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Abstract

Multimodal knowledge graphs (MMKGs) en-
rich traditional knowledge graphs (KGs) by
incorporating diverse modalities such as im-
ages and text. multimodal knowledge graph
completion (MMKGC) seeks to exploit these
heterogeneous signals to infer missing facts,
thereby mitigating the intrinsic incompleteness
of MMKGs. Existing MMKGC methods typi-
cally leverage only the information contained
in the MMKGs under the closed-world assump-
tion and adopt discriminative training objec-
tives, which limits their reasoning capacity dur-
ing completion. Recent generative completion
approaches powered by advanced large lan-
guage models (LLMs) have shown strong rea-
soning abilities in unimodal knowledge graph
completion, but their potential in MMKGC re-
mains largely unexplored. To bridge this gap,
we propose HERGC, a Heterogeneous Experts
Representation and Generative Completion
framework for MMKGs. HERGC first deploys
a Heterogeneous Experts Representation Re-
triever that enriches and fuses multimodal in-
formation and retrieves a compact candidate
set for each incomplete triple. It then uses a
Generative LLM Predictor fine-tuned on mini-
mal instruction data to accurately identify the
correct answer from these candidates. Exten-
sive experiments on three standard MMKG
benchmarks demonstrate HERGC'’s effective-
ness and robustness, achieving state-of-the-art
performance.

1 Introduction

Knowledge graphs (KGs) represent real-world
facts as triples of entities and their relations, of-
fering a structured semantic representation (Nickel
etal., 2015; Ji et al., 2021). Multimodal knowledge
graphs (MMKGs) (Zhu et al., 2022; Chen et al.,
2024b) extend traditional KGs by incorporating ad-
ditional modalities such as images and text, thereby
enriching the contextual information of entities and
enhancing the expressiveness of the graph. both

KGs and MMKGs have been widely adopted in
various Al systems, including recommender sys-
tems (Wang et al., 2019a; Sun et al., 2020) and
large language models (Pan et al., 2024). More-
over, they play an increasingly important role in
scientific domains, supporting downstream tasks
such as biomedical interaction prediction (Lin et al.,
2020; Xiao et al., 2024).
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Figure 1: Comparison between (a) HERGC and (b)
existing methods. Unlike prior methods, HERGC lever-
ages the knowledge and reasoning capabilities of LLMs
to generate predictions.

Like traditional KGs, MMKGs also suffer from
incompleteness, often due to missing facts in the
underlying data sources or facts that have yet to be
discovered by humans. Unlike conventional knowl-
edge graph completion (KGC), which primarily
leverages the graph’s topological structure and lo-
cal neighborhood information, multimodal knowl-
edge graph completion (MMKGC) (Chen et al.,
2024b) introduces additional complexity through
the incorporation of multimodal signals. MMKGC
has advanced considerably in recent years, with
most work concentrating on modality fusion (Li
et al., 2023; Shang et al., 2024) and modality infor-
mation representation (Zhang et al., 2025a). These
approaches ultimately produce yield joint triple em-
beddings or employ ensemble strategies to score
candidate facts. While these MMKGC methods



offer valuable insights, their reasoning capabilities
during the completion process remain limited due
to their reliance solely on closed-world triples and
available multimodal information.

Meanwhile, recent advances in unimodal KGC
have introduced generative completion approaches
powered by large language models (LLMs) (Wei
etal., 2023; Zhang et al., 2024; Liu et al., 2024). By
fine-tuning or leveraging in-context learning, these
approaches exploit the extensive factual knowledge
and reasoning capabilities that LLMs acquire dur-
ing pre-training, achieving state-of-the-art results
in KGC. However, this generative paradigm re-
mains largely unexplored within the MMKGC set-
ting. In particular, designing mechanisms to inte-
grate multimodal information to guide LLLM reason-
ing and constrain the search space of its responses
remains a critical open challenge.

To address these challenges and fill the gap in
generative MMKGC, we propose HERGC, a novel
generative framework that overcomes the limita-
tions of existing MMKGC approaches that rely
on MMKG’s own contents for reasoning. Fig-
ure 1 briefly illustrates the differences between our
HERGC and existing methods. Drawing on the
retrieval-augmented generation (RAG) idea (Lewis
et al., 2020), HERGC comprises two core compo-
nent: the Heterogeneous Experts Representation
Retriever (HERR) and the Generative LLM Pre-
dictor (GLP). HERR employs a Mixture of Het-
erogeneous Experts Network (MoHE) to enrich
each modality’s embeddings from multiple and hi-
erarchical perspectives and a Relation-aware Gated
Multimodal Unit (RaGMU) to obtain high-quality
fused embeddings, which are then used to score
and retrieve candidate entities. GLP injects the
fused multimodal embeddings into the LLM and
performs LoRA fine-tuning on minimal instruction
data, enabling the LLM to accurately select the cor-
rect entity from the retrieved candidates. We con-
duct comprehensive experiments on three public
MMKG benchmarks to validate the effectiveness
and robustness of HERGC. Our contributions are
summarized as follows:

* We propose HERGC, the first, to the best of
our knowledge, MMKGC framework based
on the generative paradigm.

* We developed a novel ranking-based retrieval
module, HERR, which combines the Mixture
of Heterogeneous Experts Network and the

Relation-aware Gated Multimodal Unit to ef-
fectively extract cross-modal information and
produce high-quality fused multimodal em-
beddings.

* We perform extensive experiments on three
standard MMKGC benchmarks, showing that
HERGC consistently outperforms strong base-
lines across all datasets.

2 Related Work

2.1 Tradition Knowledge Graph Completion

Tradition Knowledge Graph Completion (KGC)
primarily focuses on embedding entities and re-
lations into continuous vector spaces to predict
triples. Most of them leverage KG’s structure
and design various score function to learn the em-
bedding by maximize the positive and negative
samples score difference, such as Translational-
Distance approaches (TransE (Bordes et al., 2013)
and RotatE (Sun et al., 2019)) and Semantic-
Matching approaches (DistMult (Yang et al., 2014),
ComplEX (Trouillon et al., 2016), and Tucker (Bal-
azevié et al., 2019)).To further consider neighbor
aggregation and message passing to improve the
representation power of embedding, graph neural
network based (GNN-based) methods have been
proposed, such as R-GCN (Schlichtkrull et al.,
2018) and CompGCN (Vashishth et al., 2019). Be-
sides structural information, KG, as a semantic
network, naturally carries text information. There-
fore, the text-based method that mainly uses text
information, which encodes text information in
KG through a pretrained language model (PLM),
has been proposed, including KG-Bert (Yao et al.,
2019) and SimKGC (Wang et al., 2022). With
the recent development of LLM, the novel gener-
ative methods have come into view. They mainly
use the rich external knowledge and powerful rea-
soning capabilities of LLMs to complete KGC in
a sequence-to-sequence form, including KICGPT
(Wei et al., 2023), KoPA (Zhang et al., 2024) and
DIFT (Liu et al., 2019).

2.2 Multimodal Knowledge Graph
Completion

While recent text-based and generative approaches
have started to incorporate both structural and tex-
tual information, they often lack tight coordination
between these modalities during inference (Chen
et al., 2024a). Moreover, the emergence of KGs



enriched with additional modalities, such as im-
ages, audio, and video, further raises the bar for
the design of dedicated MMKGC models. Initial
MMKGC models, like IKRL (Xie et al., 2016), ex-
tract visual features from entities using pre-trained
visual encoders and combine these with structural
embeddings. Extensions such as TransAE (Wang
et al., 2019b) and TBKGC (Mousselly-Sergieh
et al., 2018) incorporate both textual and visual
features, enhancing entity representations Fusion-
oriented methods, including OTKGE (Cao et al.,
2022) and MoSE (Zhao et al., 2022), employ so-
phisticated strategies like optimal transport and
modality-specific representations to achieve effec-
tive multimodal integration. IMF (Li et al., 2023)
utilizes an interactive fusion framework, training
separate models for each modality to collabora-
tively infer missing links. Furthermore, MMKRL
(Lu et al., 2022) employs adversarial training but
focuses specifically on robustness against modality-
specific perturbations. Meanwhile, approaches like
MyGO (Zhang et al., 2025a) leverage fine-grained
contrastive learning to enhance the granularity of
multimodal embeddings. Also, there are meth-
ods that use multi-perspective ideas to enhance
modal representation, such as MoMoK (Zhang
et al., 2025b) that uses a mixture of expert model
and information decoupling and MCKGC (Gao
et al., 2025) that integrates information in a mixed
curvature space.

3 Methodology

In this section, we present the HERGC framework.
We begin with the preliminary, followed by a de-
tailed description of whole workflow. An overview
of HERGC is shown in Figure 2.

3.1 Preliminary

Multimodal Knowledge graph (MMKG). In
this work, we focus on the most common form
of MMKGs with dual visual and textual modal-
ities. An MMKG can be represented as a di-
rected multigraph with modal attributes, denoted as
G=(E,R,T,V,D), where £ is the set of entities,
R is the set of relations, and 7 = {(h,r,t)|h,t €
E,t € R} is the set of triples (i.e. (head entity, rela-
tion, tail entity)). The V and D are the collection of
visual images and descriptive text associated with
entities.

Multimodal Knowledge graph Completion
(MMKGC). MMKGC aims to make full use of

the observed triples 7 together with the visual
and textual attributes of entities () and D) to infer
missing triples. The set of potential facts is de-
fined as {(W/, 7", ¢') | W', t' € £, v’ € R}, where
(W' 7', t") ¢ T represents missing triples in the
MMEKG. In this work, we formulate MMKGC as
the task of completing incomplete query triples of
the form (7,74, t,) and (hq, 74, ?), corresponding
to head prediction and tail prediction, respectively.
Here, we refer h, or t, the query entity and r, the
the query relation.

3.2 Multimodal Information Embedding

To enable effective fusion of multimodal informa-
tion, we first encode each entity’s visual and tex-
tual modalities into embedding representations, de-
noted as ey and ep, respectively. In addition to
these modalities, the graph structure in the KG pro-
vides valuable graph contextual cues. Therefore,
we also embed the structural information of each
entity, resulting in a representation eg.

Image and Text Embedding. We utilize pre-
trained models to encode the visual and textual
information associated with each entity. Specif-
ically, we adopt BERT (Devlin et al., 2019), an
encoder-only transformer model trained on large-
scale textual corpora, to obtain text embeddings,
and VGG (Simonyan and Zisserman, 2014), a con-
volutional neural network trained on large-scale
image datasets, to extract visual features. Each
entity’s descriptive text and image are processed
through BERT and VGG, respectively, yielding the
initial modality-specific embeddings ep and ey,.
Structure Embedding. To encode structural infor-
mation from the MMKGC, we adopt TuckER (Bal-
azevic et al., 2019), a representative KGE model
that learns entity and relation embeddings based on
tensor factorization. We select TuckER to ensure
consistency with the scoring function used in our
retrieval module. The resulting embedding is taken
as the structural representation es for each entity.

3.3 Heterogeneous Experts Representation
Retriever

The retriever in KGC is typically a representation
model that scores and ranks candidate triples. Un-
der the complex multimodal setting, however, main-
taining high-quality entity representations and re-
trieval sets becomes challenging. To address this,
we introduce the Heterogeneous Experts Repre-
sentation Retriever (HERR). HERR first enhances
modality-specific features using a Mixture of Het-
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Figure 2: Overview of the HERGC framework

erogeneous Experts network. It then fuses these
features via a Relation-aware Gated Multimodal
Unit to produce fused embeddings. Finally, HERR
employs a scoring function to compute triple scores
and generate a ranked candidate list.

Mixture of Heterogeneous Experts Module. To
obtain representative and multi-perspective embed-
dings for each modality we design a heterogeneous
experts layer composed of both simple and com-
plex experts. Given the inherent heterogeneity
of modality-specific embeddings, our goal is to
align them across modalities while preserving their
unique characteristics during fusion. To this end,
we introduce the Mixture of Heterogeneous Experts
(MoHE) module.

The standard Mixture of Experts (MoE) (Shazeer
et al., 2017) architecture consists of a set of inde-
pendent expert networks and a gating network that
determines expert assignments. Specifically, given
the input feature vector of the modality, MoE out-
puts the weighted sum of top-x experts outputs:

hi,m = Z Gﬁ(xi,m)E,‘i(Xi,m)7 (D

KES

where X; ,,, and h; ,,, denote the input and output
embeddings of the ¢-th entity in modality m, the
X;,m comes from e,,, E(-) is the expert network,
and S = Topr(G(xim)) denotes the selected
expert indices based on gating weights.

The gating weight G (+) for the corresponding

expert E; is computed as:

Wgatexi,m + Wexi,m
T

Gy (xim) = softmax(

);
2
where W g, is the gate weight parameter matrix,
W, injects noise for exploration, and 7 is the gate
temperature hyperparameter.

The simplest expert in the MoE layer performs
only a linear transformation and feature whiten-
ing. To better adapte heterogeneous modalities,
we augment the expert set in MoHE with com-
plex PHM experts, which are based on Block-
Hypercomplex Linear Transformations (Zhang
et al., 2021). Specifically, the input x € R? will be
partitioned into n sub-blocks of size d/n:

x = [x1;x®; xM] x) e R (3)

then each sub-block is transformed by a shared
weight matrix Wyoer, € ]R%X% and a per-block

weight matrix H; R ¥
h') = H; Wio0x V). 4)

Finally, the PHM expert output is obtained by con-
catenating all transformed sub-blocks.

Epyu(x) = hW;h®; h™] e R (5)

Relation-aware Gated Multimodal Units.
Gated Multimodal Units (Arevalo et al., 2017)
provide a "multimodal projection — gating —



weighted fusion" idea to combine modality-specific
representations. To tailor this mechanism to
MMKGC, we introduced the Relation-aware Gated
Multimodal Units, denoted RaGMU.

Specifically, each modality embedding x,, is
projected into a shared latent space:

hm = tanh(mej,mX + bproj,m) (6)

where Wy,,.0; m and by, m are the project matrix
and basis of RaGMU projector for modality m.
Next, the gate vector can be calculated by:

zZ = softmax(?“z (thconcat + bZ)) (7)

where heonear = [h1;ho; ... hy/] is the concatena-
tion of all projected modality embeddings, the W,
and b, are the gating weight matrix and bias, and
the r, is the scalar that injects relation awareness.

Finally, the fused multimodal embedding is ob-
tained by applying the gate vector to each modal-
ity’s hidden projection h,,:

hfuse = Z Zm © hyy, (8)

m

where ® denotes Hadamard product and z,, is the
m-th element gate vector corresponding to modal-
ity m.

Score Function. After getting the fused multi-
modal embeddings, we compute triple plausibility
scores using the TuckER scoring function:

S(hﬂ”, t) = Wtucker X1 hh X2 T X3 ht- (9)

where h;, and h; denote the fused embeddings of
the head h and tail ¢, r, denotes the embedding of
the relation r, and Xx,, denotes the n-mode tensor
product (Balazevié et al., 2019).

To train the model, we adopt a binary classifi-
cation objective that encourages higher scores for
positive triples and lower scores for negative ones.
The loss function is defined as:

L==) [yloga(S) + (1 —y)log(l - a(5))],

(10)
where y € {0,1} is the label indicating whether
the triple is positive or negative, and o(+) is the
sigmoid function.

3.4 Generative LLM predictor

The Generative LLM Predictor (GLP) aims to pre-
dict the correct entity from a set of candidates given
a query triple. The query is typically formulated as

a question derived from the query entity and rela-
tion. To simplify the design, we use an instruction-
based prompt that directly asks the LLM to com-
plete an incomplete triple by selecting an appropri-
ate entity. Additionally, we inject the learned fused
multimodal embeddings into the LLM to provide
auxiliary information for prediction.

Prompt Template. Taking the tail prediction sce-
nario as an example, we first use HERR to retrieve
the ranking of all candidates based on the query
(hg,rq,?), ensuring that the resulting triples do not
already exist in the MMKG. We then select the
top-k candidates, denoted as C' = [eq, ea, . .., ex].
A natural language question () is generated based
on the query relation 7, and entity h,. Finally, we
construct a prompt P by combining the instruction
1, the question (), the candidate list C, and the
fused embeddings V' of hg and each e € C:

P=[1,Q.C,V]. (11)

Appendix A.2 presents the detailed prompt tem-
plate.

LoRA Fine-tuning. We fine-tune open-source
LLMs with Low-Rank Adaptation (LoRA), us-
ing a small number of query—answer pairs. This
lightweight adaptation teaches the model to follow
our completion instruction while largely relying on
its pretrained knowledge. The injected multimodal
embeddings also help guide the LLM toward the
correct choice, enabling accurate prediction.

4 Experiments

4.1 Experiment Setup

Dataset. We evaluate our proposed method on
three benchmark MMKG datasets, MKG-Y (Xu
etal., 2022), MKG-W (Xu et al., 2022) and DB15K
(Liu et al., 2019). Dataset statistics and detailed
descriptions are provided in Appendix A.1.

Baseline Methods. For MMKGC, we consider
both the classic method based on unimodal design
and the advanced method based on multimodal
design. (1) For unimodal methods, we mainly con-
sider several classic knowledge graph embedding
methods: TransE (Bordes et al., 2013), RotatE
(Yang et al., 2014), DisMult (Sun et al., 2019),
GC-OTE (Tang et al., 2019) and TuckER (BalaZe-
vi¢ et al., 2019). The baseline comparisons in this
paper are based on the reported performance values
of these methods (2) For the multimodal methods,
we selected a series of state-of-the-art multimodal
KGE or KGC models: IKRL (Xie et al., 2016),



MKG-W MKG-Y DB15K
Methods
MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10 | MRR Hits@1 Hits@3 Hits@10
Structure-based
TransE 29.19 21.06  33.20 4423 | 30.73 23.45 35.18 4337 |24.86 12.78 31.48 47.07
RotatE 33.67 2680 36.68 46.73 | 3495 29.10 38.35 4530 |29.28 17.87 36.12 49.66
DistMult | 20.99 15.93 22.28 30.86 |25.04 19.33 27.80 3595 |[23.03 14.78 26.28 39.59
GC-OTE | 33.92 26.55 35.96 46.05 |32.95 26.77 36.44 44.08 |31.85 22.11 36.52 51.18
TuckER |30.39 24.44 3291 41.25 |37.05 3459 38.43 41.45 |33.86 25.33 37.91 50.38
Rule-based
IKRL 3236  26.11 34.75 44.07 |33.22 30.37 34.28 38.26 |26.82 14.09 34.93 49.09
TBKGC |31.48 25.31 33.98 43.24 | 33.99 30.47 35.27 40.07 |28.40 15.61 37.03 49.86
TransAE | 30.00 21.23 3491 4472 | 28.10 25.31 29.10 33.03 |[28.09 21.25 31.17 41.17
MMKRL | 30.10 22.16  34.09 44.69 |36.81 31.66 39.79 4531 | 2681 13.85 35.07 49.39
RSME 29.23 2336 3197 40.43 | 3444 31.78 36.07 39.09 [29.76 24.15 32.12 40.29
OTKGE |34.36 28.85 36.25 44.88 | 3551 3197 37.18 4138 |23.86 18.45 25.89 34.23
IMF 3450 2877 36.62 4544 | 3579 3295 37.14 40.63 |32.25 2420 36.00 48.19
QEB 33.38 2547  35.06 4532 | 3437 2949  37.00 4230 |28.18 14.82  36.67 51.55
VISTA 3291 26.12  35.38 45.61 |3045 24.87 32.39 41.53 | 3042 2249 33.56 45.94
MyGO 36.10 29.78  38.54 47.75 |38.44 35.01 39.84 44.19 |37.72 30.08 41.26 52.21
MoMoK | 38.89 30.38  37.54 46.31 3791 35.09 39.20 43.20 |39.54 3238 4345 54.14
MCKGC | 36.88 31.32 3892 4743 |38.92 3549  40.57 4521 [39.79 3192 43.80 54.66
HERGC | 38.89 33.12 41.14 47.86 | 39.82 36.73 4142 44.84 | 40.76 33.09 45.07 54.88

Table 1: Main results of the comparison between HERGC and the baselines on MKG-W, MKG-Y and DB15K. For
each metric, the best performance is highlighted in bold, and the second-best is underlined.

TBKGC (Mousselly-Sergieh et al., 2018), TransAE
(Wang et al., 2019b), MMKRL (Lu et al., 2022),
RSME (Wang et al., 2021), OTKGE (Cao et al.,
2022), IMF (Li et al., 2023), QEB (Lee et al., 2023),
VISTA (Lee et al., 2023), MyGO (Zhang et al.,
2025a), MoMoK (Zhang et al., 2025b), MCKGC
(Gao et al., 2025). The baseline comparisons in
this paper are based on the reported performance
values of these methods.

Implementation Details. For modality-specific
feature extraction, we use bert-base-uncased
to encode text, VGG-16 to encode images, and
a TuckER model trained on the training split
to obtain structural embeddings, ensuring consis-
tency with the retriever’s scoring function. For
HERR training, we tune the embedding dimen-
sion from {200, 300,400} and set the batch size to
{512,1024}. We use the Adam optimizer (Kingma
and Ba, 2017), with the learning rate selected from
{0.005,0.001, 0.0005}. The MoHE module is con-
figured with 2 simple experts and 2 complex PHM
experts. The number of retrieved candidate enti-
ties is selected from {10, 20, 30,40}. For the GLP,
we employ LLaMA-3-8B and apply LoRA for
parameter-efficient fine-tuning. We set the LoRA
hyperparameters to r = 64, « = 16, a dropout
rate of 0.1, and a learning rate of 0.0002. Addi-
tional training details are provided in Appendix A.3.

Model performance is evaluated using standard
ranking-based metrics: Mean Reciprocal Rank
(MRR), and Hits@1, Hits@3, and Hits@ 10, under
the “filtered” setting (Bordes et al., 2013).

All experiments were conducted on an AMD
EPYC 7763 64-Core CPU, an NVIDIA A100-
SXM4-40GB GPU, an and Rocky Linux 8.10.

4.2 Main Results

Table 1 presents the main results of our proposed
HERGC compared with advacned unimoodal KGC
methods and mutilmodal KGC methods. HERGC
achieves the best overall performance on MKG-Y,
MKG-W, and DB15K across most evaluation met-
rics. Compared to multimodal baselines, HERGC
matches MoMoK for the top MRR on MKG-W and
falls marginally behind MMKRL and MCKGC in
Hits@10 on MKG-Y, it consistently outperforms
all other methods on the remaining metrics across
the three datasets. Notably, HERGC boosts Hits@1
by an absolute 3.42%, 3.94%, and 3.67% on MKG-
Y, MKG-W, and DB15K, respectively, over the
strongest baseline in each case.

When compared with unimodal KGC models,
HERGC demonstrates substantial gains across all
metrics. Specifically, relative to TuckER, HERGC
improves MRR by 27.04%, 7.48%, and 20.38%
on MKG-Y, MKG-W, and DB15K, respectively,



highlighting the effectiveness of incorporating mul-
timodal information for knowledge graph comple-
tion.

4.3 Ablation Studies

To verify the rationality of the HERGC design, we
conduct an ablation study consisting of two parts:
(1) ablation of modality-specific inputs to assess
the contribution of each modality and the model’s
ability to leverage multimodal information, and
(2) ablation of key components within HERGC,
including the design of each part of the retriever
and the LLM predictor. The results of the ablation
experiment on three datasets are shown in Table 2.

wio | MKG-W | MKGY | DBIK
| MRR Hits@l | MRR Hits@1 | MRR Hits@1
Modality Information
Tmage Modality 36.83  31.19 | 3857 3496 | 3941 3074
Text Modality 36.17 3059 | 3842 3472 |3959 3118

Structure Modality 3798 3234 | 39.09 3648 | 40.17 3235

Model Components
Complex Experts 3795 3226 |39.04 3551 | 40.26 3230
GMU 37.02 3141 | 3896 3519 |3997 31.28
Relation-awareness | 37.56  32.02 | 39.21  36.14 | 40.34 3241
Embedding Injection | 37.94  32.26 | 39.00 35.84 | 39.05 31.16

HERGC (raw) | 38.89 3312 | 39.82 3673 |40.76 33.09

Table 2: Ablation study results on three datasets, with a
new group of removals above the original ones.

For For modality ablation, we individually re-
move the textual, visual, and structural informa-
tion. In all cases, performance declines, indicating
that each modality contributes meaningfully to the
model’s predictions and that HERGC effectively
integrates multimodal information.

For component ablation, we examine the im-
pact of removing complex PHM experts, the GMU
fusion module, and relation-awareness in the re-
triever, as well as embedding injection in the LLM
predictor. Removing any of these components re-
sults in performance degradation, highlighting their
importance. Notably, omitting the embedding in-
jection also leads to a performance drop, indicat-
ing that incorporating exogenous fused multimodal
embeddings enriched with graph context indeed
enhances the LLM’s reasoning capability.

4.4 Representation Visualization

We use t-SNE to visualize the entity representa-
tions learned by the HERR on DB15K, providing
an intuitive view to directly assess its effective-
ness. Specifically, we select entities from the fol-
lowing types: "Writer", "Singer", "Flim", "Com-

non

pany", "City", "Language" and "College". We com-
pared the fused multimodal embeddings against
individual modality embeddings, each projected
from high-dimensional space to two dimensions.
The visualization result is shown in Figure 3.

Writer
singer
Image ® Fim

.
@ Language
® College

Structure Multimodal

Figure 3: t-SNE data visualization of entity representa-
tions learned by the retriever on the DB15K dataset.

The fused embeddings form almost perfectly
separated clusters for each entity type, with clear
inter-type boundaries and uniform intra-type dis-
tributions. By contrast, image-only embeddings
exhibit highly entangled regions; structure-only em-
beddings fail to distinguish the “Language” cluster
and yield a diffuse “Writer” grouping; and text-
only embeddings conflate “Writer” and “Singer”
entities—Ilikely due to their lexical similarity (e.g.,
names). These observations confirm that HERR
effectively integrates multimodal signals to learn
high-quality entity representations.

4.5 LLM Predictor Exploration

We further investigate the LLM predictor by ex-
amining two factors: (1) the effect of varying the
candidate set size k£ on model performance and in-
ference time, and (2) the impact of using LLMs
with different parameter sizes.
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Figure 4: The performance and time consumption of
the HERGC on MKG-W and MKG-Y when k takes
different values.



Figure 4 shows the trends in time consumption
and ranking-based metrics as k varies. As expected,
inference time increases approximately linearly
with larger k values due to longer prompts con-
structed from larger candidate sets, which has more
tokens in the prompt. However, the performance
gains are marginal beyond £ = 20; only the in-
crease from £ = 10 to k = 20 yields a noticeable
improvement in MRR. Considering the trade-off
between effectiveness and efficiency, we set k = 20
in all experiments.

We also assess the effect of LLM size on the pre-
dictor. Table 3 reports the performance and time
cost of HERGC using LLMs of different scales.
From the results. Although the 3 B model reduces
inference time by roughly 30% compared to the
8 B variant, it suffers a modest decline in accu-
racy, indicating that the more knowledge and bet-
ter reasoning ability of the larger LLM is indeed
helpful for MMKGC prediction. Additional ex-
periment results with large visual models (LVM)
and large multi-model models (LMM) are show in
Appendix A.S.

Dataset MRR (A) Hits@1 (A) Hits@3 (A) Hits@10(A)  Time (A%)

MKG-W  37.02(-1.87) 3141 (-1.71) 39.58 (-1.56) 46.71(-1.15) 3796 (-32.8)
MKG-Y 3872 (-1.10) 35.43(-1.30) 40.44(-0.98) 44.16(-0.68) 2448 (-32.5)
DBISK  39.61 (-1.15) 3118 (-1.91) 44.47(-0.60) 54.34(-0.54) 5509 (-29.6)

Table 3: HERGC Performance using Llama-3.2-3B as
the LLM predictor (A values indicate differences from
using Llama-3-8B).

4.6 Complex Environment Simulation

To evaluate HERGC’s robustness under realistic
perturbations, we conduct complex environment
simulations by: (i) injecting Gaussian noise into a
fraction of the modality inputs, (ii) masking por-
tions of the multimodal embeddings, and (iii) ran-
domly removing a subset of training triples from
the KG to emulate noisy modalities, missing multi-
modal information, and sparse graph connectivity,
respectively.

Figure 5 reports how MRR degrades as we
increase the proportion of corrupted modalities
or removed triples. We observe that HERGC
is relatively resilient to both noisy and missing
multimodal inputs—its performance declines only
marginally even when a substantial fraction of em-
beddings are perturbed or masked. In contrast,
removing triples from the KG results in a visible
decline in MRR, particularly on MKG-Y. When
30% of the training triples are randomly removed,

—— Noisy Missing
MKG-W MKG-Y

40.0 e —
<—
375
£
35.0
=
325

0

—— Sparse
DB15KY

t

10 20 30 o 10 20 30 o 10 20 30
Rate (%) Rate (%) Rate (%)

Figure 5: Changes in MRR metrics of HERGC on three
datasets under different proportions of simulated inter-
ference.

HERGC experiences drops of 15.4%, 25.1%, and
11.8% on MKG-W, MKG-Y, and DB15K, respec-
tively. Nevertheless, the performance degradation
remains within a tolerable range, considering the
inherent sensitivity of non-inductive KGC tasks
to graph sparsity (Pujara et al., 2017). These re-
sults highlight HERGC’s robustness and practical
applicability in noisy, incomplete, and sparse mul-
timodal scenarios.

5 Conclusion

In this paper, we introduce HERGC, a novel gener-
ative framework for multimodal knowledge graph
completion that adopts a generative paradigm to
addresses the limitations of prior MMKGC ap-
proaches. HERGC employs a Heterogeneous Ex-
perts Representation Retriever to capture modality-
specific signals, fuse them into rich entity embed-
dings, and retrieve a compact candidate set, thereby
integrating multimodal context and narrowing the
LLM’s search space. It then uses a flexible Gen-
erative LLM Predictor to select the correct entity
from these candidates, leveraging the LLM’s inher-
ent knowledge and reasoning capabilities to com-
pensate for previous methods’ shortcomings. Ex-
tensive experiments on three standard MMKGC
benchmarks demonstrate that HERGC achieves
state-of-the-art performance while remaining effec-
tive and robust. By fully exploiting each modality’s
information, the retriever learns high-quality fused
multimodal embeddings, and the LLM predictor
readily benefits from advances in LLM technol-
ogy, making HERGC both powerful and easy to
implement. Our HERGC bridges the gap between
generative paradigm and MMKGC, offering a gen-
eralizable framework for future MMKGC research.

6 Limitations

Although HERGC demonstrates strong perfor-
mance, its effectiveness is inherently bounded by



the capabilities of the underlying LLMs. In our
additional experiments, the LMM and LVM un-
derperformed, likely due to their potential not be-
ing fully explored or insufficient adaptation to
the MMKGC task. Moreover, our approach uti-
lizes commonly used encoders, VGG and BERT,
to extract coarse-grained multimodal embeddings.
While effective, these general-purpose encoders
may overlook modality-specific fine-grained fea-
tures critical for accurate reasoning. Future work
could investigate advanced feature extraction tech-
niques tailored to each modality, enabling richer
and more discriminative representations. Addition-
ally, scaling HERGC to other MMKG tasks, such
as paths reasoning and question answering, and ex-
ploring more efficient training paradigms, such as
instruction tuning or parameter-efficient adaptation
strategies, could further enhance its generalizability
and practicality.
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A Appendix
A.1 Details of the Dataset

We evaluate our proposed method on three publicly
available multimodal knowledge graph completion
(MMKGC) datasets: MKG-Y (Xu et al., 2022),
MKG-W (Xu et al., 2022), and DB15K (Liu et al.,
2019). MKG-W (CCO 1.0 Public-Domain Dedica-
tion) and MKG-Y (C BY 4.0) are curated subsets
extracted from Wikidata (Vrandeci¢ and Kr6tzsch,
2014) and YAGO (Suchanek et al., 2007) and en-
riched with comprehensive multimodal informa-
tion including textual descriptions and associated
images. DB15K (CC BY-SA 3.0) originates from
DBpedia (Lehmann et al., 2015) and similarly in-
tegrates textual and visual modalities to enhance
entity representations. All three datasets provide
realistic and rich multimodal scenarios, suitable
for rigorous benchmarking of knowledge graph
completion models. Table 4 presents the statistical
details of these three datasets.

Datasets  Entities Relations Training Validation Testing
MKG-W 15,000 169 34,196 4,276 4,274
MKG-Y 15,000 28 21,310 2,665 2,663
DB15K 12,842 279 79,222 9,902 9,904

Table 4: Statistics of the three datasets.

A.2 Prompt Template

Table 5 is a template with tail prediction as an ex-
ample. For all three datasets, the prompt template
remains consistent generally, comprising a simple
instruction, a candidate set, corresponding multi-
modal fusion embeddings (initially represented by
[Placeholder]) for reference. The only difference
between the prompts for head prediction and tail
prediction is that the question part is a question ask-
ing what is the head of an incomplete triple with a
missing head.

A.3 Model Training

We train the retriever HERR using the training and
test sets following the standard dataset splits of
MKG-W, MKG-Y, and DB15K. For training the
GLP, we fine-tune the LoRA module with a small
number of samples. Specifically, we employ a con-
sistent prompt template to transform the sample
triples into query—candidates formats for training.
Notably, since the retriever is trained on the train-
ing set, the correct entity often receives a high score
and is consistently ranked first. To prevent the LLM
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Prompt Template for GLP

You are an excellent linguist. The task is to
predict the head or tail based on the given
incomplete triple, and you only need to answer
one entity. The answer must be in (’candidatel’,

’candidate2’, ’candidate3’, ’candidate4’,
’candidate5’, ’candidate6’, ’candidate7’,
’candidate8’, ’candidate9’, ’candidatel@’,
’candidatel1’, ’candidatel12’, ’candidatel3’,
’candidatel4’, ’candidatel15’, ’candidatel6’,
’candidatel17’, ’candidate18’, ’candidatel19’,

’candidate20’).

You can refer to the entity embeddings: ’query
entity’: [Placeholder], ’candidatel’:
[Placeholder], ’candidate2’: [Placeholder],
’candidate3’: [Placeholder], ’candidate4’:
[Placeholder], ’candidate5’: [Placeholder],
’candidate6’: [Placeholder], ’candidate7’:
[Placeholder], ’candidate8’: [Placeholder],
’candidate9’: [Placeholder], ’candidatel@’:
[Placeholder], ’candidatel1’: [Placeholder],
’candidate12’: [Placeholder], ’candidatel3’:
[Placeholder], ’candidatel4’: [Placeholder],
’candidate15’: [Placeholder], ’candidatel6’:
[Placeholder], ’candidatel7’: [Placeholder],
’candidate18’: [Placeholder], ’candidatel9’:
[Placeholder], ’candidate20’: [Placeholder].

Question: What is the tail in (’query entity’,
’query relation’, tail)?

Answer:

Table 5: Prompt template for the LLM in predictor GLP
(tail prediction example).

from overfitting to this shortcut—i.e., learning the
retriever’s ranking pattern rather than making pre-
dictions based on textual content—we follow pre-
vious work (Wei et al., 2023; Liu et al., 2024) and
use the validation set to construct the fine-tuning
data for the LLM. Concretely, for MKG-W and
MKG-Y, we split the original validation set into a
training/validation split for LLM fine-tuning at a
9:1 ratio. For DB15K, we randomly sample 5,000
triples from its original validation set and similarly
divide them into training and validation subsets us-
ing a 9:1 ratio. The test sets remain identical to the
original benchmarks, and we perform both head
and tail entity prediction for each test triple, in line
with standard KGC evaluation protocols.

A.4 Evaluation Metrics

We employ widely-used ranking metrics in knowl-
edge graph completion: Mean Reciprocal Rank
(MRR) and Hits@k.

For each test query triple (h,r, ?) or (7,7,t), the
model scores every candidate entity, producing a
ranked list. All metrics are reported under the fil-
tered setting, where corrupted triples that already
exist in the KG are removed(Bordes et al., 2013).
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Mean Reciprocal Rank (MRR). Let rank; denote
the position of the correct entity for the i-th query
in the filtered list. The reciprocal rank is 1/ rank;.

N

Z 1

- rank;’

1
MRR = N

1=

where N is the total number of test queries. MRR
ranges from O to 1; higher values indicate better
overall ranking quality.

Hits@k. Hits@k measures the proportion of
queries whose correct entity appears within the
top k positions:

N
1
Hits @k = z; 1[rank; < k],
iz

where 1[-] is the indicator function. Throughout
the paper we report Hits@1, Hits@3, and Hits@10,
providing a fine-grained view of top-rank accuracy
under varying tolerance levels.

A.5 Evaluating LVM and LMM as Predictors

To further investigate the GLP component, we ex-
perimented with replacing the LLM in GLP with
a large vision model (LVM) or a large multimodal
model (LMM), enabling the predictor to directly
incorporate the image of the query entity in ad-
dition to textual input. The results, presented in
Table 6, show that this modification did not lead
to the expected improvements. Specifically, substi-
tuting the LLM with an LVM resulted in a marked
reduction in overall performance, whereas replac-
ing it with an LMM offered no substantial benefit,
yielding only marginal gains in MRR (+1.1%) and
Hits@10 (4-0.8%).

Dataset MRR Hits@1 Hits@3 Hits@10
Llama-3-8B 39.82  36.73 41.42 44.84
Llava-1.5-7B 27.87 15.79 38.72 42.68
Llama-3.2-11B-Vision 40.26  36.31 40.91 45.22

Table 6: HERGC Performance using Llava-1.5-7B and
Llama-3.2-11B-Vision as the LLM predictor on MKG-
Y.

The performance degradation observed when re-
placing the LLM component in GLP with LLaVA-
1.5-7B may be attributed to limitations in its
backbone architecture and pre-training objectives.
Specifically, LLaVA-1.5-7B utilizes Llama-2-7B
as its backbone, which inherently possesses weaker
language modeling capabilities compared to more



advanced models such as Llama-3. Moreover,
LLaVA-1.5-7B is fine-tuned primarily using CLIP-
based visual features and visual-language instruc-
tions, with its pre-training tasks heavily cen-
tered on image-text alignment and visual question-
answering, rather than structured relational reason-
ing. Consequently, even after subsequent LoRA
fine-tuning, the limited number of training exam-
ples might be insufficient to effectively transition
the model from merely "understanding images" to-
ward "leveraging images for relational inference in
knowledge graph completion."

Similarly, the modest performance gains
achieved by replacing the LLM component with
Llama-3.2-11B-Vision might be due to the already
mature textual reasoning capability of its underly-
ing model, Llama-3-8B. Given the strong inherent
language modeling performance of Llama-3, the
additional inclusion of visual features likely pro-
vides minimal incremental benefit for relational
prediction. Although large multimodal models
(LMMs) generally excel at capturing visual seman-
tics due to extensive pre-training on image-text cor-
pora, they are not typically fine-tuned for structured
relational inference tasks such as KGC. Therefore,
it remains challenging for these models to accu-
rately extract and leverage KGC-relevant relational
signals from images with only a limited number
of fine-tuning samples (as imposed by the LoRA
rank constraints). Another potential factor is that
visual information within MMKG datasets might
inherently have weak correlations with the rela-
tional semantics required by the KGC task. As a
result, effectively utilizing fine-grained relational
clues from entity images for MMKGC remains an
open and promising research direction.
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