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Abstract

Sharpness-aware minimization (SAM) methods
have gained increasing popularity by formulat-
ing the problem of minimizing both loss value
and loss sharpness as a minimax objective. In
this work, we increase the efficiency of the max-
imization and minimization parts of SAM’s ob-
jective to achieve a better loss-sharpness trade-
off. By taking inspiration from the Lookahead
optimizer, which uses multiple descent steps
ahead, we propose Lookbehind, which performs
multiple ascent steps behind to enhance the max-
imization step of SAM and find a worst-case per-
turbation with higher loss. Then, to mitigate the
variance in the descent step arising from the gath-
ered gradients across the multiple ascent steps,
we employ linear interpolation to refine the min-
imization step. Lookbehind leads to a myriad
of benefits across a variety of tasks. Particu-
larly, we show increased generalization perfor-
mance, greater robustness against noisy weights,
as well as improved learning and less catas-
trophic forgetting in lifelong learning settings.
Our code is available at https://github.
com/chandar-lab/Lookbehind-SAM.

1. Introduction

Improving the optimization methods used in deep learning
is a crucial step to enhance the performance of current mod-
els. Notably, building upon the long-recognized connection
between the flatness of the loss landscape and generaliza-
tion (Hochreiter & Schmidhuber, 1994; Keskar et al., 2016;
Dziugaite & Roy, 2017; Neyshabur et al., 2017; Izmailov
etal., 2018), sharpness-aware training methods have gained
recent popularity due to their ability to significantly im-
prove generalization performance compared to minimizing
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the empirical risk using stochastic gradient descent (SGD).
Particularly, sharpness-aware minimization (SAM) (Foret
et al., 2021) was recently proposed as an effective means
to simultaneously minimize both loss value and loss sharp-
ness during training. Given a neural network with parame-
ters ¢, some loss function L(¢), SAM seeks parameters in
flat regions using a minimax optimization:

min max L(¢ +€), 1
¢ llell2<p @+ M

where worst-case perturbations € are applied to parameters
¢, with the distance between original and perturbed param-
eters being controlled by p. SAM approximates the max-
imization step by first performing a single gradient ascent
step and then using the gradient of the loss to do a single
descent step from the original solution. This leads to find-
ing a low-loss parameter configuration ¢ such that the loss
is also low in the neighborhood p which will lead to flatter
solutions. Several follow-up methods have emerged to fur-
ther enhance its performance (Kwon et al., 2021; Zhuang
et al., 2022; Kim et al., 2022) and reduce its computation
overhead (Du et al., 2022a;b; Liu et al., 2022a).

Despite the recent success, improving upon SAM requires a
delicate balance between loss value and sharpness. Ideally,
the optimization process would converge towards minima
that offer a favorable compromise between these two as-
pects, thereby leading to high generalization performance.
However, naively increasing the neighborhood size p used
to find the perturbed solutions in SAM leads to a consider-
able increase in training loss, despite improving sharpness
(Figure 1, full circles). In other words, putting too much
emphasis on finding the worst-case perturbation is expected
to bias convergence to flat but high-loss regions and nega-
tively impact generalization performance.

Instead of performing a single ascent step akin to SAM,
performing multiple ascent steps is a promising way of
increasing the neighborhood region to find perturbed so-
lutions, further reducing sharpness. However, this is not
what is observed empirically (Figure 1, empty circles). In
fact, previous works (Foret et al., 2021; Andriushchenko
& Flammarion, 2022) have shown that such a multistep
variant may hurt performance. A possible cause is the in-
creased gradient instability originating from moving farther
away from our original solution (Liu et al., 2022b). Note
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Figure 1: Loss and sharpness trade-off using ResNet-34
trained on CIFAR-10. Darker shades indicate training with
higher neighborhood sizes p € {0.05,0.1,0.2}.

that such instability may also be present when using a high
p, even in single-ascent step SAM. In this case, applying
a variance reduction technique such as Lookahead (Zhang
et al., 2019) with SAM as inner optimizer may help miti-
gate the performance loss when using larger p. However, as
we demonstrate in our experiments, this is also not helpful
(Figure 1, empty triangles).

In this work, we present a novel optimization method,
Lookbehind, that leverages the benefits of multiple ascent
steps and variance reduction to improve the efficiency of
the maximization and minimization parts of (1). By suc-
cessfully reducing both loss and sharpness across small and
large neighborhood sizes (Figure 1, full triangles), Lookbe-
hind achieves the best loss-sharpness trade-off.

In practice, improving the loss and sharpness trade-off
results in a myriad of benefits across several training
regimes. Particularly, when applying Lookbehind to SAM
and ASAM, we show an improvement in terms of gener-
alization performance across several models and datasets.
Moreover, models trained with Lookbehind have increased
robustness against noisy weights at inference time. Lastly,
we evaluate Lookbehind in the context of lifelong learning
and show an improvement both in terms of learning and
catastrophic forgetting on multiple models and datasets.

2. Sharpness-Aware Minimization

Our method, Lookbehind, builds upon sharpness-aware
minimization (SAM) methods with the goal of solving

the inner maximization problem of SAM more accurately
while stabilizing the outer minimization part of SAM’s ob-
jective. We will start by briefly introducing the sharpness-
aware minimization methods used throughout the paper.

To solve the problem in (1) using standard stochastic gradi-
ent methods, SAM (Foret et al., 2021) proposes to estimate
the gradient of the minimax objective in two steps. The
first step is to approximate the inner maximization €(¢) us-
ing one step of gradient ascent; the second is to compute
the loss gradient at the perturbed parameter ¢ + €(¢). This
leads to the following parameter update:

¢t = dt—1 — NV L(di—1 +e(Ppr-1)), 2
VL(¢)

== 3

O ©

Several follow-up sharpness-aware methods have been pro-
posed to further improve upon the original formulation.
Notably, a conceptual drawback of SAM is the use of a
fixed-radius Euclidean ball as maximization neighborhood,
which is sensitive to re-parametrizations such as weight
re-scaling (Dinh et al., 2017; Stutz et al., 2021). To ad-
dress this problem, ASAM (Kwon et al., 2021) was pro-
posed as an adaptive version of SAM, which redefines the
maximization neighborhood in (1) as component-wise nor-
malized balls ||e/|¢||l2 < p. This leads to the following
component-wise rescaling:

() = T3(VL(9)) @

TPV

where T}, (v) := ¢ © v denotes the component-wise mul-
tiplication operator associated to ¢. In what follows, we
use both SAM and ASAM as our baseline sharpness-based
learning methods.

3. Lookbehind Optimizer

Our algorithm, Lookbehind (-SAM), presents a novel way
to improve the solution found by SAM’s objective (1). The
intuition of Lookbehind is two-fold. First, we improve the
maximization part of SAM’s objective by performing mul-
tiple ascent steps to find a worst-case weight perturbation
that has a higher loss than the original, single-step SAM
within a given neighborhood of the original point. We refer
to such maximization of the loss as we perform multiple
ascent steps in SAM as looking behind. In other words, we
are looking behind in the sense that we are climbing the
loss landscape. (This term is inspired by the Lookahead
optimizer (Zhang et al., 2019), where looking ahead refers
to the minimization of the loss as they perform multiple
descent steps.)

Second, to improve the minimization part of SAM’s ob-
jective, we reduce the variance derived from the multiple
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Figure 2: Illustration of Multistep-SAM (a) and Lookbehind-SAM (b) using k£ = 2.

ascent steps by aggregating the gradients along the way for
the descent step and performing linear interpolation in the
parameter space. This results in an alleviation of the insta-
bility that arises from (i) performing multiple ascent steps
due to the various gradients gathered in the ascent phase
not being aligned with each other and (ii) the substantial
departure away from the original point as performing as-
cent steps, which negatively impacts SAM’s minimization
objective and consequent loss-sharpness trade-off (Figure
1). Lookbehind combines instead the gradients computed
at intermediate distances, improving upon the multiple as-
cent step variant of SAM (Multistep-SAM). A visual com-
parison between Multistep-SAM and Lookbehind is illus-
trated in Figure 2.

While Multistep-SAM performs k ascent steps (¢4 1, -+,
(b;, ) and uses the gradient from the last step (qﬁg’ ) for the
final update, Lookbehind uses slow weights (¢, ¢¢y1,- - )
and fast weights (¢; 1, -+ -, @), where fast weights are
updated using the gradients from %k ascent SAM steps.
Then, the slow weights are updated toward the fast weights
through linear interpolation. Even though both methods
entail the same number of gradient computations, Lookbe-
hind has a stabilizing effect over Multistep-SAM by com-
bining the gradient information.

The pseudo-code for Lookbehind is in Algorithm 1. After
synchronizing the fast weights (line 2) and the perturbed
weights (line 3), we sample a minibatch (line 4) and per-
form k ascent steps of SAM by preserving the previously
perturbed slow weights (line 7) and introducing further per-
turbations in the subsequent inner step (line 6); correspond-
ing descent steps are tracked and the fast weights are up-
dated accordingly (line 8). After k steps, a linear interpo-
lation of the fast and slow weights is conducted (line 10).
We note that the slow weight step size, «, can be set in an
adaptive manner during training, without requiring hyper-
parameter tuning (see Section 6.1).

Algorithm 1 Lookbehind-SAM

Require: Parameters ¢, loss L, inner steps k, slow and
fast weights step sizes « and 7, neighborhood size p,
training set D

1: fort=1,2,...do
20 o Pt

3 P 1

4:

5

Sample mini-batch d ~ D
fori=1,2,...,kdo
VLa(¢},-1)

© T NL@L I

T ‘25;,1‘ A ¢;,i71 +e

8: bri < i1 — NV, (P ;)
9: end for

10: ¢ < 1 + (Pee — Pr—1)
11: end for

12: return ¢

4. Experimental Results

In this section, we start by introducing our baselines (Sec-
tion 4.1), and then we conduct several experiments to show-
case the benefits of achieving a better sharpness-loss trade-
off in SAM methods. Particularly, we test the generaliza-
tion performance on several models and datasets (Section
4.2) and analyze the loss landscapes at the end of training
in terms of sharpness (Section 4.3). Then, we study the ro-
bustness provided by the different methods in noisy weight
settings (Section 4.4). Lastly, we assess continual learning
in sequential training settings (Section 4.5).

For the following experiments, we use residual networks
(ResNets) (He et al., 2016) and wide residual networks
(WRN) (Zagoruyko & Komodakis, 2016) models trained
from scratch on CIFAR-10, CIFAR-100 (Krizhevsky et al.,
2009), and ImageNet (Deng et al., 2009). We report
the mean and standard deviation over 3 different seeds
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Table 1: Generalization performance (validation acc. %) of the different methods on several models and datasets.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 ‘ WRN-28-2 || ResNet-50 | WRN-28-10 || ResNet-18
SGD 95.844 13 93.58+ 11 74.3541.93 78.80+ 08 69.911 o4
Lookahead-SGD 95.59:|:,21 94.01:‘:,02 75.961_12 78.53:‘:_18 69.63:|:,12
SAM 95.80L.07 | 93.974 99 76.57+ 59 80.50+ 06 70.014 06
Multistep-SAM 95.724 15 94.394 o9 77.03+ 65 80.554 6 69.924 o7

+ average grads 95.744 95 94.551 92 76.971 57 80.584 91 70.014 o7
Lookahead-SAM 95.80i,11 93-97i.17 76.161,98 80.09i,10 69.99i,07
Lookbehind-SAM 96.275:.07 94-81;|:_22 78.625:_48 80.995:_02 70.165:.08
ASAM 96.324 02 94.414 o9 78.624 g7 81.674 95 70.154 o6
Multistep-ASAM 95914 14 95.06+ 15 77.814 59 81.67+ 06 70.06+ 01

+ average grads 95.914 94 94.924 o9 78.394+ 52 81.354 36 70.114 o3
Lookahead-ASAM 96.014 15 94.284 o4 77.5541.10 80.974+ 17 70.00+ .11
Lookbehind-ASAM | 96.541 51 | 95.231.01 78.864 .29 82.164 o9 70.2341 .22

throughout the paper unless noted otherwise. Additional
training and hyperparameter search details are provided in
Appendices A.3 and A 4.

4.1. Baselines

On top of the previously discussed Lookbehind-SAM, our
algorithm can be easily combined with ASAM by us-
ing the component-wise rescaling (4) in the inner loop
updates. We call this variant Lookbehind-ASAM. Ad-
ditionally to SGD and vanilla SAM/ASAM, we com-
pare Lookbehind-SAM/ASAM to the following methods:
(1) Multistep-SAM/ASAM, which performs multiple as-
cent steps to SAM/ASAM with the final update using
the gradient from the last step, (ii) Multistep-SAM/ASAM
with gradient averaging, which applies the average of the
accumulated gradients for the final update (Kim et al.,
2023), (iii) Lookahead-SAM/ASAM, which uses Lookahead
with sharpness-aware methods by applying single-step
SAM/ASAM as the inner optimizer (more details are pro-
vided in Appendix A.2), and (iv) Lookahead-SGD, which
applies the Lookahead optimizer to SGD, as originally pro-
posed by Zhang et al. (2019).

4.2. Generalization Performance

We start by reporting the generalization performance on
several models and datasets in Table 1. We observe that
models trained with Lookbehind achieve the best general-
ization performance across all architectures and datasets.
This is observed for both SAM and ASAM. Moreover,
we see the Lookbehind-SAM/ASAM variants always out-
perform Lookahead-SGD, which further validates apply-
ing Lookbehind to sharpness-aware minimization methods.
Importantly, we note that Lookbehind is the only method to
outperform vanilla SAM and ASAM on ImageNet. The im-

provement of the loss-sharpness trade-off by Lookbehind
leads to a myriad of additional benefits, as shown next.

4.3. Sharpness Across Large Neighborhood Regions

We move on to analyzing the sharpness of the minima
found at the end of training for each method. To do this, we
measure the sharpness of the trained models using SAM’s
m-sharpness (Foret et al., 2021) by computing

fZ”ngr%ZL 0+~ Ls(e), (5

MeD seM

where D represents the training dataset, which is composed
of n minibatches M of size m. Note that m-sharpness can
also derived from ASAM’s objective by computing

n Z ||e/\¢|\|2<rm ZL (p+¢)—Ls(¢). (6)

ILIGD

To avoid ambiguity, we denote the radius used by m-
sharpness as r. Instead of only measuring sharpness
in close vicinity to the found solutions, i.e. using
r = 0.05 as in Figure 1, we vary the radius r over
which m-sharpness is calculated. Particularly, we iter-
ate over r € {0.05,0.5,1.0,...,5.0} for SAM and r €
{0.5,1.0,...,5.0} for ASAM.

The sharpness over different radii of the different methods,
when also trained with different p, are shown in Figure 3.
We observe that on top of Lookbehind improving sharp-
ness at the nearby neighborhoods (as previously shown in
Figure 1), models trained with Lookbehind also converge
to flatter minima at the end of training, as measured on an
extensive range of tested radii. This is consistent across
training with different p for both SAM and ASAM. Even
though the minima found by the Lookahead and Multistep
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Figure 3: m-sharpness over multiple radius r using ResNet-34 trained on CIFAR-10. Darker shades indicate training with
higher neighborhood sizes p € {0.05,0.1,0.2} for SAM and p € {0.5,1.0,2.0} for ASAM. Lower sharpness is better.
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Figure 4: Robustness against noisy weights at inference time. We plot the mean and standard deviation over 10 and 3
inference runs for CIFAR-10/100 and ImageNet, respectively. Higher accuracy is better.

variants tend to have low sharpness with default p, such
benefits diminish at higher p.

4.4. Model Robustness

We now assess model robustness against noisy weights.
This is a particularly important use case when deployment
models in highly energy-efficient hardware implementa-
tions that are prone to variabilities and noise (Xu et al.,
2013; Kern et al., 2022; Spoon et al., 2021). Similar to pre-
vious works (Joshi et al., 2020; Mordido et al., 2022), we
apply a multiplicative Gaussian noise to the model parame-
ters ¢ after training in the form of ¢ x &, with § ~ N (1, %)
and update the batch normalization statistics after the noise
perturbations. Robustness results are presented in Figure 4.

We see that Lookbehind shows the highest robustness ob-

served by preserving the most amount of validation accu-
racy across the tested noise levels. This is observed for
both SAM and ASAM on all models and datasets. We
note that the benefits of using sharpness-aware minimiza-
tion methods to increase model robustness to noisy weights
were shown by previous works (Mordido et al., 2022). Our
results share these findings and further show that Lookbe-
hind considerably boosts the robustness benefits of training
with SAM and ASAM across several models and datasets.

4.5. Lifelong Learning

Lastly, we evaluate the methods in lifelong learning where
a model with a limited capacity is trained on a stream of
tasks. The goal is then to maximize performance across
tasks without having access to previous data. In our exper-
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Table 2: Lifelong learning performance in terms of average accuracy (higher is better) and forgetting (lower is better) on

Split-CIFAR100 and Split-TinyImageNet.

Dataset Split-CIFAR100 Split-TinyImagenet
Metric Avg. accuracy T Forgetting | | Avg. accuracy 1 Forgetting |
SGD 584114 05 22744185 43.48 10 50 26514071
SAM 57.8141.05 23.27 10 57 56.34.41 7o 20.3941 g3
Multistep-SAM 59.580.34 15.0940.48 56.0941 .17 20.70+£1.05
Lookbehind-SAM 59.93:|:1_54 ]-4-10:I:0.98 56.605:0_68 18.993:0_62
ER + SGD 64.84i1,29 12.96i0‘23 49-19i0.93 19-06i0,26
ER + SAM 68.28i1_30 13.98i0442 65.59i0_19 9.89i0_14
ER + Multistep—SAM 65.4914.10 15.2049 53 65.7540.16 9.9040.09
ER + Lookbehind-SAM 68.87+0.79 12.3740.11 65.91.10.27 9.1140.63
Lookahead-C-MAML 65.44j:0_99 13-96:|:0.86 61.93:|:1_55 11-53:t1.11
Lookbehind-C-MAML 67.155:0.74 12.40:&0.49 62.].6:&0,86 11.215:0.44
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Figure 5: Generalization performance (validation acc. %) between Multistep-SAM/SAM, Lookahead-SAM/ASAM, and
Lookbehind-SAM/ASAM. Vanilla SAM and ASAM baselines with default p are represented by the horizontal line.

iments, we replicate the same setup used in Lookahead-
MAML (Gupta et al., 2020), which is a lifelong learn-
ing method that combines the concept of slow and fast
weights of Lookahead with meta-learning principles (Finn
et al., 2017). Moreover, we replace Lookahead with Look-
behind, creating a novel algorithm: Lookbehind-MAML.
Since meta-learning is out of the scope of this work, we
implemented only the constant learning rate setting for sim-
plicity, i.e. the C-MAML variant (Gupta et al., 2020).

We train a 3- and a 4-layer convolutional network on Split-
CIFAR100 and Split-TinyImageNet, respectively. We re-
port the following metrics by evaluating the model on the
held-out data set: average accuracy (higher is better) and
forgetting (lower is better). Additional details about the al-
gorithms, training, and datasets are provided in Appendix
A.5. The results are presented in Table 2. In the first setting,
we do not use ER and directly compare our method with
SGD, SAM, and Multistep-SAM. We observe that Look-
behind achieves the best performance both in terms of av-
erage accuracy and forgetting. In the second setting, we
apply ER to the previous methods. Once again, we see an

improvement when using our variant. Finally, when com-
paring Lookahead-C-MAML with Lookbehind-C-MAML,
we also notice an overall performance improvement.

5. Sensitivity Analysis

In this section, we analyze the sensitivity of Lookbehind to
different hyper-parameter settings in terms of generaliza-
tion performance (Sections 5.1, 5.2, and 5.3) and its bene-
fits at different training stages (Section 5.4). For the follow-
ing experiments, we used ResNet-34 and ResNet-50 mod-
els trained from scratch on CIFAR-10 and CIFAR-100, re-
spectively. Training and hyperparameter search details are
provided in Appendices A.3 and A.4.

5.1. Sensitivity to the Inner Step &

Validation accuracies of the different methods when using
different k are presented in Figure 5. We observe that
Lookbehind is the only method that consistently outper-
forms the SAM and ASAM baselines on both CIFAR-10
and CIFAR-100, across all the tested inner steps k. Interest-



Lookbehind-SAM: k Steps Back, 1 Step Forward

SAM

©o
~

accuracy (%)
© © ©
B wu o

©
w

o+ Multistep-SAM

92{ —< Lookbehind-SAM A\
—>—- Lookahead-SAM
911~ ‘ : ,
0.05 0.10 0.20 0.50

0

ASAM

accuracy (%)

-0+ Multistep-ASAM
—<+— Lookbehind-ASAM

95:01 _. | ookahead-ASAM
-e- ASAM "o
94.5 = " " "
0.5 1.0 2.0 5.0
P

Figure 6: Validation accuracies with different trained p for the different methods using ResNet-34 trained on CIFAR-10.
Darker shades represent larger inner steps k, ranging from k € {2, 5,10}. Higher accuracy is better.

ingly, our method tends to keep improving when increasing
k, while this trend is not observed for either the Lookahead
or the Multistep variants. Moreover, we see that Multistep-
SAM/ASAM does not provide a clear improvement over
the respective SAM and ASAM baselines, as previously
discussed in prior work (Foret et al., 2021; Andriushchenko
& Flammarion, 2022). On the other hand, the Lookahead
variants show a slight improvement over Multistep, partic-
ularly when combining Lookahead with SAM and ASAM
on CIFAR-10 and SAM on CIFAR-100. Overall, we see
that Lookbehind is the highest-performing method on all
models and datasets when combined with SAM/ASAM.

5.2. Sensitivity to the Neighborhood Size p

We now analyze the effects of training with increasing p
with the different methods using SAM and ASAM. Results
are presented in Figure 6. We see that our method is the
only one that consistently outperforms SAM and ASAM
across all the tested p. As previously suggested, signifi-
cantly increasing p in SAM, e.g. p = 0.5, decreases per-
formance relative to the default p, i.e. p = 0.05. Similarly,
increasing p in ASAM also decreases performance rela-
tive to its default p of 0.5. Notwithstanding, we note that
ASAM shows higher relative robustness to higher p than
SAM, indicated by ASAM’s ability to continue increasing
performance on up to 4x the default neighborhood size,
i.e. from p = 0.5 to p = 2.0. Overall, we observe that
Lookbehind is more robust to the choice of p compared to
the other methods, with Lookbehind and Multistep variants
showing similar trends as the SAM and ASAM baselines.

5.3. Sensitivity to the Outer Step Size o

The validation accuracies of Lookbehind across different o
and k are presented in Figure 7. All models were trained
with the default p, with blue representing an improvement

SAM 96.2 ASAM 96.5
95.6095.87 96.0 195.6795.91
96.0
95.70 95.8
95.6 955
95.4

Figure 7: Sensitivity of Lookbehind to « and k using
ResNet-34 on CIFAR-10 in terms of validation accuracy
(%). The vanilla SAM/ASAM performances are in white.

over SAM/ASAM and red a degradation. We see that
Lookbehind improves over the baselines in all k, except
k = 2 on SAM and CIFAR-10. We notice a diagonal trend,
suggesting there is a relation between « and k, with a larger
« being often better with smaller £ and a mid to high range
« working well with higher k. An in-depth analysis across
all models and datasets is provided in Appendix A.6, show-
casing that Lookbehind is generally robust to specific com-
binations of k and « across different ranges.

5.4. Lookbehind’s Benefits at Different Training Stages

SAM has been shown to find better generalizable minima
within the same basin as SGD. In other words, SAM’s im-
plicit bias mostly improves the generalization of SGD when
switching from SGD to SAM toward the end of training
(Andriushchenko & Flammarion, 2022). Interestingly, the
aforementioned results also suggest that SAM and SGD do
not guide optimization toward different basins from early
on in training. Here, we conduct a similar study by ana-
lyzing how switching from SAM/ASAM to Lookbehind-
SAM/ASAM, and vice-versa, impacts generalization per-
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throughout training in terms of validation accuracy using ResNet-34 trained on CIFAR-10. Darker shades represent larger
inner steps k, ranging from &k € {2, 5, 10}. For Lookbehind, we pick the best « configuration for each k € {2,5, 10} using
the default p, which is also used for the SAM/ASAM baselines.

Table 3: Generalization performance (validation acc. %) of Lookbehind with static and adaptive «.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 ‘ WRN-28-2 || ResNet-50 ‘ WRN-28-10 || ResNet-18
Lookbehind-SAM 96.27i,07 94.81i422 78-62:]:_48 80.995;_02 70.165:.08
+ adaptive o 96.33+ 04 94.884 12 78.33+ 36 80.864 .13 70.074 12
Lookbehind-ASAM | 96.54 o 95.234+ 01 78.86+ 29 82.164 g9 70.234 99
+ adaptive « 96.57+03 | 95.084 15 78.894 45 81.864+ 22 70.164 g

formance at different stages during training.

The generalization performances of starting training with
SAM/ASAM and switching to Lookbehind at different
training stages are shown in Figure 8a. We observe that
Lookbehind’s benefits are mostly achieved early on in
training, suggesting that Lookbehind guides the optimiza-
tion to converge to a different basin of the loss landscape
than SAM. Such findings are confirmed by also switching
from Lookbehind to SAM/ASAM (Figure 8b).

6. Discussions and Limitations

One limitation of Lookbehind is that it adds two additional
hyperparameters to SAM/ASAM - just as the Lookahead
optimizer adds two hyperparameters to SGD. This intro-
duces additional hyperparameter tuning on top of p and
n. To alleviate this concern in settings where computa-
tional resources are scarce, we experiment with removing
the need to tune o by computing it analytically during train-
ing (Section 6.1).

Another important limitation inherent to any multiple as-
cent step SAM method is the computational overhead
which increases training time by a factor k. Even though
the goal of this work is to tackle the lack of performance
due to a poor sharpness-loss trade-off, this limitation may

prevent training with Lookbehind on larger models. To
address this issue, we explore improving the efficiency of
multiple ascent steps by switching the minibatch at each
inner step of Lookbehind (Section 6.2).

6.1. Adaptive «

Here, we propose an adaptive formulation of «, defined
as o, by setting it proportionally to the alignment of the
gradients obtained during the multiple ascent steps:

a* = (cos(0)+1)/2, (7)

where 6 is defined by the angle between the first gathered
gradient and the final update direction:

— (¢t,1 - ¢t) . (¢t,]€ - (bt)
pe,1 — Dell2 - |de,p — Pell2

®)

If the gradients are completely aligned, then o* = 1. Alter-
natively, if the gradients are not aligned, then 0 < o™ < 1,
with lower values representing lower alignment.

Results when using Lookbehind with a static « and a dy-
namic o are presented in Table 3. Overall, we observe that
using an adaptive « is a viable alternative to tuning a static
« in instances where compute is scarce. Note that our goal
with adaptive « is not necessarily to outperform static «
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but instead to achieve competitive performance while hav-
ing one less hyperparameter. Importantly, we emphasize
that Lookbehind with adaptive « consistently outperforms
all the compared methods presented in Table 1, similarly to
static . We refer to Appendix A.1 for additional discus-
sions and an analysis of how a* varies during training.

6.2. Switching Minibatch

Performing multiple ascent steps with the same minibatch
reduces the variance of the aggregated gradients. However,
this also increases training time due to redundant gradi-
ent computations. In time-sensitive scenarios like training
Transformers, switching the minibatch during ascent steps
might be the only viable option. This simple modification
involves moving minibatch sampling (line 4, Algorithm 1)
inside the inner loop in our method.

We consider machine translation by replicating the setup
in Kwon et al. (2021) and using a 12-layer Transformer
(Vaswani et al., 2017) (39.4M parameters) trained from
scratch on IWSLT’14 (DE-EN) with Adam. We also
perform image classification by finetuning a ViT-Base
model (Dosovitskiy et al., 2021) (86.6M parameters) for 15
epochs with SGD. The model was previously pre-trained
on ImageNet-21K and finetuned with SGD on ImageNet-
1K. Appendices A.3 and A.4 provide more details.

Results under a similar training budget as SAM/ASAM by
switching the minibatch in Lookbehind are presented in Ta-
ble 4. We observe that at least one Lookbehind variant
(with a static or dynamic «) improves the performance of
SAM/ASAM. We note that in the two instances where a
specific Lookbehind variant was unable to outperform the
ASAM baseline, their performance was almost identical.
We highlight that these settings showcase the applicabil-
ity of Lookbehind to additional optimizers (i.e. Adam) and
settings (i.e. fine-tuning of large models).

Table 4: Generalization performance with Transformers on
machine translation (test BLEU score) and image classifi-
cation (validation acc. %). We switch the minibatch for
Lookbehind and use k = 2 with & = 0.8 or adaptive a.

Dataset IWSLT’ 14 ImageNet
Model Transformer || ViT-Base
Adam/SGD 34.86+ 01 81.79
SAM 34.784 01 81.80
Lookbehind-SAM 35.10+.01 81.84

+ adaptive « 35.224 01 81.85
ASAM 35.024 .01 81.89
Lookbehind-ASAM | 35.404 01 81.87

+ adaptive « 35.00+ .01 81.89

7. Related Work

Sharpness-aware minimization (SAM) (Foret et al., 2021)
is an attempt to improve generalization by finding solutions
with both low loss value and low loss sharpness. This is
achieved by minimizing an estimation of the maximum loss
over a neighborhood region around the parameters. There
is currently a lot of active work that focuses on improv-
ing SAM. More specifically, modifications of the original
SAM algorithm were proposed to further improve general-
ization performance (Zhuang et al., 2022; Kim et al., 2022;
Kwon et al., 2021; Liu et al., 2022b) and efficiency (Du
et al., 2022a; Zhou et al., 2022; Liu et al., 2022a). Perform-
ing multiple ascent steps was present in Foret et al. (2021),
however, the improvements over single ascent step SAM
were either insignificant or shown to degrade performance
in some settings (Andriushchenko & Flammarion, 2022).

SAM’s benefits have transcended improving generalization
performance, ranging from higher robustness to label noise
(Foret et al., 2021; Kwon et al., 2021; Back et al., 2024),
lower quantization error (Liu et al., 2021b), and less sensi-
tivity to data imbalance (Liu et al., 2021a). Here, on top of
analyzing the benefits of Lookbehind in terms of general-
ization, we build on the recently observed benefits of SAM
on improving robustness against noisy weights (Kim et al.,
2022; Mordido et al., 2022) and reducing catastrophic for-
getting in lifelong learning (Mehta et al., 2023).

Closest to our work, Kim et al. (2023) concurrently con-
ducted a similar study by averaging the gradients obtained
during multiple SAM ascent steps. One of the differences
is the decoupling of the inner step k and the outer step size
o in our approach, which allows us to seek optimal com-
binations between these two hyperparameters. As depicted
in Figures 7 and 13, o = 1/k is generally not the best over-
all « to use, including when determining o* (Figure 10).
We also extend the empirical discussions by applying our
method with ASAM, which often outperforms SAM.

8. Conclusion

In this work, we proposed Lookbehind, which can be
plugged on top of existing sharpness-aware training meth-
ods to improve model performance across a variety of tasks
and benchmarks. More specifically, we show an improve-
ment in generalization performance on multiple models
and datasets, model robustness, and continuous learning
ability. Moreover, we propose two simple method modi-
fications to address limitations that may arise in large-scale
settings, broadening the applicability of our approach. In
the future, exploring novel approaches or combining Look-
behind with more efficient SAM variants to mitigate the
computational overhead of multiple ascent step SAM is
worth pursuing.
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A. Appendix

Here, we provide additional discussions (Section A.1) and more information on the Lookahead-SAM baseline (Section
A.2). Moreover, we present further details on the training procedures (Sections A.3 and A.4) and the lifelong learning
setup (Section A.5). We also provide additional sensitivity analysis across all tested models (Section A.6). Lastly, we
present further comparisons on additional training setups (Section A.7) and variants (Section A.8), and provide a speed of
convergence analysis (Section A.9).

A.1. Additional discussions

In this section, we further discuss the limitations of our work (Section A.1.1) as well as additional studies to better un-
derstand the behavior of Lookbehind. In particular, we showcase the advantage of going farther away from the original
solution as performing multiple ascent steps instead of staying within a neighborhood size p (Section A.1.2), and how the
values of a* evolve during training (Section A.1.3).

A.1.1. LIMITATIONS

One drawback of our approach is the introduction of two new hyperparameters to SAM/ASAM. This was partially ad-
dressed in Section 6.1 by removing the need to fine-tune . Nevertheless, even with the adaptive « variant, our method
still introduces one more hyperparameter. Since tuning hyperparameters requires more compute, the comparison with
baselines with less hyperparameters is only reasonable to the extent that the baselines are not subject to computational
constraints that might limit their performance, e.g. by not training for long enough. However, we argue that this was not
the case in our experimental setup, and additional training would be unlikely to improve the performances reported for the
SAM/ASAM baselines. To corroborate this, we show the average number of epochs at which the best SAM and ASAM
baseline configurations achieved the best validation accuracy in Table 5. We observe that the best-performing model check-
points were not completed at the very end of training (e.g. last epoch) across our experimental setup, suggesting there was
prior performance saturation before training finished.

Table 5: Average number of epochs at which the SAM and ASAM baselines achieved the best validation accuracy across
the different models and datasets. The models were trained for a total of 200 epochs for CIFAR-10/100 and 90 epochs for
ImageNet.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 \ WRN-28-2 ResNet-50 \ WRN-28-10 || ResNet-18

SAM 164.6619 87 | 141.33415.45 || 167.66121.06 | 172.0019.00 || 83.66+2.05
ASAM | 164.00412.83 | 158.66429.45 178.6643.77 | 179.50+4.50 || 86.00+2.16

A.1.2. STAYING WITHIN A NEIGHBORHOOD SIZE p OR p/k

As a wrapper to SAM methods, Lookbehind’s practicality is enhanced when there is no need to re-tune the default p of the
sharpness-aware minimizer. To study this, we used the default p suggested by SAM and ASAM and investigated if staying
within a neighborhood p of the original solution is more advantageous than increasing the neighborhood up to p X k, as
presented so far throughout our paper. For this new variant, we reduce the neighborhood size to p/k as the step size for
each ascent step. Hence, after k£ ascent steps we will be at a maximum distance p from the original point if all gradients
align. We also remove linear interpolation and simply set the descent step size to 7. Results using the default p for SAM
and ASAM are presented in Figure 9.

We observe that going farther away as we perform the ascent steps consistently outperforms staying within a neighborhood
p of the original solution. In other words, p x k is better than p/k when using the default p of SAM and ASAM. This
is a convenient insight since we show that tuning the hyperparameter p is not necessary when using the former setting.
Moreover, this also allows us to learn o dynamically, which is shown to enhance performances in some settings. This
suggests that it is beneficial to not only “look behind” within a neighborhood of p x k, but also that taking a dynamic
descent step size to perform the final update based on the alignment of the aggregated gradients is an effective way of
enhancing performance across different k.

12
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Figure 9: Comparison of generalization performance (validation accuracy %) on ResNet-34 trained on CIFAR-10 between
staying up to a neighborhood p or p x k. We also plot the performance of adaptive « in the latter setting.

A.1.3. CHANGE OF * DURING TRAINING

We show how adaptive a changes throughout training in Figure 10. We notice an expected trend based on the values of k,
with higher k leading to lower a* due to less gradient alignment. Even though « is independent of the inner step learning
rate 1), we are decreasing 7 by a factor of 10 every 50 epochs in our training setup, which leads to drastic changes in model
performance and loss landscape. This in turn seems to lead to an increase in the misalignment of the aggregated gradients
which decreases the adaptive « values later on in training.

A.2. Lookahead-SAM

Lookahead (Zhang et al., 2019) was introduced to reduce variance during training, with the end goal of improving perfor-
mance and robustness to hyper-parameter settings. Given an optimizer, Lookahead uses slow and fast weights to improve
its training stability. The algorithm “looks ahead” by updating the fast weights k times in an inner loop, while the slow
weights are updated by performing a linear interpolation to the final fast weights (after the inner loop ends). In our analysis
and experiments, we use Lookahead with sharpness-aware methods by applying single-step SAM and ASAM as the inner
optimizers. The main goal of these baselines is to use Lookahead to stabilize sharpness-aware optimizers when training
with large p. An illustration of Lookahead-SAM is presented in Figure 11 (right).

Similarly to our method, Lookahead-SAM uses slow weights (¢, ¢;11,---) and fast weights (¢ 1, - - -, ¢¢ ). However,
the slow weights are updated after each SAM update (composed of a single ascent and descent step), while the slow weights
are updated toward the fast weights through linear interpolation after & steps (¢¢+1). In contrast, Lookbehind-SAM’s fast
and slow weights are obtained during a given iteration. In particular, while the fast weights are updated as we “look
behind”, the slow weights are updated after k ascent steps are performed (c.f. Figure 2).

The pseudo-code for combining Lookahead with SAM is presented in Figure 11 (left). Just like Lookahead, Lookahead-
SAM maintains a set of slow weights and fast weights, which are synchronized at the beginning of every outer step (line
2). Then, the fast weights are updated & times (looking forward) using a standard SAM update with a single ascent (line 5)
and descent step (line 6). After k¥ such SAM steps, the slow weights are updated by linearly interpolating to the final fast
weights (line 8) (1 step back). It is worth noting that a new minibatch is sampled at every inner step (line 4). Combining
Lookahead with ASAM follows the same procedure, except using the component-wise rescaling (4) in line 5.

Although Lookbehind-SAM and Lookahead-SAM share a similar nature, they exhibit notable distinctions. Firstly, in
addition to synchronizing the fast weights, Lookbehind also synchronizes the perturbed fast weights. Furthermore, the
minibatch is sampled before the inner loop. Moreover, at each inner step, Lookbehind performs % ascent steps of SAM. The
distinction between the two algorithms leads to divergent behavior in the training objective and is related to Lookahead-
SAM and Lookbehind-SAM having different goals: while Lookahead-SAM aims at stabilizing single-step SAM with
large neighborhood sizes p, Lookbehind aims to perform multiple ascent steps while maintaining a good balance between
sharpness and training accuracy.

In other words, Lookbehind focuses on curbing the variance arising from gradients gathered during multiple ascent steps
within a single iteration. In contrast, Lookahead-SAM targets variance stemming from sequential descent steps performed
across iterations. Hence, our goal is to reduce the variance of looking behind, not ahead.
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Figure 10: Analysis of how adaptive « evolves during training.
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Algorithm 2 Lookahead-SAM

Require: Initial parameters ¢g, loss function L, inner steps k, slow
weights step size «, fast weights step size 7, neighborhood size p, PY
training set D °®
1: fort=1,2,...do
2: D10 < Pr—1 @, n b,
3: fori=1,2,...,kdo e— O b,
4:
5

Sample mini-batch d ~ D o a "d).

p VLa(¢t,i—1) e
Va2 o

6: Gr,i < Gric1 — NV Ly (Drio1 +€)

7 end for

¢ < dr—1 + (Pr i — Pi—1)

9: end for

10: return ¢

€ <

e

Figure 11: Combination of Lookahead with SAM.

A.3. Training details

For CIFAR-10/100, we trained each model for 200 epochs with a batch size of 128, starting with a learning rate of 0.1
and dividing it by 10 every 50 epochs. For ResNet-18 trained from scratch on ImageNet, we used 1000 classes and an
image size of 224x224 and trained each model for 90 epochs with a batch size of 400, starting with a learning rate of
0.1 and dividing it by 10 every 30 epochs. All models were trained using SGD with momentum set to 0.9 and weight
decay of le-4. For the fine-tuning experiments on ViT-B, we trained for 15 epochs using a batch size of 450 to maximize
resource utilization and a learning rate of 0.001. We trained the CIFAR-10/100 models using one RTX8000 NVIDIA
GPU and 1 CPU core, and the ImageNet models using one A100 GPU (with 40 and 80 GB of memory for training from
scratch and fine-tuning, respectively) and 6 CPU cores. For the machine translation experiments, we used the setup in
https://github.com/facebookresearch/fairseq/ and trained the models using one RTX8000 NVIDIA
GPU with 6 CPU cores.

A.4. Hyperparameter search

For Table 1, we perform hyperparameter search for p € {0.005,0.01,0.02,0.05,0.1,0.2,0.5,1.0,2.0} for the vanilla
SAM and ASAM baselines trained on CIFAR-10/100, and report the validation results with the best p. For the rest of
the methods, we used the default p, i.e. as presented in the original SAM (Foret et al., 2021) and ASAM (Kwon et al.,
2021) papers. Particularly, we used p of 0.05, 0.1, and 0.05 for SAM and 0.5, 1.0, and 1.0 for ASAM when training on
CIFAR-10, CIFAR-100, and ImageNet, respectively. For CIFAR-10/100, we use k € {2,5,10} and « € {0.2,0.5,0.8}
(when applicable) for the multiple step methods. For ImageNet, we use k = 2 and « € {0.2,0.5,0.8} (when applicable).

For Figure 3, we report the best k and « configurations for all methods, i.e. with the lowest sharpness at the highest r.

For Figure 4, we report the most robust model using k& € {2,5,10} and o € {0.2,0.5,0.8} for CIFAR-10/100. For
ImageNet, we use k = 2 and « € {0.2,0.5,0.8}. For the SAM and ASAM baselines, we pick the most robust p €
{0.05,0.1,0.2,0.5} and p € {0.5,1.0,2.0, 5.0}, respectively.

For Figure 5 we report the default neighborhood sizes for the SAM (p = 0.05 and 0.1 for CIFAR-10 and CIFAR-100,
respectively) and ASAM baselines (p = 0.5 and 1.0 for CIFAR-10 and CIFAR-100, respectively). We show the best hyper-
parameter configuration over k& € {2,5,10} and o € {0.2,0.5,0.8} for Lookbehind and Lookahead, and k£ € {2,5,10}
for Multistep.

For Figure 6, we report the best a configuration for Lookahead and Lookbehind.

For Table 4’s image classification experiments, we report and use the default p for SAM across all the models. For ASAM,
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we report the best p for each method over p € {0.1,0.2,0.5} since the default p did not outperform the pre-trained model
performance. All reported ASAM models achieved the best performance with p = 0.1.

For Table 4’s machine translation experiments, we report the best p using the same search space as the one used by Kwon
et al. (2021) for a fair comparison, i.e. p € {0.005,0.01,0.02,...,0.5,1.0,2.0}. We report the results for the Adam, SAM,
and ASAM baselines as presented in their paper.

For both experiments reported in Table 4 we do not do any hyperparameter search over «, simply setting it to 0.8 since it
was shown to work well with k£ = 2 in our previous experiments (c.f. Figure 13).

A.5. Lifelong learning

We replicated the experimental setup from Lookahead-MAML (Gupta et al., 2020) and report the results for all baselines
where the models were trained for 10 epochs per task. Additionally, we combined the different methods with episodic
replay (ER) (Chaudhry et al., 2019), which maintains a memory of a subset of the data from each task and uses it as
a replay buffer while training on new tasks. We test both settings (with and without ER) in our experiments. We used
two datasets: Split-CIFAR100 and Split-TinyImageNet. The Split-CIFAR100 benchmark is designed by splitting the 100
classes in CIFAR-100 into 20 5-way classification tasks. Similarly, Split-TinyImageNet is designed by splitting 200 classes
into 40 5-way classification tasks. In both cases, the task identities are provided to the model along with the dataset. Each
model has multi-head outputs, i.e. each task has a separate classifier.

We provide the grid search details for finding the best set of hyper-parameters for both datasets and all baselines in Table
6. We train the model on the training set and report the best hyper-parameters based on the highest accuracy on the test set
in Table 7. Here, we report the hyper-parameter set for each method (with or without ER) as follows:

* SGD: {n}

* SAM: {1, p}

* Multistep-SAM: {n, p, k}

* Lookbehind-SAM: {n, p, k, o}

* Lookbehind-C-MAML: {n, p, k, a'}

We refer to Gupta et al. (2020) for the best hyper-parameters of Lookahead-C-MAML. We evaluated all models using the
following metrics:

* Average accuracy (Lopez-Paz & Ranzato, 2017): the average performance of the model across all the previous tasks
t

is defined by % > at.r, where a, ; is the accuracy on the test set of task 7 when the current task is ¢.
T=1

* Forgetting (Chaudhry et al., 2018): the average forgetting that occurs after the model is trained on several tasks is
t—1
computed by t_% > maxyeqi,.. -1} (ar - — az7), where t represents the latest task.
T=1

We report the average accuracy and forgetting after the models were trained on all tasks for both datasets.

Table 6: Details on the hyper-parameter grid search used for the lifelong learning experiments.

Hyper-parameters Values
step size (1) {0.3,0.1,0.03,0.01,0.003,0.001, 0.0003, 0.0001, 0.00003, 0.00001}
inner steps (k) {2,5,10}
outer step size () {0.1,0.2,0.5,0.8,1.0}
neighborhood size (p) {0.005,0.01,0.05,0.1}

The pseudo-code for Lookahead-C-MAML and Lookbehind-C-MAML is presented in Figure 12.

16



Lookbehind-SAM: k Steps Back, 1 Step Forward

Algorithm 3 Lookahead-C-MAML (Gupta et al., 2020)

Require: Initial parameters ¢8, inner loss function ¢, meta loss function
L, step size 7, training set D, of task ¢, number of epochs E
1: 7+0
2: R+ {}
3: fort=1,2,...do
4:  Sample batch d; ~ D,

5. fore=1,2,...,Edo

6: for mini-batch b in d; do

7 k < sizeof(b)

8: by, < Sample(R) Ub

9: for K’ =0tok —1do

10: Push b[k] to R ‘
11 ¢{</+1 — = nv¢-}i/£t(¢?€/7 b[k'])
12: end for _

13: ot — Bl — 0V g3 Le(8],, bm)
14: j—J+1

15: end for

16:  end for

17: end for

18: return ¢

Algorithm 4 Lookbehind-C-MAML (ours)

Require: Initial parameters ¢8’0, inner loss function ¢, meta loss function L, inner steps k, step size 7, outer step
size «, neighborhood size p, training set D; of task ¢, number of epochs F

I: 5«0

2: R+ {}

3:fort=1,2,...do

4 g,o « ¢§71,0

5 Sample batch d; ~ Dy
6: fore=1,2,...,EFdo
7
8
9

;],o — ¢g,0
fork’  =0tok —1do
: Sample mini-batch b ~ d, of size k without replacement
10: b, < Sample(R) Ub
11: Push b[k'] to R
RCALI)

12: p -
IV R

]3: ¢g,k/+1 — (b-g’k-/ - nvft (gb;]k‘/ + 6’ b[k/])
14: end for ) .
15: i,k — ¢§,0 + af %k - g,o)

Vo o Lt (070 bm)
16: € < 14 - j

HvﬂyoLt( t,k> bin) |2

17: ¢fgl A Qﬁ,o - WV%OLt(QSg,O + € bm)
18: j—J3+1
19:  end for
20: end for
21: return ¢

Figure 12: Implementations of Lookahead-C-MAML (top) and Lookbehind-C-MAML (bottom).
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Table 7: Best hyper-parameter settings for the different lifelong learning methods.

Methods Split-CIFAR100 Split-TinyImagenet
SGD {0.03} {0.03}
SAM {0.03,0.05} {0.03,0.05}
Multistep-SAM {0.01,0.01, 2} {0.03,0.05, 2}
Lookbehind-SAM {0.1,0.05,10,0.1}  {0.01,0.05,10,0.1}
ER + SAM {0.1,0.05} {0.03,0.1}
ER + Multistep-SAM {0.1,0.05,10} {0.03,0.1,10}

ER + Lookbehind-SAM ~ {0.03,0.05,10,0.2}  {0.01,0.1,5,0.5}
Lookbehind-C-MAML  {0.03,0.005,2, 1} {0.03,0.1,2,1}

A.6. Sensitivity to « and &

We measure the sensitivity to « and k of Lookbehind and Lookahead on additional models in Figures 13 and 14, re-
spectively. Similarly to the sensitivity results presented in the main paper, we observe that Lookbehind is more robust to
the choice of o and k and is able to improve on the SAM and ASAM baselines more significantly and consistently than
Lookahead.
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96.0 0.2193.4194.3694.57| [t 95 0.2173.86 75.77 76.45 0.2{78.3380.5580.62| [ o, - 0.2 705
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Figure 13: Sensitivity of Lookbehind to v and k when combined with SAM and ASAM in terms of generalization perfor-
mance (validation accuracy %). The validation accuracies of the SAM and ASAM variants are presented in the middle of
the heatmap (white middle point). All models were trained with the default p. Blue represents an improvement in terms
of validation accuracy over such baselines, while red indicates a degradation in performance. Experiments represented as
”N/A” indicate instances where at least one seed failed to converge.

A.7. Additional training setups

To further illustrate the superiority of our approach with stronger baselines, we replicated the setup originally used by
ASAM described in (Kwon et al., 2021). The main difference between this new setup and our previous setup is the use of a
cosine learning rate scheduler and label smoothing which leads to an increase in generalization performance. To avoid any
hyperparameter tuning, we used & = 2 with an adaptive « for Lookbehind and used SAM and ASAM’s default p values of
0.1 and 1.0, respectively, as reported in Kwon et al. (2021).

Results over 5 seeds using a WRN-28-2 model trained on CIFAR-100 for 200 epochs are presented in Table 8. We observe
that Lookbehind is able to further improve upon the high-accuracy SAM and ASAM baseline models. We note that we
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Figure 14: Sensitivity of Lookahead to a and £ when combined with SAM and ASAM in terms of generalization perfor-
mance (validation accuracy %). The validation accuracies of the SAM and ASAM variants are presented in the middle of
the heatmap (white middle point). All models were trained with the default p. Blue represents an improvement in terms of
validation accuracy over such baselines, while red indicates a degradation in performance.

recomputed SAM and ASAM’s baselines and achieved comparable to the ones reported in Kwon et al. (2021): 83.364 18
and 83.60. 15, respectvely. These results support our conclusions when using the setup used in the experiments in the
main paper showcasing the superiority of our method.

Table 8: Generalization performance (test accuracy %) of the different methods on WRN-28-10 trained on CIFAR-100
using the same setup as ASAM. Results for SGD, SAM, and ASAM (*) are the ones reported by Kwon et al. (2021).

| Model | WRN-28-10 |
SGD* 81.56. .13
SAM* 83.422 04
Lookbehind-SAM | 83.724.19
ASAM* 83.68+ 12
Lookbehind-ASAM | 84.004 13

A.8. m-SAM/ASAM

In the original SAM paper (Foret et al., 2021), the authors proposed m-SAM to reduce the mini-batch noise of the single
ascent step of single-step SAM by splitting the batch size into microbatches and independently perturbing each microbatch.
Then, an average of the gradients is used for the descent step. It is important to note that m-SAM and Lookbehind serve
different purposes since Lookbehind aims to combine gradients of different ascent steps of Multistep-SAM to enhance the
maximization part of SAM’s objective. However, since Lookbehind is a wrapper that can be applied to any SAM variant,
we apply Lookbehind to m-SAM/ASAM in Table 9 using ResNet-34 trained on CIFAR-10.

We observe that Lookbehind-m-SAM/ASAM consistently improves m-SAM/ASAM across all configurations of « and
k, with the exception of a = 0.2,k = 2, which notably yields suboptimal results, as previously demonstrated in our
manuscript. These findings further showcase the broad applicability of Lookbehind to additional SAM and ASAM variants.
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Table 9: Generalization performance (validation acc. %) of m-SAM/ASAM and Lookbehind-m-SAM/ASAM.

[m | 32 | 64 |
m-SAM 96.19:‘:,09 95.99:‘:,04
Lookbehind-m-SAM (a = 0.2,k = 2) 96.454 04 | 95.914 g
Lookbehind-m-SAM (a = 0.5,k = 2) 96.614 05 | 96.264 15
Lookbehind-m-SAM (a = 0.8, k = 2) 96.684 07 | 96.444 13
Lookbehind-m-SAM (adaptive o, k = 2) 96.664 03 | 96.494 o5
Lookbehind-m-SAM (a = 0.2,k = 5) 96.654 07 | 96.124 10
Lookbehind-m-SAM (a = 0.5,k = 5) 96.534+.12 | 96.524 04
Lookbehind-m-SAM (a = 0.8,k = 5) 96.351+.01 | 96.314 g9
Lookbehind-m-SAM (adaptive o, k = 5) 96.354 02 | 96.414 o5
m-ASAM 96.45i,04 96.28i,06

Lookbehind-m-ASAM (a = 0.2,k = 2) 96.814 .18 | 96.104 15
Lookbehind-m-ASAM (a = 0.5,k = 2) 97.004 .05 | 96.644 11
Lookbehind-m-ASAM (o = 0.8,k = 2) 97.054+.11 | 96.544 23
Lookbehind-m-ASAM (adaptive o, k = 2) | 96.974+ .08 | 96.69+ 19
Lookbehind-m-ASAM (a = 0.2,k = 5) 97.034+.02 | 96.57+ 04
Lookbehind-m-ASAM (a = 0.5,k = 5) 97.014 03 | 96.684 o7
Lookbehind-m-ASAM (a = 0.8,k = 5) 96.854+ 01 | 96.76+.10
Lookbehind-m-ASAM (adaptive o, k = 5) | 96.684+ 03 | 96.77+ .00

A.9. Speed of convergence

We provide an analysis of the speed of convergence between the best a for each k for Lookbehind-SAM/ASAM with
static o and Multistep-SAM/ASAM. The percentage of gradient computations that Lookbehind took to beat the Multistep-
SAM/ASAM baselines is presented in Table 10, where 100% refers to the number of total gradient computations performed
by Multistep-SAM/ASAM.

Table 10: Average number of gradient computations at which the Lookbehind-SAM/ASAM variants reached the same
performance as Multistep-SAM/ASAM.

Dataset CIFAR-10 CIFAR-100 ImageNet
Model ResNet-34 ‘ WRN-28-2 || ResNet-50 ‘ WRN-28-10 || ResNet-18
Lookbehind-SAM (static o, k = 2) 50% 51% 62% 50% 82%
Lookbehind-SAM (static v, k = 5) 58% 53% 50% 95% -
Lookbehind-SAM (static o, k = 10) 50% 56% 50% 24% -
Lookbehind-SAM (adaptive «, k = 2) 50% 60% 36% 51% 96%
Lookbehind-SAM (adaptive a, k = 5) 51% 63% 50% - -
Lookbehind-SAM (adaptive a, k = 10) 52% - 50% - -
Lookbehind-ASAM (static o, k = 2) 50% 50% 50% 51% 87%
Lookbehind-ASAM (static v, k = 5) 50% 50% 50% 50% -
Lookbehind-ASAM (static o, k = 10) 51% 56% 51% 52% -
Lookbehind-ASAM (adaptive o, k = 2) 50% 51% 50% 52% 93%
Lookbehind-ASAM (adaptive o, k = 5) 50% 70% 50% 50% -
Lookbehind-ASAM (adaptive o, k = 10) 50% - 52% - -

We observe that both variants of Lookbehind-SAM/ASAM achieve a considerable convergence speedup compared to the
Multistep-SAM/ASAM counterparts. We see a pattern where Lookbehind often matches the performance of Multistep
around 50% of the number of gradient computations. This is due to the learning rate scheduler used, where the learning
rate is decayed by a factor of 10 in the middle of training. We note that, in the case of CIFAR-10/100, the missing values
correspond to scenarios where the methods failed to converge across all 3 seeds. For ImageNet, the missing values are due
to k = 5 and k£ = 10 being outside the hyperparameter range used in the paper.

20



