifolds. Seminal works have shown several instances of the idiosyncratic structure of feature manifolds.
Notable examples include:

• Cyclical features form a ring shape in the latent space (Engels et al., 2025);
• Numbers are compressed according to a logarithmic progression (AlquBoj et al., 2025);
• Years of the 20th century form a U-shaped structure (Engels et al., 2025; Modell et al., 2025);
• Categorical features visually form clusters corresponding to the vertices of a polytope (Park et al., 2024a);
• Lastly, Gurnee & Tegmark (2023) have extracted multidimensional manifolds representing features such as

latitude and longitude.

Therefore, as listed in Table 1, we parametrize shapes such as circles, semicircles, lines, logarithmic lines
and clusters so that the resulting manifold is interpretable. The manifolds we define are categorized based
on their topology: linear, where concepts follow a continuous, monotonic progression; cyclical, where the
progression is continuous but wraps around to the starting point, forming a loop; and categorical, where
concepts occupy discrete, equidistant regions without inherent ordering.

Table 1: Collection of distance functions used throughout
our study. colors denote manifold topology: linear, cyclical
or categorical. δij := yi − yj . M := max(y).

Distance Function d(yi, yj) Resulting Manifold

∥δij∥ linear

| log yi − log yj | log_linear

2 sin( π
2 |δij |) semicircular

2 sin( π
2 | log yi − log yj |) log_semicircular

2 sin(π min(|δij |, 1 − |δij |)) circular

min(|δij |, M + 1 − |δij |) discrete_circular

0 if yi = yj , 1 otherwise cluster

In the following sections, we use this collection
of distance functions to identify feature man-
ifolds for several tasks and at different stages
of the reasoning process.

4 Experimental Setup

Data & Prompt Setup Based on the
TIMEX3 specification (Pustejovsky et al.,
2010), we create five synthetic datasets and
three variants, probing precise aspects of tem-
poral understanding over a variety of numeri-
cal quantities (Table 2). All sentences across
datasets have a similar format: they describe
an action performed by three individuals, the
action is associated with a temporal expression,
and a continuation cue is attached to elicit temporal reasoning. The right answer is always one of the three
names mentioned in the context. We randomize the names, actions, and temporal expressions to increase
robustness but keep the same structure across all samples. Temporal expressions are sampled uniformly
across a given range, but respecting some plausibility constraints (e.g. “once per year” is never associated
with common actions such as “takes a shower”). We also make sure names are always tokenized as a single
token for all models. The three variants date_season, date_temperature, and time_of_day_phase share the same
context and range with their main counterparts, but ask a different question that requires a different type
of reasoning (e.g. “The only person born in spring is”). Overall, our data exhibits greater variability than
similar datasets used in previous literature. See Appendix B for an extended discussion on our temporal
taxonomy, datasets and for the variability analysis.

LM Selection The bulk of our analysis is performed on three models from different families: Qwen2.5-3B-
Instruct (Team et al., 2025), Llama-3.2-3B-Instruct (Grattafiori et al., 2024), gemma-2-2b-it (Gemma et al.,
2025). We also study what impact instruction tuning has on these representations by comparing these models
with their base versions. For the Llama family, we also study larger models to observe whether the manifolds
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Table 2: Tasks and Corresponding Prompts. Variants date_season, date_temperature, and time_of_day_phase

are omitted for brevity and are detailed in Appendix B. colors represent templates: blue denotes names,
orange denotes actions, red denotes the corresponding continuations, green denotes temporal expressions, and
black denotes expressions that do not change throughout the dataset.

Dataset Context Continuation Expression Range

date Anna took a bus on the 16th of
January.

The first person that took
a bus was

01/01 - 31/12

duration Neil is starting a workshop on the
11th of January lasting 1 day.

The person whose workshop
ends first is

01/01 - 31/12
1 day - 4 years

notable Emma was born on the day Pius X
became Pope.

The oldest is 1900 - 2000

periodic Kevin waters the plants every day. The person who waters the
plants more often is

daily - every 6 years

time_of_day Lucy naps at 16:15. It is now 19:37. The last
person who napped is

00:00 - 23:59

we identify persist at scale: Llama-3.1-8B-Instruct and Llama-3.1-70B-Instruct. Due to computational
constraints, we run these models using 4-bit quantization.

Generalizing Manifold Analysis We generalize our study by analyzing activations across all layers and
at different positions along the sentence. In particular, we consider three sites: (i) the final token of the
temporal expression (e.g., “on the 16th of January,” abbreviated as te); (ii) the final token of the prompt
(e.g., “The first person that took a bus was,” abbreviated as lp); and (iii) the token corresponding to the
generated answer (i.e., one of the contextual names, abbreviated as a).

To systematize the hypothesis selection process, we drop any assumption about which manifold should
correspond to which feature and instead run a grid search over all defined distance functions. We fit an
instance of SMDS for each dataset and layer and then compare recovered manifolds using stress (Eq. 3).
Throughout the study, we choose m = 3 as it is the minimum number of dimensions required to represent all
our hypothesis manifolds (1D for most linear manifolds, 2D for some linear and cyclical ones, and 3D for
clusters, which form a tetrahedron in 3D space). Increasing dimensionality yields similar results, which are
discussed in Appendix D.4. Unless stated otherwise, all manifolds visualized in the study show the first two
components identified by SMDS for the best-scoring layer, computed with a 50/50 train/test split.

To demonstrate the robustness of our analysis, we conduct a statistical significance study using a 10-fold
cross-validation repeated 5 times across all datasets, models, and manifolds. First, we group observations by
dataset, model, and manifold rank, and perform a Friedman test. Then, for all groups that achieve statistical
significance (p < 0.05), we perform a post-hoc Nemenyi test to evaluate the significance of manifold ranks
on a given dataset. To break any ties in manifold rank, we additionally perform bootstrapping with 500
iterations, followed by the same Friedman–Nemenyi protocol as before. This yields even stronger statistical
guarantees for the identified hypotheses. We define a preferential manifold as one that (1) attains the best
average score and (2) is statistically significantly different from all alternative hypotheses. Further details on
statistical significance are provided in Appendix D.3.

5 Experiment Results and Analysis

We present our experiment results around the three major findings in this section.
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Figure 3: Feature manifolds retrieved from the lp site. We can observe that models represent features in a
similar way, and the resulting manifolds are interpretable and match an intuitive progression (linear, circular
or categorical) of the underlying features. The scatter plots on the left show the first two components of
SMDS dimensionality reduction; the bar plots on the right depict scoring of different manifolds on the given
activations. Scores displayed are computed as − log S to emphasize the difference between values; error bars
are shown in black. Bar plot color reflects manifold topology: linear; cyclical; categorical;

5.1 (F1) Temporal Entities Share Intuitive Manifold Structures Across Models.

Figure 3 and Table 3 show the best-scoring manifolds across models and tasks. We first observe that all
manifolds identified this way are not only interpretable, but also match prior research (Engels et al., 2025;
Park et al., 2024a; AlquBoj et al., 2025). Their topology always matches meaningful properties of the feature
they explain: monotonic features are represented by linear topologies, cyclical features wrap around in loops,
and categorical features map to cluster structures. Notably, the best manifold shape is consistent across
all observed model families as well as in most of the non-instruction-tuned counterparts. Moreover, this
pattern persists at scale, with all three observed sizes (3B, 8B, 70B) creating coherent shapes between them.
This suggests there are preferential ways to encode the same knowledge, and all language models eventually
converge to similar structures, providing further proof of hypotheses formulated in previous literature (Huh
et al., 2024).

Previous work has shown that LMs encode numerical quantities in a logarithmically compressed way (AlquBoj
et al., 2025). Our work extends this finding to temporal reasoning for the first time: in both the duration and
periodic tasks, time intervals such as days to weeks, weeks to months, and months to years are preferentially
represented with roughly uniform spacing, indicating a logarithmic compression of temporal magnitude.
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resented with the same granularity as shorter ones
(e.g., days, weeks).
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Figure 5: Avg. rank of manifolds across all models
over 500 bootstrapping iterations. Horizontal bars
show groups of statistical equivalence. Best-ranking
manifold is always statistically different from others.

This pattern (Figure 4), though not directly comparable, bears a superficial resemblance to the logarithmic
compression described by the Weber–Fechner law (Dehaene, 2003). We note that the labels we use are
themselves logarithmically spaced. A deeper study into temporal understanding is therefore needed to clarify
whether the compression we observe is a genuine emergent behavior or an artifact of our synthetic dataset.

Many tasks exhibit high scores for more than one topology. The cross-validation setup is not sufficient to
break all ties on manifold rank, therefore we perform bootstrapping with 500 iterations. Figures 5, and 17
show the overall ranking of manifolds across tasks confirming the results obtained in the previous analysis
and establishing a clear best-ranking hypothesis for each task.

This analysis both validates SMDS as a manifold analysis tool and underscores the difficulty of identifying
a single best-ranking manifold for a given problem. One plausible explanation is that, while preferential
manifolds do exist, models often construct multiple valid representations whose disentanglement requires

Table 3: Best-scoring manifold, corresponding average stress, and accuracy for different models and tasks in
a 10-fold setting with 5 repetitions. Standard error shown in grey.

date date_season date_temperature duration
− log S Manifold Acc − log S Manifold Acc − log S Manifold Acc − log S Manifold Acc

Llama-3.1-70B-IT 2.909±0.017 circ 0.93 6.047±0.091 clust 0.83 6.219±0.105 log_semic 0.82 3.194±0.025 log_lin 0.62
Llama-3.1-8B-IT 2.483±0.020 circ 0.39 6.628±0.030 clust 0.66 6.018±0.038 clust 0.49 2.990±0.044 log_lin 0.09
Llama-3.2-3B-IT 2.502±0.022 circ 0.81 7.031±0.029 clust 0.74 6.525±0.040 clust 0.51 3.124±0.029 log_lin 0.30
Qwen2.5-3B-IT 3.267±0.031 circ 0.36 8.502±0.046 clust 0.26 7.548±0.049 log_semic 0.25 2.805±0.030 log_lin 0.32
gemma-2-2b-IT 2.969±0.028 circ 0.38 7.408±0.032 clust 0.29 7.207±0.058 clust 0.36 3.390±0.030 log_lin 0.26

Llama-3.2-3B 2.116±0.022 disc_circ 0.39 6.780±0.025 clust 0.53 6.702±0.040 log_semic 0.37 2.879±0.029 log_lin 0.21
Qwen2.5-3B 2.797±0.059 circ 0.21 8.439±0.041 clust 0.55 7.254±0.050 log_lin 0.23 2.959±0.028 log_lin 0.17
gemma-2-2b 3.142±0.030 circ 0.31 7.358±0.025 clust 0.61 6.948±0.050 clust 0.33 2.721±0.041 log_lin 0.11

notable periodic time_of_day time_of_day_phase
− log S Manifold Acc − log S Manifold Acc − log S Manifold Acc − log S Manifold Acc

Llama-3.1-70B-IT 2.636±0.071 semic 0.18 3.858±0.052 log_lin 0.60 1.482±0.015 circ 0.53 6.182±0.070 clust 0.73
Llama-3.1-8B-IT 2.270±0.030 semic 0.31 3.882±0.036 log_lin 0.28 1.298±0.018 circ 0.12 6.731±0.026 clust 0.69
Llama-3.2-3B-IT 2.192±0.026 semic 0.49 3.734±0.032 log_lin 0.46 1.278±0.014 circ 0.30 7.072±0.029 clust 0.66
Qwen2.5-3B-IT 1.964±0.028 semic 0.32 3.804±0.032 log_lin 0.32 1.140±0.014 circ 0.19 8.803±0.030 clust 0.30
gemma-2-2b-IT 2.036±0.023 semic 0.58 3.929±0.041 log_lin 0.14 1.256±0.032 semic 0.07 7.589±0.035 clust 0.29

Llama-3.2-3B 1.103±0.181 disc_circ 0.01 3.600±0.033 log_lin 0.33 1.284±0.020 circ 0.10 7.061±0.028 clust 0.64
Qwen2.5-3B 1.764±0.048 semic 0.08 3.436±0.027 log_lin 0.18 1.287±0.012 circ 0.24 8.711±0.030 clust 0.45
gemma-2-2b 1.423±0.315 log_lin 0.01 3.769±0.039 log_lin 0.30 1.507±0.016 circ 0.18 7.599±0.030 clust 0.60
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Figure 6: Feature manifolds of Llama-3.2-3B-Instruct
on the date task and its variants. Best-scoring layers
shown, as identified in Section 4. Different continua-
tions produce drastically different topologies.
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Figure 7: Manifold quality at different layers and po-
sitions in the sentence. Information transits from its
injection point (orange) to the answer token (blue).

substantial computation. This representational polymorphism is not an artefact of SMDS: control tasks
with randomized labels exhibit consistently high stress, confirming that SMDS does not simply overfit a
hypothesized manifold. We provide a more detailed discussion in Appendix D.7.

5.2 (F2) LMs Adapt Structures In-Context for Different Tasks.

This section describes two observed phenomena in which LMs reshape manifolds across tasks and depth.

Figure 6 shows how the LM adapts the te site feature manifold to different structures at the lp site, depending
on the question prompt. Tasks date, date_season and date_temperature all start from the same context but
result in strikingly different final structures: in date, a circular structure is required to account for the looping
nature of dates in a year, while in the other two tasks inputs are mapped to linearly separable clusters. This
can be interpreted as the model internally performing regression or classification to solve the task.

When comparing the location in the sentence where the structure is located, models exhibit a form of
information flow between entities, which can strengthen certain manifold structures, degrade others, or even
drastically change their shape as observed earlier. Figure 7 shows how to detect this flow with stress. In
initial layers, the ta site is highly structured. As layers progress, this structure disperses into later tokens,
such as the lp token and the a token. This process is not perfect: duplicated manifolds on lp and a display
noticeably higher stress than the ones found at the te site. A possibility is that later tokens in the same
sentence accumulate more contextual information than early ones, thus resulting in noisier manifolds. Our
results extend previous findings on the existence of a binding mechanism in LMs (Feng & Steinhardt, 2023;
Dai et al., 2024): we show that not only vectors, but entire feature manifolds are preserved and propagated
between entities.

5.3 (F3) LMs Actively Use Feature Manifolds for Reasoning.

Here we present two causally relevant lines of evidence that LMs actively use the structure of their represen-
tations to perform temporal reasoning.

Located subspaces are causally relevant to noise perturbation. To demonstrate that feature
manifolds are utilized by LMs in their reasoning process, we perform causal intervention by adding noise to
the manifold subspace and measuring downstream accuracy. We inject Gaussian noise ϵ ∼ N (0, σ2Im) into
the first layer at the te site. Given a hidden state x ∈ Rd, the perturbation is applied as x′ = x + W −1ϵ,
where ϵ is an m-dimensional noise vector projected back into the original space. Subspaces of dimension m
are located via SMDS in the usual way, and overfitting is prevented by training and evaluating the SMDS on
a 50/50 split. We select the top three task-model pairs achieving the best accuracy on the original task, as
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Figure 8: Downstream accuracy of Llama-3.2-3B-
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Figure 9: Llama-3.2-3B-Instruct on the date task.
Latent space of the lp token before and after applying
noise on the te token (top and bottom respectively).
Interventions on early tokens cause disruptions to
the manifolds of later ones.

these will be the settings where a disruption will be more noticeable: date, date_season and time_of_day_phase

on Llama-3.2-3B-Instruct.

Across all tasks, performance gracefully degrades as the noise scale is increased (Figure 8). Crucially, we
observe degradation for m as low as 2, suggesting that temporal features are concentrated in very small
yet highly informative regions of the activation space. We perform two other types of intervention in which
we inject noise in the full latent space and in a random subspace, respectively. Affecting the full latent
space achieves a much more destructive effect for low values of σ2. On the other hand, disrupting a random
subspace has no detectable effect on performance for subspaces of size < 100. The addition of noise also
results in the disruption of structures located at subsequent tokens and layers (Figure 9). Interestingly, later
layers are still able to form a vaguely organized shape, meaning information is partially being propagated or
reconstructed. Our choice of perturbing the first layer is empirically motivated by the fact that intervention
on later layers did not show as strong an effect. We hypothesize this is because information propagates
quickly across tokens and layers, therefore the model is able to reconstruct a manifold from context tokens
even if its source token has been disrupted. Overall, our experiments confirm that SMDS-located subspaces
are critical for temporal understanding.

Manifold quality significantly correlates with model performance. We find a significant positive
correlation between downstream accuracy and the ability of models to form well-organized manifolds, as
quantified by − log S (Spearman’s ρ = 0.513, p = 0.0174; Pearson’s r = 0.560, p = 0.0083). Notably, this
relationship emerges only for models that attain above-chance accuracy, specifically, Llama-3.2-3B-Instruct,
Llama-3.1-8B-Instruct, and Llama-3.1-70B-Instruct. The results suggest that while feature manifolds tend to
emerge naturally in LMs, a critical factor for strong performance lies in how effectively the model utilizes
them during reasoning.

Table 4: Stress for the duration task at the lt site
evaluated with the linear manifold. Standard error
shown in grey. Differences with a control task with
randomized labels are all statistically significant.

Model Best
Layer − log S

Control
− log S

p

Llama-3.2-3B-IT 20 2.173±0.114 0.469±0.020 0.031
Qwen2.5-3B-IT 2 2.585±0.047 0.506±0.024 0.031
gemma-2-2b-it 2 2.595±0.065 0.519±0.014 0.031

Table 5: Stress values for the cities task at the
rc site. The highest-scoring manifold is always a
spherical one.

Model Acc Manifold − log S
cylinder flat geodesic sphere

Llama-3.2-3B-it 0.549 2.071 1.931 2.118 2.285
Qwen2.5-3B-it 0.510 1.906 1.768 1.975 2.135
gemma-2-2b-it 0.493 2.070 1.947 2.073 2.248
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Figure 10: Multidimensional manifold constructed by Llama-3.2-3B-Instruct on the duration task. Component
0 is proportional to the duration, component 1 to the day of the year.

5.4 Generalizing SMDS Across Domains and Feature Types

Defining manifolds through distance functions enables extending SMDS beyond the mono-dimensional case.
This sections provides two such examples.

2D Manifold We analyze the duration task in more detail as each sentence contains two temporal
expressions. We use both the duration and starting day to define a 2D label, and run SMDS with the
linear hypothesis as it is the only distance function supporting multidimensional labels. Doing so reveals
a 2D manifold that displays properties from both features. Table 4 presents Wilcoxon p-values obtained
by comparing the model to a control task, showing they are significant across models. We hypothesize the
creation of such manifolds happens during the information flow discussed earlier: features are retrieved from
multiple locations and combined. The recovered manifold is shown in Figure 10.

Spatial Reasoning Domain To demonstrate the versatility of SMDS beyond temporal reasoning, we
apply it to a task grounded in geographic knowledge. We construct a dataset of prompts referencing various
cities around the world and use their latitude and longitude to compute pairwise distances and reconstruct
a manifold. While Gurnee & Tegmark (2023) demonstrates that geographic location is decodable from
LMs’ hidden states, their analysis is limited to a planar projection. We extend this by evaluating spherical,
cylindrical, and geodesic-based geometries, and find that a spherical manifold best captures the structure
of the representations. This again highlights how feature manifolds align with the true geometry of the
underlying domain. Further details are provided in Appendix D.6.

6 Discussion & Conclusion

Our study establishes a connection between the geometry of representation manifolds and the causal language
modeling process, demonstrating that a structured organization of knowledge is not only present but beneficial
for model reasoning. By analyzing the persistence of these structures across tokens—particularly from
the injection point to the answer—we provide compelling evidence that feature binding operates through
continuous, task-relevant manifolds in the latent space. The persistence of manifolds across tokens suggests
that language models transfer not just vectors, but structured representations, reinforcing the presence of a
binding mechanism and extending prior evidence to more diverse tasks (Dai et al., 2024).

Although our experiments center on temporal reasoning, the proposed method extends to any task involving
structured features on which a distance function can be defined, as we demonstrate in §D.6. Starting from
hypothesis manifolds inspired by prior work, we obtain consistent, interpretable results, effectively reframing
manifold analysis as a model selection problem. A compelling direction for future research is understanding
how individual features combine into multidimensional manifolds. While we present initial evidence of
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composition, more expressive manifold hypotheses could offer deeper insights. SMDS lays the foundation for
such investigations.

Our stress metric often yields tightly clustered scores. The approach followed in this study is to drastically
increase experimental observations via repetition or bootstrapping to hone in on a single leading manifold
for each task. Future studies could adopt different approaches: the development of more discriminative
metrics, the use of larger and more varied datasets, and complementary intervention experiments such as the
one in §5.3. There is a final option, however, which is to reassess the assumption that a single preferential
manifold exists. An intriguing hypothesis is that models instead adopt multiple equally valid representational
geometries and dynamically select them based on task context. Failure to isolate a single best manifold
should signal that new hypotheses must be formulated, potentially accounting for the coexistence of multiple
representational geometries.

In the scope of model reasoning, hypothesis-driven manifold analysis can serve as a basis for several lines of
future work. For instance, combining SMDS with circuit discovery (Conmy et al., 2023) could help identify
which operations LMs use to transform information throughout reasoning. Another promising direction is
model steering (Park et al., 2024b), where knowledge of feature manifolds could inform methods that leverage
these structures directly. Finally, systematically studying the role of noise in feature manifolds across layers,
and whether mitigating it improves reasoning, offers another rich line of inquiry.

In sum, shape happens. Our work lays the foundational ground for interpreting and comparing representations
in LMs through geometric structures. This invites further exploration into how manifold shapes are formed,
combined, functionally employed in downstream reasoning, and how knowing about them could improve
existing models.

Limitations

Our use of language models trained on predominantly English corpora introduces an inherent bias toward the
cultural norms of the Anglosphere. This is reflected in several design choices: the reliance on the Gregorian
calendar for date expressions; the selection of names that are tokenized as single units, which tends to privilege
Anglo-American names; and assumptions about seasonal properties (e.g., associating December with cold
weather), which implicitly expects the location to be a country in the northern hemisphere, with a temperate
or continental climate. The high accuracy and well-formed manifolds observed in these settings can therefore
be seen as indicators of such biases. SMDS could find use as a diagnostic tool, uncovering how underlying
representations reflect these biases.

In our work, we omit fuzzy expressions for which it is not possible to define precise temporal pointers (e.g., “in
the morning,” “later,” and “next week”) and therefore an exact location on a feature manifold. As Kenneweg
et al. (2025) show, fuzziness in a temporal expression is a key factor in performance degradation. Future
works could better characterize the interplay between fuzziness in temporal expressions and the quality of
feature manifolds.
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A Extended Literature Review

Linear Representations & Feature Manifolds The linear representation hypothesis proposes that
language models encode interpretable features as directions in their latent space, with concepts expressed as
sparse linear combinations of these directions (Park et al., 2024b; Modell et al., 2025). Recent work extends
this view, revealing that related features tend to organize into structured manifolds. For example, ring-like
structures (Engels et al., 2025), logarithmic progressions (AlquBoj et al., 2025), U-shaped curves (Engels
et al., 2025; Modell et al., 2025), clusters organized around the vertices of geometric polytopes (Park et al.,
2024a), and higher-dimensional surfaces (Gurnee & Tegmark, 2023). Other studies on multilingual LMs
have also investigated structures in the latent space and consistently found shared representations across
languages (Peng & Søgaard, 2024; Artetxe et al., 2020; Chang et al., 2022; Conneau et al., 2020, inter alia).
Beyond static feature geometry, recent work has shown that such linear and manifold structures also underpin
model behaviors, including truthfulness (Marks & Tegmark, 2024) and the interaction between reasoning and
memorization (Hong et al., 2025).

Existing Dimension Reduction Methods Several linear dimensionality reduction techniques have been
applied to recover structure from language model representations: Principal Component Analysis (PCA)
identifies directions of maximal variance in the embedding space (Gurnee & Tegmark, 2023; Modell et al.,
2025); Linear Discriminant Analysis (LDA) finds directions that best separate labeled categories (Park et al.,
2024a); Partial Least Squares Regression (PLS) identifies components that most strongly covary with target
labels (Wold et al., 2001; El-Shangiti et al., 2025; Heinzerling & Inui, 2024); and Multi-Dimensional Scaling
(MDS) seeks low-dimensional embeddings that preserve pairwise distances from the original space (Marjieh
et al., 2025). In addition to these linear methods, some non-linear techniques such as t-SNE and UMAP have
also been applied (van der Maaten & Hinton, 2008; Healy & McInnes, 2024; Subhash et al., 2023). Other
dimensionality reduction techniques may also yield promising insights, but to our knowledge have not yet
been systematically applied to probing LM representations (Trofimov et al., 2022; Tulchinskii et al., 2025).

Probes have become a widely used tool for analyzing the internal representations of language models. Typically,
a probe is a simple classifier trained to predict a specific linguistic or conceptual property from a model’s
hidden states. They have been employed to study a range of linguistic features, including morphology and
syntax (Belinkov et al., 2017; Hewitt & Manning, 2019), as well as broader aspects of neural network behavior
(Alain & Bengio, 2017; Jin et al., 2025). Other works has used probes to examine the sparsity of feature
representations (Gurnee et al., 2023), detect model truthfulness (Li et al., 2023; Marks & Tegmark, 2024), and
uncover the representations of concepts such as world locations, temporal quantities and numbers (Gurnee
& Tegmark, 2023; Engels et al., 2025; Levy & Geva, 2025). However, probe-based interpretations remain
debated as probe performance does not necessarily imply mechanistic use (Jawahar et al., 2019; Tenney et al.,
2019; Niu et al., 2022), a limitation less applicable to representation-geometry approaches that incorporate
causal interventions (Heinzerling & Inui, 2024).

Another prominent technique used in interpretability works is the Sparse Auto Encoder (SAE), a neural
network building a mapping from the dense activation space of a LM to a high-dimensional, sparse, latent
space such that single neurons of a SAE represent atomic concepts (Bricken et al., 2023; Huben et al.,
2023). SAEs have been successful at recovering vast collections of monosemantic, interpretable features
at scale (Templeton et al., 2024), but have also found usage in unlearning (Farrell et al., 2024), detecting
internal causal graphs (Marks et al., 2024) and identifying circuits (Minegishi et al., 2024). Recent work
has also explored post-hoc interpretation of SAE features themselves, for example through agentic explainer
frameworks such as SAGE (Han et al., 2025). While SAEs have shown promise for LLM interpretability, they
face substantial critiques and limitations that challenge their effectiveness and reliability. Representations
identified by SAEs may fall victim of “feature absorption,” complicating the disentanglement of atomic
features (Chanin et al., 2025). In model steering, simple baselines have been observed outperforming SAEs
(Wu et al., 2025; Kantamneni et al., 2025). Lastly, SAEs are expensive to construct as they require extremely
large dimension of their latent space and necessitate in some cases billions of tokens for training. Their
construction also makes them model-specific, preventing transferability (Sharkey et al., 2025).
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In this work, we primarily compare SMDS with other linear dimensionality reduction techniques. While
non-linear methods and SAEs may offer valuable insights, we do not focus on them here due to their high
computational demands. Our goal is to enable a scalable and systematic exploration of feature manifolds
across models and tasks. This requires lightweight methods that can be efficiently applied in closed form,
making linear approaches better suited to the scope of our investigation.

Temporal Reasoning Temporal reasoning refers to the ability to interpret and manipulate expressions
that describe temporal information3 in order to determine when events occur or how they relate temporally
(Jia et al., 2018a). Such reasoning tasks often require composing multiple temporal expressions to answer
nuanced, time-sensitive questions.

Several datasets exist that seek to benchmark LMs across different facets of temporal reasoning. Some
evaluate factual recall over time (Jia et al., 2018b; Chen et al., 2021; Jia et al., 2021), others focus on temporal
understanding of real-world scenarios (Zhou et al., 2019; Fatemi et al., 2025), and yet others probe the
temporal arithmetic capabilities of LMs (Tan et al., 2023). Lastly, some works have aggregated existing
benchmarks in order to evaluate broader capabilities such as symbolic, commonsense, and event reasoning
(Wang & Zhao, 2024; Chu et al., 2024).

Existing benchmarks primarily assess overall performance on complex tasks involving multiple temporal
expressions and reasoning types. Simpler tasks focusing on specific types of temporal expressions, despite
being foundational to temporal understanding, remain underexplored. To enable a mechanistic investigation
of how language models process temporal information, homogeneous datasets that isolate specific facets of
temporal expressions are required.

3For example, dates (e.g., “May 1, 2010”), times (“9 pm”), or temporal relations (“before,” “in the morning”).
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Table 6: Possible temporal expressions for each task.

Dataset Temporal expression set

cities Uniformly sampled based on location from the World Cities Database,
considering only prominent cities or cities with > 10.000 inhabitants for
US and Canada.

date, date_season, date_temperature Uniformly sampled from all 365 days of a non-leap year.

duration Dates sampled in the same way as date, durations uniformly sampled
from fixed set: 1 day, 2 days, 3 days, 4 days, 5 days, 6 days, 7 days, 8
days, 9 days, 10 days, 1 week, 2 weeks, 3 weeks, 4 weeks, 7 days, 10
days, 14 days, 21 days, 25 days, 30 days, 1 month, 2 months, 3 months,
4 months, 6 months, 8 months, 4 weeks, 6 weeks, 8 weeks, 10 weeks, 1
year, 2 years, 3 years, 4 years, 12 months, 18 months, 24 months, 36
months.

notable Uniformly sampled from a fixed set, extracted from Wikipedia. Omitted
from brevity, full dataset available in the code repository.

time_of_day, time_of_day_phase Action time uniformly sampled from all hours at :00, :15, :30, :45.
Reference time sampled uniformly from all times of the day.

B Temporal Taxonomy & Datasets

This section describes the synthetic datasets we have generated to probe atomic aspects of temporal
understanding.

Taxonomy Various annotation schemes have been developed to characterize temporal expressions such as
TIMEX3 (Pustejovsky et al., 2010), TIMEX2 (Ferro et al., 2003), TIMEX (Setzer, 2001) and TimeML (Saurí
et al., 2006), as well as several variants. We take inspiration from TIMEX1-3 to construct several synthetic
datasets. Each one covers a specific family of temporal expressions (Table 2):

• date: Refers to a specific calendar date. To explore periodic reasoning, we omit the year;

• time_of_day: Specifies a precise moment in the day;

• duration: Defines a duration and its starting point;

• periodic: Refers to events that recur with a given frequency;

• notable: Contains an indirect but precise reference to an event taking place in a given moment in
time.

The taxonomy has been defined in such a way that temporal expressions have a unique, precisely-defined
associated numerical quantity. We have chosen to omit fuzzy expressions for which it is not possible to define
precise temporal pointers (e.g. “in the morning”, “later”, “next week”) and therefore an exact position in a
feature manifold.

Dataset Creation We build each sentence in the dataset by combining three contextual sentences and a
termination that elicits reasoning. Each sentence contains a name, action and temporal expressions which
are all uniformly sampled from a given set. Names and actions have been generated via ChatGPT and
checked manually to be consistently formatted and the resulting sentences grammatically correct. Names
have been chosen so that they are not broken up into separate tokens. Temporal expressions of the notable

task have been obtained from Wikipedia4 and have been rewritten via ChatGPT and checked manually to
ensure consistence. For all datasets, each sentence contains exactly one temporal expression. We chose not to

4https://en.wikipedia.org/wiki/Timeline_of_the_20th_century
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Table 7: Additional examples for each task.

Dataset # Samples Examples

cities 2000 Luke lives in Boston. William lives in Toronto. Michael lives in Cancún.
The person who lives closest to Luke is

Mark lives in Leuven. Jack lives in Heidelberg. Dallas lives in Messina.
The person who lives closest to Mark is

date 1992 Brandon donated clothes on the 29th of September. Bob donated clothes
on the 31st of August. Jerry donated clothes on the 27th of September.
The first person that donated clothes was

Matt visited a new city on the 22nd of February. Josh visited a new city
on the 14th of February. Frank visited a new city on the 1st of March. The
first person that visited a new city was

date_season 2000 Emily mowed the lawn on the 8th of December. Blake mowed the lawn on
the 30th of April. Walker mowed the lawn on the 27th of June. The only
person that mowed the lawn in fall is

Rose painted a mural on the 16th of June. Robert painted a mural on the
13th of July. Martin painted a mural on the 27th of July. The only person
that painted a mural in spring is

date_temperature 2000 Richard left for vacation on the 25th of June. Neil left for vacation on the
22nd of December. April left for vacation on the 22nd of August. The only
person that left for vacation in a cold month is

Jason returned from vacation on the 12th of February. Connor returned
from vacation on the 21st of March. Rachel returned from vacation on the
19th of October. The only person that returned from vacation in a warm
month is

duration 3000 Maria is starting their internship on the 15th of December and is set to run
for 25 days. George is starting their internship on the 13th of December
and is set to run for 14 days. Laura is starting their internship on the 3rd
of December and is set to run for 1 week. The person whose internship
ends first is

Hunter runs a festival booth on the 27th of December staying open for 10
days. George runs a festival booth on the 12th of November staying open
for 9 days. Connor runs a festival booth on the 20th of December staying
open for 9 days. The person whose festival booth ends first is

notable 2000 Robert was born on the day the MV Doña Paz sank. Maria was born on
the day the independent State of Palestine was proclaimed. Andrew was
born on the day the Dayton Accords were signed. The oldest is

Neil was born on the day Herbert Hoover was inaugurated as President.
Leon was born on the day James Joyce published Ulysses. Alice was born
on the day Mandatory Palestine was established. The oldest is

time_of_day 3000 Steve watches a movie at 23:15. April watches a movie at 11:45. Charlie
watches a movie at 7:15. It is now 2:58. The last person who watched a
movie is

Charlie watches TV at 4:45. Richard watches TV at 12:15. Steve watches
TV at 4:30. It is now 14:42. The last person who watched TV is

time_of_day_phase 2000 Leon goes for a walk at 6:15. Brandon goes for a walk at 18:30. Matt goes
for a walk at 5:00. The only person that goes for a walk in the morning is

John writes in a journal at 4:45. Matt writes in a journal at 5:00. Luke
writes in a journal at 20:45. The only person that writes in a journal in the
evening is
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include more, using composite expressions, so as to obtain cleaner feature manifolds. The only exceptions
are the duration and time_of_day datasets that contains two. This was necessary in order to formulate
non-trivial questions that require reasoning across time spans. The notable task not only requires comparing
different expressions but also involves factual recall of events from parametric memory. Variants date_season,
date_temperature, and time_of_day_phase contain the same contextual sentences as the original tasks but a
different termination that elicits a classification-based form of reasoning. Finally, we note that the number of
examples per dataset varies. This is necessary to ensure that, after filtering for correctly answered instances,
a sufficient number of activations remain for SMDS training. For consistency, we require a minimum of 500
correctly classified examples per model-task pair and cap the number of activations used in manifold search
at this threshold. See Table 6 and Table 7 for a more extensive collection of templates and examples.

Table 8: BERTScore-based variability statistics for our dataset compared to prior datasets commonly used
in studies of representational geometry and the linear representation hypothesis. Our dataset exhibits
substantially higher variability across similarity pairs.

Dataset Mean Similarity Std

Our datasets

cities_3way 0.8170 0.0217
date_3way_season 0.8306 0.0244
date_3way_temperature 0.8480 0.0240
date_3way 0.8218 0.0250
duration_3way 0.7975 0.0311
notable_3way 0.8099 0.0281
periodic_3way 0.8023 0.0302
time_of_day_3way_phase 0.8169 0.0265
time_of_day_3way 0.8174 0.0257

Heinzerling & Inui (2024) and El-Shangiti et al. (2025)

P569 birthyear 0.8582 0.0444
P570 death year 0.8485 0.0517
P625.lat latitude 0.8289 0.0489
P625.long longitude 0.8598 0.0409
P1082 population 0.8544 0.0430
P2044 elevation 0.8410 0.0445

Engels et al. (2025)

days of week 0.9627 0.0171
month of year 0.9617 0.0144

B.1 Data Variability

Overall, as shown in Table 8, the dataset we created demonstrates higher variability compared to datasets
curated by prior work in related areas. In particular, we compute several BERTScore-based (Zhang et al.,
2019) variability metrics across all splits of our dataset and compare them against the dataset used in
Heinzerling & Inui (2024) and El-Shangiti et al. (2025), as well as the dataset in Engels et al. (2025), works
that established the study of representational geometry and the linear representation hypothesis. We measure
variability by computing BERTScore F1 for every possible pair of texts in a dataset split, using the model’s
predicted-reference pairs formed via 5000 randomly sampled combinations. The mean similarity is the average
of these pairwise F1 scores, while the std is the sample standard deviation of the same set of scores.
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C Supervised Multi-Dimensional Scaling

In this section we provide further details on the dimensionality reduction method we use throughout the
paper, as well as highlight its differences and similarities with other techniques which served as inspiration.

Description SMDS is based on the assumption that points X ∈ Rn×d in the residual stream roughly lie on
a feature manifold that can be parametrized with labels y ∈ Y with yi ∈ [0, 1]. Distances on this ideal feature
manifold are assumed similar to Euclidean distances in the residual stream. Formally, given activations
X ∈ Rn×d, two samples xi, xj ∈ X and a linear projection W ∈ Rm×d from the full space to the manifold
subspace, we assume that d(yi, yj) ≈ ∥W (xi − xj)∥. To find W , we can minimize Eq. 1, reported here for
readability:

L =
∑
i<j

(
∥W (xi − xj)∥2 − d(yi, yj)2)2

.

The problem is solved as follows. First, ideal distances d(yi, yj) between labels are computed and the squared
distance matrix is defined as:

Dij := d(yi, yj)2. (4)

Then, classical MDS is performed. Double centering is applied:

H := I − 1
n

11⊤, B := −1
2HDH. (5)

B is eigen-decomposed and a low-dimensional embedding Y is obtained:

B = V ΛV ⊤, (6)
Y := VmΛ1/2

m ∈ Rn×m, (7)

with Vm the top m eigenvectors and Λm the corresponding eigenvalues. The embeddings Y represent the
locations of data points in the parametrized approximation of the manifold such that ∥Yi − Yj∥ ≈ d(yi, yj).
The following steps perform regression to find a mapping from datapoints X to this subspace. We center X
and Y by subtracting their mean:

Xc = X − X, Yc = Y − Y . (8)

Substituting in Eq. 1:
∥XcW ⊤WX⊤

c − YcY ⊤
c ∥2. (9)

At the optimum W we get that XcW ⊤ ≈ Yc. Solving Eq. 1 is expensive, however we can approximate W by
solving a proxy problem:

W = arg min
Ŵ

∥XcŴ ⊤ − Yc∥. (10)

this is the same formulation as a linear probe, but with Y being computed from the label using MDS. A
solution is easily found:

W = Y ⊤
c Xc

(
X⊤

c Xc

)−1
. (11)

A regularization term can be added to Eq.11 to make the resulting projection more robust:

W = Y ⊤Xc

(
X⊤

c Xc + αI
)−1

. (12)

In all our experiments, we set α = 0.1.

The embeddings Y represent the locations of data points in the parametrized approximation of the manifold
(Figure 2). In principle, if such embeddings are already known, the preceding steps can be skipped entirely.
Computing arbitrary d(yi, yj) just gives more flexibility. By using SMDS to perform a search across several
candidate hypotheses, the problem of identifying a manifold can be reduced to one of model selection: one
only needs to perform SMDS on several metrics d(yi, yj) or parametrized manifolds Y , and compare them
using a quality metric like stress.
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Comparison to other methods SMDS is an extension of MDS and uses it as part of the procedure.
There is, however, a key difference in its use case: while classical MDS is unsupervised and only learns a
lower-dimensional mapping that preserves Euclidean distances, SMDS first builds a distance matrix from
labels and then uses it to learn the actual projection via regression. There are also differences in the stress
metric we use (Eq. 3): classical normalized stress (Amorim et al., 2014) evaluates the error between distances
in the original and lower-dimensional space; our formulation effectively does the same, but between the
projected and the ideal subspace Y .

The first term in Eq. 1 can be reformulated:

∥W (xi − xj)∥2 = (W (xi − xj))⊤(W (xi − xj)),
= (xi − xj)⊤W ⊤W (xi − xj),
= (xi − xj)⊤M(xi − xj),

with M ∈ Rn×n being a positive semi-definite matrix. This is the squared Mahalanobis distance, widely used
in Distance Metric Learning. In fact, many other dimensionality reduction techniques can be described as
Distance Metric Learning algorithms (Suárez-Díaz et al., 2020).

SMDS is closely related to probes, which have been extensively used in prior works (Belinkov, 2022; Li et al.,
2022; Gurnee & Tegmark, 2023, inter alia). Some have successfully employed circular probes to recover
feature manifolds (Engels et al., 2025) and study other cyclical patterns such as number encodings (Levy &
Geva, 2025), but to the best of our knowledge no prior works have used MDS to build probes of arbitrary
shape.
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Figure 11: Accuracy on temporal tasks. Accuracy is low across the board, with only Llama models achieving
above-chance accuracy. The 3B Llama variant is also shown outperforming the 8B one.

Site: TE Site: LP Site: A

Time of Day Manifolds - Qwen2.5-3B-Instruct

Figure 12: Circular manifolds on the time_of_day task. SMDS cannot find any structure on lp and a despite
one being present at the te site.

D Supplementary Experiments

D.1 Model Performance

We evaluate exact match accuracy across all tasks and models, finding that performance is generally very low,
with only instruction-tuned models from the Llama family outperforming random chance. This is notable
because, despite poor task performance, the models still produce well-defined feature manifolds. Among
Llama models, we find the more recent Llama-3.2-3B-Instruct outperforms its 8B counterpart, while the 70B
version displays stronger performance in almost all tasks (Figure 11).

While stress is a good indicator of performance, as discussed in Appendix 5.3, we observe no significant
correlation for the three models of the main analysis (Spearman’s ρ = −0.034). We hypothesize that while
most LMs effectively structure knowledge internally, some struggle to leverage it during generation. This
might explain their lower performance. Another possibility is that the specific wording of the prompt does
not allow LMs to effectively recover information from context. In that case, chain-of-thought prompting (Wei
et al., 2022) may improve performance.

D.2 Additional Observations on Manifold Analysis

Manifold analysis reveals consistent patterns across model scales. As Figure 14 shows, larger models from
the same family tend to converge to the same internal representations as their smaller counterparts. This
suggests architecture and pre-training data play a pivotal role in determining LMs representations.

We observe two instances where manifold analysis exhibits unexpected behaviors. On the time_of_day task,
SMDS is unable to recover well-organized manifolds at the lp site despite a clear, preferential circular manifold
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Figure 13: Additional manifolds for different tasks and models. Continued from Figure 3; error bars are
shown in black. Manifold topology: linear; cyclical; categorical;

being present at the te site (Figure 12). The lack of transferability between the two sites can be explained by
noting that time_of_day sentences contain two temporal expressions in the same format instead of one. The
two representations may interfere destructively, preventing their recovery. When also considering findings
from §D.5, it is also possible that, for this specific prompt, the lp site is not storing any semantically relevant
information. Future works could start from tasks such as this to characterize how multiple feature manifolds
combine, and in which token is this information encoded.

On the date_temperature task (Figure 13), the clusters are correctly identified but the scoring yields unreliable
values. This is expected when considering how distances are computed in the binary cluster scenario: two
clusters can be modelled correctly by any hypothesis manifold, as there is no order that can be enforced.
This signals caution and suggests reverting to simpler probes to evaluate binary features.
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Figure 14: Feature manifolds for models at different sizes. The preferential manifold is consistent across
scales. Error bars are shown in black. Manifold topology: linear; cyclical; categorical;

30



Published in Transactions on Machine Learning Research (02/2026)

da
te

0 1 2

euclidean

log_linear

semicircular 2°

log_semicircular 3°

circular 1°
discrete_circular

cluster

0 2

euclidean

log_linear

semicircular 1°
log_semicircular 3°

circular 2°

discrete_circular

cluster

0 1 2

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular 1°
cluster

da
te

_s
ea

so
n

0 5

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°
0 5

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°
0.0 2.5 5.0

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°

da
te

_t
em

pe
ra

tu
re

0.0 2.5 5.0

euclidean 3°

log_linear
semicircular

log_semicircular

discrete_circular 1°
cluster 2°

0.0 2.5 5.0

euclidean 3°

log_linear

semicircular
log_semicircular

discrete_circular 1°
cluster 2°

0.0 2.5 5.0

euclidean

log_linear 1°
semicircular

log_semicircular 2°

discrete_circular 3°

cluster

du
ra

tio
n

0 1

euclidean 1°

0 1

euclidean 1°

0 1

euclidean 1°

no
ta

bl
e

0 1

euclidean

log_linear

semicircular 1°
log_semicircular 2°

circular

discrete_circular 3°

cluster

0.0 0.5

euclidean

log_linear 3°

semicircular

log_semicircular

discrete_circular 1°
cluster 2°

0.0 0.5

euclidean

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°

pe
rio

di
c

0 2

euclidean 2°

log_linear 1°
semicircular

log_semicircular 3°

circular

cluster

0 2

euclidean

log_linear 1°
semicircular 3°

log_semicircular 2°

circular

discrete_circular

cluster

0 2

euclidean

log_linear 1°
semicircular 3°

log_semicircular 2°

circular

discrete_circular

cluster

tim
e_

of
_d

ay

0.0 0.5 1.0

euclidean

log_linear

semicircular 3°

log_semicircular

circular 1°
discrete_circular 2°

cluster

0 1

euclidean

log_linear

semicircular 2°

log_semicircular

circular 1°
discrete_circular 3°

cluster

0.0 0.5 1.0

euclidean

log_linear

semicircular 3°

log_semicircular

circular 1°
discrete_circular 2°

cluster

tim
e_

of
_d

ay
_p

ha
se

0 5

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°
0 5

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°
0.0 2.5 5.0

euclidean

log_linear

semicircular 3°

log_semicircular

circular 2°

discrete_circular

cluster 1°

Qwen/Qwen2.5-3B google/gemma-2-2b meta-llama/Llama-3.2-3B

Figure 15: Feature manifolds for base models. Geometries are consistent with the instruction-tuned counter-
parts in most cases. Manifold topology: linear; cyclical; categorical;
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Figure 16: Q-Q plot of p-values obtained from a Nemenyi test comparing the stress scores of the first ranked
manifold with all others for a given dataset. For all datasets except for date_temperature, the best identified
manifold scores significantly higher than the alternative starting, on average, from the 3th-4th one.

D.3 Establishing Statistical Significance

SMDS tends to return tightly clustered stress scores across different hypotheses, making it hard to identify
a single best manifold. To overcome this issue, we resort to statistical testing to isolate a manifold that is
statistically better than the alternatives.

First, we turn to a 10-fold cross-validation setup with 5 repetitions in which SMDS is trained on 9 folds and
evaluated on the 10th. We group observation across dataset, model, and rank of the manifold, and perform a
Friedman test. For all groups that achieve statistical significance (p < 0.05) we perform a post-hoc Nemenyi
test to evaluate the significance of manifolds ranks on a given dataset. The resulting Q-Q plot in Figure 16
shows that for most tasks the manifolds ranked 1st performs comparably to manifolds ranked 2nd to 4th, and
significantly better than the rest. For duration, periodic, and time_of_day this further reduces to manifolds
2nd to 3rd. The binary nature of date_temperature produces very homogeneous scores across all datasets
and therefore we are not able to verify any significance. Results are summarized in Table 3, showing the
best-scoring manifold for each task and model.

To further separate results, we employ bootstrapping. We run 500 independent bootstrap iterations, each
time training on a dataset obtained by sampling with replacement from the original data and evaluating
performance on the corresponding out-of-bag samples. We perform Friedman and Nemenyi tests as before
and finally draw critical difference diagrams across all datasets. We perform this analysis over all models save
for Llama-3.1-70B-IT which we exclude due to compute limitations. As Table 9 shows, confidence intervals
become very narrow and thus provide statistically significant results for all models and tasks. Figures 5, 17
show the overall ranking of manifolds across tasks confirming the results obtained in the previous analysis
and establishing a clear best-ranking hypothesis for each task, the only exception once again being the
date_temperature dataset.

Taken together, the repeated cross-validation and bootstrap analyses provide consistent evidence that our
conclusions are stable across data splits. Across both settings, statistical tests yield convergent significance
patterns and identify the same top hypotheses for each task (with the expected exception of date_temperature,
where scores are inherently homogeneous). This agreement across two complementary resampling protocols
supports the claim that SMDS manifold selection is robust to variation in the underlying data split.
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Table 9: Manifold scores for each model and dataset in a bootstrap setting with 500 iterations. Standard
error shown in grey, best manifold bolded.

Dataset date date_season date_temperature duration notable periodic time_of_day time_of_day_phase
Manifold − log S − log S − log S − log S − log S − log S − log S − log S

Llama-3.1-8B-IT

lin 1.733±0.005 6.128±0.007 5.703±0.007 1.626±0.008 1.912±0.004 2.137±0.009 0.837±0.003 6.051±0.007
log_lin 1.310±0.006 6.060±0.007 5.703±0.007 2.708±0.007 1.849±0.005 3.696±0.005 0.679±0.004 6.132±0.007
semic 2.035±0.005 6.288±0.006 5.703±0.007 1.647±0.007 2.071±0.004 2.250±0.009 1.075±0.003 6.353±0.006

log_semic 1.879±0.005 6.217±0.007 5.703±0.007 1.796±0.008 2.013±0.004 2.487±0.010 0.959±0.003 6.260±0.007
circ 2.210±0.004 5.981±0.005 0.000±0.000 1.575±0.008 1.669±0.003 1.893±0.009 1.248±0.002 6.365±0.006

disc_circ 2.032±0.003 3.048±0.002 5.703±0.007 1.349±0.014 1.876±0.003 1.377±0.013 1.178±0.002 3.032±0.002
clust 0.459±0.002 6.421±0.005 5.703±0.007 1.105±0.004 0.619±0.002 1.127±0.002 0.886±0.003 6.539±0.006

Llama-3.2-3B-IT

lin 1.854±0.006 6.310±0.006 6.306±0.007 1.866±0.005 1.808±0.004 1.805±0.009 0.720±0.002 6.450±0.007
log_lin 1.225±0.006 6.226±0.007 6.306±0.007 2.943±0.004 1.743±0.004 3.573±0.005 0.599±0.003 6.463±0.007
semic 2.146±0.006 6.550±0.006 6.306±0.007 2.103±0.005 1.985±0.004 1.833±0.009 0.963±0.002 6.791±0.006

log_semic 1.956±0.006 6.425±0.006 6.306±0.007 2.345±0.005 1.921±0.004 2.020±0.011 0.841±0.002 6.638±0.007
circ 2.268±0.004 6.515±0.005 0.000±0.000 1.865±0.012 1.710±0.003 1.782±0.011 1.210±0.002 6.937±0.005

disc_circ 2.211±0.005 2.916±0.002 6.306±0.007 1.726±0.019 1.781±0.003 1.321±0.014 1.138±0.002 2.955±0.002
clust 0.462±0.001 6.846±0.005 6.306±0.007 1.159±0.003 0.584±0.002 1.120±0.002 0.892±0.002 6.979±0.005

Qwen2.5-3B-IT

lin 2.395±0.014 7.343±0.011 7.093±0.010 1.994±0.005 1.715±0.004 1.859±0.008 0.557±0.003 7.816±0.009
log_lin 1.903±0.013 7.360±0.011 7.093±0.010 2.719±0.005 1.632±0.004 3.576±0.006 0.532±0.005 7.894±0.010
semic 2.736±0.011 7.672±0.010 7.093±0.010 2.097±0.007 1.890±0.004 1.920±0.011 0.813±0.003 8.194±0.009

log_semic 2.577±0.012 7.534±0.010 7.093±0.010 2.295±0.008 1.822±0.004 2.131±0.010 0.713±0.003 8.064±0.009
circ 2.860±0.010 7.793±0.010 0.000±0.000 1.604±0.019 1.578±0.003 1.478±0.008 1.134±0.002 8.250±0.008

disc_circ 2.347±0.011 2.893±0.002 7.093±0.010 1.241±0.026 1.561±0.003 0.725±0.015 0.972±0.005 2.858±0.001
clust 0.508±0.002 7.958±0.009 7.093±0.010 1.147±0.002 0.620±0.002 1.023±0.002 0.895±0.002 8.416±0.007

gemma-2-2b-IT

lin 2.007±0.010 6.408±0.009 6.726±0.010 1.868±0.005 1.650±0.004 1.945±0.010 0.867±0.005 6.476±0.009
log_lin 1.597±0.008 6.249±0.009 6.726±0.010 3.269±0.005 1.661±0.004 3.655±0.007 0.616±0.006 6.542±0.010
semic 2.376±0.011 6.598±0.008 6.726±0.010 2.047±0.005 1.871±0.004 2.020±0.014 1.091±0.005 6.845±0.009

log_semic 2.226±0.007 6.468±0.008 6.726±0.010 2.392±0.005 1.819±0.004 2.252±0.016 0.946±0.005 6.703±0.010
circ 2.605±0.007 6.490±0.007 0.000±0.000 1.481±0.005 1.616±0.003 1.782±0.027 1.184±0.003 6.921±0.009

disc_circ 2.078±0.008 2.834±0.001 6.726±0.010 1.281±0.006 1.601±0.004 1.523±0.045 1.023±0.004 2.851±0.002
clust 0.589±0.002 6.847±0.006 6.726±0.010 1.189±0.002 0.768±0.003 1.556±0.003 1.114±0.004 7.036±0.008

Llama-3.2-3B

lin 1.451±0.005 6.035±0.008 6.401±0.007 1.800±0.005 0.521±0.011 1.569±0.009 0.702±0.003 6.164±0.009
log_lin 0.952±0.005 5.909±0.008 6.401±0.007 2.717±0.004 0.409±0.016 3.429±0.006 0.639±0.004 6.232±0.010
semic 1.712±0.005 6.303±0.007 6.401±0.007 2.090±0.005 0.673±0.007 1.856±0.007 0.971±0.003 6.541±0.008

log_semic 1.533±0.005 6.134±0.008 6.401±0.007 2.269±0.005 0.574±0.008 2.041±0.008 0.844±0.003 6.398±0.009
circ 1.862±0.004 6.282±0.006 0.000±0.000 1.882±0.006 0.879±0.010 1.760±0.009 1.194±0.002 6.676±0.006

disc_circ 1.841±0.005 2.943±0.002 6.401±0.007 1.727±0.009 0.696±0.010 1.291±0.012 1.155±0.002 2.923±0.001
clust 0.489±0.002 6.619±0.005 6.401±0.007 1.159±0.002 0.804±0.007 1.133±0.002 1.004±0.003 6.787±0.007

Qwen2.5-3B

lin 2.079±0.009 7.424±0.008 6.868±0.009 1.792±0.006 1.460±0.008 1.806±0.012 0.675±0.003 7.835±0.009
log_lin 1.579±0.009 7.388±0.008 6.868±0.009 2.823±0.005 1.449±0.008 3.200±0.006 0.511±0.004 7.921±0.009
semic 2.383±0.009 7.705±0.007 6.868±0.009 2.138±0.005 1.592±0.007 1.403±0.011 0.946±0.003 8.180±0.007

log_semic 2.240±0.009 7.578±0.008 6.868±0.009 2.318±0.005 1.551±0.008 1.451±0.013 0.805±0.003 8.069±0.008
circ 2.522±0.005 7.682±0.007 0.000±0.000 1.873±0.006 1.340±0.004 0.646±0.009 1.220±0.002 8.204±0.006

disc_circ 2.003±0.006 2.855±0.001 6.868±0.009 1.613±0.010 1.506±0.005 −0.481±0.026 1.028±0.003 2.862±0.001
clust 0.518±0.002 7.935±0.007 6.868±0.009 1.157±0.002 0.642±0.003 1.306±0.002 0.937±0.002 8.371±0.006

gemma-2-2b

lin 2.353±0.009 6.176±0.010 6.449±0.011 1.627±0.006 0.609±0.020 1.601±0.009 0.874±0.003 6.449±0.009
log_lin 1.622±0.009 6.064±0.009 6.449±0.011 2.615±0.006 0.497±0.025 3.462±0.006 0.726±0.006 6.617±0.009
semic 2.741±0.009 6.424±0.009 6.449±0.011 1.856±0.005 0.833±0.011 1.837±0.008 1.172±0.003 6.807±0.008

log_semic 2.543±0.009 6.274±0.009 6.449±0.011 2.090±0.006 0.675±0.012 2.109±0.007 1.032±0.003 6.725±0.009
circ 2.810±0.007 6.649±0.007 0.000±0.000 1.501±0.006 0.842±0.013 1.319±0.009 1.404±0.004 6.881±0.008

disc_circ 2.194±0.007 2.826±0.001 6.449±0.011 1.287±0.009 0.680±0.020 0.657±0.016 1.153±0.005 2.832±0.001
clust 0.518±0.002 6.907±0.007 6.449±0.011 1.282±0.003 0.796±0.010 1.222±0.003 0.977±0.002 7.024±0.007
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Figure 17: Additional critical difference diagrams showing avg. rank of manifolds across all models over 500
bootstrapping iterations. Horizontal bars show groups of statistical equivalence. Best-ranking manifold is
always statistically different from others, the only exception being the date_temperature dataset.
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Figure 18: Stress as a function of subspace dimension-
ality m, grouped by manifold. The cluster manifold
displays an upward trend while all others are stable.
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Figure 19: Stress as a function of subspace dimen-
sionality m, grouped by model. Scores remain largely
stable across models and dimensionalities.

D.4 Sensitivity to Number of Components m

We analyze the effect of the recovered subspace dimensionality m on the stress score by varying m ∈
{2, 3, 4, 5, 10} and measuring stress across all tasks and models. Figure 18 shows that stress is largely stable
as dimensionality increases for nearly all manifold hypotheses. The main exception is the cluster hypothesis,
whose stress increases with m. This behavior follows from its distance definition, which enforces equal pairwise
distances between the |y| clusters: in m dimensions, at most m + 1 clusters can be embedded with equal
separation, so tasks with more labels necessarily incur higher stress at fixed dimensionality. In contrast, the
other manifold hypotheses do not depend on label cardinality and therefore show near-invariant stress across
dimensions. This pattern is mirrored across models in Figure 19, where stress remains consistent once the
cluster case is excluded.

Based on these observations, we fix the SMDS dimensionality to m = 3 throughout the study. This is the
smallest value sufficient to represent all considered manifold hypotheses: linear and cyclical structures require
at most two dimensions, while cluster structures in tasks such as date_season and time_of_day_phase involve
four labels (|y| = 4) and thus require three dimensions to be embedded with equal separation. Increasing m
beyond this threshold yields only minor changes in stress for all but the cluster manifold. We recommend
choosing a single shared dimensionality to ensure consistent comparisons across manifold types and model
settings.
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Figure 20: Additional accuracy plots from the intervention experiment. Error bars represent standard error.
The time_of_day task is the least affected by all forms of intervention.
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Figure 21: SMDS of gemma-2-2b-it on the cities task. The recovered projection shows the relative position
of continents. For the sake of clarity, the flat manifold is shown instead of the best-scoring spherical one.

D.5 Additional Observations on Intervention

Figure 20 shows how the time_of_day is the least affected by intervention, even when perturbing the full latent
space. We believe this is due to the specific formatting of time used: expressions such as 19:37 are tokenized
as 19, :, 37, with the te site corresponding to the minute part of the expression. For most examples, the
hour is sufficient to determine the right answer, and since that information is left untouched, the model is
able to continue with minimal disruption.

D.6 Identifying a Spatial Manifold

To show the flexibility of SMDS, we extend our analysis to a spatial reasoning task. In the same vein as
Appendix B, we build sentences composed of three statements “<name> lives in <city>.” Then, we prepend a
continuation “The person who lives closest to <name> is” to elicit reasoning. Names are sampled from the
usual set, while cities are obtained from the World Cities Database5. We select only prominent cities as they
are more likely to be present in the model’s memory. For the US and Canada we instead select cities with
> 10.000 inhabitants, since following the provided labels results in severe undersampling. We then uniformly
sample cities based on location.

5https://simplemaps.com/data/world-cities
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Each city is characterized by its latitude and longitude coordinates ci = (lati, loni). From these, we project
cities on various shapes and compute the relative distance function. We investigate a flat plane, a sphere,
a cylinder, and a complex geometry defined by the geodesic distance between cities. The flat manifold is
computed simply as the Euclidean distance between the two coordinates, same as the linear metric used
before. For the sphere manifold, we convert each coordinate into a 3D point on a sphere of radius r as follows:

ϕi = radians(lati), λi = radians(loni),
xi = r cos(ϕi) cos(λi),
yi = r cos(ϕi) sin(λi),
zi = r sin(ϕi).

Then the distance between two cities is the Euclidean chord length:

∥δij∥ =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2.

For the cylinder manifold, we map latitude to vertical height and longitude to angle around a cylinder of
radius r. Each point is embedded as:

hi = radians(lati) · s, λi = radians(loni),
xi = r cos(λi),
yi = r sin(λi),
zi = hi.

The chord distance is again computed as the Euclidean distance in 3D. For the geodesic manifold, we compute
the great-circle distance between two cities—i.e., the shortest path along the surface of a sphere. We first
convert latitude and longitude to radians and compute the differences:

ϕi = radians(lati), λi = radians(loni),
∆ϕ = ϕi − ϕj , ∆λ = λi − λj .

We then use the Haversine formula:

a = sin2
(

∆ϕ

2

)
+ cos(ϕi) cos(ϕj) sin2

(
∆λ

2

)
.

∥δij∥ = r · 2 arcsin
(√

a
)

.

This corresponds to the true surface distance between two points on the Earth, assuming a perfect sphere. In
addition to the usual lp and a sites, we analyze two more locations: the correct city (cc), corresponding to
the final token of the city where the correct person lives, and the reference city (rc), referring to the final
token of the city where the person in the question lives. Both cities are drawn from the context statements.

Table 5 shows that the manifold achieving the closest fit is a spherical one across all models. In Figure 21, we
visualize the projection recovered by SMDS and find clear clusters around the shapes of continents. Their
relative position is consistent with their real-life location, but projecting a spherical manifold onto a plane
inevitably distorts their real position.

D.7 Feature Manifolds are not Artefacts of SMDS

In this section we validate the robustness of SMDS and confirm that the feature manifolds recovered are
indeed consistent and not an artefact of overfitting a projection. Primary evidence is provided in the main
analysis of §5: the error bars produced by cross-validation are narrow for almost all datasets, confirming that
activations for a given feature do have a preferential manifold.

The second piece of evidence is obtained by designing control tasks following Hewitt & Liang (2019). We
build control variants for all tasks by shuffling the labels. This should make it impossible for SMDS to identify
a structure and we should observe a significant increase in stress. For each model-task pair, we evaluate the
best manifold identified in §5. As in the main experiment, we perform a 5-fold cross-validation on the dataset.
Table 10 shows the results: absence of structure causes a sharp increase in stress (and corresponding drop in
− log S). This is evidence that SMDS does not force a structure when no underlying manifold exists.
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Table 10: Stress values for control tasks. Absolute difference with the base task is shown in red. SMDS
consistently produces low scores if no structure is present.

Dataset Llama-3.2-3B-Instruct Qwen2.5-3B-Instruct gemma-2-2b-it
Best shape − log S Best shape − log S Best shape − log S

date circular 0.995−0.932 circular 0.855−2.075 circular 0.806−1.563
date_season cluster 0.998−4.509 cluster 0.956−7.205 cluster 0.858−6.308
date_temperature cluster 0.376−5.669 cluster 0.332−7.010 cluster 0.211−6.111
duration log_linear 0.513−2.490 log_linear 0.519−2.083 log_linear 0.445−2.059
notable semicircular 0.722−1.248 semicircular 0.740−0.801 semicircular 0.482−1.168
periodic log_linear 0.523−2.888 log_linear 0.502−3.150 log_linear 0.235−3.470
time_of_day circular 0.987−0.223 circular 0.978−0.066 semicircular 0.683−0.468
time_of_day_phase cluster 0.961−4.710 cluster 1.000−6.869 cluster 0.902−6.487

D.8 Exploring the Impact of Instruction Tuning

Since we exclusively use instruction-tuned models in our main experiments, we are interested in whether
instruction tuning impacts the feature manifolds and accuracies of our models. Instruction tuning is a
post-training method that is widely believed to enhance models’ generalization and task-solving capabilities
(Wei et al., 2021; Chung et al., 2024), however not all of the potential changes induced in a base model by
instruction tuning have been explored. Various prior works suggest that instruction tuning mainly impacts
stylistic output tokens rather than changing the model’s parametric knowledge (Zhou et al., 2023; Ghosh
et al., 2024; Lin et al., 2023), and that it additionally causes models to rotate the basis of their representation
space to adapt to user-oriented tasks (Wu et al., 2024). However, these works deal primarily with token
probability distributions and do not explore feature manifolds.

To explore the impact of instruction tuning in our experimental setup, we conduct our main experiments on
the base versions of three of our models: Llama-3.2-3B, Qwen2.5-3B, and Gemma-2-2B. We report the stress
values in Table 3 and the feature manifolds in Figure 15.

Overall, across our three models, we find that instruction tuning did not substantially alter the optimal
structure. For all tasks except notable, periodic, and duration, the structure that was optimal for the
instruction-tuned model tended to remain in the top-3 optimal structures for the base model as well. We note
that the three outlier tasks have monotonic topologies, while the rest have cyclical or cluster-like structures.

For some tasks, we observed that the feature manifolds for base models tended to be more scattered than
those of the instruction-tuned models. For example, the date manifolds for all instruction-tuned models
(Figures 3, 13, 14) have tighter, well-formed ring structures than the manifolds of the base models (Figure
15). However, this was not the case for all tasks: for example, the periodic manifolds for both base and
instruction-tuned models showed a clear separation of clusters that remained consistent within a particular
model architecture.

Surprisingly, we found that the accuracies varied unpredictably between the base and instruction-tuned
models. For Llama, all base accuracies were much lower than the instruction-tuned accuracies, while with the
Qwen and Gemma models, base models sometimes markedly outperformed the instruction-tuned models.
This could possibly be due to differences in the instruction-tuning methods of these models.

Overall, our results suggest that the impact of instruction-tuning on feature manifolds will depend on the
task, model architecture, as well as on the specifics of the instruction-tuning process. A detailed exploration
of this is a promising avenue for future work.
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