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Abstract001

Multimodal knowledge graphs (MMKGs) en-002
rich traditional knowledge graphs (KGs) by003
incorporating diverse modalities such as im-004
ages and text. multimodal knowledge graph005
completion (MMKGC) seeks to exploit these006
heterogeneous signals to infer missing facts,007
thereby mitigating the intrinsic incompleteness008
of MMKGs. Existing MMKGC methods typi-009
cally leverage only the information contained010
in the MMKGs under the closed-world assump-011
tion and adopt discriminative training objec-012
tives, which limits their reasoning capacity dur-013
ing completion. Recent generative completion014
approaches powered by advanced large lan-015
guage models (LLMs) have shown strong rea-016
soning abilities in unimodal knowledge graph017
completion, but their potential in MMKGC re-018
mains largely unexplored. To bridge this gap,019
we propose HERGC, a Heterogeneous Experts020
Representation and Generative Completion021
framework for MMKGs. HERGC first deploys022
a Heterogeneous Experts Representation Re-023
triever that enriches and fuses multimodal in-024
formation and retrieves a compact candidate025
set for each incomplete triple. It then uses a026
Generative LLM Predictor fine-tuned on mini-027
mal instruction data to accurately identify the028
correct answer from these candidates. Exten-029
sive experiments on three standard MMKG030
benchmarks demonstrate HERGC’s effective-031
ness and robustness, achieving state-of-the-art032
performance.033

1 Introduction034

Knowledge graphs (KGs) represent real-world035

facts as triples of entities and their relations, of-036

fering a structured semantic representation (Nickel037

et al., 2015; Ji et al., 2021). Multimodal knowledge038

graphs (MMKGs) (Zhu et al., 2022; Chen et al.,039

2024b) extend traditional KGs by incorporating ad-040

ditional modalities such as images and text, thereby041

enriching the contextual information of entities and042

enhancing the expressiveness of the graph. both043

KGs and MMKGs have been widely adopted in 044

various AI systems, including recommender sys- 045

tems (Wang et al., 2019a; Sun et al., 2020) and 046

large language models (Pan et al., 2024). More- 047

over, they play an increasingly important role in 048

scientific domains, supporting downstream tasks 049

such as biomedical interaction prediction (Lin et al., 050

2020; Xiao et al., 2024). 051
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Figure 1: Comparison between (a) HERGC and (b)
existing methods. Unlike prior methods, HERGC lever-
ages the knowledge and reasoning capabilities of LLMs
to generate predictions.

Like traditional KGs, MMKGs also suffer from 052

incompleteness, often due to missing facts in the 053

underlying data sources or facts that have yet to be 054

discovered by humans. Unlike conventional knowl- 055

edge graph completion (KGC), which primarily 056

leverages the graph’s topological structure and lo- 057

cal neighborhood information, multimodal knowl- 058

edge graph completion (MMKGC) (Chen et al., 059

2024b) introduces additional complexity through 060

the incorporation of multimodal signals. MMKGC 061

has advanced considerably in recent years, with 062

most work concentrating on modality fusion (Li 063

et al., 2023; Shang et al., 2024) and modality infor- 064

mation representation (Zhang et al., 2025a). These 065

approaches ultimately produce yield joint triple em- 066

beddings or employ ensemble strategies to score 067

candidate facts. While these MMKGC methods 068
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offer valuable insights, their reasoning capabilities069

during the completion process remain limited due070

to their reliance solely on closed-world triples and071

available multimodal information.072

Meanwhile, recent advances in unimodal KGC073

have introduced generative completion approaches074

powered by large language models (LLMs) (Wei075

et al., 2023; Zhang et al., 2024; Liu et al., 2024). By076

fine-tuning or leveraging in-context learning, these077

approaches exploit the extensive factual knowledge078

and reasoning capabilities that LLMs acquire dur-079

ing pre-training, achieving state-of-the-art results080

in KGC. However, this generative paradigm re-081

mains largely unexplored within the MMKGC set-082

ting. In particular, designing mechanisms to inte-083

grate multimodal information to guide LLM reason-084

ing and constrain the search space of its responses085

remains a critical open challenge.086

To address these challenges and fill the gap in087

generative MMKGC, we propose HERGC, a novel088

generative framework that overcomes the limita-089

tions of existing MMKGC approaches that rely090

on MMKG’s own contents for reasoning. Fig-091

ure 1 briefly illustrates the differences between our092

HERGC and existing methods. Drawing on the093

retrieval-augmented generation (RAG) idea (Lewis094

et al., 2020), HERGC comprises two core compo-095

nent: the Heterogeneous Experts Representation096

Retriever (HERR) and the Generative LLM Pre-097

dictor (GLP). HERR employs a Mixture of Het-098

erogeneous Experts Network (MoHE) to enrich099

each modality’s embeddings from multiple and hi-100

erarchical perspectives and a Relation-aware Gated101

Multimodal Unit (RaGMU) to obtain high-quality102

fused embeddings, which are then used to score103

and retrieve candidate entities. GLP injects the104

fused multimodal embeddings into the LLM and105

performs LoRA fine-tuning on minimal instruction106

data, enabling the LLM to accurately select the cor-107

rect entity from the retrieved candidates. We con-108

duct comprehensive experiments on three public109

MMKG benchmarks to validate the effectiveness110

and robustness of HERGC. Our contributions are111

summarized as follows:112

• We propose HERGC, the first, to the best of113

our knowledge, MMKGC framework based114

on the generative paradigm.115

• We developed a novel ranking-based retrieval116

module, HERR, which combines the Mixture117

of Heterogeneous Experts Network and the118

Relation-aware Gated Multimodal Unit to ef- 119

fectively extract cross-modal information and 120

produce high-quality fused multimodal em- 121

beddings. 122

• We perform extensive experiments on three 123

standard MMKGC benchmarks, showing that 124

HERGC consistently outperforms strong base- 125

lines across all datasets. 126

2 Related Work 127

2.1 Tradition Knowledge Graph Completion 128

Tradition Knowledge Graph Completion (KGC) 129

primarily focuses on embedding entities and re- 130

lations into continuous vector spaces to predict 131

triples. Most of them leverage KG’s structure 132

and design various score function to learn the em- 133

bedding by maximize the positive and negative 134

samples score difference, such as Translational- 135

Distance approaches (TransE (Bordes et al., 2013) 136

and RotatE (Sun et al., 2019)) and Semantic- 137

Matching approaches (DistMult (Yang et al., 2014), 138

ComplEX (Trouillon et al., 2016), and Tucker (Bal- 139

ažević et al., 2019)).To further consider neighbor 140

aggregation and message passing to improve the 141

representation power of embedding, graph neural 142

network based (GNN-based) methods have been 143

proposed, such as R-GCN (Schlichtkrull et al., 144

2018) and CompGCN (Vashishth et al., 2019). Be- 145

sides structural information, KG, as a semantic 146

network, naturally carries text information. There- 147

fore, the text-based method that mainly uses text 148

information, which encodes text information in 149

KG through a pretrained language model (PLM), 150

has been proposed, including KG-Bert (Yao et al., 151

2019) and SimKGC (Wang et al., 2022). With 152

the recent development of LLM, the novel gener- 153

ative methods have come into view. They mainly 154

use the rich external knowledge and powerful rea- 155

soning capabilities of LLMs to complete KGC in 156

a sequence-to-sequence form, including KICGPT 157

(Wei et al., 2023), KoPA (Zhang et al., 2024) and 158

DIFT (Liu et al., 2019). 159

2.2 Multimodal Knowledge Graph 160

Completion 161

While recent text-based and generative approaches 162

have started to incorporate both structural and tex- 163

tual information, they often lack tight coordination 164

between these modalities during inference (Chen 165

et al., 2024a). Moreover, the emergence of KGs 166
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enriched with additional modalities, such as im-167

ages, audio, and video, further raises the bar for168

the design of dedicated MMKGC models. Initial169

MMKGC models, like IKRL (Xie et al., 2016), ex-170

tract visual features from entities using pre-trained171

visual encoders and combine these with structural172

embeddings. Extensions such as TransAE (Wang173

et al., 2019b) and TBKGC (Mousselly-Sergieh174

et al., 2018) incorporate both textual and visual175

features, enhancing entity representations Fusion-176

oriented methods, including OTKGE (Cao et al.,177

2022) and MoSE (Zhao et al., 2022), employ so-178

phisticated strategies like optimal transport and179

modality-specific representations to achieve effec-180

tive multimodal integration. IMF (Li et al., 2023)181

utilizes an interactive fusion framework, training182

separate models for each modality to collabora-183

tively infer missing links. Furthermore, MMKRL184

(Lu et al., 2022) employs adversarial training but185

focuses specifically on robustness against modality-186

specific perturbations. Meanwhile, approaches like187

MyGO (Zhang et al., 2025a) leverage fine-grained188

contrastive learning to enhance the granularity of189

multimodal embeddings. Also, there are meth-190

ods that use multi-perspective ideas to enhance191

modal representation, such as MoMoK (Zhang192

et al., 2025b) that uses a mixture of expert model193

and information decoupling and MCKGC (Gao194

et al., 2025) that integrates information in a mixed195

curvature space.196

3 Methodology197

In this section, we present the HERGC framework.198

We begin with the preliminary, followed by a de-199

tailed description of whole workflow. An overview200

of HERGC is shown in Figure 2.201

3.1 Preliminary202

Multimodal Knowledge graph (MMKG). In203

this work, we focus on the most common form204

of MMKGs with dual visual and textual modal-205

ities. An MMKG can be represented as a di-206

rected multigraph with modal attributes, denoted as207

G = (E ,R, T ,V,D), where E is the set of entities,208

R is the set of relations, and T = {(h, r, t)|h, t ∈209

E , t ∈ R} is the set of triples (i.e. (head entity, rela-210

tion, tail entity)). The V and D are the collection of211

visual images and descriptive text associated with212

entities.213

Multimodal Knowledge graph Completion214

(MMKGC). MMKGC aims to make full use of215

the observed triples T together with the visual 216

and textual attributes of entities (V and D) to infer 217

missing triples. The set of potential facts is de- 218

fined as {(h′, r′, t′) | h′, t′ ∈ E , r′ ∈ R}, where 219

(h′, r′, t′) /∈ T represents missing triples in the 220

MMKG. In this work, we formulate MMKGC as 221

the task of completing incomplete query triples of 222

the form (?, rq, tq) and (hq, rq, ?), corresponding 223

to head prediction and tail prediction, respectively. 224

Here, we refer hq or tq the query entity and rq the 225

the query relation. 226

3.2 Multimodal Information Embedding 227

To enable effective fusion of multimodal informa- 228

tion, we first encode each entity’s visual and tex- 229

tual modalities into embedding representations, de- 230

noted as eV and eD, respectively. In addition to 231

these modalities, the graph structure in the KG pro- 232

vides valuable graph contextual cues. Therefore, 233

we also embed the structural information of each 234

entity, resulting in a representation eS . 235

Image and Text Embedding. We utilize pre- 236

trained models to encode the visual and textual 237

information associated with each entity. Specif- 238

ically, we adopt BERT (Devlin et al., 2019), an 239

encoder-only transformer model trained on large- 240

scale textual corpora, to obtain text embeddings, 241

and VGG (Simonyan and Zisserman, 2014), a con- 242

volutional neural network trained on large-scale 243

image datasets, to extract visual features. Each 244

entity’s descriptive text and image are processed 245

through BERT and VGG, respectively, yielding the 246

initial modality-specific embeddings eD and eV . 247

Structure Embedding. To encode structural infor- 248

mation from the MMKGC, we adopt TuckER (Bal- 249

ažević et al., 2019), a representative KGE model 250

that learns entity and relation embeddings based on 251

tensor factorization. We select TuckER to ensure 252

consistency with the scoring function used in our 253

retrieval module. The resulting embedding is taken 254

as the structural representation eS for each entity. 255

3.3 Heterogeneous Experts Representation 256

Retriever 257

The retriever in KGC is typically a representation 258

model that scores and ranks candidate triples. Un- 259

der the complex multimodal setting, however, main- 260

taining high-quality entity representations and re- 261

trieval sets becomes challenging. To address this, 262

we introduce the Heterogeneous Experts Repre- 263

sentation Retriever (HERR). HERR first enhances 264

modality-specific features using a Mixture of Het- 265
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Figure 2: Overview of the HERGC framework

erogeneous Experts network. It then fuses these266

features via a Relation-aware Gated Multimodal267

Unit to produce fused embeddings. Finally, HERR268

employs a scoring function to compute triple scores269

and generate a ranked candidate list.270

Mixture of Heterogeneous Experts Module. To271

obtain representative and multi-perspective embed-272

dings for each modality we design a heterogeneous273

experts layer composed of both simple and com-274

plex experts. Given the inherent heterogeneity275

of modality-specific embeddings, our goal is to276

align them across modalities while preserving their277

unique characteristics during fusion. To this end,278

we introduce the Mixture of Heterogeneous Experts279

(MoHE) module.280

The standard Mixture of Experts (MoE) (Shazeer281

et al., 2017) architecture consists of a set of inde-282

pendent expert networks and a gating network that283

determines expert assignments. Specifically, given284

the input feature vector of the modality, MoE out-285

puts the weighted sum of top-κ experts outputs:286

hi,m =
∑
κ∈S

Gκ(xi,m)Eκ(xi,m), (1)287

where xi,m and hi,m denote the input and output288

embeddings of the i-th entity in modality m, the289

xi,m comes from em, E(·) is the expert network,290

and S = Topκ(Gκ(xi,m)) denotes the selected291

expert indices based on gating weights.292

The gating weight Gκ(·) for the corresponding293

expert Eκ is computed as: 294

Gκ(xi,m) = softmax(
Wgatexi,m +Wϵxi,m

τ
),

(2) 295

where Wgate is the gate weight parameter matrix, 296

Wϵ injects noise for exploration, and τ is the gate 297

temperature hyperparameter. 298

The simplest expert in the MoE layer performs 299

only a linear transformation and feature whiten- 300

ing. To better adapte heterogeneous modalities, 301

we augment the expert set in MoHE with com- 302

plex PHM experts, which are based on Block- 303

Hypercomplex Linear Transformations (Zhang 304

et al., 2021). Specifically, the input x ∈ Rd will be 305

partitioned into n sub-blocks of size d/n: 306

x = [x(1);x(2); ...;x(n)],x(j) ∈ Rd/n, (3) 307

then each sub-block is transformed by a shared 308

weight matrix Wblock ∈ R
d
n
× d

n and a per-block 309

weight matrix Hj ∈ R
d
n
× d

n : 310

h(j) = HjWblockx
(j). (4) 311

Finally, the PHM expert output is obtained by con- 312

catenating all transformed sub-blocks. 313

EPHM (x) = [h(1);h(2); ...;h(n)] ∈ Rd. (5) 314

Relation-aware Gated Multimodal Units. 315

Gated Multimodal Units (Arevalo et al., 2017) 316

provide a "multimodal projection → gating → 317
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weighted fusion" idea to combine modality-specific318

representations. To tailor this mechanism to319

MMKGC, we introduced the Relation-aware Gated320

Multimodal Units, denoted RaGMU.321

Specifically, each modality embedding xm is322

projected into a shared latent space:323

hm = tanh(Wproj,mx+ bproj,m) (6)324

where Wproj,m and bproj,m are the project matrix325

and basis of RaGMU projector for modality m.326

Next, the gate vector can be calculated by:327

z = softmax(rz(Wzhconcat + bz)) (7)328

where hconcat = [h1;h2; ...;hM ] is the concatena-329

tion of all projected modality embeddings, the Wz330

and bz are the gating weight matrix and bias, and331

the rz is the scalar that injects relation awareness.332

Finally, the fused multimodal embedding is ob-333

tained by applying the gate vector to each modal-334

ity’s hidden projection hm:335

hfuse =
∑
m

zm ⊙ hm, (8)336

where ⊙ denotes Hadamard product and zm is the337

m-th element gate vector corresponding to modal-338

ity m.339

Score Function. After getting the fused multi-340

modal embeddings, we compute triple plausibility341

scores using the TuckER scoring function:342

S(h, r, t) = Wtucker ×1 hh ×2 r×3 ht. (9)343

where hh and ht denote the fused embeddings of344

the head h and tail t, rr denotes the embedding of345

the relation r, and ×n denotes the n-mode tensor346

product (Balažević et al., 2019).347

To train the model, we adopt a binary classifi-348

cation objective that encourages higher scores for349

positive triples and lower scores for negative ones.350

The loss function is defined as:351

L = −
∑

[y log σ(S) + (1− y) log(1− σ(S))],
(10)352

where y ∈ {0, 1} is the label indicating whether353

the triple is positive or negative, and σ(·) is the354

sigmoid function.355

3.4 Generative LLM predictor356

The Generative LLM Predictor (GLP) aims to pre-357

dict the correct entity from a set of candidates given358

a query triple. The query is typically formulated as359

a question derived from the query entity and rela- 360

tion. To simplify the design, we use an instruction- 361

based prompt that directly asks the LLM to com- 362

plete an incomplete triple by selecting an appropri- 363

ate entity. Additionally, we inject the learned fused 364

multimodal embeddings into the LLM to provide 365

auxiliary information for prediction. 366

Prompt Template. Taking the tail prediction sce- 367

nario as an example, we first use HERR to retrieve 368

the ranking of all candidates based on the query 369

(hq, rq, ?), ensuring that the resulting triples do not 370

already exist in the MMKG. We then select the 371

top-k candidates, denoted as C = [e1, e2, . . . , ek]. 372

A natural language question Q is generated based 373

on the query relation rq and entity hq. Finally, we 374

construct a prompt P by combining the instruction 375

I , the question Q, the candidate list C, and the 376

fused embeddings V of hq and each e ∈ C: 377

P = [I,Q,C, V ]. (11) 378

Appendix A.2 presents the detailed prompt tem- 379

plate. 380

LoRA Fine-tuning. We fine-tune open-source 381

LLMs with Low-Rank Adaptation (LoRA), us- 382

ing a small number of query–answer pairs. This 383

lightweight adaptation teaches the model to follow 384

our completion instruction while largely relying on 385

its pretrained knowledge. The injected multimodal 386

embeddings also help guide the LLM toward the 387

correct choice, enabling accurate prediction. 388

4 Experiments 389

4.1 Experiment Setup 390

Dataset. We evaluate our proposed method on 391

three benchmark MMKG datasets, MKG-Y (Xu 392

et al., 2022), MKG-W (Xu et al., 2022) and DB15K 393

(Liu et al., 2019). Dataset statistics and detailed 394

descriptions are provided in Appendix A.1. 395

Baseline Methods. For MMKGC, we consider 396

both the classic method based on unimodal design 397

and the advanced method based on multimodal 398

design. (1) For unimodal methods, we mainly con- 399

sider several classic knowledge graph embedding 400

methods: TransE (Bordes et al., 2013), RotatE 401

(Yang et al., 2014), DisMult (Sun et al., 2019), 402

GC-OTE (Tang et al., 2019) and TuckER (Balaže- 403

vić et al., 2019). The baseline comparisons in this 404

paper are based on the reported performance values 405

of these methods (2) For the multimodal methods, 406

we selected a series of state-of-the-art multimodal 407

KGE or KGC models: IKRL (Xie et al., 2016), 408
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Methods MKG-W MKG-Y DB15K

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

Structure-based

TransE 29.19 21.06 33.20 44.23 30.73 23.45 35.18 43.37 24.86 12.78 31.48 47.07
RotatE 33.67 26.80 36.68 46.73 34.95 29.10 38.35 45.30 29.28 17.87 36.12 49.66
DistMult 20.99 15.93 22.28 30.86 25.04 19.33 27.80 35.95 23.03 14.78 26.28 39.59
GC-OTE 33.92 26.55 35.96 46.05 32.95 26.77 36.44 44.08 31.85 22.11 36.52 51.18
TuckER 30.39 24.44 32.91 41.25 37.05 34.59 38.43 41.45 33.86 25.33 37.91 50.38

Rule-based

IKRL 32.36 26.11 34.75 44.07 33.22 30.37 34.28 38.26 26.82 14.09 34.93 49.09
TBKGC 31.48 25.31 33.98 43.24 33.99 30.47 35.27 40.07 28.40 15.61 37.03 49.86
TransAE 30.00 21.23 34.91 44.72 28.10 25.31 29.10 33.03 28.09 21.25 31.17 41.17
MMKRL 30.10 22.16 34.09 44.69 36.81 31.66 39.79 45.31 26.81 13.85 35.07 49.39
RSME 29.23 23.36 31.97 40.43 34.44 31.78 36.07 39.09 29.76 24.15 32.12 40.29
OTKGE 34.36 28.85 36.25 44.88 35.51 31.97 37.18 41.38 23.86 18.45 25.89 34.23
IMF 34.50 28.77 36.62 45.44 35.79 32.95 37.14 40.63 32.25 24.20 36.00 48.19
QEB 33.38 25.47 35.06 45.32 34.37 29.49 37.00 42.30 28.18 14.82 36.67 51.55
VISTA 32.91 26.12 35.38 45.61 30.45 24.87 32.39 41.53 30.42 22.49 33.56 45.94
MyGO 36.10 29.78 38.54 47.75 38.44 35.01 39.84 44.19 37.72 30.08 41.26 52.21
MoMoK 38.89 30.38 37.54 46.31 37.91 35.09 39.20 43.20 39.54 32.38 43.45 54.14
MCKGC 36.88 31.32 38.92 47.43 38.92 35.49 40.57 45.21 39.79 31.92 43.80 54.66

HERGC 38.89 33.12 41.14 47.86 39.82 36.73 41.42 44.84 40.76 33.09 45.07 54.88

Table 1: Main results of the comparison between HERGC and the baselines on MKG-W, MKG-Y and DB15K. For
each metric, the best performance is highlighted in bold, and the second-best is underlined.

TBKGC (Mousselly-Sergieh et al., 2018), TransAE409

(Wang et al., 2019b), MMKRL (Lu et al., 2022),410

RSME (Wang et al., 2021), OTKGE (Cao et al.,411

2022), IMF (Li et al., 2023), QEB (Lee et al., 2023),412

VISTA (Lee et al., 2023), MyGO (Zhang et al.,413

2025a), MoMoK (Zhang et al., 2025b), MCKGC414

(Gao et al., 2025). The baseline comparisons in415

this paper are based on the reported performance416

values of these methods.417

Implementation Details. For modality-specific418

feature extraction, we use bert-base-uncased419

to encode text, VGG-16 to encode images, and420

a TuckER model trained on the training split421

to obtain structural embeddings, ensuring consis-422

tency with the retriever’s scoring function. For423

HERR training, we tune the embedding dimen-424

sion from {200, 300, 400} and set the batch size to425

{512, 1024}. We use the Adam optimizer (Kingma426

and Ba, 2017), with the learning rate selected from427

{0.005, 0.001, 0.0005}. The MoHE module is con-428

figured with 2 simple experts and 2 complex PHM429

experts. The number of retrieved candidate enti-430

ties is selected from {10, 20, 30, 40}. For the GLP,431

we employ LLaMA-3-8B and apply LoRA for432

parameter-efficient fine-tuning. We set the LoRA433

hyperparameters to r = 64, α = 16, a dropout434

rate of 0.1, and a learning rate of 0.0002. Addi-435

tional training details are provided in Appendix A.3.436

Model performance is evaluated using standard 437

ranking-based metrics: Mean Reciprocal Rank 438

(MRR), and Hits@1, Hits@3, and Hits@10, under 439

the “filtered” setting (Bordes et al., 2013). 440

All experiments were conducted on an AMD 441

EPYC 7763 64-Core CPU, an NVIDIA A100- 442

SXM4-40GB GPU, an and Rocky Linux 8.10. 443

4.2 Main Results 444

Table 1 presents the main results of our proposed 445

HERGC compared with advacned unimoodal KGC 446

methods and mutilmodal KGC methods. HERGC 447

achieves the best overall performance on MKG-Y, 448

MKG-W, and DB15K across most evaluation met- 449

rics. Compared to multimodal baselines, HERGC 450

matches MoMoK for the top MRR on MKG-W and 451

falls marginally behind MMKRL and MCKGC in 452

Hits@10 on MKG-Y, it consistently outperforms 453

all other methods on the remaining metrics across 454

the three datasets. Notably, HERGC boosts Hits@1 455

by an absolute 3.42%, 3.94%, and 3.67% on MKG- 456

Y, MKG-W, and DB15K, respectively, over the 457

strongest baseline in each case. 458

When compared with unimodal KGC models, 459

HERGC demonstrates substantial gains across all 460

metrics. Specifically, relative to TuckER, HERGC 461

improves MRR by 27.04%, 7.48%, and 20.38% 462

on MKG-Y, MKG-W, and DB15K, respectively, 463

6



highlighting the effectiveness of incorporating mul-464

timodal information for knowledge graph comple-465

tion.466

4.3 Ablation Studies467

To verify the rationality of the HERGC design, we468

conduct an ablation study consisting of two parts:469

(1) ablation of modality-specific inputs to assess470

the contribution of each modality and the model’s471

ability to leverage multimodal information, and472

(2) ablation of key components within HERGC,473

including the design of each part of the retriever474

and the LLM predictor. The results of the ablation475

experiment on three datasets are shown in Table 2.476

w/o MKG-W MKG-Y DB15K

MRR Hits@1 MRR Hits@1 MRR Hits@1

Modality Information

Image Modality 36.83 31.19 38.57 34.96 39.41 30.74
Text Modality 36.17 30.59 38.42 34.72 39.59 31.18
Structure Modality 37.98 32.34 39.09 36.48 40.17 32.35

Model Components

Complex Experts 37.95 32.26 39.04 35.51 40.26 32.30
GMU 37.02 31.41 38.96 35.19 39.97 31.28
Relation-awareness 37.56 32.02 39.21 36.14 40.34 32.41
Embedding Injection 37.94 32.26 39.00 35.84 39.05 31.16

HERGC (raw) 38.89 33.12 39.82 36.73 40.76 33.09

Table 2: Ablation study results on three datasets, with a
new group of removals above the original ones.

For For modality ablation, we individually re-477

move the textual, visual, and structural informa-478

tion. In all cases, performance declines, indicating479

that each modality contributes meaningfully to the480

model’s predictions and that HERGC effectively481

integrates multimodal information.482

For component ablation, we examine the im-483

pact of removing complex PHM experts, the GMU484

fusion module, and relation-awareness in the re-485

triever, as well as embedding injection in the LLM486

predictor. Removing any of these components re-487

sults in performance degradation, highlighting their488

importance. Notably, omitting the embedding in-489

jection also leads to a performance drop, indicat-490

ing that incorporating exogenous fused multimodal491

embeddings enriched with graph context indeed492

enhances the LLM’s reasoning capability.493

4.4 Representation Visualization494

We use t-SNE to visualize the entity representa-495

tions learned by the HERR on DB15K, providing496

an intuitive view to directly assess its effective-497

ness. Specifically, we select entities from the fol-498

lowing types: "Writer", "Singer", "Flim", "Com-499

pany", "City", "Language" and "College". We com- 500

pared the fused multimodal embeddings against 501

individual modality embeddings, each projected 502

from high-dimensional space to two dimensions. 503

The visualization result is shown in Figure 3. 504

Text Image

Structure Multimodal

Writer
Singer
Film
Company
City
Language
College

Figure 3: t-SNE data visualization of entity representa-
tions learned by the retriever on the DB15K dataset.

The fused embeddings form almost perfectly 505

separated clusters for each entity type, with clear 506

inter-type boundaries and uniform intra-type dis- 507

tributions. By contrast, image-only embeddings 508

exhibit highly entangled regions; structure-only em- 509

beddings fail to distinguish the “Language” cluster 510

and yield a diffuse “Writer” grouping; and text- 511

only embeddings conflate “Writer” and “Singer” 512

entities—likely due to their lexical similarity (e.g., 513

names). These observations confirm that HERR 514

effectively integrates multimodal signals to learn 515

high-quality entity representations. 516

4.5 LLM Predictor Exploration 517

We further investigate the LLM predictor by ex- 518

amining two factors: (1) the effect of varying the 519

candidate set size k on model performance and in- 520

ference time, and (2) the impact of using LLMs 521

with different parameter sizes.
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Figure 4: The performance and time consumption of
the HERGC on MKG-W and MKG-Y when k takes
different values.
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Figure 4 shows the trends in time consumption523

and ranking-based metrics as k varies. As expected,524

inference time increases approximately linearly525

with larger k values due to longer prompts con-526

structed from larger candidate sets, which has more527

tokens in the prompt. However, the performance528

gains are marginal beyond k = 20; only the in-529

crease from k = 10 to k = 20 yields a noticeable530

improvement in MRR. Considering the trade-off531

between effectiveness and efficiency, we set k = 20532

in all experiments.533

We also assess the effect of LLM size on the pre-534

dictor. Table 3 reports the performance and time535

cost of HERGC using LLMs of different scales.536

From the results. Although the 3 B model reduces537

inference time by roughly 30% compared to the538

8 B variant, it suffers a modest decline in accu-539

racy, indicating that the more knowledge and bet-540

ter reasoning ability of the larger LLM is indeed541

helpful for MMKGC prediction. Additional ex-542

periment results with large visual models (LVM)543

and large multi-model models (LMM) are show in544

Appendix A.5.545

Dataset MRR (∆) Hits@1 (∆) Hits@3 (∆) Hits@10 (∆) Time (∆%)

MKG-W 37.02 (-1.87) 31.41 (-1.71) 39.58 (-1.56) 46.71 (-1.15) 3796 (-32.8)
MKG-Y 38.72 (-1.10) 35.43 (-1.30) 40.44 (-0.98) 44.16 (-0.68) 2448 (-32.5)
DB15K 39.61 (-1.15) 31.18 (-1.91) 44.47 (-0.60) 54.34 (-0.54) 5509 (-29.6)

Table 3: HERGC Performance using Llama-3.2-3B as
the LLM predictor (∆ values indicate differences from
using Llama-3-8B).

4.6 Complex Environment Simulation546

To evaluate HERGC’s robustness under realistic547

perturbations, we conduct complex environment548

simulations by: (i) injecting Gaussian noise into a549

fraction of the modality inputs, (ii) masking por-550

tions of the multimodal embeddings, and (iii) ran-551

domly removing a subset of training triples from552

the KG to emulate noisy modalities, missing multi-553

modal information, and sparse graph connectivity,554

respectively.555

Figure 5 reports how MRR degrades as we556

increase the proportion of corrupted modalities557

or removed triples. We observe that HERGC558

is relatively resilient to both noisy and missing559

multimodal inputs—its performance declines only560

marginally even when a substantial fraction of em-561

beddings are perturbed or masked. In contrast,562

removing triples from the KG results in a visible563

decline in MRR, particularly on MKG-Y. When564

30% of the training triples are randomly removed,565

0 10 20 30
Rate (%)

30.0

32.5

35.0

37.5

40.0

MKG-W

0 10 20 30
Rate (%)

MKG-Y

0 10 20 30
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DB15K-Y

M
RR

Noisy Missing Sparse

Figure 5: Changes in MRR metrics of HERGC on three
datasets under different proportions of simulated inter-
ference.

HERGC experiences drops of 15.4%, 25.1%, and 566

11.8% on MKG-W, MKG-Y, and DB15K, respec- 567

tively. Nevertheless, the performance degradation 568

remains within a tolerable range, considering the 569

inherent sensitivity of non-inductive KGC tasks 570

to graph sparsity (Pujara et al., 2017). These re- 571

sults highlight HERGC’s robustness and practical 572

applicability in noisy, incomplete, and sparse mul- 573

timodal scenarios. 574

5 Conclusion 575

In this paper, we introduce HERGC, a novel gener- 576

ative framework for multimodal knowledge graph 577

completion that adopts a generative paradigm to 578

addresses the limitations of prior MMKGC ap- 579

proaches. HERGC employs a Heterogeneous Ex- 580

perts Representation Retriever to capture modality- 581

specific signals, fuse them into rich entity embed- 582

dings, and retrieve a compact candidate set, thereby 583

integrating multimodal context and narrowing the 584

LLM’s search space. It then uses a flexible Gen- 585

erative LLM Predictor to select the correct entity 586

from these candidates, leveraging the LLM’s inher- 587

ent knowledge and reasoning capabilities to com- 588

pensate for previous methods’ shortcomings. Ex- 589

tensive experiments on three standard MMKGC 590

benchmarks demonstrate that HERGC achieves 591

state-of-the-art performance while remaining effec- 592

tive and robust. By fully exploiting each modality’s 593

information, the retriever learns high-quality fused 594

multimodal embeddings, and the LLM predictor 595

readily benefits from advances in LLM technol- 596

ogy, making HERGC both powerful and easy to 597

implement. Our HERGC bridges the gap between 598

generative paradigm and MMKGC, offering a gen- 599

eralizable framework for future MMKGC research. 600

6 Limitations 601

Although HERGC demonstrates strong perfor- 602

mance, its effectiveness is inherently bounded by 603
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the capabilities of the underlying LLMs. In our604

additional experiments, the LMM and LVM un-605

derperformed, likely due to their potential not be-606

ing fully explored or insufficient adaptation to607

the MMKGC task. Moreover, our approach uti-608

lizes commonly used encoders, VGG and BERT,609

to extract coarse-grained multimodal embeddings.610

While effective, these general-purpose encoders611

may overlook modality-specific fine-grained fea-612

tures critical for accurate reasoning. Future work613

could investigate advanced feature extraction tech-614

niques tailored to each modality, enabling richer615

and more discriminative representations. Addition-616

ally, scaling HERGC to other MMKG tasks, such617

as paths reasoning and question answering, and ex-618

ploring more efficient training paradigms, such as619

instruction tuning or parameter-efficient adaptation620

strategies, could further enhance its generalizability621

and practicality.622
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A Appendix 866

A.1 Details of the Dataset 867

We evaluate our proposed method on three publicly 868

available multimodal knowledge graph completion 869

(MMKGC) datasets: MKG-Y (Xu et al., 2022), 870

MKG-W (Xu et al., 2022), and DB15K (Liu et al., 871

2019). MKG-W (CC0 1.0 Public-Domain Dedica- 872

tion) and MKG-Y (C BY 4.0) are curated subsets 873

extracted from Wikidata (Vrandečić and Krötzsch, 874

2014) and YAGO (Suchanek et al., 2007) and en- 875

riched with comprehensive multimodal informa- 876

tion including textual descriptions and associated 877

images. DB15K (CC BY-SA 3.0) originates from 878

DBpedia (Lehmann et al., 2015) and similarly in- 879

tegrates textual and visual modalities to enhance 880

entity representations. All three datasets provide 881

realistic and rich multimodal scenarios, suitable 882

for rigorous benchmarking of knowledge graph 883

completion models. Table 4 presents the statistical 884

details of these three datasets. 885

Datasets Entities Relations Training Validation Testing

MKG-W 15,000 169 34,196 4,276 4,274
MKG-Y 15,000 28 21,310 2,665 2,663
DB15K 12,842 279 79,222 9,902 9,904

Table 4: Statistics of the three datasets.

A.2 Prompt Template 886

Table 5 is a template with tail prediction as an ex- 887

ample. For all three datasets, the prompt template 888

remains consistent generally, comprising a simple 889

instruction, a candidate set, corresponding multi- 890

modal fusion embeddings (initially represented by 891

[Placeholder]) for reference. The only difference 892

between the prompts for head prediction and tail 893

prediction is that the question part is a question ask- 894

ing what is the head of an incomplete triple with a 895

missing head. 896

A.3 Model Training 897

We train the retriever HERR using the training and 898

test sets following the standard dataset splits of 899

MKG-W, MKG-Y, and DB15K. For training the 900

GLP, we fine-tune the LoRA module with a small 901

number of samples. Specifically, we employ a con- 902

sistent prompt template to transform the sample 903

triples into query–candidates formats for training. 904

Notably, since the retriever is trained on the train- 905

ing set, the correct entity often receives a high score 906

and is consistently ranked first. To prevent the LLM 907
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Prompt Template for GLP
You are an excellent linguist. The task is to
predict the head or tail based on the given
incomplete triple, and you only need to answer
one entity. The answer must be in (’candidate1’,
’candidate2’, ’candidate3’, ’candidate4’,
’candidate5’, ’candidate6’, ’candidate7’,
’candidate8’, ’candidate9’, ’candidate10’,
’candidate11’, ’candidate12’, ’candidate13’,
’candidate14’, ’candidate15’, ’candidate16’,
’candidate17’, ’candidate18’, ’candidate19’,
’candidate20’).
You can refer to the entity embeddings: ’query
entity’: [Placeholder], ’candidate1’:
[Placeholder], ’candidate2’: [Placeholder],
’candidate3’: [Placeholder], ’candidate4’:
[Placeholder], ’candidate5’: [Placeholder],
’candidate6’: [Placeholder], ’candidate7’:
[Placeholder], ’candidate8’: [Placeholder],
’candidate9’: [Placeholder], ’candidate10’:
[Placeholder], ’candidate11’: [Placeholder],
’candidate12’: [Placeholder], ’candidate13’:
[Placeholder], ’candidate14’: [Placeholder],
’candidate15’: [Placeholder], ’candidate16’:
[Placeholder], ’candidate17’: [Placeholder],
’candidate18’: [Placeholder], ’candidate19’:
[Placeholder], ’candidate20’: [Placeholder].
Question: What is the tail in (’query entity’,
’query relation’, tail)?

Answer:

Table 5: Prompt template for the LLM in predictor GLP
(tail prediction example).

from overfitting to this shortcut—i.e., learning the908

retriever’s ranking pattern rather than making pre-909

dictions based on textual content—we follow pre-910

vious work (Wei et al., 2023; Liu et al., 2024) and911

use the validation set to construct the fine-tuning912

data for the LLM. Concretely, for MKG-W and913

MKG-Y, we split the original validation set into a914

training/validation split for LLM fine-tuning at a915

9:1 ratio. For DB15K, we randomly sample 5,000916

triples from its original validation set and similarly917

divide them into training and validation subsets us-918

ing a 9:1 ratio. The test sets remain identical to the919

original benchmarks, and we perform both head920

and tail entity prediction for each test triple, in line921

with standard KGC evaluation protocols.922

A.4 Evaluation Metrics923

We employ widely-used ranking metrics in knowl-924

edge graph completion: Mean Reciprocal Rank925

(MRR) and Hits@k.926

For each test query triple (h, r, ?) or (?, r, t), the927

model scores every candidate entity, producing a928

ranked list. All metrics are reported under the fil-929

tered setting, where corrupted triples that already930

exist in the KG are removed(Bordes et al., 2013).931

Mean Reciprocal Rank (MRR). Let ranki denote 932

the position of the correct entity for the i-th query 933

in the filtered list. The reciprocal rank is 1/ ranki. 934

MRR =
1

N

N∑
i=1

1

ranki
, 935

where N is the total number of test queries. MRR 936

ranges from 0 to 1; higher values indicate better 937

overall ranking quality. 938

Hits@k. Hits@k measures the proportion of 939

queries whose correct entity appears within the 940

top k positions: 941

Hits@k =
1

N

N∑
i=1

1
[
ranki ≤ k

]
, 942

where 1[·] is the indicator function. Throughout 943

the paper we report Hits@1, Hits@3, and Hits@10, 944

providing a fine-grained view of top-rank accuracy 945

under varying tolerance levels. 946

A.5 Evaluating LVM and LMM as Predictors 947

To further investigate the GLP component, we ex- 948

perimented with replacing the LLM in GLP with 949

a large vision model (LVM) or a large multimodal 950

model (LMM), enabling the predictor to directly 951

incorporate the image of the query entity in ad- 952

dition to textual input. The results, presented in 953

Table 6, show that this modification did not lead 954

to the expected improvements. Specifically, substi- 955

tuting the LLM with an LVM resulted in a marked 956

reduction in overall performance, whereas replac- 957

ing it with an LMM offered no substantial benefit, 958

yielding only marginal gains in MRR (+1.1%) and 959

Hits@10 (+0.8%). 960

Dataset MRR Hits@1 Hits@3 Hits@10

Llama-3-8B 39.82 36.73 41.42 44.84
Llava-1.5-7B 27.87 15.79 38.72 42.68
Llama-3.2-11B-Vision 40.26 36.31 40.91 45.22

Table 6: HERGC Performance using Llava-1.5-7B and
Llama-3.2-11B-Vision as the LLM predictor on MKG-
Y.

The performance degradation observed when re- 961

placing the LLM component in GLP with LLaVA- 962

1.5-7B may be attributed to limitations in its 963

backbone architecture and pre-training objectives. 964

Specifically, LLaVA-1.5-7B utilizes Llama-2-7B 965

as its backbone, which inherently possesses weaker 966

language modeling capabilities compared to more 967
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advanced models such as Llama-3. Moreover,968

LLaVA-1.5-7B is fine-tuned primarily using CLIP-969

based visual features and visual-language instruc-970

tions, with its pre-training tasks heavily cen-971

tered on image-text alignment and visual question-972

answering, rather than structured relational reason-973

ing. Consequently, even after subsequent LoRA974

fine-tuning, the limited number of training exam-975

ples might be insufficient to effectively transition976

the model from merely "understanding images" to-977

ward "leveraging images for relational inference in978

knowledge graph completion."979

Similarly, the modest performance gains980

achieved by replacing the LLM component with981

Llama-3.2-11B-Vision might be due to the already982

mature textual reasoning capability of its underly-983

ing model, Llama-3-8B. Given the strong inherent984

language modeling performance of Llama-3, the985

additional inclusion of visual features likely pro-986

vides minimal incremental benefit for relational987

prediction. Although large multimodal models988

(LMMs) generally excel at capturing visual seman-989

tics due to extensive pre-training on image-text cor-990

pora, they are not typically fine-tuned for structured991

relational inference tasks such as KGC. Therefore,992

it remains challenging for these models to accu-993

rately extract and leverage KGC-relevant relational994

signals from images with only a limited number995

of fine-tuning samples (as imposed by the LoRA996

rank constraints). Another potential factor is that997

visual information within MMKG datasets might998

inherently have weak correlations with the rela-999

tional semantics required by the KGC task. As a1000

result, effectively utilizing fine-grained relational1001

clues from entity images for MMKGC remains an1002

open and promising research direction.1003
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