
Direct3D: Scalable Image-to-3D Generation via 3D
Latent Diffusion Transformer

Shuang Wu1,2∗ Youtian Lin2∗ Feihu Zhang1 Yifei Zeng1,2 Jingxi Xu1

Philip Torr3† Xun Cao2 Yao Yao2‡

1DreamTech 2Nanjing University 3University of Oxford

{wushuang,linyoutian}@smail.nju.edu.cn yaoyao@nju.edu.cn

Abstract

Generating high-quality 3D assets from text and images has long been challenging,
primarily due to the absence of scalable 3D representations capable of capturing
intricate geometry distributions. In this work, we introduce Direct3D, a native 3D
generative model scalable to in-the-wild input images, without requiring a multi-
view diffusion model or SDS optimization. Our approach comprises two primary
components: a Direct 3D Variational Auto-Encoder (D3D-VAE) and a Direct 3D
Diffusion Transformer (D3D-DiT). D3D-VAE efficiently encodes high-resolution
3D shapes into a compact and continuous latent triplane space. Notably, our
method directly supervises the decoded geometry using a semi-continuous surface
sampling strategy, diverging from previous methods that rely on rendered images
as supervision signals. D3D-DiT models the distribution of encoded 3D latents and
is specifically designed to fuse positional information from the three feature maps
of the triplane latent, enabling a native 3D generative model scalable to large-scale
3D datasets. Additionally, we introduce an innovative image-to-3D generation
pipeline incorporating semantic-level and pixel-level image conditions, allowing the
model to produce 3D shapes consistent with the provided conditional image input.
Extensive experiments demonstrate the superiority of our large-scale pre-trained
Direct3D over previous image-to-3D approaches, achieving significantly better
generation quality and generalization ability, thus establishing a new state-of-the-art
for 3D content creation. Project page: https://www.neural4d.com/research/direct3d.

1 Introduction

In recent years, substantial advancements have been made in 3D shape generation through the
utilization of diffusion models [13, 51]. Inspired by the efficacy demonstrated in text-to-2D image
generation, these methods seek to extend the capabilities of diffusion models to the realm of 3D shape
generation through extensive training on diverse 3D datasets. Various approaches have explored
diverse 3D representations, including point clouds [37, 38], voxels [45], and SDFs [35], aiming not
only to faithfully capture object appearance but also to preserve intricate geometric details. However,
existing large-scale 3D datasets, such as ObjverseXL [6], are constrained both in the quantity and
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Figure 1: Direct3D is a novel image-to-3D generation method that directly trains on larger-scale 3D datasets
and performs state-of-the-art generation quality and generalizability. We achieve this by designing a novel 3D
latent diffusion model to take an image as the prompt and generate high-quality 3D shapes that highly consistent
with input images. As shown above, our method can generate 3D shapes from existing text-to-image diffusion
models, which indicates that our method generalizes to in-the-wild images, while it only trains on 3D data.

diversity of shapes compared to their 2D counterparts like Laion5B [47], which contains 5 billion
images, while ObjverseXL only comprises 10 million 3D shapes.

To address this limitation, many existing methods [5, 4, 9, 26, 27, 28, 29, 31, 34, 43, 65] employ a
pipeline where multi-view images of an object are initially generated from a single image using a
multi-view diffusion model. Subsequently, techniques such as sparse view reconstruction methods [23,
32, 55, 62] or score distillation sampling (SDS) optimization [42, 43, 49, 54] are applied to fuse these
multi-view images into 3D shapes. While this pipeline can result in high-quality 3D shape creation,
the indirect generation from multi-view images raises efficiency concerns. Additionally, the quality
of the resulting shape is heavily dependent on the fidelity of the multi-view images, often leading to
detail loss or reconstruction failures.

In this paper, we eschew the conventional approach of indirectly generating multi-view images and
instead advocate the direct generation of 3D shapes from single-view images, leveraging a native
3D diffusion model. Inspired by the success of latent diffusion models in 2D image generation, we
propose the utilization of a 3D variational auto-encoder (VAE) [20] to encode 3D shapes into a latent
space, followed by a diffusion transformer model (DiT) [40] to generate 3D shapes from this latent
space, conditioned on an image input. However, efficiently encoding a 3D shape into a latent space
conducive to diffusion model training is challenging, as is decoding the latent representation back
into 3D geometry. Previous approaches have employed multi-view images as indirect supervision [19,
22, 35, 61] through differentiable rendering, but still encounter accuracy and efficiency issues. To
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address these challenges, we employ a transformer model to encode high-resolution point clouds
into an explicit triplane latent, which has been widely used in 3D reconstruction methods [2] for
its efficiency. While the latent triplane is intentionally set with a low resolution, we introduce a
convolutional neural network to upsample the latent resolution and decode it into a high-resolution
3D occupancy grid. Furthermore, to ensure precise supervision of the 3D occupancy grid, we adopt a
semi-continuous surface sampling strategy, enabling the sampling and supervision of surface points
in both continuous and discrete manners. This approach facilitates the encoding and reconstruction
of 3D shapes within a compact and continuous explicit latent space.

For image-to-3D generation, we further leverage an image input as a condition to the 3D diffusion
transformer. This involves arranging the 3D latent space as a combination of three orthogonal views
of a 3D shape and incorporating pixel-level image information into each DiT block to enhance
conditional consistency. Furthermore, we introduce cross-attention layers into each DiT block to
incorporate semantic-level image information, thereby facilitating the generation of high-quality 3D
shapes consistent with input images.

We demonstrate the high-quality 3D generation and strong generalization abilities of the proposed
Direct3D approach through extensive experiments. Figure 1 illustrates the 3D generation results of
our method on the in-the-wild images generated from text-to-image model. To summarize, the major
contributions of this work include:

• We introduce Direct3D, to our best knowledge, the first native 3D generative model scalable
to in-the-wild input images (e.g., from Flux [21], Hunyuan-DiT [24] or SDXL [41]). This
enables high-fidelity image-to-3D generation without the need for multi-view diffusion
models or SDS optimization.

• We propose D3D-VAE, a novel 3D variational auto-encoder effectively encoding a 3D point
cloud into a triplane latent. Instead of using rendered images as supervision signals, we
supervise the decoded geometry directly using a semi-continuous surface sampling strategy
to preserve detailed 3D information in the latent triplane.

• We present D3D-DiT, a scalable image-conditioned 3D diffusion transformer capable of
generating 3D asserts consistent with input images. The D3D-DiT is specially designed
to better fuse the positional information from the latent triplane and effectively integrates
pixel-level and semantic-level information from the input image.

• We demonstrate through extensive experiments that our large-scale pre-trained Direct3D
model surpasses previous image-to-3D approaches in terms of generation quality and
generalization ability, setting a new state-of-the-art for the task of 3D content creation.

2 Related Work

2.1 Neural 3D Representations for 3D Generation

Neural 3D representations are essential for 3D generation tasks. The introduction of Neural Radiance
Fields (NeRF) [36] has significantly advanced 3D generation. Building on NeRF, DreamFusion [42]
introduced a Score Distillation Sampling (SDS) method to generate 3D shapes using an off-the-
shelf 2D diffusion model from any text prompt. Many subsequent methods have explored various
representations to enhance the speed and quality of 3D generation. For instance, Magic3D [25]
improves generation quality by introducing a second stage using the DMtet [48] representation, which
combines Signed Distance Function (SDF) with a tetrahedral grid to represent the 3D shape.

Beyond SDS-based methods, some approaches use directly trained networks to generate different
representations [16, 17, 59]. For example, LRM [16] uses triplane NeRF representations as network
outputs, significantly speeding up the generation process, albeit with some loss in quality. Another
approach, One-2-3-45++ [26], proposes to use a 3D occupancy grid as the output representation to
enhance geometric quality.

2.2 Multi-view Diffusion

Following the success of novel view prediction methods using diffusion models, such as Zero123 [28],
which generates different unknown views of an object from a single image and text guidance.
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MVDream [49] extends novel view diffusion to generate multiple views of an object at once,
improving consistency across views. Imagedream [54] further enhances generation quality by
introducing a novel image conditional module. Some methods adopt this approach to first generate
multi-view images of an object and then reconstruct the 3D shape from these views using sparse
reconstruction [23, 31, 55, 62]. Instant3D [23] proposes a reconstruction model that takes four multi-
view images as input and reconstructs a NeRF representation of the 3D shape. Many subsequent
methods have improved on this by enhancing multi-view or reconstruction models [53, 57, 58].

2.3 Direct 3D Diffusion

Despite the challenges of directly training a 3D diffusion model, such as the lack of a diffusible 3D
representation, various strategies have been explored. One line of work fits multiple NeRFs to obtain
a neural representation of 3D datasets and then applies a diffusion model to generate NeRFs from this
learned representation [50]. However, separate training of NeRFs can hinder the diffusion model’s
ability to generalize to more diverse 3D shapes. 3DGenNeural [50] proposes joint training of triplane
fitting of the 3D shape with occupancy as direct supervision to train the triplane reconstruction model.

Another line of work leverages VAEs to encode 3D shapes into a latent space and trains a diffusion
model on this latent space to generate 3D shapes [15, 19, 22, 61]. For instance, Shap-E [19] uses a
pure transformer VAE to encode a point cloud and image of a 3D shape into an implicit latent space,
which is then recovered into a NeRF and SDF field. 3DGen [10] encodes only the point cloud of a 3D
shape into an explicit triplane latent space, enhancing generation efficiency. Similar to previous works
that fit multiple NeRFs, 3DTopia [15] fits multiple triplane NeRFs and encodes the triplane into a
latent space for which a diffusion model is trained to generate 3D shapes. 3DShape2VecSet [60] and
Michelangelo [64] employ 3D occupancy as the output representation for the VAE but use multiple
1D vectors as implicit latent space instead of a triplane.

However, these methods often rely on rendering loss to supervise the VAE reconstruction, resulting in
suboptimal reconstruction and generation quality. Additionally, using implicit latent representations
not designed for efficient encoding and lacking compact explicit 3D representations for diffusion
further limits their performance. Our 3D VAE combines the advantages of explicit 3D latent
representation and direct 3D supervision to achieve high-quality VAE reconstruction, ensuring robust
3D shape generation. Furthermore, our design for the diffusion architecture specifically addresses
conditional 3D latent generation. Our 3D DiT facilitates pixel-level and semantic-level 3D-specific
image conditioning, allowing the diffusion process to generate highly detailed 3D shapes consistent
with the condition images.

3 Methods

Inspired by LDM [46], we train a latent diffusion model for 3D generation within a 3D latent space.
Unlike previous methods [19, 64] that typically rely on a 1D implicit latent space for generative
models, our approach addresses two crucial limitations: 1) the struggle of the implicit latent repr
esentation to capture structured information inherent in 3D space, leading to sub-optimal quality of
decoded 3D shapes; 2) the challenge of training and sampling from the latent distribution, given that
the implicit latent space is unstructured and under-constrained.

To mitigate these issues, we adopt an explicit triplane latent representation, utilizing a triplane of three
feature maps to represent the 3D geometry latent. The design draws inspiration from LDM, which
applies feature maps to represent the 2D image latent. Figure 2 illustrates the overall framework of
our proposed method, which comprises a two-step training process: 1) the D3D-VAE is first trained to
convert 3D shapes into 3D latents, which is described in Sec. 3.1; 2) the image-conditioned D3D-DiT
is then trained to generate high-quality 3D assets, which is detailed in Sec. 3.2.

3.1 Direct 3D Variational Auto-Encoder

The proposed D3D-VAE consists of three components: a point-to-latent encoder, a latent-to-triplane
decoder, and a geometry mapping network. Meanwhile, we design a semi-continuous surface
sampling strategy that utilizes both continuous and discrete supervision to ensure the high-frequency
geometric details of the decoded 3D shape.
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Figure 2: The framework of our Direct3D. (a) We utilize transformer to encode point cloud sampled from 3D
model, along with a set of learnable tokens, into an explicit triplane latent space. Subsequently, a CNN-based
decoder is employed to upsample these latent representations into high-resolution triplane feature maps. The
occupancy values of queried points can be decoded through a geometric mapping network. (b) Then we train the
image conditional latent diffusion transformer in the 3D latent space obtained by VAE. Pixel-level information
and semantic-level information from images are extracted using DINO-v2 and CLIP, respectively, and then
injected into each DiT block.

Point-to-latent encoder. In order to obtain robust representations in the latent space that can effec-
tively capture intricate geometry, we uniformly sample high-resolution point clouds from the surface
of 3D objects, which is then encoded to an explicit latent representation z ∈ R(3×r×r)×dz , where
r and dz denotes the resolution and channel dimensional of the latent representation, respectively.
To be specific, given a set of point clouds P ∈ RNP×(3+3) sampled from 3D models, where NP

denotes the number of points, the channel dimension (3 + 3) comprises of the normalized position
and normal of each point, we first use Fourier features [18] to represent the position structure of point
clouds. Then we introduce a series of learnable tokens e ∈ R(3×r×r)×de to query the point cloud
features using a cross-attention layer, where de denotes the channel dimensional of e. This enables
the injection of 3D information from the point clouds into the latent tokens. Subsequently, multiple
self-attention layers are employed to enhance the representation of these tokens, ultimately yielding
the latent representation z ∈ R(3×r×r)×dz , where dz represents the channel dimensional of z.

Latent-to-triplane decoder. After obtaining the latent representation z, we reshape it to the triplane
representation. Inspired by RODIN [56], we concatenate the three planes vertically along the height
dimension, yielding z ∈ Rr×(3×r)×dz , to prevent incorrect blend of the planes across the channel
dimension. Afterwards, the latent-triplane decoder upsamples z to high-resolution triplane feature
maps with upsampling factors f . In contrast to the transformer architecture used in the encoder,
our decoder model employs convolutional networks to progressively upsample the explicit latent
representation and obtain the final triplane T = (TXY,TYZ,TXZ).

Semi-continuous surface sampling. We employ a Multi-Layer Perceptron (MLP) as the geometric
mapping network to predict the occupancy of queried points via features interpolated from the triplane.
The MLP contains multiple linear layers with ReLU activation. Typical occupancy is represented
by a discrete binary value of 0 and 1 to indicate whether a point is inside an object. However, when
the query point is very close to the object surface, it can result in abrupt gradient changes that affect
model optimization. In this work, we adopt semi-continuous occupancy, using both continuous and
discrete supervision to ensure smooth gradient. Specifically, given a query point x in 3D space,
when its distance to the surface is greater than a small threshold value s = 1

512 , the occupancy value
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remains either 0 or 1. When the distance is less than s, a continuous value ranging from 0 to 1 is
assigned to it. The formula for the semi-continuous occupancy o(x) is as follows:

o(x) =


1, if sdf(x) < −s

0.5− 0.5·sdf(x)
s , if − s ≤ sdf(x) ≤ s

0, if sdf(x) > s

, (1)

where sdf(x) denotes the Signed Distance Function (SDF) value of x.

End-to-end optimization. During the training process, we uniformly sample points from the 3D
space and sample points proximate to the object surface to predict their semi-continuous occupancy.
We utilize Binary Cross-Entropy (BCE) loss LBCE to supervise the predictions. Additionally, we
employ KL loss LKL to prevent excessive variance in the latent space. Thus, our D3D-VAE is
optimized by minimizing:

LD3D-VAE = LBCE + λKLLKL, (2)

where λKL denotes the weight of KL regularization.

3.2 Image-conditioned Direct3D Diffusion Transformer
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Figure 3: The architecture of our 3D DiT. We
employ the pre-trained DINO-v2 and CLIP vision
model to extract tokens from conditional images
respectively, then incorporate the pixel-level and
semantic-level information into each DiT block.

After training the D3D-VAE, we have access to a con-
tinuous and compact latent space, upon which we
train the latent diffusion model. Since the obtained
latent embedding is an explicit triplane representa-
tion, a naive approach would be to directly use a well-
designed 2D U-Net as the diffusion model. However,
this would result in a lack of communication between
the three planes, thus failing to capture the structured
and intrinsic properties required for 3D generation.
Therefore, we build the generation model based on
the architecture of the Diffusion Transformer (DiT),
utilizing the transformer to better extract spatial posi-
tional information among the planes. Meanwhile, we
propose to incorporate pixel-level and semantic-level
information of the image in each DiT block, thereby
aligning the image feature space and latent space to
generate 3D assets consistent with the conditional im-
age content. The framework of our latent diffusion
model is shown in Figure 2 (b) and the architecture of
each DiT block is illustrated in Figure 3.

Pixel-level alignment module. To ensure the high-
frequency details of 3D assets generated by the diffu-
sion model are aligned with the conditional images,
we design a pixel-level alignment module to inject
pixel-level information from the images into the la-
tent space. We employ the pre-trained DINO-v2 [39]
(ViT-L/14) as the pixel-level image encoder, which
has been revealed in previous work [1] to outperform
other pre-trained vision models in extracting structural
information beneficial for 3D tasks. Specifically, we
first use two linear layers with GeLU [12] activation
to project the image tokens cp extracted by DINO-v2
to match the channel dimension of the noisy latent to-
kens zt. Then in each DiT block, we concatenate them
with the flattened zt and feed them into a self-attention
layer to model the intrinsic relationship between cp
and zt. Subsequently, we eliminate the part of image
tokens and only reserve the part of noisy tokens for
input to the next module.
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Table 1: Quantitative results on Google Scanned Objects dataset.

Methods Chamfer Distance ↓ Volume IoU ↑ F-Score ↑
Shap-E [19] 0.0585 0.2347 0.3474
Michelangelo [64] 0.0441 0.1260 0.4371
One-2-3-45 [27] 0.0513 0.2868 0.3149
InstantMesh [57] 0.0327 0.4105 0.5058

Ours (trained on Objaverse) 0.0296 0.4307 0.5356
Ours (trained on Objaverse + internal data) 0.0271 0.4323 0.5624

Semantic-level alignment module. We devise a semantic-level alignment module to ensure semantic
consistency between the generated 3D models and the conditional images. We employ the pre-trained
CLIP [44] visual model (ViT-L/14) to extract semantic image tokens cs from the conditional images,
and then utilize a cross-attention layer within each DiT block to facilitate the interaction between
cs and noisy latent token zt. Meanwhile, unlike the original class conditional DiT, our image-
conditioned diffusion model no longer utilizes class embedding. Instead, we use the classification
token from the semantic image tokens cs after projection and add it to the time embedding to enhance
semantic features. In addition, to reduce the number of parameters and computational cost, we employ
adaLN-single, as proposed in PixArt [3], which predicts a set of global shift and scale parameters
P = [γ1, β1, α1, γ2, β2, α2] using time embeddings, then sets a trainable embedding and adds it to P
for adjustment in each block.

Training. Following LDM [46], our 3D latent diffusion transformer model predicts the noise ϵ of the
noisy latent representation zt at time t, conditioned on image C. When training the diffusion model,
we randomly zero the conditional input cp and cs with a probability of 10% to use classifier-free
guidance [14] during inference, thereby improving the quality of conditional generation.

4 Experiments

4.1 Dataset

Our Direct3D is trained on a filtered subset of the Objaverse [7] dataset which consists of 160K
high-quality 3D assets. To evaluate the scalability of our Direct3D, we also employ additional internal
data for training. Each 3D model is normalized to a unit sphere centered at the world origin. To
construct conditional images for training the 3D latent diffusion transformer, we randomly render
24 views at a resolution of 512× 512 using Blender for each 3D model. Additionally, we employ
depth-conditioned ControlNet [63] to generate 16 diverse images to ensure the generalization of the
diffusion model. To evaluate the performance of our Direct3D, we randomly select 30 3D models
from the Google Scanned Objects (GSO) [8] dataset for image-to-3D experiments. For the text-to-3D
task, we utilize existing text-to-image models like Hunyuan-DiT [24] to generate images with several
classic text prompts as conditional inputs for qualitative comparisons with other methods. The
ablation studies for each component are presented in the Appendix.

4.2 Implementation Details

D3D-VAE. Our D3D-VAE takes as input 81,920 point clouds with normal uniformly sampled from
the 3D model, along with a learnable latent token of a resolution r = 32 and a channel dimension
de = 768. The encoder network consists of 1 cross-attention layer and 8 self-attention layers, with
each attention layer comprising 12 heads of a dimension 64. The channel dimension of the latent
representation is dz = 16. The decoder network comprises of 1 self-attention layer and 5 ResNet [11]
blocks to upsample the latent representation into triplane feature maps with resolution of 256× 256
and channel dimension of 32. The geometric mapping network consists of 5 linear layers with hidden
dimension 64. During training, we sample 20,480 uniform points and 20,480 near-surface points for
supervision. The KL regularization weight is set to λKL = 1e−6. We use the AdamW [33] optimizer
with a learning rate 1e− 4 and a batch size of 16 per GPU.

D3D-DiT. Our diffusion model adopts the network configuration of DiT-XL/2 [40], which consists of
28 layers of DiT blocks. Each attention layer includes 16 heads with a dimension of 72. We train the
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Shap-E Michelangelo OursInput Image One-2-3-45 InstantMesh

Figure 4: Qualitative comparisons with different baseline methods on GSO dataset.

Table 2: User study on the quality of meshes. The higher the score, ranging from 1 to 5, the better.

Shap-E [19] One-2-3-45 [27] Michelangelo [64] InstantMesh [57] Ours

Quality 1.18 1.24 2.51 2.53 4.41
Consistency 1.19 1.28 2.32 2.66 4.35

diffusion model with 1000 denoising steps using a linear variance scheduler ranging from 1e− 4 to
2e− 2. We employ the AdamW optimizer with a batch size of 32 per GPU and train for 800K steps.
During inference, we apply 50 steps of DDIM [52] with the guidance scale set to 7.5.

4.3 Image and Text to 3D Generation

Image-to-3D. We conduct qualitative and quantitative comparisons of our Direct3D with other
baseline methods on the GSO dataset for the image-to-3D task, as illustrated in Figure 4 and Table 1,
respectively. Shap-E [19], a 3D diffusion model trained on millions of 3D assets, is capable of
producing plausible geometry, but it suffers from artifacts and holes in the meshes. Michelangelo [64]
performs diffusion process on a 1D implicit latent space, and fails to align the generated mesh with the
semantic content of the conditional images. Multi-view based approaches such as One-2-3-45 [27]
and InstantMesh [57] heavily rely on the performance of multi-view 2D diffusion model. One-2-3-45
directly employs SparseNeuS [32] for reconstruction, resulting in coarse geometry. The meshes
generated by InstantMesh perform decent quality, but lack consistency with the input images in
certain details like the water spout on the sink and the windows of the school bus. It also produces
some failure cases such as merging the hind legs of the horse together, due to the limitation of
multi-view diffusion model. In contrast, our Direct3D consistently generates high-quality meshes
that align with the conditional images in most cases. In Table 1, we report the Chamfer Distance,
Volume IoU and F-Score to compare the quality of the generated meshes with other methods. It
can be observed that our Direct3D achieves state-of-the-art performance across all metrics when
trained on Objaverse dataset. Integrating our internal data for training further enhances the model’s
performance, validating the scalability of our approach.

Text-to-3D. Our Direct3D can produce 3D assets from text prompts by incorporating text-to-image
models, such as Flux [21] and Hunyuan-DiT [24]. Figure 5 illustrates the qualitative comparisons of
our Direct3D and other baseline methods on the text-to-3D task. To ensure a fair comparison, all
methods utilize the same generated image as input. It can be observed that these baseline methods fail
in almost all cases, while our Direct3D is still able to generate high-quality meshes, demonstrating
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Shap-E One-2-3-45 Michelangelo OursInput InstantMesh

Spider-man, photorealistic

An astronaut is riding a horse

A 3D model of an adorable cottage with a thatched roof

A realistic phoenix in the fairytale

A pair of sunglasses

Flat flying dragon

A police car

Iron man in an ice and  snow armor

Figure 5: Qualitative comparisons of the meshes generated from text. We employ the existing text-to-image
models (e.g. Hunyuan-DiT) to produce highly detailed images as the inputs of each method.

the generalizability of our approach. We also conducted a user study to quantitatively compare
our D3D-DiT with other methods. We render videos of meshes generated by each method rotating
360 degrees, and ask 46 volunteers to rate each mesh based on its quality and consistency with the
input images. The results in Table 2 indicate that our D3D-DiT perform superior mesh quality and
consistency compared to other baseline methods.

Generation of textured mesh. Benefited from the smooth and detailed geometry produced by our
Direct3D, we can easily dress up the mesh using existing texture synthesis methods. As shown in
Figure 6, we utilize SyncMVD [30] to obtain exquisite textured meshes.

5 Conclusion

In conclusion, our paper introduces a novel approach for direct 3D shape generation from a single
image, bypassing the need for multi-view reconstruction. Leveraging a hybrid architecture, our
proposed D3D-VAE efficiently encode 3D shapes into a compact latent space, enhancing the fidelity of
the generated shapes. Our image-conditioned 3D diffusion transformer (D3D-DiT) further improves
the generation quality by integrating image information at both pixel and semantic levels, ensuring
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An elegant chess queen with floral engraving A mystic totem with intricate animal carvings

Futuristic mech suit with advanced weaponry and armor Miniature teapot shaped like an elephant

Figure 6: Visualizations of the textured meshes. We employ SyncMVD [30] to generate texture for the meshes
produced by our Direct3D.

high consistency between generated 3D shapes and conditional images. Extensive experiments on
the image-to-3D and text-to-3D tasks demonstrate the superior performance of our Direct3D in 3D
generation, surpassing existing methods in quality and generalizability.

Limitations. Despite the capability of our Direct3D to produce high-fidelity 3D assets, it is currently
limited to the generation of individual or multiple objects and cannot generate large-scale scenes. We
will focus on it in future research.
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A Appendix

A.1 Ablation Studies

Explicit triplane latent. Unlike typical approaches like Michelangelo [64] which employs VAE
to encode inputs into a 1D implicit latent space, our D3D-VAE compresses high-resolution point
clouds into an explicit triplane latent representation. We conduct comparative experiments on
the Objaverse [7] dataset, and the 3D models for validation are not included in the training set.
Figure 7 and Table 3 illustrate the comparison of the reconstruction results of VAE between these
two approaches, demonstrating that our adopted explicit triplane representation is more capable of
recovering high-frequency geometric details.
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Figure 7: Qualitative comparisons of reconstruction with different latent representation.

Table 3: Quantitative comparisons of reconstruction with different latent representations on Objaverse evaluation
set.

Methods Chamfer Distance ↓ Volume IoU ↑ F-Score ↑
Implicit 1D Space (Shape2VecSet) 0.0057 0.8794 0.9416
Explicit Triplane (Ours) 0.0042 0.9409 0.9835

Semi-continuous surface sampling strategy. We adopt a semi-continuous surface sampling strategy
during the training of D3D-VAE to alleviate the optimization difficulty caused by abrupt changes in
occupancy near the object surface. To evaluate the effectiveness of this strategy, we train D3D-VAE
with and without this sampling strategy separately and compare the reconstructed results. As shown
in Figure 8 and Table 4, it can be observed that the reconstruction performance is unsatisfactory
when directly training with the original occupancy in some thin structures, but is improved when the
semi-continuous sampling strategy is utilized.

Table 4: Quantitative results of semi-continuous surface sampling strategy.

Methods Chamfer Distance ↓ Volume IoU ↑ F-Score ↑
w/o semi-continuous sampling 0.0060 0.8723 0.9192
w/ semi-continuous sampling 0.0057 0.8794 0.9416

2D U-Net vs D3D-DiT. To demonstrate the superiority of our D3D-DiT network architecture, we
conduct experiments to compare it with 2D U-Net. We train diffusion models on the roll-out triplane
latent representation using network architectures of SD 1.5 [46] and SD 2.1, respectively. Figure 9
illustrates the qualitative comparisons using the conditional images generated by Hunyuan-DiT [24].
It can be observed that neither SD 1.5 or SD 2.1 is able to produce satisfactory meshes, while our
D3D-DiT, due to its powerful scalability and generalization, is capable of generating high-quality 3D
shapes that align with the content of the conditional images.
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Figure 8: Ablation study for the semi-continuous surface sampling strategy.

Input Image D3D-SD 1.5 D3D-SD 2.1 D3D-DiT 
w/o pixel alignment D3D-DiT

Figure 9: Qualitative comparisons of diffusion models with different network architectures.

Effectiveness of the pixel-level alignment module. We perform ablation experiments to validate the
effectiveness of the pixel-level alignment module used in our D3D-DiT. As illustrated in Figure 9,
D3D-DiT can still generate meshes of relatively high quality without this module. However, it does
not align well with the conditional images, such as the external structure of the coffee machine and
the wings of the statue. By injecting the pixel-level information into each DiT block through the
pixel-level alignment module, the produced meshes can also maintain consistency with the conditional
images in terms of details.

A.2 More Visualizations

We present more visualizations in Figure 10.

A.3 Broader Impacts

Like other creative tools, our project is susceptible to misuse, such as improper or harmful use of the
generated characters. To address these risks, it is crucial to establish and implement ethical guidelines
and content moderation policies.
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Figure 10: More Visualizations.
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model well-specification, asymptotic approximations only holding locally). The authors
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: We do not contain the theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides detailed descriptions of the experimental setup, including
the algorithms used, parameter settings, datasets, and evaluation metrics. Additionally, it
outlines the procedures followed to obtain the results, ensuring that other researchers can
replicate the experiments and verify the findings. We mention this in Section. 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
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some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: While a portion of the data used in this research comprises private assets with
significant commercial value, releasing this information would also violate the research
contract signed by the authors.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We specify all the training and testing details in Section. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Repeated training runs of large transformer models strain available GPU
resources.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have carefully reviewed the details provided in the paper, and it includes
comprehensive information on the type of computing workers, memory, and time of execu-
tion required for each experiment. We mention this in Section. 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have carefully reviewed the NeurIPS Code of Ethics, and we confirm that
our research adheres to all outlined ethical guidelines, including considerations for fairness,
transparency, and respect for all participants involved.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
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Answer: [Yes]
Justification: The paper discusses both potential positive societal impacts, such as ad-
vancements in technology and potential benefits to various industries, and negative societal
impacts, including ethical considerations and the environmental impact of increased compu-
tational resource usage. We mention this in Section A.3.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This question is not applicable because the paper does not involve the release
of data or models that pose a high risk for misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of all assets used in the paper are properly
credited. The licenses and terms of use for these assets are explicitly mentioned and have
been respected in accordance with their respective requirements.
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Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper includes comprehensive documentation for all new assets introduced.
This documentation is provided alongside the assets, ensuring that users have access to
detailed descriptions, usage guidelines, and any necessary supporting information.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: The paper does not include the full text of instructions given to participants,
screenshots, or details about compensation.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: We request several volunteers to participate in a simple anonymous question-
naire for user study, with no potential risks involved for the volunteers.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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