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ABSTRACT

Reproducing cognitive development, group interaction, and long-term evolution
in virtual classrooms remains a core challenge for educational AI, as real class-
rooms integrate open-ended cognition, dynamic social interaction, affective factors,
and multi-session development rarely captured together. Existing approaches
mostly focus on short-term or single-agent settings, limiting systematic study
of classroom complexity and cross-task reuse. We present EduVerse, one of
the first user-defined multi-agent classroom simulator supporting customizable
environment, customizable agents, and multi-session evolution. A distinctive
human-in-the-loop interface further allows real users to join the space. Built on a
layered CIE (Cognition–Interaction–Evolution) architecture, EduVerse ensures
individual consistency, authentic interaction, and longitudinal adaptation in cog-
nition, emotion, and behavior—reproducing realistic classroom dynamics with
seamless human–agent integration. We validate EduVerse in middle-school Chi-
nese classes across three text genres, environments, and multiple sessions. Results
show: (i) Instructional alignment: simulated Initiate-Response-Feedback (IRF)
rates (0.34–0.55) closely match real classrooms (0.37–0.49), indicating pedagog-
ical realism; (ii) Group interaction and role differentiation: network density
(0.27–0.40) with about one-third of peer links realized, while human–agent tasks
indicate a balance between individual variability and instructional stability; (iii)
Cross-session evolution: the positive transition rate R+ increase by 11.7% on
average, capturing longitudinal shifts in behavior, emotion, and cognition and
revealing structured learning trajectories; (iv) Cross-disciplinary generalization:
without any additional tuning, IRF rates and peer-interaction topologies naturally
adapt to the discourse characteristics of history instruction while preserving the
core instructional structure, demonstrating robust cross-disciplinary transfer. Over-
all, EduVerse balances realism, reproducibility, and interpretability, providing a
scalable platform for educational AI. The system will be open-sourced to foster
cross-disciplinary research.

1 INTRODUCTION

A central challenge in human-centered AI is to simultaneously reproduce cognitive development,
group interaction, and long-term evolution within virtual environments (Wang et al., 2024c; Parisi
et al., 2019; Zheng et al., 2024; Chen & Liu, 2018; Zheng et al., 2025). While large language models
(LLMs) excel at language understanding and immediate task completion, most research remains
confined to static tasks or short-term interactions, falling short of capturing evolving cognition, stable
behavioral styles, and socially dynamic processes (Maharana et al., 2024; Wang et al., 2025a; Tan
et al., 2025; Li et al., 2025a). Similarly, multi-agent systems have primarily targeted structured
games or fixed collaboration, lacking frameworks that support developmental agents whose cognition,
personality, and social relations evolve naturally over time (Wang et al., 2024b; Ashery et al., 2024).

Educational settings, particularly classrooms, offer a natural testbed for modeling cognition, social
interaction, and instructional feedback (Hattie & Timperley, 2007a; Poropat, 2009; Johnson et al.,
1998). For example, Chinese language classes feature open-ended tasks, emotional nuance, and rich
role-based interactions, ideal for studying development and group dynamics. Yet most intelligent
tutoring systems and dialogue agents treat students as static performers (Anderson et al., 1995;
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Figure 1: Overview of EduVerse. EduVerse comprises: (i) user-defined environment configura-
tion; (ii) CIE-based agent modeling for teacher and student agents; (iii) interaction and evolution
experiments spanning instructional alignment, group interaction, cross-session development, and
cross-disciplinary generalization. Together, these components form a scalable, interpretable, and
transferable multi-agent simulation platform for educational AI.

Nye et al., 2014; Lin et al., 2023), lacking persistent learner modeling, role-sensitive interaction, or
longitudinal adaptation.

To overcome these limitations, we introduce EduVerse, one of the first user-defined multi-agent
simulation space that supports environment customization through flexible physical layouts and
seating arrangements, agent customization via a human-in-the-loop interface integrated with a layered
CIE (Cognition–Interaction–Evolution) architecture, and session customization for modeling multi-
lesson trajectories. In CIE, the cognition layer ensures individual consistency and instructional
alignment, the interaction layer models priority-based authentic exchanges, and the evolution layer
captures longitudinal changes in cognition, emotion and behavior. Together, these capabilities
enable EduVerse to reproduce realistic classroom dynamics while supporting seamless human–agent
interaction.

We instantiate EduVerse in middle school Chinese language classes—rich in open-ended discourse
and emotional variation—and validate it through three CIE-aligned experiments: (i) Instructional
alignment: simulated IRF rates (0.34–0.55) closely match real classrooms (0.37–0.49), indicating
pedagogical realism. (ii) Group interaction: agent interaction networks reach a density of 0.27–0.40,
approximating one-third of peer links and balancing individual variability with instructional stability.
(iii) Cross-session evolution: positive transition rate R+ improves by 11.7%, reflecting structured
shifts in behavioral and cognitive engagement. (iv) Cross-disciplinary generalization: EduVerse
adapts to history instruction while preserving IRF structures and peer dynamics, demonstrating
robust transferability. Unlike conventional user-facing systems, the goal of EduVerse is to develop a
foundational infrastructure for systematic educational simulations, shifting the evaluation focus from
end-user experience to agent-level transparency and longitudinal interpretability. In sum, EduVerse
captures individual- and group-level dynamics and reveals multi-dimensional learning trajectories
across subjects and timescales.

Contributions. (1) We propose EduVerse, one of the first user-defined multi-agent classroom
simulator, enabling reusable and customizable experimentation across tasks and disciplines. (2) We
design the CIE architecture, which systematically models the cognitive, interactive, and evolutionary
dynamics of developmental agents. (3) Through instantiated experiments, we demonstrate EduVerse’s
effectiveness in authentic educational contexts. As an extensible open framework, EduVerse redefines
virtual classroom modeling and establishes a systematic, cross-disciplinary pathway for educational
AI; it will be open-sourced to encourage transparency and collaboration.
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2 RELATED WORK

EduVerse provides a user-defined multi-agent simulation space that supports cognitive development,
group interaction, and long-term evolution in virtual classrooms. Although educational agents,
multi-agent simulations, and LLM-based generation have advanced, a unified platform integrating
these dimensions is still missing. We therefore review three research threads aligned with EduVerse’s
core dimensions (see App. B).

Educational agents and virtual classrooms. Early systems such as Cognitive Tutor (Anderson
et al., 1995) and SimStudent (Matsuda et al., 2013) focused on skill acquisition and personalization,
typically via rule- or model-based mechanisms (Christensen et al., 2011; Foley & McAllister, 2005;
Carrington et al., 2011; Dotger et al., 2010). Teacher-training simulations used scripted virtual
students as scaffolds but lacked adaptivity to feedback, peer influence, or classroom context (Kervin
et al., 2006; Dieker et al., 2015; Delamarre et al., 2021; Shernoff et al., 2018; Özge Kelleci & Aksoy,
2021). Recent generative extensions enable task-level learning (Zhang et al., 2024a; Lee et al., 2023;
Yue et al., 2025; Mollick et al., 2024; Markel et al., 2023b; Wang et al., 2025b; Fahid et al., 2024),
but often omit emotional modeling, stylistic progression, and multi-agent coupling, limiting their
suitability for open, dynamic classrooms.

Multi-agent social simulations. Works such as Generative Agents show that LLMs enhanced with
memory, planning, and reflection can generate human-like social behaviors in sandbox settings
(Xu et al., 2025; Arana et al., 2025; Park et al., 2023; Li et al., 2023; Chen et al., 2023a; Jinxin
et al., 2023b). However, these focus on adult roles and informal contexts, overlooking classroom-
specific structures such as IRF discourse, teacher–student roles, and goal alignment. They also lack
mechanisms for knowledge progression tracking and temporal adaptivity.

Personalized modeling and long-term coherence. Persona conditioning and style control are widely
used to maintain role consistency (Shao et al., 2023; Jiang et al., 2024; Wang et al., 2024d), with
design patterns surveyed by Tseng et al. (2024). Yet long-term interactions often suffer from persona
drift, leading to memory-based prompting (Zhong et al., 2023), style constraints (Roy et al., 2023),
and metacognitive or reflective mechanisms (Madaan et al., 2023; Li et al., 2025b; Didolkar et al.,
2024). Research on continual and lifelong learning also contributes to longitudinal coherence (Wang
et al., 2024c; Parisi et al., 2019; Zheng et al., 2024; Chen & Liu, 2018; Zheng et al., 2025; Maharana
et al., 2024; Wang et al., 2025a; Tan et al., 2025; Li et al., 2025a). However, these methods are
mostly evaluated in single-agent or non-classroom contexts, rarely integrating group-level structures
or pedagogically grounded evolution. EduAgent (Xu et al., 2024) models individual cognitive and
metacognitive processes but lacks multi-agent coordination and group dynamics.

Prior work provides important components—feedback, generative behaviors, and role consis-
tency—but remains fragmented across time scales, modeling levels, and educational contexts. Edu-
Verse unifies these dimensions by integrating user-defined environments, agents, and multi-session
settings within the CIE architecture, yielding a scalable and interpretable platform that coherently
models individual behavior, group dynamics, and cross-session evolution.

3 EDUVERSE FRAMEWORK

Figure 2: Visualization of student group interactions
across classroom environments. The three panels corre-
spond to: Lecture (left, traditional teacher-centered layout),
Collab_Two_Tables (middle, two-group collaborative set-
ting), and Round_Table (right, open discussion layout).

EduVerse is a user-defined multi-
agent simulation framework for edu-
cational settings, built to model the
long-term cognitive, behavioral, and
social dynamics of developing learn-
ers. It comprises three components:
(i) a user-defined environment that
configures layouts, seating, and inter-
action networks to support diverse in-
structional scenarios within a unified
physical–social space (Sec. 3.1); (ii) CIE-based agent modeling, where student agents adopt a
unified perception–cognition–action architecture with personalized embeddings and style modulation
for cognitive coherence and expressive diversity, complemented by a human-in-the-loop interface for
user customization (Sec. 3.2); and (iii) interaction and evolution experiments that integrate teacher-
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led guidance with student-initiated behavior to assess instructional alignment, group interaction, and
cross-session evolution (Sec. 3.3). Together (Fig. 1), these components offer a scalable, interpretable,
and transferable foundation for systematic educational analysis.

3.1 USER-DEFINED ENVIRONMENT

The environment module constructs an interaction space that integrates physical constraints with
social semantics. We adopt a hierarchical spatial structure Z = {ZS ,ZA,ZO,ZI}: ZS denotes
functional sectors (e.g., teacher, student, activity zones), ZA denotes localized arenas (e.g., a
discussion circle or a podium), ZO denotes interactive objects (e.g., blackboards, podiums, desks),
and ZI represents fine-grained items (e.g., textbooks, pens, chalk). This layered organization provides
a unified mapping between physical distribution and pedagogical semantics, consistent with App. C.1.

Peer interaction is captured by a seat-adjacency graph Aseat ∈ {0, 1}N×N defined as

Aseat
ij =

{
1, if students i and j satisfy the adjacency rules,
0, otherwise,

(1)

where the rules may combine distance d(i, j), group membership g(i), and layout-specific constraints.
Researchers can instantiate different interaction topologies by editing configuration files, avoiding
hard-coded seat links.

As shown in Fig. 2, under this unified definition, EduVerse implements three canonical classroom
layouts: Lecture constrains peer links by distance and group, reflecting teacher-centered, largely
unidirectional communication; Round_Table augments distance-based adjacency with face-to-face
opposite-seat edges j = opp(i) to encourage open peer dialogue; Collab_Two_Tables forms fully
connected within-group subgraphs with no cross-group links, emphasizing intra-group collaboration
and bounded social structure.

These layouts serve as illustrative cases rather than limitations. Users can freely customize the
hierarchy Z and the adjacency-generation rules via configuration files to simulate classrooms of
varying scales, tasks, and pedagogical styles. Leveraging the seat_graph mechanism, EduVerse
tightly couples physical space with social semantics, providing a realistic, controllable, and extensible
environment foundation for subsequent agent decision-making and group-level experiments.

3.2 CIE-BASED AGENT MODELING

Agent modeling in CIE maps directly onto three layers: the Cognition layer models individual
differences through the Plan–Monitor–Regulate (PMR) loop; the Interaction layer captures role-
differentiated social behavior via extended IRF mechanisms; and the Evolution layer models cross-
lesson adaptation through memory and phase updates. Together, these layers integrate individual,
social, and temporal dynamics into a unified framework (see App. C.2–C.5).

3.2.1 COGNITION ENGINE: COGNITION-DRIVEN AGENT DECISION MECHANISM

All agents Ai follow the PCA architecture, formalized as:

At
i : (Ot

i , ei)→ ati, (2)

where Ot
i is the local observation extracted from the global state St via a perception function Pi, and

ei = [pi; ci;mi] encodes personality traits, cognitive style, and motivation. The action is generated
by a language model ati = fLLM(Ot

i , ei).

We adopt a lightweight interaction gate to decide whether an agent takes a turn at time t:

Gti =
{
1, if the scheduler assigns a teacher- or peer-directed turn to agent i at time t,

0, otherwise (self-initiated behaviors may be scheduled separately).
(3)

The cognitive loop consists of Plan–Monitor–Regulate (PMR); the gate Gti determines whether the
loop is executed at time t.
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Content–style separation. To balance long-term consistency with expressive diversity, we decouple
semantic planning from stylistic expression. Inspired by style transfer (Gatys et al., 2016; Deng et al.,
2022), we adopt a two-component design: (1) a style modulator fine-tuned on educational data with
InternVL (Chen et al., 2024b) that produces style-aware prompts conditioned on traits and task phase
(e.g., hesitancy, verbosity, affective tone), rather than direct responses (see details in App. C.2.3); and
(2) a cognitive generator that integrates the style prompt with Ot

i , ei, and dialogue history to form a
composite prompt for GPT-4 (Achiam et al., 2023), which focuses on semantic planning and content
generation. This design improves cognitive coherence and expressive diversity, while offering an
interpretable path for personality-conditioned behaviors.

Role-specific parameterization. While student agents Ai
S and the teacher agent AT share the PCA

backbone, they differ in input channels, gating, and prompting. As shown in Tab. A4, students
are modulated by personality and willingness embeddings, whereas the teacher relies on scripted
lesson plans and classroom metrics. This unified yet differentiated design supports dynamics from
teacher-led instruction to student-initiated contributions.

3.2.2 INTERACTION CORE: GROUP INTERACTION AND BEHAVIORAL COORDINATION

To better capture classroom discourse, CIE extends the classic IRF (Initiation–Response–Feedback)
cycle to ItT → Rt

S → F t
T → RegulatetS . At time t, the teacher agent AT initiates a task T t; student

agents Ai
S respond, receive feedback, and then regulate subsequent actions, forming a micro-cycle

aligned with instructional goals. Action selection follows Eq. 2 and is modulated by the interaction
gate Gti (see Eq. 3) to determine participation.

Intention function. We conceptualize willingness and responsiveness as ωt
i = α1Pi + α2C

t
i +

α3R
t
i + α4H

t
i + α5S

t
ij . where Pi denotes personality, Ct

i confidence at time t, Rt
i task relevance,

Ht
i interaction history, and St

ij alignment with peer j; αk are weighting coefficients. In practice, this
abstraction is embedded into prompt design and scheduling to guide gating and response generation.
Beyond teacher-led turns, students may self-initiate behaviors (e.g., questioning, head-up), enabling
multi-party interaction and group discussion. The teacher monitors these dynamics and provides
targeted or global feedback, closing the loop between pedagogical intent, social context, and adaptive
regulation for analyzing group coordination and evolution.

3.2.3 EVOLUTION LAYER: CROSS-LESSON ADAPTATION AND EVOLUTION

CIE supports long-term, cross-lesson simulation through four mechanisms: knowledge progression,
behavioral style regulation, instructional pacing control, and memory interaction flow.

Knowledge progression. Each student agent Ai
S initializes a knowledge state s0i derived from

ei, which evolves as st+1
i = Ri(s

t
i, a

t
i, F

t
i ), {sti}Tt=1. where Ri adjusts state components (e.g.,

confidence, engagement) using annotated behavioral signals (e.g., Bloom level, response type) and
structured feedback (positive, neutral, negative).

Behavioral style regulation. At each step, actions, reflections, affect, and cognitive states are logged
in a structured growth log (JSON), enabling the tracking of style stability, engagement shifts, and
recovery. These logs also feed subsequent scheduling and adaptation.

Instructional pacing. The teacher agent organizes instruction into phases, each comprising multiple
steps. After each phase, pacing is updated as Phasek+1 ← Transition(Phasek, {sti}, completion rate).
with policy πT dynamically adjusting step granularity, tone, and targeting. In practice, cycles are
initialized with 30 steps and then adapt to interaction dynamics, forming a closed loop for adaptive
teaching control.

Memory interaction flow. To sustain cross-session continuity, CIE coordinates short- and long-term
memory: long-term summaries are loaded at lesson start, short-term states are updated in real time,
and aggregated records are written back after each session. This flow enables feedback-driven
self-regulation and coherent developmental trajectories across lessons.

Taken together, the PCA backbone of CIE, coupled with mechanisms for cognition-driven decision-
making, group interaction, and temporal evolution, yields behaviors that are stable yet diverse within
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a lesson and coherent across lessons, providing a robust foundation for subsequent experiments and
pedagogical analyses.
3.3 INTERACTION AND EVOLUTION EXPERIMENTS

This subsection formalizes EduVerse’s experimental paradigm, enabling researchers to configure
environments, agents, and multi-session tasks to study cognitive alignment, group interaction, and
longitudinal development across subjects. Users can specify physical–social environment, agent
personas, instructional scripts and so on. On this basis, four experiments can be defined: (i) Cognition-
driven instructional alignment experiments; (ii) Group interaction analysis and role differentiation
experiments; (iii) Cross-session evolution and long-term development experiments; (iv) Cross-
disciplinary generalization experiments. All experiments are logged and evaluated with unified
metrics (e.g., IRF discourse structure, network density/centrality, positive transition rate R+), ensuring
interpretability and reproducibility. In addition, EduVerse provides a human-in-the-loop interface that
admits real students or teachers alongside virtual agents (all agent names are randomly generated and
contain no identifiable or referential information), enabling simulation, causal testing, and validation
within a single, low-cost, controllable, and interpretable framework. In Sec. 4, we demonstrate these
capabilities in a junior secondary classroom, highlighting EduVerse’s applicability and research
value.

4 EXPERIMENTAL DESIGN AND EVALUATION

To demonstrate EduVerse’s customizability and cross-context transferability, we conduct four experi-
ments across junior-secondary Chinese lessons and an additional Renaissance history lesson, covering
cognitive alignment, group interaction, long-term development, and cross-disciplinary generalization.
This setup enables evaluation under distinct discourse styles and instructional structures. Full imple-
mentation details are provided in App. D. The four experiments align with EduVerse’s core capacities:
(1) Experiment I (Sec. 4.1): evaluates classroom authenticity and personality-conditioned alignment
under customized environment settings; (2) Experiment II (Sec. 4.2): investigates group interaction
and individual influence, and validates human–agent interaction through the open interface; (3)
Experiment III (Sec. 4.3): tracks students’ behavioral, emotional, and cognitive trajectories across
four consecutive lessons to illustrate cross-session evolution; (4) Experiment IV (Sec. 4.4): tests
whether EduVerse generalizes to new cultural contexts, narrative instructional styles, and knowledge
structures beyond Chinese language arts.

4.1 EXPERIMENT I: ENVIRONMENT CUSTOMIZATION FOR COGNITION-DRIVEN
INSTRUCTIONAL ALIGNMENT

Table 1: Average IRF distributions in simulated en-
vironments (Sim) vs. real classrooms (Real) across
three text genres.

Genre Setting I R F IRFrate

Lyrical Prose Sim 0.454 0.166 0.293 0.336
Real 0.513 – 0.703 0.486

Argumentative
Essay

Sim 0.482 0.207 0.335 0.554
Real 0.417 – 0.583 0.417

Foreign Fiction Sim 0.310 0.230 0.407 0.379
Real 0.367 – 0.515 0.367

Experiment I tests whether customized environ-
ments can reproduce realistic classroom dynam-
ics while retaining personality-driven behaviors
described in Sec. 3.2. We instantiate three user-
defined environments (Sec. 3.1) under a teacher-
led mode and run ablations to assess key module
contributions.

IRF discourse patterns. To assess whether
EduVerse reproduces the structural logic of
teacher–student dialogue rather than exact nu-
merical matching, we compute the IRF rate as
IRFrate =

1
T

∑T
t=1 1(I

t
T = 1∧Rt

S = 1∧F t
T =

1), where ItT , Rt
S , and F t

T indicate the occurrence of teacher initiation, student response, and teacher
feedback. Real classroom IRF data are sourced from the national Smart Education Platform and an-
notated through a standardized expert-reviewed protocol (App. D.3.2). As shown in Tab. 1, simulated
IRF rates (0.336–0.554) lie within the structural range of real classrooms (0.367–0.486). Although
numerical variation emerges across teachers, genres, and discourse styles, the consistent presence of
complete IRF cycles indicates that EduVerse captures the underlying interaction structure shaping
classroom discourse. A qualitative comparison (Tab. A8) further shows alignment in the I and R
stages, with similar questioning and response patterns. Divergence mainly appears in the F stage:
real teachers provide more open-ended or affective feedback, whereas simulated teachers respond
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more concisely. These differences reflect natural variation in teaching styles and do not affect the
overall IRF structural consistency (App. D.3).

Figure 3: Distribution of students’
BEC across environments. Collabo-
rative layouts promote positivity and
higher-order cognition, round-table in-
creases disengagement, and lecture
maintains passive, lower-order patterns.

BEC (Behavior-Emotion-Cognition) across environ-
ments. To quantify students’ BEC tendencies, we compute
the normalized frequency of each category (App. D.2.3)
over the class: BEC(c) = 1

T

∑T
t=1 1(xt = c), where xt

denotes the BEC label at timestep t and T is the total num-
ber of timesteps. This metric captures the distribution of
learner states, rather than correctness, and is applied con-
sistently across all comparisons in this subsection. Fig. 3
shows clear environment-dependent patterns: collabora-
tive layouts yield the most positive emotion (0.547) and
higher-order cognition (0.261); round-table layouts show
more disengagement (0.254) and lower interaction (0.357);
and lecture layouts reflect traditional classrooms with dom-
inant lower-order cognition (0.819). EduVerse effectively
reproduces environment-shaped classroom dynamics.

Figure 4: Stable BEC patterns across genres within individual students. Despite genre variation,
individual BEC patterns remain stable and trait-consistent: highly extraverted students show active
engagement and varied cognition, whereas low-openness or low-conscientiousness students tend
toward disengagement, lower-order cognition, and confusion.

Figure 5: Ablation study. Re-
moving the stylization module (frame-
work_nolocal) increases negative emo-
tions, while removing the PMR module
(framework_nocog) inflates higher-order
cognition and overly active behaviors.

Personality-driven stability. As shown in Fig. 4, students
maintain stable BEC distributions across genres, consistent
with their traits: Zhang Jie (high extraversion) stays active
and positive with varied cognition, whereas Liu Li (low
openness) and Zhang Tao (low conscientiousness) show
disengagement, lower-order cognition, and frequent confu-
sion. These patterns demonstrate EduVerse’s ability to pre-
serve individual consistency and personality-conditioned
behaviors.

Ablation study. Fig. 5 further validates the necessity
of key modules. Removing the stylization module re-
sults (framework_nolocal) in evenly distributed emotions
with amplified negativity, deviating from real classrooms
where positive and confused states dominate. Removing
the PMR module (framework_nocog) exaggerates higher-
order cognition and active behaviors, resembling expert
reasoning rather than gradual student development. Together, these results show that stylization en-
sures realistic emotional patterns, while the PMR module enforces educationally consistent cognitive

7
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and behavioral decisions, and their integration is indispensable for reproducing authentic classroom
dynamics.

Summary. Experiment I demonstrates that EduVerse reproduces authentic discourse, captures
environment effects, preserves personality stability, and validates key modules, providing a solid
basis for studying classroom design and instructional modes.

4.2 EXPERIMENT II: AGENT CUSTOMIZATION FOR GROUP INTERACTION ANALYSIS AND
ROLE DIFFERENTIATION

Table 2: Group interaction analysis across lessons and
environments. Values report nodes, edges, density,
and average degree of the interaction graph. Bold
marks the highest values per lesson.

Lesson Env. Nodes Edges Density Avg. Deg.

Foreign
Fiction

Lecture 6 5 0.333 1.667
Collab 5 3 0.300 1.200
Round 6 5 0.333 1.667

Argumentative
Essay

Lecture 5 3 0.300 1.200
Collab 5 4 0.400 1.600
Round 6 5 0.333 1.667

Lyrical
Prose

Lecture 6 4 0.267 1.333
Collab 5 3 0.300 1.200
Round 6 5 0.333 1.667

This experiment evaluates EduVerse’s ability
to model interaction described in Sec. 3.2,
moving from group-level networks to in-
dividual influence, and finally testing hu-
man–agent integration via the open interface.

Group Interaction Analysis. We model
classroom interactions as undirected graphs,
using density (D = 2E

N(N−1) ) and average
degree (k = 2E

N ). As shown in Tab. 2, den-
sity (0.267–0.400) and degree (1.2–1.667)
indicate that 27–40% of ties are realized, re-
flecting realistic yet localized participation in
teacher-led classrooms. Genre–environment
effects also appear: argumentative essays and
prose show lower density in Lectures, while
fiction remains around 0.3 across settings, underscoring the narrative appeal of storytelling. Overall,
genre and layout jointly shape engagement.

Figure 6: Human–Agent interaction interface.

Individual Influence Analysis. We computed
four directed metrics: in-degree (attention), out-
degree (initiative), degree centrality (activity),
and betweenness (bridging). As shown in Tab. 3,
Dedication and Joy reveals mode-dependent
roles. In the Lecture, Zhang Jie had a high in-
degree but no initiative, while Zhang Tao and
Zhang Yan showed the opposite. In Collab,
reciprocity increased, with Zhang Tao emerg-
ing as a connector and Zhang Jie shifting to
side-talk. In Round, roles were decentralized,
yet Zhang Tao became most central (highest
out-degree, degree, and betweenness), whereas
Liu Li was marginalized. (see Fig. 2 for the
visualization of student interactions). These results illustrate how classroom organization reshapes
roles, moving individuals from peripheral to core positions.

Table 3: Distribution of students’ network centrality indicators in Dedication and Joy across environ-
ments. Values are normalized to [0, 1]. Deg. = degree centrality; Betw. = betweenness centrality.

Student Lecture Collab Round
In Out Deg. Betw. In Out Deg. Betw. In Out Deg. Betw.

Li Wei 0.25 0.25 0.50 0 0.25 0.25 0.50 0 0.20 0.20 0.40 0
Liu Li 0.25 0.25 0.50 0 0.25 0.25 0.50 0 0.00 0.20 0.20 0
Zhang Tao 0.00 0.25 0.25 0 0.50 0.25 0.75 0.083 0.20 0.60 0.80 0.15
Zhang Jie 0.50 0.00 0.50 0 0.25 0.25 0.50 0 0.40 0.20 0.60 0.10
Zhang Yan 0.00 0.25 0.25 0 0.25 0.50 0.75 0.083 0.20 0.20 0.40 0
Wang Fang – – – – – – – – 0.40 0.00 0.40 0

Human–Agent Interaction. To evaluate human–agent integration, we evaluate human–agent in-
tegration through the EduVerse visual interface (Fig. 6), which enables ChatGPT-style interaction
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with student agents. Four interaction types, including peer chat, peer academic response, teacher
Q&A, and teacher intervention, were tested within this interface (Fig. A3,App. D.4). Results aligned
with personality traits: Zhang Tao (talkative) responded most (0.53–0.73) and initiated conversations
in Collab/Round, while Zhang Jie (high-extraversion) responded less (0.27–0.40). Teacher agents
succeeded in all Q&A and interventions, ensuring robust instructional control. These findings confirm
EduVerse’s capacity for seamless human integration with role-driven realism.

Summary. EduVerse captures group patterns, individual traits, and human–agent integration, validat-
ing its ability to model authentic and adaptive classroom interactions.

4.3 EXPERIMENT III: SESSION CUSTOMIZATION FOR CROSS-SESSION EVOLUTION AND
LONG-TERM DEVELOPMENT

Figure 7: Positive transition trends in
cross-session evolution. Rates of pos-
itive shifts in BCE increase over time,
with behavior improving most rapidly,
emotion rising steadily, and cognition
progressing gradually.

Experiment III tests whether virtual students show pro-
gressive development described in Sec. 3.2 by mapping
BEC states to ordered levels and treating upward transi-
tions as positive shifts. Across four sessions (Spring I–II,
Dedication and Joy I–II), we assess long-term engagement
and learning trajectories.

Session-level Evolution. We quantify progression us-
ing the positive–transition rate. For a state sequence
{st} with priority P (st), a transition is positive when
P (st+1) > P (st). Let T+ =

∑
t 1[P (st+1) > P (st)],

R+ = T+/T . As shown in Fig. 7, behavior improves
rapidly across sessions, emotion rises early and stabilizes,
and cognition grows more slowly, reflecting its need for
sustained accumulation. These patterns indicate that Edu-
Verse captures realistic dynamics where behavior and af-
fect shift quickly, while cognitive development progresses gradually.

(a) Student Behavior (b) Student Emotion (c) Student Cognition

Figure 8: Individual trajectories of positive shifts
across sessions. Students display differentiated develop-
mental paths in behavior, emotion, and cognition, closely
aligned with personality traits, validating EduVerse’s ca-
pacity to model personalized learning evolution.

Individual-level Evolution. As shown
in Fig. 8 and Tab. A13, students ex-
hibit clear divergence across four ses-
sions. Wang Fang improves steadily
(0.057→0.205); Zhang Jie remains
consistently strong (0.483–0.603) with
ceiling-level emotion (E_Pos = 1.000);
Zhang Yan accelerates late, reaching
0.923 in behavior; Li Wei maintains high
emotion (E_Pos ≥ 0.966 ) but shows
limited cognitive gains; Liu Li pro-
gresses gradually overall (0.011→0.179);
and Zhang Tao fluctuates markedly
(0.080–0.256). These trends show Edu-
Verse’s ability to capture differentiated
and realistic learner trajectories.

Table 4: Ablation on the Regulate.

Variant ∆BPos ∆EPos ∆CPos ∆All

w/o R 0.152 0.043 0.098 0.098
Full 0.222 0.094 0.033 0.117

Ablation on the Regulate Module. To evaluate the role of
BEC regulation, we remove the Regulate stage and compare
cross-session positive transitions. As shown in Tab. 4, overall
gains drop from 0.117 to 0.098, driven by declines in behavior
(+7.0%) and emotion (+5.1%). The larger cognitive gain with-
out regulation reflects unstable high-level jumps, mirroring the
PMR ablation in Experiment I, rather than genuine progress. With regulation enabled, transitions
become more stable and educationally plausible, confirming its importance for realistic long-horizon
learning.

Summary. EduVerse captures long-term learning evolution: behavior and emotion improve quickly,
while cognition develops more slowly, reflecting realistic developmental variation.
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4.4 EXPERIMENT IV: CROSS-DISCIPLINARY GENERALIZATION TO HISTORY LESSON

Table 5: Comparison of simulated and real-
classroom IRF patterns across subjects. “H”
= History; “C” = Chinese; “Sim” = simulated
classrooms; “Real” = real classroom data.

Setting Subjects I R F IRFrate

Sim

H_lecture 0.205 0.269 0.385 0.282
H_collab 0.256 0.226 0.415 0.282
H_round 0.143 0.071 0.329 0.114
H_avg 0.201 0.189 0.376 0.226
C_avg 0.416 0.201 0.345 0.423

Real H 0.359 – 0.513 0.333
C 0.432 – 0.600 0.423

To assess cross-disciplinary adaptability, we add a
Renaissance history lesson, distinct from Chinese in
cultural background and teaching style, while keep-
ing all agent settings fixed, testing whether EduVerse
adapts without additional tuning.

IRF discourse structure. Real classrooms show
clear subject differences (Tab. 5): Chinese exhibits
denser IRF patterns (0.423), whereas history is more
explanatory and therefore sparser (0.333). EduVerse
reproduces this divergence, yielding 0.423 for Chi-
nese and 0.226 for history. This alignment with
real trends shows that EduVerse captures discipline-
specific interaction intensity while preserving the
core IRF structure, demonstrating robust cross-disciplinary transfer.

Table 6: Group interaction analysis for
the simulated history lesson. “Nodes”
denote student agents; “Edges” represent
realized peer interactions. Density and
average degree reflect interaction inten-
sity under Lecture, Collaborative, and
Round layouts.
Env. Nodes Edges Density Avg. Deg.

Lecture 4 3 0.500 1.500
Collab 6 5 0.333 1.667
Round 6 5 0.333 1.667

Group interaction Analysis. As shown in Tab. 6, student
networks maintain substantial connectivity across layouts,
with densities ranging from 0.333 in round and collabora-
tive settings to 0.5 in the lecture layout—closely matching
interaction levels observed in Chinese lessons. Beyond
the numeric patterns, the visualized networks in Fig. 9 re-
veal clear topological distinctions: history lessons produce
shorter, localized chains, whereas literature lessons form
broader, discussion-oriented clusters.

Summary. These findings indicate that while disciplinary
context shapes the magnitude of IRF patterns, EduVerse
consistently generates coherent and adaptive interaction
dynamics and network topology across domains.

5 CONCLUSION

Figure 9: Interaction network under the lecture layout for
four subjects. Nodes represent student agents and edges denote
peer interactions. History lessons yield more localized exchanges,
while literature lessons form broader discussion chains, reflecting
disciplinary variation with stable core interaction patterns.

We introduced EduVerse, a user-
defined multi-agent simulation
framework that unifies cogni-
tion, interaction, and evolution
to model developmental student
agents. Trait-conditioned learn-
ers generated by EduVerse be-
have consistently yet adaptively
across instructional contexts.
Across four experiments, Edu-
Verse reproduces key classroom
phenomena: realistic IRF struc-
tures and personality-driven be-
haviors (Exp. I), coherent peer-
interaction patterns and smooth
human–agent integration (Exp.
II), and meaningful long-term
development with an 11.7% in-
crease in positive transitions (Exp. III). A Renaissance history lesson further demonstrates cross-
disciplinary generalization, with IRF density and interaction topology reorganizing in discipline-
consistent ways while core pedagogical structures remain stable (Exp. IV). Together, these results
show EduVerse as a scalable and transferable platform for modeling learning processes and supporting
research in adaptive learning, human-in-the-loop teaching, and cross-disciplinary educational AI.
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ETHICS STATEMENT

This study adheres to established ethical standards for research involving educational data and
human–AI interaction. All real classroom materials used in this work, including video content
and instructional transcripts, were obtained exclusively from nationally released open educational
platforms. These resources are officially published by educational authorities, publicly accessible,
and contain no private or restricted information. The instructional transcripts used for analysis include
only teacher–student dialogue from publicly available lessons and do not contain identifiable student
images or personal data.

No new data involving minors were collected for this research. The study did not conduct experiments,
interviews, or interactions with students, nor did it gather additional information from schools,
teachers, or learners. Aside from publicly released classroom transcripts, all classroom dialogues,
behavioral annotations, and emotion labels were generated by large language models and do not
contain any real personal information.

Human–agent interaction experiments in this work were limited to internal system functionality and
robustness testing. All interactions were performed solely by members of the research team, with
no recording, storage, or analysis of personal information. The purpose of these interactions was to
validate the technical performance of the system rather than to study human subjects. As such, these
activities do not constitute human-subject research.

All data used in this study have been anonymized and are employed strictly for academic research.
Raw transcripts from public educational platforms are not released or reproduced within the paper.
No data are used for commercial purposes. The research design follows principles of transparency,
privacy protection, and minimal risk.

REPRODUCIBILITY STATEMENT

To support reproducibility, we will release the EduVerse codebase, environment settings, preprocess-
ing scripts, and trained models. Processed resources and evaluation protocols will also be provided.
All resources will be made available upon acceptance.
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Amelia Glaese, Nat McAleese, Maja Trębacz, John Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth
Rauh, Laura Weidinger, Martin Chadwick, Phoebe Thacker, et al. Improving alignment of dialogue
agents via targeted human judgements. arXiv preprint arXiv:2209.14375, 2022.

James J Gross. Emotion regulation: Past, present, future. Cognition & emotion, 13(5):551–573,
1999.

James J Gross. Emotion regulation. Handbook of emotions, 3(3):497–513, 2008.

Richard F Gunstone. Constructivism and metacognition: Theoretical issues and classroom studies.
Research in physics learning: Theoretical issues and empirical studies, pp. 129–140, 1992.

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Peter JB Hancock, A Mike Burton, and Vicki Bruce. Face processing: Human perception and
principal components analysis. Memory & cognition, 24:26–40, 1996.

John Hattie and Helen Timperley. The power of feedback. Review of Educational Research, 77
(1):81–112, 2007a. doi: 10.3102/003465430298487. URL https://doi.org/10.3102/
003465430298487.

John Hattie and Helen Timperley. The power of feedback. Review of educational research, 77(1):
81–112, 2007b.

Mariane Hedegaard. Situated learning and cognition: Theoretical learning and cognition. Mind,
Culture, and Activity, 5(2):114–126, 1998.

Michael A Hogg. Social identity theory. Springer, 2016.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-agent
collaborative framework. arXiv preprint arXiv:2308.00352, 3(4):6, 2023.

John J Horton. Large language models as simulated economic agents: What can we learn from homo
silicus? Technical report, National Bureau of Economic Research, 2023.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Shengding Hu, Yuge Tu, Xu Han, Chaoqun He, Ganqu Cui, Xiang Long, Zhi Zheng, Yewei Fang,
Yuxiang Huang, Weilin Zhao, et al. Minicpm: Unveiling the potential of small language models
with scalable training strategies. arXiv preprint arXiv:2404.06395, 2024.

Wenyue Hua, Lizhou Fan, Lingyao Li, Kai Mei, Jianchao Ji, Yingqiang Ge, Libby Hemphill, and
Yongfeng Zhang. War and peace (waragent): Large language model-based multi-agent simulation
of world wars. arXiv preprint arXiv:2311.17227, 2023.

Chizuko Izawa. On human memory: Evolution, progress, and reflections on the 30th anniversary of
the Atkinson-Shiffrin model. Psychology Press, 1999.

14

https://doi.org/10.3102/003465430298487
https://doi.org/10.3102/003465430298487


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Joan Jamieson. The cognitive styles of reflection/impulsivity and field independence/dependence and
esl success. The Modern Language Journal, 76(4):491–501, 1992.

Ke Ji, Yixin Lian, Linxu Li, Jingsheng Gao, Weiyuan Li, and Bin Dai. Enhancing persona consistency
for llms’ role-playing using persona-aware contrastive learning. arXiv preprint arXiv:2503.17662,
2025a.

Miaomiao Ji, Yanqiu Wu, Zhibin Wu, Shoujin Wang, Jian Yang, Mark Dras, and Usman Naseem.
A survey on progress in llm alignment from the perspective of reward design. arXiv preprint
arXiv:2505.02666, 2025b.

Hang Jiang, Xiajie Zhang, Xubo Cao, Cynthia Breazeal, Deb Roy, and Jad Kabbara. Personallm:
Investigating the ability of large language models to express personality traits. arXiv preprint,
2024. URL https://arxiv.org/abs/2305.02547.

Hyoungwook Jin, Minju Yoo, Jeongeon Park, Yokyung Lee, Xu Wang, and Juho Kim. Teachtune: Re-
viewing pedagogical agents against diverse student profiles with simulated students. In Proceedings
of the 2025 CHI Conference on Human Factors in Computing Systems, pp. 1–28, 2025a.

Sheng Jin, Haoming Wang, Zhiqi Gao, Yongbo Yang, Bao Chunjia, and Chengliang Wang. Evolution
in simulation: Ai-agent school with dual memory for high-fidelity educational dynamics. In
Findings of the Association for Computational Linguistics: EMNLP 2025, pp. 5843–5857, 2025b.

Shi Jinxin, Zhao Jiabao, Wang Yilei, Wu Xingjiao, Li Jiawen, and He Liang. Cgmi: Configurable
general multi-agent interaction framework. arXiv preprint arXiv:2308.12503, 2023a.

Shi Jinxin, Zhao Jiabao, Wang Yilei, Wu Xingjiao, Li Jiawen, and He Liang. Cgmi: Configurable
general multi-agent interaction framework. arXiv preprint, aug 2023b. URL https://arxiv.
org/abs/2308.12503. arXiv:2308.12503 [cs].

Oliver P John, Sanjay Srivastava, et al. The big-five trait taxonomy: History, measurement, and
theoretical perspectives. 1999.

David W. Johnson, Roger T. Johnson, and Karl A. Smith. Cooperative learning returns to col-
lege: What evidence is there that it works? Change: The Magazine of Higher Learning, 30
(4):26–35, 1998. doi: 10.1080/00091389809602629. URL https://doi.org/10.1080/
00091389809602629.

OKPARAUGO OBINNA Joseph. Bruner’s curriculum model, 2021.

Lisa Kervin, Brian Ferry, and Lisa Carrington. Classsim: Preparing tomorrows teachers for classroom
reality. In Society for Information Technology & Teacher Education International Conference, pp.
3204–3211. AACE, 2006.

Meera Komarraju, Steven J Karau, Ronald R Schmeck, and Alen Avdic. The big five personality
traits, learning styles, and academic achievement. Personality and individual differences, 51(4):
472–477, 2011.

David R Krathwohl. A revision of bloom’s taxonomy: An overview. Theory into practice, 41(4):
212–218, 2002.

James P Lantolf. Introducing sociocultural theory. Sociocultural theory and second language
learning, 1:1–26, 2000.

Unggi Lee, Sanghyeok Lee, Junbo Koh, Yeil Jeong, Haewon Jung, Gyuri Byun, Yunseo Lee,
Jewoong Moon, Jieun Lim, and Hyeoncheol Kim. Generative agent for teacher training:
Designing educational problem-solving simulations with large language model–based agents
for pre-service teachers. In Proceedings of the NeurIPS 2023 Workshop on Generative AI
for Education (GAIED): Advances, Opportunities, and Challenges, dec 2023. URL https:
//gaied.org/neurips2023/files/8/8_poster.pdf. Poster.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang, Tristan
Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large language-and-vision
assistant for biomedicine in one day. Advances in Neural Information Processing Systems, 36,
2024a.

15

https://arxiv.org/abs/2305.02547
https://arxiv.org/abs/2308.12503
https://arxiv.org/abs/2308.12503
https://doi.org/10.1080/00091389809602629
https://doi.org/10.1080/00091389809602629
https://gaied.org/neurips2023/files/8/8_poster.pdf
https://gaied.org/neurips2023/files/8/8_poster.pdf


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for “mind” exploration of large language model society. arXiv
preprint, 2023. URL https://arxiv.org/abs/2303.17760. arXiv:2303.17760 [cs.AI].

Hao Li, Chenghao Yang, An Zhang, Yang Deng, Xiang Wang, and Tat-Seng Chua. Hello again!
llm-powered personalized agent for long-term dialogue. arXiv preprint, 2025a. URL https:
//arxiv.org/abs/2406.05925.

Haoxuan Li, Jifan Yu, Xin Cong, Yang Dang, Zhang li Daniel, Yisi Zhan, Huiqin Liu, and Zhiyuan
Liu. Exploring llm-based student simulation for metacognitive cultivation. arXiv preprint, apr
2025b. URL https://arxiv.org/abs/2502.11678. arXiv:2502.11678 [cs].

Haoxuan Li, Jifan Yu, Xin Cong, Yang Dang, Yisi Zhan, Huiqin Liu, and Zhiyuan Liu. Exploring
llm-based student simulation for metacognitive cultivation. arXiv preprint arXiv:2502.11678,
2025c.

Xiaojian Li, Haoyuan Shi, Rongwu Xu, and Wei Xu. Ai awareness. arXiv preprint arXiv:2504.20084,
2025d.

Xinyi Li, Sai Wang, Siqi Zeng, Yu Wu, and Yi Yang. A survey on llm-based multi-agent systems:
workflow, infrastructure, and challenges. Vicinagearth, 1(1):9, 2024b.

Chien-Chang Lin, Anna Y. Q. Huang, and Owen H. T. Lu. Artificial intelligence in intelligent
tutoring systems toward sustainable education: A systematic review. Smart Learning Environments,
10(1):41, 2023. doi: 10.1186/s40561-023-00260-y. URL https://doi.org/10.1186/
s40561-023-00260-y.

Elizabeth KY Loh. What we know about expectancy-value theory, and how it helps to design a
sustained motivating learning environment. System, 86:102119, 2019.

Keming Lu, Bowen Yu, Chang Zhou, and Jingren Zhou. Large language models are superpositions of
all characters: Attaining arbitrary role-play via self-alignment. arXiv preprint arXiv:2401.12474,
2024.

Xinyi Lu and Xu Wang. Generative students: Using llm-simulated student profiles to support question
item evaluation. In Proceedings of the Eleventh ACM Conference on Learning@ Scale, pp. 16–27,
2024.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. arXiv preprint, 2023. URL https://arxiv.org/
abs/2303.17651.

Adyasha Maharana, Dong-Ho Lee, Sergey Tulyakov, Mohit Bansal, Francesco Barbieri, and Yuwei
Fang. Evaluating very long-term conversational memory of llm agents. arXiv preprint, 2024. URL
https://arxiv.org/abs/2402.17753.

Julia M Markel, Steven G Opferman, James A Landay, and Chris Piech. Gpteach: Interactive ta
training with gpt based students.(2023). Google Scholar Google Scholar Reference, 2023a.

Julia M. Markel, Steven G. Opferman, James A. Landay, and Chris Piech. Gpteach: Interactive
ta training with gpt-based students. In Proceedings of the Tenth ACM Conference on Learning
@ Scale, pp. 226–236, Copenhagen, Denmark, jul 2023b. ACM. ISBN 979-8-4007-0025-5.
doi: 10.1145/3573051.3593393. URL https://dl.acm.org/doi/10.1145/3573051.
3593393.

Noboru Matsuda, Evelyn Yarzebinski, Victoria Keiser, Rohan Raizada, William Cohen, Gabriel
Stylianides, and Kenneth Koedinger. Cognitive anatomy of tutor learning: Lessons learned with
simstudent. Journal of Educational Psychology, 105:1152–1163, sep 2013. doi: 10.1037/a0031955.

Ethan Mollick, Lilach Mollick, Natalie Bach, L. J. Ciccarelli, Ben Przystanski, and Daniel Ravipinto.
Ai agents and education: Simulated practice at scale. arXiv preprint, jun 2024. URL https:
//arxiv.org/abs/2407.12796. arXiv:2407.12796 [cs].

16

https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2406.05925
https://arxiv.org/abs/2406.05925
https://arxiv.org/abs/2502.11678
https://doi.org/10.1186/s40561-023-00260-y
https://doi.org/10.1186/s40561-023-00260-y
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2402.17753
https://dl.acm.org/doi/10.1145/3573051.3593393
https://dl.acm.org/doi/10.1145/3573051.3593393
https://arxiv.org/abs/2407.12796
https://arxiv.org/abs/2407.12796


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Steven Moore, Richard Tong, Anjali Singh, Zitao Liu, Xiangen Hu, Yu Lu, Joleen Liang, Chen Cao,
Hassan Khosravi, Paul Denny, et al. Empowering education with llms-the next-gen interface and
content generation. In International Conference on Artificial Intelligence in Education, pp. 32–37.
Springer, 2023.

Benjamin D. Nye, Arthur C. Graesser, and Xiangen Hu. Autotutor and family: A review of 17
years of natural language tutoring. International Journal of Artificial Intelligence in Education, 24
(4):427–469, 2014. doi: 10.1007/s40593-014-0029-5. URL https://doi.org/10.1007/
s40593-014-0029-5.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

German I. Parisi, Ronald Kemker, Jose L. Part, Christopher Kanan, and Stefan Wermter. Continual
lifelong learning with neural networks: A review. Neural Networks, 113:54–71, may 2019. doi:
10.1016/j.neunet.2019.01.012. URL https://doi.org/10.1016/j.neunet.2019.01.
012.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and Michael S.
Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings of the 36th
Annual ACM Symposium on User Interface Software and Technology, pp. 1–22, 2023.

Arthur E. Poropat. A meta-analysis of the five-factor model of personality and academic performance.
Psychological Bulletin, 135(2):322–338, 2009. doi: 10.1037/a0014996.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

Eryansyah Putra Renninger. Exploring the impact of constructivist learning on students’ prob-lem-
solving abilities in education. Jurnal Ilmu Pendidikan Dan Humaniora, 13(2):81–91, 2024.

Humberto Rodrigues, A Jesús, Richard Lamb, Ikeseon Choi, and Tosha Owens. Unravelling student
learning: Exploring nonlinear dynamics in science education. Int. J. Psychol. Neurosci, 9:118–137,
2023.

Shamik Roy, Raphael Shu, Nikolaos Pappas, Elman Mansimov, Yi Zhang, Saab Mansour, and
Dan Roth. Conversation style transfer using few-shot learning. arXiv preprint, 2023. URL
https://arxiv.org/abs/2302.08362.

Jacob Russin, Sam Whitman McGrath, Danielle J Williams, and Lotem Elber-Dorozko. From frege
to chatgpt: Compositionality in language, cognition, and deep neural networks. arXiv preprint
arXiv:2405.15164, 2024.

Andi Rustandi. An analysis of irf (initiation-response-feedback) on classroom interaction in efl
speaking class. EduLite: Journal of English Education, Literature and Culture, 2(1):239–250,
2017.

Dale H Schunk and Maria K DiBenedetto. Self-efficacy theory in education. In Handbook of
motivation at school, pp. 34–54. Routledge, 2016.

Sarah Scott and Annemarie Palincsar. Sociocultural theory, 2013.

Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for
role-playing. arXiv preprint, dec 2023. URL https://arxiv.org/abs/2310.10158.
arXiv:2310.10158 [cs].

Elisa Shernoff, Stacy Frazier, Christine Lisetti, Cedric Buche, Stephanie Lunn, Claire Brown, Alban
Delamarre, Tommy Chou, Joseph Gabbard, and Emily Morgan. Early career teacher professional
development: Bridging simulation technology with evidence-based behavior management. Journal
of Technology and Teacher Education, 26(2):299–326, 2018.

17

https://doi.org/10.1007/s40593-014-0029-5
https://doi.org/10.1007/s40593-014-0029-5
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1016/j.neunet.2019.01.012
https://arxiv.org/abs/2302.08362
https://arxiv.org/abs/2310.10158


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Marilee Sprenger. Learning and memory: The brain in action. ASCD, 1999.

Stephan Swinnen, Joost Vandenberghe, and Erik Van Assche. Role of cognitive style constructs field
dependence-independence and reflection-impulsivity in skill acquisition. Journal of Sport and
Exercise Psychology, 8(1):51–69, 1986.

Zhen Tan, Jun Yan, I-Hung Hsu, Rujun Han, Zifeng Wang, Long T. Le, Yiwen Song, Yanfei Chen,
Hamid Palangi, George Lee, Anand Iyer, Tianlong Chen, Huan Liu, Chen-Yu Lee, and Tomas
Pfister. In prospect and retrospect: Reflective memory management for long-term personalized
dialogue agents. arXiv preprint, 2025. URL https://arxiv.org/abs/2503.08026.

W Scott Terry. Learning and memory: Basic principles, processes, and procedures. Routledge, 2017.

Esther Thelen and Linda B Smith. A dynamic systems approach to the development of cognition and
action. MIT press, 1994.

Khanh-Tung Tran, Dung Dao, Minh-Duong Nguyen, Quoc-Viet Pham, Barry O’Sullivan, and
Hoang D Nguyen. Multi-agent collaboration mechanisms: A survey of llms. arXiv preprint
arXiv:2501.06322, 2025.

Yu-Min Tseng, Yu-Chao Huang, Teng-Yun Hsiao, Wei-Lin Chen, Chao-Wei Huang, Yu Meng,
and Yun-Nung Chen. Two tales of persona in llms: A survey of role-playing and person-
alization. In Findings of the Association for Computational Linguistics: EMNLP 2024, pp.
16612–16631, Miami, Florida, USA, nov 2024. Association for Computational Linguistics.
doi: 10.18653/v1/2024.findings-emnlp.969. URL https://aclanthology.org/2024.
findings-emnlp.969/.

Kurt VanLehn, Stellan Ohlsson, and Rod Nason. Applications of simulated students: An exploration.
Journal of artificial intelligence in education, 5:135–135, 1994.

Cheryl L Walker and Bruce M Shore. Understanding classroom roles in inquiry education: Linking
role theory and social constructivism to the concept of role diversification. Sage Open, 5(4):
2158244015607584, 2015.

Haonan Wang, James Zou, Michael Mozer, Anirudh Goyal, Alex Lamb, Linjun Zhang, Weijie J Su,
Zhun Deng, Michael Qizhe Xie, Hannah Brown, et al. Can ai be as creative as humans? arXiv
preprint arXiv:2401.01623, 2024a.

Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Ji-
akai Tang, Xu Chen, Yankai Lin, Wayne Xin Zhao, Zhewei Wei, and Jirong Wen. A survey
on large language model based autonomous agents. Frontiers of Computer Science, 18(6),
mar 2024b. doi: 10.1007/s11704-024-40231-1. URL http://dx.doi.org/10.1007/
s11704-024-40231-1.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. arXiv preprint, 2024c. URL https://arxiv.org/abs/
2302.00487.

Qingyue Wang, Yanhe Fu, Yanan Cao, Shuai Wang, Zhiliang Tian, and Liang Ding. Recursively
summarizing enables long-term dialogue memory in large language models. arXiv preprint, 2025a.
URL https://arxiv.org/abs/2308.15022.

Tianjia Wang, Tong Wu, Huayi Liu, Chris Brown, and Yan Chen. Generative co-learners: Enhancing
cognitive and social presence of students in asynchronous learning with generative ai. Proc. ACM
Hum.-Comput. Interact., 9(1):GROUP19:1–GROUP19:24, jan 2025b. doi: 10.1145/3701198.
URL https://dl.acm.org/doi/10.1145/3701198.

Zekun Moore Wang, Zhongyuan Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu,
Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang Zhang, Wanli
Ouyang, Ke Xu, Stephen W. Huang, Jie Fu, and Junran Peng. Rolellm: Benchmarking, eliciting,
and enhancing role-playing abilities of large language models. arXiv preprint, 2024d. URL
https://arxiv.org/abs/2310.00746.

18

https://arxiv.org/abs/2503.08026
https://aclanthology.org/2024.findings-emnlp.969/
https://aclanthology.org/2024.findings-emnlp.969/
http://dx.doi.org/10.1007/s11704-024-40231-1
http://dx.doi.org/10.1007/s11704-024-40231-1
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2308.15022
https://dl.acm.org/doi/10.1145/3701198
https://arxiv.org/abs/2310.00746


972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing the
emergent cognitive synergy in large language models: A task-solving agent through multi-persona
self-collaboration. arXiv preprint arXiv:2307.05300, 2023.

Hansun Zhang Waring. Moving out of irf (initiation-response-feedback): A single case analysis.
Language learning, 59(4):796–824, 2009.

Allan Wigfield. Expectancy-value theory of achievement motivation: A developmental perspective.
Educational psychology review, 6:49–78, 1994.

Allan Wigfield and Jacquelynne S Eccles. Expectancy–value theory of achievement motivation.
Contemporary educational psychology, 25(1):68–81, 2000.

Brent G Wilson and Karen Madsen Myers. Situated cognition in theoretical and practical context.
Theoretical foundations of learning environments, pp. 57–88, 2000.

Songlin Xu, Xinyu Zhang, and Lianhui Qin. Eduagent: Generative student agents in learning. arXiv
preprint, mar 2024. URL https://arxiv.org/abs/2404.07963. arXiv:2404.07963 [cs].

Songlin Xu, Hao-Ning Wen, Hongyi Pan, Dallas Dominguez, Dongyin Hu, and Xinyu Zhang.
Classroom simulacra: Building contextual student generative agents in online education for
learning behavioral simulation. In Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems, pp. 1–26, 2025.

Yuzhuang Xu, Shuo Wang, Peng Li, Fuwen Luo, Xiaolong Wang, Weidong Liu, and Yang Liu.
Exploring large language models for communication games: An empirical study on werewolf.
arXiv preprint arXiv:2309.04658, 2023.

Tzu-Chi Yang and Sherry Y Chen. Investigating students’ online learning behavior with a learning
analytic approach: Field dependence/independence vs. holism/serialism. Interactive Learning
Environments, 31(2):1041–1059, 2023.

Yiyu Yao. Tri-level thinking: models of three-way decision. International Journal of Machine
Learning and Cybernetics, 11(5):947–959, 2020.

Murong Yue, Wenhan Lyu, Wijdane Mifdal, Jennifer Suh, Yixuan Zhang, and Ziyu Yao. Mathvc: An
llm-simulated multi-character virtual classroom for mathematics education. In Proceedings of the
AAAI 2025 Workshop on Generative AI in Education, jan 2025. URL https://arxiv.org/
abs/2404.06711. Poster; accepted by AAAI Workshop.

Yun Yue and Jinjin Lu. International students’ motivation to study abroad: an empirical study based
on expectancy-value theory and self-determination theory. Frontiers in psychology, 13:841122,
2022.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur Szlam, Douwe Kiela, and Jason Weston. Per-
sonalizing dialogue agents: I have a dog, do you have pets too? arXiv preprint arXiv:1801.07243,
2018.

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianxiao
Jiang, Jie Cao, Huiqin Liu, Zhiyuan Liu, Lei Hou, and Juanzi Li. Simulating classroom education
with llm-empowered agents. arXiv preprint, nov 2024a. URL https://arxiv.org/abs/
2406.19226. arXiv:2406.19226 [cs].

Zheyuan Zhang, Daniel Zhang-Li, Jifan Yu, Linlu Gong, Jinchang Zhou, Zhanxin Hao, Jianxiao Jiang,
Jie Cao, Huiqin Liu, Zhiyuan Liu, et al. Simulating classroom education with llm-empowered
agents. arXiv preprint arXiv:2406.19226, 2024b.

Hao Zhao and Scott E Seibert. The big five personality dimensions and entrepreneurial status: a
meta-analytical review. Journal of applied psychology, 91(2):259, 2006.

Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. Towards lifelong learning of large
language models: A survey. arXiv preprint, 2024. URL https://arxiv.org/abs/2406.
06391.

19

https://arxiv.org/abs/2404.07963
https://arxiv.org/abs/2404.06711
https://arxiv.org/abs/2404.06711
https://arxiv.org/abs/2406.19226
https://arxiv.org/abs/2406.19226
https://arxiv.org/abs/2406.06391
https://arxiv.org/abs/2406.06391


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Junhao Zheng, Chengming Shi, Xidi Cai, Qiuke Li, Duzhen Zhang, Chenxing Li, Dong Yu, and
Qianli Ma. Lifelong learning of large language model based agents: A roadmap. arXiv preprint,
2025. URL https://arxiv.org/abs/2501.07278.

Wanjun Zhong, Lianghong Guo, Qiqi Gao, He Ye, and Yanlin Wang. Memorybank: Enhancing large
language models with long-term memory. arXiv preprint, 2023. URL https://arxiv.org/
abs/2305.10250.

Jinfeng Zhou, Zhuang Chen, Dazhen Wan, Bosi Wen, Yi Song, Jifan Yu, Yongkang Huang, Libiao
Peng, Jiaming Yang, Xiyao Xiao, et al. Characterglm: Customizing chinese conversational ai
characters with large language models. arXiv preprint arXiv:2311.16832, 2023.

Özge Kelleci and Nuri Can Aksoy. Using game-based virtual classroom simulation in teacher training:
User experience research. Simulation & Gaming, 52(2):204–225, 2021.

20

https://arxiv.org/abs/2501.07278
https://arxiv.org/abs/2305.10250
https://arxiv.org/abs/2305.10250


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

APPENDIX

APPENDIX CONTENTS

A The Use of Large Language Models (LLMs) 22

B Comprehensive Related Works 22

B.1 Educational Agents and Virtual Student Simulations . . . . . . . . . . . . . . . . . 22

B.2 LLM-driven Multi-agent Social Simulations . . . . . . . . . . . . . . . . . . . . . 22

B.3 Personalized Modeling and Behavioral Consistency Mechanisms . . . . . . . . . . 23

C Detailed Information for EduVerse Framework 26

C.1 Detailed Description of Environment Module . . . . . . . . . . . . . . . . . . . . 26

C.2 Detailed Description of Cognition Engine . . . . . . . . . . . . . . . . . . . . . . 28

C.3 Detailed Description of Social Situatedness . . . . . . . . . . . . . . . . . . . . . 36

C.4 Detailed Description of Temporal Dynamics . . . . . . . . . . . . . . . . . . . . . 38

C.5 Memory Mechanisms for Agent Cognition . . . . . . . . . . . . . . . . . . . . . . 40

D Detailed Information for Experimental Design and Evaluation 43

D.1 Experiment Setup and Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 43

D.2 BEC Generated Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

D.3 Experiment I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

D.4 Experiment II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

D.5 Experiment III . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

D.6 Experiment IV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

E Multi-Agent Instructional Interaction Cases across Genre-Specific Tasks 61

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

During manuscript preparation, Large Language Models (LLMs) were employed solely for language
refinement and stylistic polishing.

B COMPREHENSIVE RELATED WORKS

B.1 EDUCATIONAL AGENTS AND VIRTUAL STUDENT SIMULATIONS

Modeling virtual student agents has long been a central thread in educational AI research (Dai &
Ke, 2022; Chou et al., 2003; Chheang et al., 2024). As early as the 1990s, researchers introduced
“teachable agents” to support teacher training and foster learning by teaching. Representative
examples include VanLehn et al.’s work in physics tutoring (VanLehn et al., 1994) and the Betty’s
Brain system (Biswas et al., 2005), which formalized the learning-by-teaching paradigm. However,
these systems relied heavily on scripted behavioral policies and static knowledge-update mechanisms,
limiting their ability to capture temporal dynamics in student behavior and affect. Similarly, traditional
intelligent tutoring systems emphasized knowledge mastery (e.g., skill tracing) but paid little attention
to developmental trajectories.

The advent of large language models (LLMs) has enabled a new generation of educational agents,
characterized by open-ended interaction, behavioral diversity, and learner-like imperfections (Russin
et al., 2024; Chu et al., 2025; Moore et al., 2023). Recent work has leveraged prompt-conditioned
LLMs to simulate students with varying ability levels, personalities, and misconceptions (Wang et al.,
2024a; Glaese et al., 2022). For example, Lu and Wang (Lu & Wang, 2024) proposed the Generative
Students framework to assess item difficulty through simulated learners; Markel et al. (Markel
et al., 2023a) introduced GPTeach to enhance teacher training with diverse LLM-generated student
responses; and Jin et al. (Jin et al., 2025a) developed TeachTune, which evaluates instructional
agents against a spectrum of student personas, highlighting how pedagogical strategies adapt to
personality-driven differences.

Beyond individual interactions, researchers have explored classroom-level simulations with multi-
agent LLM frameworks. AgentVerse (Chen et al., 2023b) and CGMI (Jinxin et al., 2023a) enable
heterogeneous agents to engage in collaborative and instructional roles. Building on this, Sim-
Class (Zhang et al., 2024b) incorporates a class manager to coordinate Initiation–Response–Feedback
(IRF) dialogues between teacher and student agents, achieving high realism: agents respond to
teacher prompts, initiate follow-ups, maintain turn-taking, and even exhibit emergent behaviors such
as spontaneous group discussions and peer-led task completion. These advances mark an important
step from scripted interactions toward socially grounded, self-organizing classroom learning.

Nevertheless, existing systems remain limited in modeling long-term behavioral evolution, affective
regulation, and stylistic coherence, with most constrained to single-session interactions. In contrast,
EduVerse provides a unified, multi-level simulation platform that supports user-defined modeling
of physical environments, agent configurations, and cross-session evolution. Its open interfaces
allow researchers to flexibly configure classroom layouts, seating arrangements, and interaction
networks, and systematically examine learners’ cognitive development and group dynamics. Through
this design, EduVerse bridges the gap between scripted tutor–learner simulations and scalable,
development-oriented classroom modeling.

B.2 LLM-DRIVEN MULTI-AGENT SOCIAL SIMULATIONS

The rise of large language models has fueled a new wave of multi-agent simulations, where agents act
as generative entities capable of open-ended dialogue and socially coherent behavior (Guo et al., 2024;
Gao et al., 2024; Hua et al., 2023). A landmark example is Generative Agents by Park et al. (Park
et al., 2023), which deployed 25 GPT-powered agents in a virtual town. Each agent followed a daily
routine, formed human-like relationships, and even organized a collective event without external
control, illustrating how memory and reflection mechanisms support emergent behaviors. This work
sparked broad interest in agent-based modeling grounded in persistent memory and self-regulation.

Subsequent studies extended this paradigm to collaborative and adversarial settings. ChatDev (Qian
et al., 2023) and MetaGPT (Hong et al., 2023) simulated professional teams by embedding role-
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specific prompting and structured communication flows, thereby improving task-level coherence.
Wang et al. (Wang et al., 2023) showed that even single-agent simulations can emulate multi-agent
reasoning by activating multiple internal personas through self-dialogue, enhancing creativity and
logical reasoning.

Competitive scenarios provide further evidence of emergent strategy. Xu et al. (Xu et al., 2023)
employed GPT agents in the game Werewolf to model deception, persuasion, and coalition dynamics.
In economics, Horton (Horton, 2023) and Aher et al. (Aher et al., 2023) embedded LLM agents in
negotiation and public goods games, demonstrating rational decision-making alongside human-like
biases. Together, these studies underscore the feasibility of LLM agents as proxies for large-scale
human social behavior.

Nonetheless, these systems largely focus on adult interactions and informal contexts, lacking the
structured pedagogical mechanisms required for educational environments. Most do not support
teacher–student dialogue based on IRF cycles, nor do they capture learner development over time or
adapt to knowledge progression and group dynamics. In contrast, EduVerse introduces LLM-driven
multi-agent simulation into education, integrating structured classroom discourse (e.g., IRF cycles),
metacognitive regulation, and cross-session evolution. This provides a scalable and interpretable
platform for modeling instructional interactions and systematically examining the developmental
trajectories of learners.

B.3 PERSONALIZED MODELING AND BEHAVIORAL CONSISTENCY MECHANISMS

Maintaining long-term consistency of personality, language style, and behavioral patterns remains a
central challenge in LLM-driven multi-agent environments (Guo et al., 2024; Li et al., 2024b; Tran
et al., 2025). Despite their generative fluency, LLMs often suffer from “persona drift” in extended
interactions, where role-specific traits weaken or deviate over time (Xu et al., 2023). For example,
a student agent initially designed to be introverted may gradually adopt assertive conversational
patterns, undermining the credibility of long-term simulations. Such issues arise from limited identity
retention and emotional coherence, motivating research on role stabilization mechanisms.

Early dialogue systems attempted to preserve character identity through structured profiles and
task-specific memory modules. PersonaChat (Zhang et al., 2018), for instance, embedded fixed
persona facts, while later work introduced memory modules to retain role-consistent traits across
turns (Ouyang et al., 2022). These approaches proved effective in short sessions but struggled with
complexity and duration. In LLM-based agents, persona-conditioned prompting became a common
strategy, though it often failed under topic shifts or multi-phase tasks (Xu et al., 2023).

Recent advances emphasize fine-tuning and reward-based alignment to improve role fidelity (Ji
et al., 2025b; Chen et al., 2025). CharacterGLM (Zhou et al., 2023) and Ditto (Lu et al., 2024)
enhanced intra-role consistency by training on persona-labeled dialogues or generating synthetic
role-specific corpora. Reinforcement Learning from Human Feedback (RLHF) further penalized
off-character outputs, reinforcing behavioral alignment. However, these methods face scalability
challenges, including data costs and generalization trade-offs.

To mitigate reliance on supervised correction, self-monitoring strategies have emerged (Li et al.,
2025d; Behore et al., 2024). Ji et al. (Ji et al., 2025a) introduced a role-aware reflection loop that
allows models to detect and revise misaligned outputs. Coupled with contrastive training, this
approach significantly improved long-term role consistency. Memory-augmented designs provide
additional scaffolding: systems log key interactions and behavioral states, with summarization or
vector retrieval supporting continuity in future outputs (Park et al., 2023; Ouyang et al., 2022).

These developments are particularly salient in education. To simulate realistic learners, researchers
have designed student agents with distinct cognitive and non-cognitive traits. TeachTune (Jin et al.,
2025a) showed that teacher agents adjust feedback strategies depending on student profiles such as
confidence or anxiety, while Li et al. (Li et al., 2025c) modeled “imperfect learners” by injecting
errors into outputs, prompting teacher agents to practice remediation. Such findings highlight the
pedagogical utility of stable yet differentiated learner personas.

EduVerse advances this line of work by integrating profile-driven planning, memory-aligned reg-
ulation, and behavior-consistent generation into its Cognition–Interaction–Evolution framework.
Compared to single-agent approaches, EduVerse achieves both intra-agent coherence and inter-agent
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variation at the classroom scale, providing a scalable and interpretable solution for educational
simulation.
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C DETAILED INFORMATION FOR EDUVERSE FRAMEWORK

C.1 DETAILED DESCRIPTION OF ENVIRONMENT MODULE

C.1.1 HIERARCHICAL SPATIAL ORGANIZATION

EduVerse models classroom environments using a four-tiered hierarchical spatial structure Z =
{ZS ,ZA,ZO,ZI}, corresponding to Sector, Arena, Object, and Item. This design supports
pedagogically meaningful interactions and dynamic behavior generation, and provides semantic
alignment between agent perception, spatial context, and task execution.

At the top level, a Sector partitions the virtual classroom into functional instructional zones, e.g.,
Teacher Sector, Student Sector, and Activity Sector. Within each sector, an Arena specifies localized
interactive regions—such as a discussion circle or a teaching podium—that constrain mobility
and determine perceptual access to nearby objects. Objects embedded within Arenas (e.g., desks,
blackboards, presentation screens) serve as anchors for attention and instructional actions. Items
(e.g., chalk, textbooks, notebooks) are the most granular perceivable units and constitute the basic
elements of fine-grained interaction.

For example, in the Teacher Podium Arena, a blackboard and lectern support behaviors such as
lecturing and board writing. In contrast, a Student Group Arena contains desks and personal learning
materials, enabling small-group collaboration or individualized learning. A complete layout instance
typically includes multiple sectors, each containing several arenas populated with pedagogically
structured objects and items (e.g., chalk, erasers, water cups), collectively forming a coherent four-
level spatial graph (see Tab. A2). This hierarchical structure supports classroom configurations
ranging from lecture-centric layouts to collaborative or round-table setups, and allows real-time
adaptation of spatial roles, interaction boundaries, and perception zones as classroom dynamics
evolve.

Table A2: Hierarchical Classroom Environment Structure

Sector (ID) Arena Object Items

Teacher Zone (10001) Resource Display Area Blackboard Chalk, Blackboard Eraser
Teacher Zone (10001) Podium Area Podium Desk Cup, Textbook, Mobile Phone, Chalk
Teacher Zone (10001) Instruction Area Electronic

Whiteboard
—

Student Zone (20001) Group A Area Student A1...N Textbook, Cup, Pencil Case, Pen,
Backpack

Student Zone (20001) Group B Area Student B1...N —

Activity Zone (30001) Storage Area Cleaning Supplies Broom, Mop
Activity Zone (30001) Storage Area Daily Utilities Clock, Cabinet, Water Dispenser

Note: This table instantiates the 4-level spatial structure in EduVerse—Sector, Arena, Object, and Item.
Each arena defines a functional subspace containing interactive objects for perception and behavior
planning.

C.1.2 INTERACTION AFFORDANCES AND CONSTRAINTS

The spatial hierarchy also functions as an interaction scaffold that governs how agents perceive, move,
and act. Layouts map to pedagogical strategies: lecture-centric configurations emphasize teacher-led,
unidirectional communication, while round-table or collab-based layouts promote peer collaboration.
The “Sector–Arena–Object–Item” hierarchy accommodates these variations and enables dynamic
spatial adaptation during simulation.

In the current implementation, spatial location primarily conditions behavioral availability. For
example, only students within a Presentation Arena can access teacher content in real time; in group
tasks, shared Arena–Object associations trigger peer-based interactions. EduVerse thus enforces mode-
specific constraints (lecture, presentation, group discussion), with corresponding action permissions.
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Beyond this, the framework is designed to be extensible. For instance, each student can be assigned a
personalized perception_config (e.g., perceptual radius and maximum trackable items), and
collision constraints or spawn configurations can be integrated to enhance physical realism. While not
activated in the current experiments, these extensions illustrate the scalability of EduVerse towards
more fine-grained behavioral planning and environment fidelity.

C.1.3 SEAT_GRAPH FORMALIZATION AND LAYOUT TEMPLATES

We define the seat graph as an unweighted adjacency matrix Aseat ∈ {0, 1}N×N , where

Aseat
ij =

{
1, if i and j satisfy the layout-specific adjacency rule,
0, otherwise.

Formally, EduVerse provides three canonical layouts:

• Lecture Adjacency is primarily defined within rows, restricted to students sitting close to
each other:

Aseat
ij = I

[
d(i, j) ≤ τd ∧ row(i) = row(j)

]
.

• Round Table Students are seated around circular tables; adjacency includes both immediate
neighbors and face-to-face counterparts:

Aseat
ij = I

[
j = neighbor(i) ∨ j = opp(i)

]
.

• Collab_Two Tables Within-group students are fully connected, while across-group edges
are suppressed:

Aseat
ij = I

[
g(i) = g(j)

]
.

Thus, the seat graph provides a baseline, layout-dependent topological structure:

Aseat =


Aseat

Lecture, if layout = Lecture,

Aseat
Round, if layout = Round Table,

Aseat
Collab, if layout = Collab_Two_Tables.

This structure is a binary, unweighted topology that captures only peer adjacency. It does not yet
encode higher-order social or instructional factors. Instead, it serves as a foundation upon which
cognitive planning can later be modeled by incorporating teacher and board visibility.

C.1.4 COGNITIVE PLANNING AND DISTANCE EFFECTS

The physical distances encoded in the seat graph directly affect students’ cognitive planning. While
the seat graph itself captures only peer proximity relations, the cognitive planning process requires a
richer consideration of spatial constraints, including student–student, student–teacher, and student–
board distances. Importantly, these spatial factors constitute only one component of cognitive
planning; other psychological, pedagogical, and contextual variables also play a crucial role, but here
we explicitly highlight the influence of the physical environment.

Distance-based cognitive factors

Let pi ∈ Z2 denote the spatial position of student i. We define three forms of distance measures
relevant to cognitive planning:

• Peer distance:
d(i, j) = ∥pi − pj∥2, i ̸= j,

capturing the Euclidean distance between students i and j.
• Teacher distance:

dT (i) = ∥pi − pT ∥2,
where pT denotes the teacher’s position. This distance reflects the cognitive accessibility of
the teacher, which is essential for attention allocation and interaction.
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Table A3: Environment configuration parameters in EduVerse. Parameters specify spatial layout,
interaction rules, and perception constraints.

Parameter Description

Grid size 30× 20 discrete lattice
Layout type Lecture / Round Table / Collaborative (two tables)
Table radius Default = 3 grid units
Table gap Default = 10 grid units (between two tables)
Objects Students, teacher, podium, board, tables
Peer adjacency Edge (i, j) if d(i, j) ≤ τd = 4.5
Group adjustment Threshold +1.0 if g(i) = g(j)
Round Table rule Add cross-table “opposite” edges
Collaborative rule Within-table complete graph; no inter-table edges
Perception radius r = 8 grid units
Perception capacity κ = 5 objects per student
Collision/occupancy One object per grid cell; invalid moves rejected

• Board distance:
dB(i) = ∥pi − pB∥2,

where pB denotes the board’s position. This measure captures the visibility and salience of
instructional materials.

Integration into cognitive planning

In cognitive planning, a student’s effective engagement is influenced by a combination of these
distances. We define a cognitive planning function

C(i) = f
(
{d(i, j)}j ̸=i, dT (i), dB(i), Ω(i)

)
,

where f(·) aggregates peer proximity, teacher distance, and board distance together with additional
factors Ω(i) (e.g., individual motivation, prior knowledge, or task demands).

Thus, physical proximity among peers (as encoded in the seat graph) provides the structural baseline,
while teacher and board distances add instructional and attentional dimensions. These spatial factors,
combined with non-spatial determinants Ω(i), jointly shape the student’s cognitive planning process.

C.1.5 CONFIGURATION SCHEMA AND PHYSICAL REALISM

Our environment is instantiated on a two-dimensional grid of size 30× 20. Each classroom layout is
parameterized by a configuration schema, including layout type (Lecture, Round Table, or Collabora-
tive Two Tables), table radius, table spacing, and object coordinates (students, teacher, podium, board,
and tables).

Peer adjacency is determined by a Euclidean distance threshold τd = 4.5, with an additional tolerance
of +1.0 if two students belong to the same group. In the Round Table layout, opposite students
are explicitly connected, while in the Collaborative layout, within-table students form a complete
subgraph and inter-table connections are suppressed.

Perception is bounded by a radius (r = 8) and a capacity constraint (κ = 5), ensuring that each student
can only attend to a limited number of peers or objects. Collision masks and occupancy constraints
are implicitly enforced by the grid representation, while actions violating spatial feasibility (e.g.,
moving into occupied cells or colliding with fixed objects) are rejected. This ensures reproducibility
and interpretability of spatially grounded interactions.

C.2 DETAILED DESCRIPTION OF COGNITION ENGINE

C.2.1 THEORETICAL FOUNDATIONS OF PCA ARCHITECTURE

CIE adopts a three-stage Perception–Cognition–Action (PCA) architecture to simulate agent
decision-making (Chen et al., 2024a; Davis & Gao, 2003; Hancock et al., 1996; Yao, 2020). This
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Table A4: Functional differentiation between student and teacher agents in CIE.

Component Student Agent Ai
S Teacher Agent AT

Perception Input Teacher actions, peer behavior, social re-
quests, seat graph, interaction graph

Class-wide metrics, participation logs

Cognitive Objective Interpret prompts, decide on participation Track engagement, guide task flow
Action Output Interactive action, Active action, Passive

action, Off-task action
Task instruction, Interactive teaching acts

Triggering Condition Willingness + gating check Scripted plans + real-time updates
Prompt Conditioning Personalized traits: personality, style, moti-

vation
Fixed templates: instructional role

design is grounded in both classical AI agent models and foundational theories in educational
psychology, capturing the trajectory from environmental sensing to goal-directed behavior.

From a psychological perspective, PCA aligns with the Atkinson–Shiffrin model of information
processing (Atkinson & Shiffrin, 1968; Izawa, 1999; Cheng & Schwing, 2022) and resonates with
constructivist and metacognitive theories of learning (Gunstone, 1992; Bonanno, 2004). It integrates
affect, cognition, and behavior, emphasizing how learners perceive, interpret, and regulate actions in
evolving classroom contexts.

Within this structure, the Perception stage gathers contextual cues such as teacher prompts, peer
behaviors, and environmental signals. The Cognition stage transforms these inputs into internal
reasoning and action intent, and the Action stage executes verbal, physical, or social behaviors
accordingly.

A central innovation in CIE is the integration of a metacognitive loop—Plan, Monitor, Regu-
late—within the cognition stage. Student agents are not merely reactive: they proactively plan
whether and how to act, monitor the clarity and outcomes of their behaviors, and regulate subsequent
strategies based on feedback. For example, an agent may decide whether to speak (Plan), evaluate
the appropriateness of its utterance (Monitor), and adjust behavior after receiving teacher feedback
(Regulate). This bidirectional cycle links teacher interventions with student adaptations, producing
temporally grounded learning trajectories that approximate authentic development.

The same PCA structure extends to teacher agents, where cognitive stages underpin pedagogical
decisions such as goal-setting, feedback selection, interpretation of class-level signals, and adjustment
of emotional tone. This unified yet role-differentiated framework enables interpretable and traceable
behaviors across heterogeneous agents.

In summary, the PCA architecture provides a theoretically grounded, modular, and extensible control
mechanism, serving as the cognitive backbone of the CIE framework.

C.2.2 PERSONALITY-CONDITIONED COGNITION

To capture individualized learning dynamics, CIE embeds a triadic psychological
model—personality traits, cognitive style, and learning motivation—into each student
agent’s cognition engine. This design ensures that agents are not only responsive to instructional
context but also conditioned by stable psychological dispositions, thereby enabling heterogeneous
patterns of planning, action execution, and self-regulation.

This modeling approach is anchored in established educational psychology theories. (1) The Big Five
Personality Traits inform dispositional tendencies such as agreeableness or conscientiousness (Gerber
et al., 2011; Komarraju et al., 2011). (2) Dimensions like Field Dependence–Independence and
Impulsivity–Reflection characterize cognitive style, shaping how learners process information and
regulate decisions (Swinnen et al., 1986; Jamieson, 1992; Yang & Chen, 2023). (3) Motivational
dimensions are guided by Self-Determination Theory and Expectancy-Value Theory, which capture
intrinsic versus extrinsic drivers of engagement (Yue & Lu, 2022; Gladstone et al., 2022; Loh, 2019).
Together, these constructs define how agents interpret classroom signals, prioritize goals, and sustain
effort over time, even under identical task conditions.
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Each student agent is initialized with a structured personality profile encoded in JSON format,
including its trait vector, cognitive preferences, and motivational disposition. During execution, these
parameters are accessed primarily in the Plan stage of the PCA loop, guiding intention formulation
and prompt conditioning. For instance, a highly agreeable agent tends to produce affirming or
cooperative responses during group discussion, whereas a low-conscientiousness agent is more
likely to show task-avoidant tendencies. Reflective learners adopt deliberate monitoring strategies
and gradual adjustment, while impulsive learners often exhibit frequent shifts and inconsistent
participation.

By embedding these individualized profiles into the cognitive control cycle, CIE generates agents that
combine behavioral realism with systematic variability. The heterogeneity among agents promotes
the simulation of authentic classroom dynamics, such as uneven participation or role differentiation.
Moreover, these embedded traits provide interpretable signals for teacher agents, enabling differenti-
ated instruction and context-sensitive feedback strategies. In this way, the personality-conditioned
cognition module supports both fine-grained behavioral modeling and pedagogical analysis, bridging
psychological theory with computational simulation.

Virtual Student Profile: Wang Fang

Basic Information:
• Age: 13 Gender: Female
• Spawn Position: (5, 1)
• Perception Config: Range = 3, Max Tracked Items = 5

Learning Engagement:
• Behavior = Head-down reading
• Emotion = Positive
• Cognition = Understanding

Personality Traits (Big Five):
• Personality Type: High Neuroticism
• Neuroticism: 0.9, Extraversion: 0.5, Agreeableness: 0.5, Openness: 0.5, Conscien-

tiousness: 0.5

Cognitive Style:
• Field Independent
• Reflective

Learning Motivation: High

Class Role: Academic-Oriented Student

Behavior Profile:
• Language Style: Hesitant, emotionally influenced; uses fillers like “um”, backtracks

responses, shows fragmented expression.
• Class Behavior: Anxious under pressure; avoids raising hand but listens attentively

in groups; completes work slowly but with logical clarity and strong motivation.
• Learning Preference: Prefers independent tasks, reflective practice; likes using

notes or diagrams for organizing knowledge; enjoys self-paced deep exploration.
• Teacher Guidance: Reduce performance anxiety via timely feedback; provide

structured task breakdowns and staged learning goals; encourage written or non-
verbal responses.

• Role Description: Acts as knowledge summarizer in groups; organizes ideas clearly;
prefers private channels for expressing ideas to build confidence.
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C.2.3 PERSONALITY-DRIVEN STYLE MODULATION

To ensure that agents maintain trait-aligned consistency in language and behavior generation across
multi-turn interactions, CIE introduces a dual-module mechanism: the Style Modulator and the Cog-
nitive Generator. This design balances the generalization strength of large language models (LLMs)
with the need for personality-conditioned expression, thereby ensuring that each virtual student
consistently exhibits distinctive communicative styles and cognitive tendencies during simulation.

Style Modulator. We adopt multimodal large models (InternVL (Chen et al., 2024b), Qwen (Bai
et al., 2023), MiniCPM (Hu et al., 2024), and LLaVa (Li et al., 2024a)) as the linguistic foundation
for virtual students. Although these models support visual inputs, in this work we use only their
language-generation modules, as the core task is to produce persona-consistent classroom utterances
within EduVerse. We choose VLMs rather than pure LLMs to ensure future extensibility, since
EduVerse will later incorporate multimodal instructional materials and nonverbal classroom cues. To
select the primary generator, we first evaluated all candidates on Chinese language–instruction tasks,
assessing text understanding and text reconstruction accuracy on middle-school materials. InternVL
achieved the strongest baseline performance. We then conducted persona fine-tuning (Hu et al.,
2021) using more than 6,000 real classroom utterances covering multiple instructional phases and
questioning modes. Post–fine-tuning evaluation, combining human judgments and large-scale GPT-4
scoring, showed that InternVL produced the most stable and distinctive learner styles. We therefore
adopt InternVL as the main student model and fine-tune it using LoRA.

Cognitive Generator. At each stage of the metacognitive loop—Plan, Monitor, Regulate—the system
issues role-specific prompts that drive context-aware decision-making. These prompts integrate the
agent’s personality profile, current instructional signals, and historical behavioral traces, thereby
enabling dynamic adjustment of cognitive strategies. Prompt templates are separately designed for
student and teacher agents, supporting the complete perception–cognition–action loop described in
earlier sections.

Overall, this dual-module design not only enhances the realism and stability of personality-
conditioned expression but also provides an interpretable framework for modeling diverse educational
behaviors in simulated classrooms.

Plan Prompt for Virtual Student Agent

You are a student named {self.name}, and your character profile is ({self.profile}). Based on
your persona and the following contextual information, reflect on your learning goal and
behavioral plan in the current class session:

• Current physical distance: {self.profile[’dist_teacher’]},
{self.profile[’dist_blackboard’]}

• Teacher’s current behavior: {teacher_behavior}
• Teacher’s emotional tone: {teacher_emotion}
• Teacher’s instructional content: {teacher_content}
• Other students’ previous standing responses: {stu_response}
• Previous student questions to the teacher: {stu_request}
• Learning status of neighboring classmates: {neighbors}
• Relevant instructional objects: {objects}
• Your recent learning experiences and regulation suggestions: {memory[:3]}
• Your personality type: {self.personality_type}
• Your learning behavior style: {self.class_behavior}
• Your classroom role: {self.class_role}
• Current lesson content: {self.shared_state[’lesson_content’]}

Based on the above information and your personality traits, describe your behavioral plan
using a first-person reasoning chain. The behavior must fall into one of the following four
categories:
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• Active behaviors: taking notes, raising hand
• Passive behaviors: listening attentively, reading silently, reading aloud
• Interactive behaviors: side talk with peers, asking the teacher questions
• Disengaged behaviors: sleeping on desk, chatting with others

Instructions:
1. Carefully consider the teacher’s state, peer learning status, your persona, and recent

self-regulation experience.
2. Your behavior should align with your habitual classroom pattern—e.g., if you are

disengaged by nature, plan accordingly, unless your self-regulation history indicates
change.

3. Output must follow a first-person reasoning chain—concise and limited to a single
sentence.

4. Select only one final behavior from the list (e.g., taking notes / raising hand /
listening attentively / reading silently / reading aloud / side talk / asking questions /
sleeping / chatting).

5. Strictly follow the output format below:
The teacher is asking about spring-related poetry, with a calm tone. My neighbors
are actively raising their hands XXXX.
Final behavior: side talk with peers

Monitor Prompt for Virtual Student Agent

You are a student named {self.name}, and your character profile is ({self.profile}). Based on
your persona and the following contextual information, reflect on the current instructional
situation and evaluate whether your understanding and behavior are appropriate:

• Teacher’s behavior: {teacher_behavior}

• Neighboring student states: {neighbors}

• Your previous plan: {plan_output}

• Recent memory fragments: {memory}

• Your current behavior: {action_result.get(’behavior’, ’unknown’)}

• Feedback received: {action_result.get(’response’, ’none’)}

• Your personality type: {self.personality_type}

• Your classroom behavior habit: {self.class_behavior}

Based on the information above, assess your current emotional and cognitive state under the
behavior you just performed. Emotions should be classified into three categories: positive,
negative, or confused. Cognitive states should follow Bloom’s taxonomy and be selected
from: Remembering, Understanding, Applying, Analyzing, Evaluating, Creating.
Instructions:

1. Briefly monitor your behavioral process using a first-person perspective.
2. Output your emotional and cognitive category results strictly in the following format:

I think XXX
Emotion: XXX
Cognition: XXX

Regulate Prompt for Virtual Student Agent

You are a student named {self.name}, and your character profile is {self.profile}. Based on your
persona, your recent monitoring reflection ({monitor_output}), memory state ({memory}),
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and the teacher’s feedback ({teacher_feedback}), reflect on what adjustment strategy you
should adopt next (e.g., asking a question, taking notes, communicating with peers, etc.).
Additional contextual information:

• Teacher’s current behavior: {teacher_behavior}

• Your personality type: {self.personality_type}

• Your classroom learning habits: {self.class_behavior}

• Current social interaction partners: {self.shared_state["social_interaction"]}

• Peers who rejected your conversation attempts: {social_request_reject}

Instructions:
1. Briefly analyze how you would like to adjust your learning strategy in the next step.
2. The output should be concise and stated in the first person, using only one sentence.

Example: "I got distracted just now, and the teacher called on me; I hope to refocus and pay
better attention."

Prompt for Virtual Teacher: Reconstructing Lesson Plan into Instructional Phases

You are an experienced and professional middle school Chinese language teacher. Below
is the instructional plan for the lesson titled {self.lesson_id}. Please read the lesson plan
carefully and reconstruct it according to the required structure.
Task: Carefully review the content of the {self.lesson_id} lesson plan. Reorganize the
instructional content into five standard teaching phases: Lesson Introduction, New Content
Instruction, Knowledge Consolidation, In-Class Practice, and Lesson Summary.
The lesson consists of a total of 30 time steps. For each phase:

• Provide a concise summary of the instructional content to be covered, written in
paragraph form (no bullet points), within 50 characters (or equivalent).

• Allocate a specific number of time steps to each phase.
Lesson Plan Content:
--- Lesson Plan Start ---
{self.lesson_plan_text}
--- Lesson Plan End ---

Please strictly follow the output format below:
Lesson Introduction: XXXX, Steps: XXX
New Content Instruction: XXXX, Steps: XXX
Knowledge Consolidation: XXXX, Steps: XXX
In-Class Practice: XXXX, Steps: XXX
Lesson Summary: XXXX, Steps: XXX

Prompt for Virtual Teacher: Instructional Step Planning

You are an experienced and professional middle school Chinese language teacher. You are
currently teaching the course {self.lesson_id} and are now in the instructional phase titled
"{teaching_phase}". Please plan the instructional content for this specific phase.
This phase is expected to span {total_steps} instructional steps. Below is a brief summary of
the content you are expected to teach in this phase: {teaching_phase}
Instructions:

1. Break down the above instructional content into {total_steps} individual teaching
steps.

2. Each step should consist of one concise sentence (no more than 20 Chinese characters
or equivalent length in English).

3. Ensure that each step aligns clearly with the goal of the current instructional phase.
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4. Avoid repetition, vague statements, or logical leaps between steps.
5. Use the following format for output:

1. xxx
2. xxx
3. xxx
...

Prompt for Virtual Teacher: Selecting Instructional Behavior Type

You are an experienced and professional middle school Chinese language teacher. You
are currently teaching the lesson {self.lesson_id}, and are now in the instructional phase
"{phase}". The content planned for the current time step is: {teaching_step_content}.
Please determine the most appropriate instructional behavior type based on the following
contextual information:

• Student participation, emotional, and cognitive states: {percep-
tion_result[’teaching’][’statistics’]}

• Your most recent teaching feedback: {teacher_feedback}

• Student self-regulation output: {student_regulation}

• Your last behavior category: {category}

Instructions:
1. Consider whether to maintain or shift from your previous behavior category ({cate-

gory}).
2. It is generally preferred to vary your instructional strategy across consecutive time

steps for richer pedagogical dynamics.
3. Select one behavior category from the following list:

• Classroom Instruction (e.g., lecturing, giving directions)
• Classroom Interaction (e.g., expressing emotion, praise, incorporating student

input, asking questions, giving criticism, organizing discussion)
• Classroom Behavior Management (e.g., addressing students sleeping or chat-

ting)
4. Important: Output only the final selected category name without numbers. For

example: Classroom Interaction

Prompt for Virtual Teacher: Selecting Fine-Grained Teaching Action

You are an experienced and professional middle school Chinese language teacher. You are
currently teaching the lesson {self.lesson_id} and are in the instructional phase "{phase}".
The planned instructional content for the current time step is: {teaching_step_content}.
You have decided to perform a {category} type of teaching behavior. Based on the following
contextual information, please select one fine-grained instructional action that aligns with
your selected behavior type.

• Current phase: {phase}

• Behavior type selected: {category}

• Student participation and emotional state: {percep-
tion_result[’teaching’][’statistics’]}

Available fine-grained behaviors by category:
• Classroom Instruction: lecturing, giving directions
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• Classroom Interaction: expressing emotion, praising, adopting student input,
asking questions, giving criticism, organizing group discussion

• Classroom Behavior Management: addressing students sleeping, addressing stu-
dents chatting

Instructions:
• Select only one fine-grained behavior that best suits the context.
• Do not include any numbering or extra explanation.
• Example: lecturing

Prompt for Virtual Teacher: Generating Instructional Utterance

You are an experienced and professional middle school Chinese language teacher. You are
currently teaching the lesson {self.lesson_id}, and are in the instructional phase "{phase}".
The instructional content planned for this time step is approximately: {teaching_step_content}.
Your selected teaching behavior is: {behavior}. Please generate the instructional utterance
you will deliver to students based on the following context:

• Current instructional phase: {phase}

• Teaching behavior: {behavior}

• Planned teaching content for this time step: {teaching_step_content}

• Current student states: {perception_result[’teaching’][’statistics’]}

• Recent content already covered: {[h[’content’] for h in history[-3:]]}

• Text material being taught: {self.shared_state[’lesson_content’]}

Instructions:
1. Your utterance must logically follow previously delivered content and align with the

current teaching goal.
2. Avoid repeating prior statements.
3. If your behavior is lecturing, you may deliver up to 5 informative sentences focused

on knowledge delivery.
4. For all other behavior types, limit the output to 2–3 sentences.
5. You may refer to specific students based on what you know about them (e.g., call

them by name), except when the behavior is organizing classroom discussion.
In that case, pose an open-ended prompt to all students, optionally setting up a
collaborative or competitive task.

Please output only the generated utterance (no metadata).

Prompt for Virtual Teacher: Selecting Instructional Emotion

You are an experienced and professional middle school Chinese language teacher. You are
currently teaching the lesson {self.lesson_id} and are in the instructional phase "{phase}".
The teaching content for the current time step is: {content}, and your current instructional
behavior is: {behavior}.
Please determine the most appropriate emotional tone for this moment based on the following
student emotional state:

• Student emotional distribution: {emo}

Instructions:
• Choose one emotional tone from the following three options:

– Encouraging
– Critical
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– Neutral
• Please output only one of the three tones, with no additional explanation.
• Example output: Encouraging

To ensure stylistic and semantic consistency across multi-turn dialogues, CIE introduces a mechanism
that aligns dialogue history with continuity of style. Specifically, the output generated at each Regulate
stage is propagated forward into the subsequent Plan stage, thereby preserving coherence in both
personality expression and cognitive trajectory. Response generation follows a hybrid pipeline:
a LoRA-tuned LLM first produces a personality-aligned draft, which is then refined by GPT-4
to guarantee pedagogical validity and cognitive plausibility. This dual-stage strategy integrates
personality intent, cognitive structure, and contextual awareness into a unified and adaptive response
process.

Prompt for Personality-Driven Style Modulation

You are an assistant that can revise student responses based on their personality characteristics
while preserving their individual speaking style.
The student’s personality type is: {self.personality_type}. Below is a one-sentence sample
response in their characteristic style. Your task is to refine it based on the student’s persona
without altering the style.
Student Information:

• Name: {self.name}

• Personality Type: {self.personality_type}

• Language Style: {self.language_style}

• Classroom Behavior: {self.class_behavior}

Context:
• Teacher’s question: {query}

• The student plans to raise their hand to respond.
• Their drafted response: {draft}

• Learning plan for this time step: {plan}

Instructions:
1. Evaluate whether the drafted response is reasonable. If it is not, you may disregard

it and instead generate a new answer based on the student’s personality traits.
2. Middle school students typically speak concisely—your revised response should

follow similar length and tone as the sample.
3. Your final output should:

• Maintain the student’s original speaking style;
• Reflect their personality and classroom behavior;
• Align with the current instructional context.

4. Output only the revised response.

C.3 DETAILED DESCRIPTION OF SOCIAL SITUATEDNESS

C.3.1 THEORETICAL EXPANSION OF IRF PARADIGM

The Initiation–Response–Feedback (IRF) model, first proposed by Sinclair and Coulthard, remains a
cornerstone in classroom discourse analysis (Waring, 2009; Rustandi, 2017). It organizes interaction
into three stages: the teacher initiates with prompts or questions (I), the student responds verbally
or behaviorally (R), and the teacher provides feedback (F) in the form of evaluation or elaboration.
While concise and widely applicable, this formulation is limited in capturing the cognitive and social
dynamics of modern classrooms.
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Under constructivist and inquiry-oriented pedagogies, students act as reflective learners rather than
passive recipients (Walker & Shore, 2015; Renninger, 2024). They monitor, regulate, and socially
negotiate their learning in response to both internal states and external cues—capacities insufficiently
represented in the original IRF framework.

To address this gap, CIE extends IRF into a four-phase structure, termed IRF-R, by introducing a
Regulation stage. After receiving feedback, students engage in metacognitive processing: reassess-
ing their performance, adjusting goals, and modifying strategies in light of emotional state, peer
interaction, and task relevance. In this expanded cycle, Initiation stimulates attention and motivation,
Response generates verbal or behavioral engagement, Feedback reinforces or redirects cognition, and
Regulation transforms feedback into adaptive behavior.

The IRF-R paradigm thus supports multi-turn interaction loops that conceptualize learning as a
continuous cycle of stimulation, expression, feedback, and self-adjustment. It enables teacher agents
to track not only immediate responses but also downstream learning adjustments, thereby improving
the interpretability of student behavior and supporting deeper trajectories of engagement.

C.3.2 IMPLEMENTATION OF SOCIAL PRIORITIZATION

In the CIE multi-agent system, student agents must simultaneously handle instructional prompts
from teacher agents and spontaneous peer-initiated interactions during lessons. To resolve conflicts
among these competing inputs, we introduce a social prioritization mechanism inspired by gated
decision control. This ensures that at each time step, every agent responds to the interaction with the
highest pedagogical relevance (see Alg. A.1).

Algorithm A.1: Social Priority Gating Mechanism
Input: Local perception stip of agent i, shared state S, social threshold θ

Output: Behavioral decision ati

1 if TeacherRequestExists(i, stip) then
2 ati ← respond to teacher (e.g., “stand and answer”);
3 RejectSocialRequest(i, ‘Teacher Priority’);
4 else if SocialRequestExists(i, S) then
5 rti ← GetSocialRequest(i, S);
6 Hi,j , Si,j ← AnalyzeChatHistory(i, rti .from_id);
7 W t

i ← ComputeIntention(Pi, Ci, Ri, Hi,j , Si,j);
8 if W t

i ≥ θ then
9 ati ← rti .type;

10 rti .status← accepted;
11 else
12 ati ← Self-Initiated Learning;
13 RejectSocialRequest(i, ‘Low Intention’);

14 else
15 ati ← Self-Initiated Learning;

16 return ati;

Interaction priorities are structured into three tiers. First, teacher requests (e.g., direct questioning
or task assignments) override all other interactions, placing the student agent in an uninterruptible
execution state. Second, if no teacher request is present, the agent evaluates peer requests and group
discussions (e.g., side chats, peer questions). Here, an LLM-based reasoning process integrates
personality traits, task context, and interaction history to compute a social willingness score W t

i ∈
[0, 1]. If W t

i ≥ θ (e.g., θ = 0.6), the request is accepted; otherwise, it is rejected and the agent returns
to self-regulated learning. Third, in the absence of external input, the agent continues self-initiated
planning and behavior execution.

To ensure transparent tracking, all requests are logged in the shared interaction state pool with one of
three tags: Pending (awaiting response), Accepted (engagement initiated; dialogue content logged
for future reasoning), or Rejected (declined without side effects; agent resumes autonomous learning).
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This tagging protocol enables fine-grained regulation of peer dialogue without disrupting the core
instructional flow.

Overall, the gating-based prioritization mechanism preserves instructional coherence while still
allowing socially grounded behaviors to emerge adaptively and contextually in classroom simulations.

C.3.3 SOCIAL INTENTION FUNCTION

In multi-agent classroom environments, modeling whether a student agent is willing to accept peer-
initiated interactions is crucial for simulating realistic social behavior. To this end, CIE introduces
a language model–driven Social Intention Function, which dynamically determines willingness
based on the current instructional context. This function integrates five factors—personality traits,
learning confidence, task relevance, historical interaction frequency, and social closeness—into a
context-aware decision process.

To ensure educational interpretability, each factor is anchored in established psychological theories:

• Personality Match (P ): Following the Big Five Personality Theory, students high in
extraversion tend to be socially responsive, while those high in neuroticism are more likely
to avoid interaction (Zhao & Seibert, 2006; John et al., 1999).

• Current Learning Confidence (C): Based on Bandura’s Self-Efficacy Theory, confidence
in task performance directly shapes one’s propensity for social engagement (Schunk &
DiBenedetto, 2016; Bandura & Adams, 1977).

• Task Relevance (R): Grounded in Situated Cognition and Constructivist Learning The-
ory, this factor assesses whether a social request aligns with the ongoing instructional
objective (Wilson & Myers, 2000; Hedegaard, 1998).

• Historical Interaction Frequency (H) and Social Closeness (S): Informed by Social Iden-
tity Theory, these capture group belonging and accumulated positive peer interactions (Hogg,
2016; Ellemers & Haslam, 2012).

Each component is scored within the range [0, 100] using GPT-4 via fine-tuned prompts, represented
as P,C,R,H, S. Simultaneously, the system generates a context-dependent weight vector:

α = [α1, α2, α3, α4, α5], subject to
5∑

i=1

αi = 1. (4)

The model also outputs a short justification for each weight to enhance interpretability. The final
Social Intention Score is computed as:

W = α1P + α2C + α3R+ α4H + α5S. (5)

If W ≥ 0.6 (default threshold), the student accepts the request and enters a dialogue; otherwise, the
request is rejected and the agent resumes self-directed learning.

This mechanism functions not merely as a scoring model, but as a cognitively and socially grounded
reflection of student behavior. It captures a learner’s “social rationality” and “regulatory capacity”
across tasks and roles, enhancing both the behavioral realism and interpretability of CIE’s agent-based
interaction model.

C.4 DETAILED DESCRIPTION OF TEMPORAL DYNAMICS

C.4.1 THEORETICAL FOUNDATIONS OF AGENT STATE PROGRESSION AND REGULATION

In CIE, the learning process of virtual students is conceptualized not as isolated one-step reactions
but as a temporally extended trajectory unfolding across multiple time steps. This trajectory re-
flects progressive cognitive development, emotional regulation, and behavioral adaptation. To
capture these dynamics, we introduce a dual mechanism of State Progression and State Regu-
lation, grounded in established theories of educational psychology, thereby modeling agent-level
development across lessons and instructional phases.
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Cognitive development is anchored in Bloom’s Taxonomy (Krathwohl, 2002; Forehand, 2010) and
Bruner’s Spiral Curriculum (Clark, 2010; Joseph, 2021). Bloom’s hierarchy delineates a progression
from lower- to higher-order cognition:

Remembering → Understanding → Applying → Analyzing → Evaluating → Creating.
In CIE, each student agent’s cognitive output is annotated accordingly at each step, enabling temporal
trend analysis. Complementarily, Bruner’s spiral principle emphasizes cyclical revisiting of concepts
with increasing complexity, allowing longitudinal tracking of knowledge deepening, reinforcement,
and occasional regression.

Emotional and behavioral adaptation is informed by Emotion Regulation Theory (Gross, 2008;
1999), Self-Determination Theory (SDT) (Deci et al., 2017; Deci & Ryan, 2012), and Ex-
pectancy–Value Theory (Wigfield, 1994; Wigfield & Eccles, 2000). Gross highlights that learners
regulate emotions through strategies such as support-seeking, withdrawal, or task switching. In CIE,
these processes shape the Regulate module, where agents evaluate affective states to guide strate-
gic adjustment. SDT introduces autonomy, competence, and relatedness as motivational parameters;
these are embedded into CIE’s motivation and social intention functions, influencing persistence and
behavioral shifts across time. Expectancy–Value perspectives further explain how perceived value
and anticipated success jointly determine sustained engagement.

Teacher–student feedback dynamics build upon Hattie and Timperley’s Feedback Model (Hattie &
Timperley, 2007b) and Vygotsky’s Sociocultural Theory (Lantolf, 2000; Scott & Palincsar, 2013).
The former stresses that effective feedback triggers metacognitive reassessment and regulation beyond
error correction; in CIE, such feedback modifies both goal-setting and emotional states in subsequent
Plan phases. Vygotsky’s theory adds a social dimension: knowledge construction is mediated by
interaction, and teacher or peer feedback indirectly shapes confidence, regulation, and discourse
strategies.

In summary, the integration of state progression and regulation mechanisms allows CIE to simulate
learning as a temporally grounded, theory-consistent developmental process. Virtual students are
thus modeled not as reactive output devices but as evolving educational agents whose longitudinal
behavioral trajectories provide interpretable evidence of learning dynamics and cognitive pathway
development.

C.4.2 TEACHER-CONTROLLED INSTRUCTIONAL PACING

Algorithm A.2: Teacher-controlled Instructional Phase Pacing
Input: Current instructional phase Phasek, student state set {sti}ni=1, step count t
Output: Next instructional phase Phasek+1

1 Initialize total steps per phase: T ← 30 ;
2 Initialize current step index: t← 1 ;
3 Initialize teacher policy: πT ;
4 while t ≤ T do
5 Observe group student state St = {sti}ni=1 ;
6 Execute teacher action atT ∼ πT (S

t,Phasek) ;
7 Broadcast action atT to all student agents ;
8 Collect responses and update St+1 ;
9 t← t+ 1 ;

10 Evaluate completion rate: rk ← Evaluate(St) ;
11 Determine transition: Phasek+1 ← Transition(Phasek, St, rk) ;
12 return Phasek+1

In multi-step instructional simulations, effective pacing control is essential not only for synchronizing
with students’ learning rhythms but also for maintaining interactional coherence and managing
cognitive load. To address this challenge, the CIE framework incorporates a Teacher Agent Rhythm
Control Module, which dynamically governs the progression of instructional phases throughout a
lesson.

Each lesson is preconfigured into five canonical instructional phases (e.g., introduction, explanation,
consolidation), further decomposed into discrete teaching steps. During simulation, the teacher
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agent adaptively decides whether to continue, delay, or advance phase transitions based on real-time
classroom signals rather than following a fixed timeline.

This decision process operates through a Perception–Cognition–Action (PCA) loop. At each step t,
the teacher agent first perceives aggregated student states St = {sti}ni=1 (e.g., participation density,
emotional distribution, cognitive indicators). In the cognition stage, it evaluates whether the current
phase Phasek should be sustained or transitioned by integrating lesson plan constraints, system logs,
and recent feedback. Finally, the action stage executes the pacing decision, broadcasting teacher
actions atT and updating the global state.

The pacing controller thus implements a data-driven mechanism that ensures phase boundaries remain
pedagogically aligned and interpretable across the session. Each time step is explicitly logged with
its transition rationale, enabling post-hoc analysis and iterative refinement of instructional design.
The full scheduling logic is summarized in Alg. A.2.

C.5 MEMORY MECHANISMS FOR AGENT COGNITION

C.5.1 THEORETICAL FOUNDATIONS OF MEMORY MECHANISMS

In cognitive psychology and the learning sciences, memory mechanisms are central to understanding
how learners encode, retain, and retrieve knowledge for decision-making (Terry, 2017; Sprenger,
1999). To simulate this process in virtual agents, CIE implements a dual-layer memory architecture
inspired by the classical Working Memory–Long-Term Memory model. This design ensures both
real-time responsiveness and cross-session continuity in agent cognition and behavior.

Working memory provides short-term storage of salient instructional information during ongoing
sessions—such as teacher actions, peer interactions, emotional states, and cognitive indicators.
These records are stored in a global shared_state structure, which is updated at each time
step t. This memory layer enables the real-time execution of the Perception–Cognition–Action
(PCA) loop, featuring high temporal resolution and frequent access, thereby forming the basis for
moment-to-moment decision-making.

Long-term memory, in parallel, functions as a persistent repository of knowledge accumulation
and behavioral trajectories. Implemented as a structured database, it logs each student’s historical
records across lessons, including cognitive progression, emotional trends, and task engagement. At
the beginning of each new session, the long-term memory is reloaded into the shared_state,
enabling agents to adapt based on prior experiences. This mechanism supports experience-informed
learning and retrospective reasoning across multiple episodes.

By integrating these two layers, CIE models both the ephemeral and cumulative aspects of learning.
The separation between rapidly evolving working states and persistent knowledge encoding ensures
that agents can respond fluidly to the immediate instructional context while also continuously adapting
to their developmental history. The following sections provide a detailed description of the design
and flow between these two memory layers.

C.5.2 IMPLEMENTATION OF SHORT-TERM SHARED MEMORY

In CIE, the short-term memory mechanism—termed short-term shared memory—defines a unified
interaction state pool, shared_state, which facilitates high-frequency, real-time information
exchange among all agents, including both students and teachers. Drawing inspiration from the
psychological construct of working memory, this module temporarily stores task-relevant perceptual
information and cognitive-affective states within the current instructional phase, thereby enabling
synchronized decision-making across agents.

The shared_state consists of several structured components, initialized at the start of each
session:

• Teacher state: records the teacher’s current behavior, utterances, and emotional tone.

• Request pools (instructional & social): manage the lifecycle of agent-to-agent interaction
requests, including initiation, acceptance, and rejection.
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• Student logs: capture each agent’s cognitive level, emotional state, and behavior trace at
every time step t.

• Spatial state: represents agent-specific surroundings and perceptible objects, grounding
interactions in physical context.

• Task & group context: contains the active lesson plan, group composition, and instructional
content segments.

• Interaction history: maintains continuity of dialogue rounds and the evolution of collabora-
tive strategies.

• Long-term memory reference: integrates episodic summaries from previous lessons to
initialize experience-informed behaviors.

This state pool is updated dynamically at each instructional step. For example, when a student
initiates a peer request, the entry is appended to the social pool; when the teacher provides feedback,
the teacher state is refreshed; when students respond, their logs are updated with behavioral and
cognitive annotations. This continuous update cycle ensures that all agents maintain a synchronized
representation of the evolving classroom environment.

In summary, the short-term shared memory functions as the temporal backbone of coordinated
multi-agent interaction in CIE. By supporting real-time perception and regulation within the Percep-
tion–Cognition–Action loop, it enables adaptive and coherent decision-making in high-frequency
educational scenarios.

C.5.3 IMPLEMENTATION OF LONG-TERM MEMORY

To sustain behavioral continuity and cumulative cognitive development across sessions, CIE
incorporates a structured long-term memory system consisting of two SQLite databases:
student_memory.db and teacher_memory.db. These databases respectively record student
learning trajectories and teacher instructional behaviors over time.

Student Memory: The student_memory.db contains a long_term_memory table with the
following schema:

• student_id: unique identifier for each student agent.
• event_type: type of record (e.g., Cognitive Planning, Monitoring, Regulation, Behav-

ioral Record).
• event_content: natural language logs produced during metacognitive stages, including

goal setting or strategic reflection.
• timestamp: temporal marker that enables reconstruction of student-specific learning

sequences.

This structure ensures traceability of self-regulated learning activities, forming a temporally grounded
chain along the Perception–Cognition–Action loop.

Teacher Memory: The teacher_memory.db mirrors this design, maintaining a
long_term_memory table that logs instructional records at the phase level:

• teacher_id: unique identifier for the teacher agent.
• lesson_id, phase: identifiers of the lesson and instructional phase.
• event_type: type of teacher behavior (e.g., Instructional Planning, Feedback).
• content: natural language descriptions of teacher intentions, evaluations, and scaffolding

strategies.
• timestamp: time of execution, supporting longitudinal modeling of instructional dynam-

ics.

A particular focus is placed on feedback chains (e.g., student question→ teacher evaluation→ student
regulation), which provide the basis for context-aware instructional planning in future sessions and
adaptive modeling of scaffolding behaviors.
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Together, these two databases enable bidirectional memory transfer: teacher agents analyze longitudi-
nal patterns in student performance, while student agents draw upon accumulated knowledge, goals,
and feedback to guide future behavior. The long-term memory system thus allows CIE to simulate
instructional interaction as an evolving and authentic temporal process.

C.5.4 MEMORY INTERACTION FLOW

To support cognitive development and behavioral adaptation across instructional sessions, CIE imple-
ments a structured Memory Interaction Flow that coordinates short-term and long-term memory.
This mechanism enables student agents to accumulate, apply, and evolve learning experiences within
and across sessions, thereby sustaining coherence and continuity in personalized learning trajectories.

At the start of each session, the system loads individual long-term memory summaries—such
as prior performance, cognitive tendencies, and emotional traits—from the database into the
shared_state. These values immediately inform in-session planning and response generation.

During instruction, student agents continuously update the short-term memory at each time step
by recording their actions, peer interactions, and teacher feedback. These records ensure real-time
context awareness and guide micro-level cognitive regulation.

At the end of a session, the system aggregates time-step records into structured learning summaries.
These include updated cognitive markers, emotional trajectories, and selected behavior patterns,
which are written back into the long-term memory for use in subsequent sessions.

This continuous memory flow enables student agents to engage in feedback-informed, data-driven
self-regulation. Over time, they develop individualized learning patterns reflective of authentic
developmental trajectories in classroom environments. The complete execution logic of this flow is
outlined in Alg. A.3.

Algorithm A.3: Memory Interaction Flow for Agent i
Input: Agent ID i, shared state S, current step t, total steps T
Output: Updated shared state S

1 if t = 1 then
2 Li ← DATABASE.retrieve_long_term_summary(i);
3 S[longterm_summary][i]← Li;

4 S[interaction_log][i][t]← {
5 teacher_interactions : sti.teacher_content,
6 social_interactions : sti.social_requests,
7 student_responses : sti.stu_response,
8 student_requests : sti.stu_request,
9 environment_context : sti.visible_items,

10 emotional_states : sti.teacher_emotion,
11 cognitive_states : MEMORY.retrieve_cog()
12 }

13 if t = T then
14 Mi ← Summarize_Session(S[interaction_log][i]);
15 DATABASE.store_long_term_summary(i,Mi);
16 S[longterm_summary][i].pre_lesson_summary←Mi.summary;
17 S[longterm_summary][i].pre_lesson_portrait←Mi.portrait;
18 S[longterm_summary][i].pre_lesson_regulation←Mi.regulation;
19 S[longterm_summary][i].teacher_evaluation←Mi.teacher_eval;
20 return S;
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D DETAILED INFORMATION FOR EXPERIMENTAL DESIGN AND EVALUATION

D.1 EXPERIMENT SETUP AND CONFIGURATION

To investigate how virtual students respond cognitively, emotionally, and socially across diverse
instructional contexts, we developed a Chinese language classroom simulation integrating genre
diversity, phased pedagogy, and structured interaction protocols.

For materials, three representative texts from the junior secondary curriculum were selected: the
lyrical prose Spring (Zhu Ziqing), the foreign fable The Emperor’s New Clothes, and the argumentative
essay Dedication and Joy. These texts differ in linguistic style, cognitive demand, and emotional
resonance, supporting heterogeneous tasks such as expressive description, character analysis with
moral reasoning, and logical argumentation for critical debate.

Interaction was structured through an extended IRF model. By adding a regulation phase, we
formed an “I–R–F–Regulate” loop: the teacher initiates, students respond, the teacher provides
feedback, and students regulate through reflection or social actions (e.g., questioning, discussion, or
strategy adjustment). This design preserves traditional instructional dialogue while enhancing agents’
behavioral and emotional expressiveness.

Each lesson comprised five pedagogical phases—introduction, instruction, consolidation, practice,
and summarization—mapped to approximately 30 steps but dynamically adjusted by the teacher’s
policy to about 36 steps per session, depending on task completion and engagement signals.

The agent architecture followed a two-tier design: GPT-4 was responsible for natural language
generation and reasoning, while a fine-tuned InternVL model modulated style. Each student was
encoded as [pi; ci;mi]—personality, cognitive style, and motivation—and combined with phase,
memory, and context in prompt templates. Prompts were configured with temperature = 0.5, max
tokens = 512, top-p = 0.9, and frequency penalty = 0.2.

Experiments were run on a server with H20-NVLink GPUs (96GB VRAM) and 200GB RAM. Each
inference step averaged 25 seconds, and a full class of six students plus one teacher lasted 1–2 hours.
All session data—including cognitive, emotional, and behavioral annotations—were stored in a
MongoDB backend for longitudinal continuity analysis.

To simulate learner diversity, six virtual student archetypes were designed based on the Big Five
personality model, motivational theory, and cognitive style literature. These archetypes reflect typical
learner profiles in real classrooms and enable the evaluation of interactional variance and pedagogical
robustness.

Wang Fang

Age: 13
Gender: Female
Personality: High Neuroticism
Class Role: Academic Student
Learning Motivation: High
Class Behavior: Often hesitant but gradually contributes well-structured summaries and
personal reflections during class.
Cognitive Style: Field-dependent
Thinking Tendency: Reflective

Zhang Jie

Age: 14
Gender: Male
Personality: High Extraversion
Class Role: Academic Student
Learning Motivation: High
Class Behavior: Actively initiates discussions, shares opinions confidently, and frequently
stands up to respond or ask questions.
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Cognitive Style: Field-independent
Thinking Tendency: Reflective

Zhang Yan

Age: 13
Gender: Female
Personality: High Agreeableness
Class Role: Academic Student
Learning Motivation: High
Class Behavior: Frequently engages in peer interaction, supports others’ ideas, and shows
strong cooperative communication.
Cognitive Style: Field-independent
Thinking Tendency: Reflective

Li Wei

Age: 14
Gender: Male
Personality: Low Openness
Class Role: Discussion Student
Learning Motivation: High
Class Behavior: Leads group discussion with structured logic, seeks consensus, and promotes
balanced participation.
Cognitive Style: Field-dependent
Thinking Tendency: impulsive

Liu Li

Age: 13
Gender: Female
Personality: Low Openness
Class Role: Off-task Student
Learning Motivation: Low
Class Behavior: Easily distracted in class, often avoids eye contact, but occasionally responds
with emotional expressions.
Cognitive Style: Field-dependent
Thinking Tendency: Impulsive

Zhang Tao

Age: 14
Gender: Male
Personality: Low Conscientiousness
Class Role: Off-task Student
Learning Motivation: Low
Class Behavior: Tends to disengage from class tasks, shows low participation, and often
chats about irrelevant topics.
Cognitive Style: Field-dependent
Thinking Tendency: Impulsive
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D.2 BEC GENERATED FRAMEWORK

D.2.1 THEORETICAL FOUNDATIONS

To annotate learner states in a structured and interpretable manner, we adopt a three-dimensional
Behavior–Emotion–Cognition (BEC) framework grounded in well-established educational theories.

• Behavior builds on and extends the ICAP theory of cognitive engagement, refining observ-
able classroom actions into granular categories that differentiate active engagement, passive
engagement, off-task behavior, and peer interaction.

• Emotion follows widely used classroom affect taxonomies in educational psychology,
focusing on three core emotional states: positive, negative, and confused.

• Cognition adheres to Bloom’s revised taxonomy, encompassing six levels of cognitive
processing: remembering, understanding, applying, analyzing, evaluating, and creating.

This framework enables consistent annotation of multimodal learner behaviors and supports down-
stream quantitative and qualitative analysis of instructional interactions.

D.2.2 BEC GENERATED PROCEDURE

In EduVerse, BEC labels are generated through structured prompts rather than used as predictive
accuracy targets. Their purpose is to model each virtual student’s subjective self-perception during
the learning process, forming part of the agent’s metacognitive cycle (Plan–Monitor–Regulate). In the
Monitor stage, the model is prompted to externalize its current behavioral, emotional, and cognitive
state; thus, BEC serves as a prompt-guided self-report mechanism rather than an external evaluation
label. This design follows practices in psychology and agent-based modeling where self-reporting
is used to express internal states, and is consistent with systems such as Generative Agents (Park
et al. (2023)), which rely on agent-generated reflections to support memory writing and long-term
development.

D.2.3 CATEGORY DEFINITIONS AND MAPPING

We employ a three-dimensional BEC framework to annotate learner states at each timestep. All labels
are fully in English to ensure cross-platform compatibility and avoid rendering issues.

Table A5: BEC annotation categories used in EduVerse.

Dimension Categories

Behavior Note Taking (NT), Hand Raise (HR), Head Up (HU), Head Down (HD), Read Aloud (RA),
Refuse Reply (RR), Stand Answer (SA), Side Talk (ST), Answer Questions (AQ), Sleep, Chat

Emotion Positive, Negative, Confused

Cognition Remember, Understand, Apply, Analyze, Evaluate, Create

D.2.4 BEC PRIORITY SCHEME

For downstream aggregation, we map fine-grained BEC labels into ordered priority levels so that
higher values indicate more engaged or higher–order states.

Behavior priority. We define a 4–level ordinal variable pB ∈ {0, 1, 2, 3}:

• 0 (Off–task): off–task behaviors such as Sleep or Chat.
• 1 (Passive): passive on–task behaviors such as Head Down listening.
• 2 (Active): individual active behaviors such as Note Taking, Hand Raise, Head Up, Read

Aloud, or Stand Answer.
• 3 (Interactive): socially interactive behaviors such as Side Talk, Refuse Reply, Answer

Questions, or Group Discussion.
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Emotion priority. We define a 3–level variable pE ∈ {0, 1, 2}:

• 0 (Negative): negative affect.
• 1 (Confused): confused or uncertain affect.
• 2 (Positive): positive or engaged affect.

Cognition priority. We define a 2–level variable pC ∈ {0, 1} following Bloom’s taxonomy:

• 0 (Lower–order): Remember and Understand.
• 2 (Higher–order): Apply ,Analyze ,Evaluate and Create.

Table A6 summarizes the mapping used when converting prompt–generated BEC labels into ordinal
scores.

Table A6: Priority levels for behavior, emotion, and cognition used in BEC aggregation.

Dimension Level Description
Behavior 3 Interactive (peer/teacher interaction)

2 Active (individual active learning)
1 Passive (on–task but low engagement)
0 Off–task (disengaged behavior)

Emotion 2 Positive
1 Confused
0 Negative

Cognition 1 Higher–order (Apply, Analyze, Evaluate, Create)
0 Lower–order (Remember, Understand)

The BEC framework provides a unified labeling standard across behavior, emotion, and cogni-
tion, enabling fine-grained analysis of learner trajectories and supporting the interpretability and
reproducibility of EduVerse’s simulation results.
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D.3 EXPERIMENT I

D.3.1 DETAILED EXPERIMENT RESULTS

Table A7: IRF distribution for three text genres across four envi-
ronments. Values are relative frequencies of Initiation (I), Response
(R), and Feedback (F). IRFrate denotes the overall completion ratio.

Text Genre Env. Steps I R F IRFrate

Lyrical Prose

Lecture 37 0.514 0.167 0.275 0.432
Collab 41 0.439 0.179 0.321 0.293
Round 39 0.410 0.154 0.282 0.282
Real Class 37 0.513 – 0.703 0.486

Argumentative Essay

Lecture 36 0.556 0.194 0.282 0.639
Collab 40 0.375 0.213 0.367 0.475
Round 31 0.516 0.215 0.355 0.548
Real Class 36 0.417 – 0.583 0.417

Foreign Fiction

Lecture 33 0.364 0.253 0.475 0.455
Collab 33 0.242 0.247 0.394 0.303
Round 37 0.324 0.189 0.351 0.378
Real Class 33 0.367 – 0.515 0.367

IRF = Initiation, Response, and Feedback ratio in dialogue.
Real Class = Real classroom environment.

Figure A1: Student behavior, emotion and cognition frequencies across three lessons in collab
environment.

To complement the main findings of Experiment I, this section provides additional analyses using
IRF statistics, behavior–cognition–emotion (BCE) distributions, individual-level visualizations, and
ablation studies.

First, the full IRF statistics across genres and environments (Tab. A7) show that simulated
classrooms maintain comparable IRF completion rates with real classes. For instance, in lyrical
prose, Lecture/Collab/Round yield IRFrates between 0.28 and 0.43, versus 0.486 in the real classroom.
Argumentative essays and foreign fiction also exhibit distributions of similar magnitude. These
findings substantiate the main-text claim that simulated discourse structures align closely with real
classrooms, while minor deviations (e.g., higher rates in Lecture for argumentative essays) reflect

47



2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Table A8: Representative IRF dialogue excerpts across genres in simulated and real classroom.

Note: “Setting” refers to classroom type (S:Simulation or RC: Real Class) and Genres (LP: Lyrical Prose, AE:
Argumentative Essay, FF: Foreign Fiction.)

Setting I (Initiation) R (Response) F (Feedback)

S_LP Li Wei, could you share
your understanding of this
sentence? The rest of
you may also think about
which images or charac-
ters in the text left a strong
impression on you.

I think Zhu Ziqing’s de-
scription is very vivid. He
humanized spring, mak-
ing readers feel its warmth
and vitality. The contrast
between “little grass” and
“new leaves” makes the
scene full of freshness and
life.

Excellent sharing and ob-
servation! You captured
the emotional tone of the
classroom very well.

S_AE Zhang Yan, could you try
to create a phrase using
Take out of context? This
might help us better under-
stand how to apply this ex-
pression.

Okay, for example, we
can’t just take one sen-
tence and explain it in iso-
lation. We need to connect
it to the context.

Great example and reason-
ing! Keep up your analyti-
cal depth.

S_FF This story reveals that
many people chose to fol-
low authority rather than
uphold truth and justice.
Based on “The Emperor’s
New Clothes,” why do you
think some people stay
silent before power?

I think. . . maybe because
they are afraid of losing
status or being excluded if
they tell the truth. People
often go along with others
to protect themselves.

Excellent reflection and
teamwork! Maintain this
thoughtful analysis and
courage to question.

RC_LP There’s a sentence here
without additional modi-
fiers. Tiantian, what do
you think makes it effec-
tive?

Hmm, it’s very concise.
The author used pure de-
scription to highlight the
beauty of the scene.

Good, that’s correct.

RC_AE The author discusses sev-
eral issues. Which one do
you find most convincing?
Please share your opinion.
You please.

First, he emphasizes the
meaning of dedication. I
think this value is most in-
spiring.

Good point. Who would
like to add to that?

RC_FF Who can tell me what the
first function of clothing is
in this story? What does it
symbolize?

It shows one’s social
status — for instance,
how the emperor’s clothes
represent vanity and
hypocrisy.

Exactly, well answered.

Table A9: Distribution of students’ behavior, cognition, and emotion across different text genres
and environments.

Env. Text B_Aac B_Pas B_Int B_Off E_Pos E_Con E_Neg C_Low C_High

Lecture
Lyrical Prose 0.157 0.222 0.398 0.222 0.509 0.463 0.028 0.875 0.125
Argumentative Essay 0.200 0.276 0.324 0.200 0.481 0.519 0.000 0.790 0.210
Foreign Fiction 0.161 0.260 0.396 0.182 0.510 0.484 0.005 0.792 0.208

Collab
Lyrical Prose 0.171 0.204 0.454 0.171 0.483 0.517 0.000 0.942 0.058
Argumentative Essay 0.303 0.205 0.316 0.175 0.547 0.312 0.141 0.697 0.303
Foreign Fiction 0.188 0.203 0.313 0.297 0.609 0.359 0.031 0.578 0.422

Round
Lyrical Prose 0.154 0.154 0.461 0.232 0.482 0.518 0.000 0.807 0.193
Argumentative Essay 0.189 0.200 0.383 0.228 0.511 0.406 0.083 0.794 0.206
Foreign Fiction 0.204 0.269 0.227 0.301 0.616 0.296 0.088 0.861 0.139

the annotation protocol. To complement the quantitative results, we further provide a qualitative
analysis of IRF structures across genres in both real and simulated classrooms (Tab. A8). Following
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Figure A2: Student behavior, emotion and cognition frequencies across three lessons in round
environment.

Table A10: Ablation experiments across different frameworks. Results are reported on three
text genres. “nolocal” denotes removing local interaction rules, while “nocog” denotes removing
cognitive mechanisms.

Text Genre Framework B_Aac B_Pas B_Int B_Off E_Pos E_Con E_Neg C_Low C_High

Lyrical Prose
Ours 0.157 0.222 0.398 0.222 0.509 0.463 0.028 0.875 0.125
nolocal 0.321 0.195 0.224 0.260 0.557 0.301 0.142 0.890 0.110
nocog 0.315 0.212 0.216 0.257 0.505 0.351 0.144 0.631 0.369

Argumentative Essay
Ours 0.200 0.276 0.324 0.200 0.481 0.519 0.000 0.790 0.210
nolocal 0.221 0.225 0.329 0.225 0.523 0.302 0.176 0.883 0.117
nocog 0.229 0.233 0.233 0.304 0.563 0.429 0.008 0.479 0.521

Foreign Fiction
Ours 0.161 0.260 0.396 0.182 0.510 0.484 0.005 0.792 0.208
nolocal 0.210 0.271 0.295 0.224 0.524 0.390 0.086 0.748 0.252
nocog 0.266 0.306 0.158 0.270 0.509 0.468 0.023 0.176 0.824

the classical definition of the IRF framework, we compare the linguistic patterns of Initiation (I),
Response (R), and Feedback (F). At the I and R stages, simulated exchanges closely mirror real
classroom discourse: question framing, elicitation styles, and student response types exhibit highly
consistent language forms, indicating that EduVerse captures the core logic of teacher-led interaction.
Differences appear primarily at the F stage. Real teachers often employ open-ended or affective
feedback cues (e.g., “Who would like to add to that?”), while simulated teachers tend to adopt more
concise, evaluative feedback (e.g., “Great example and reasoning!”). Such variation aligns with
natural differences across teacher styles and instructional strategies rather than model deficiencies.

Second, the BCE distribution (Tab. A9) further illustrates classroom ecology. Overall, lower-order
cognition dominates (e.g., Lecture–LP C_Low = 0.875), positive and confused emotions prevail,
and negative affect remains low. Environment effects vary by genre: in foreign fiction, Collab
produces higher-order cognition (C_High = 0.422), while Round leads to more off-task behavior
(B_Off = 0.301) and less interaction (B_Int = 0.227). In contrast, Lecture settings in lyrical
prose and argumentative essays show more passive participation and lower-order cognition. These
results highlight a genre–environment interaction that systematically shapes classroom dynamics.

Third, the individual-level visualizations (Fig. A1 and Fig. A2) confirm personality-driven stability.
Highly extraverted or conscientious students sustain active engagement and positive affect, whereas
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low-openness or low-conscientiousness students display more off-task behavior, low-level cognition,
and frequent confusion. This consistency across lessons aligns with the main-text analysis.

Finally, the ablation experiments (Tab. A10) disentangle the role of key modules. Removing
localized interaction rules (nolocal) increases negative emotions and undermines affective realism.
Removing cognitive mechanisms (nocog) exaggerates higher-order reasoning and overly active
behaviors, deviating from gradual, student-like learning. Together, these results confirm that style
modulation preserves emotional plausibility, while the cognitive layer ensures educational consistency.

In sum, this section corroborates three central claims of Experiment I: the authenticity of discourse
structures, the stability of personality-driven patterns, and the necessity of modular design,
while also emphasizing that genre–environment interactions play a critical role in shaping simulated
classroom dynamics.

D.3.2 REAL-CLASSROOM DATA SOURCE AND IRF ANNOTATION PROTOCOL

Real-Classroom Source and Selection Criteria. The real classroom data used in this study were
obtained from the National Smart Education Platform (https://basic.smartedu.cn/ ), a national-level
open platform administered by the Ministry of Education of China. The platform provides free
access to a wide range of high-quality, government-reviewed instructional videos, ensuring strong
representativeness and consistency. For this study, we selected three Chinese language lessons and
one history lesson that strictly correspond to the three genres examined in our simulations: Lyrical
Prose, Argumentative Essay, Foreign Fiction and world-history. All selected lessons were taught
by experienced middle-school Chinese teachers and followed the national curriculum standards.
These lessons exhibit stable instructional organization, clear audio–video quality, consistent discourse
patterns, and well-structured IRF sequences. As such, they serve as reliable baseline classrooms for
comparison against simulated lessons in EduVerse.

IRF Annotation Mechanism and Quality Control. To ensure annotation accuracy and reliability,
we adopted a two-stage human-calibrated, AI-assisted annotation protocol. The process consists of
the following steps:

(1) Establishing the Annotation Benchmark. A researcher with expertise in educational discourse
analysis conducted multiple rounds of IRF labeling based on canonical literature examples until full
intra-annotator consistency (100%) was achieved. A 15-minute segment from each real classroom was
then manually transcribed and annotated sentence-by-sentence to create a gold-standard reference set.
Time-aligned transcription was generated using automated tools to maintain consistent segmentation
across annotation stages.

(2) Calibrating the AI-Assisted Annotation Paradigm. We employed KIMI, a large Chinese
language model developed by Moonshot AI, to assist with IRF label generation. The model outputs
were compared to the gold-standard annotations, and discrepancies were corrected through iterative
human calibration. During this process, we established a unified decision protocol covering boundary
criteria for Initiation (I) and Feedback (F); classification principles for probe-F and multi-turn follow-
up questions; segmentation rules for long or multi-clause student responses; handling of group or
choral responses; detection of implicit feedback embedded within teacher explanations. This protocol
ensures that AI-assisted annotations are stable, rule-based, and reproducible, rather than dependent
on model idiosyncrasies.

(3) Batch Annotation and Human Verification. With the annotation rules finalized, KIMI was
used to generate IRF labels for the remaining 1̃20 minutes of classroom transcripts. All AI-generated
labels were then manually reviewed and corrected by the researcher to ensure consistency across
lessons and genres. This hybrid process balances annotation efficiency with high-quality control,
yielding a reliable IRF dataset that supports subsequent quantitative and qualitative analyses.
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D.4 EXPERIMENT II

Figure A3: Human–Agent Interaction Across Four Tasks. Results show strong alignment with
personality traits and robust instructional control, confirming that EduVerse enables seamless integra-
tion of human participants while preserving realistic classroom dynamics.

(a) Main Interface of EduVerse Human–Agent In-
teraction System)

(b) Student Detail Interface of EduVerse Hu-
man–Agent Interaction System)

(c) Main Interface of EduVerse Human–Agent In-
teraction System (Translated Version).

(d) Student Detail Interface of EduVerse Hu-
man–Agent Interaction System (Translated Ver-
sion).

Figure A4: Interface of EduVerse human–agent interaction system.

In the supplementary analyses of Experiment II, we further validated the stability and realism of
EduVerse through network centrality indicators and human–agent interaction tasks. As shown in
Tab. A11, students displayed distinct role patterns across environments. For the Foreign Fiction les-
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Table A11: Distribution of students’ network centrality indicators in classroom interaction
contexts. Values are normalized to [0, 1]; Degree = in+out centrality.

Text Env. Student In Out Degree Betweenness

Foreign Fiction

Lecture Wang Fang 0.20 0.20 0.40 0
Zhang Tao 0.20 0.40 0.60 0.20
Li Wei 0.20 0.20 0.40 0
Liu Li 0.40 0.40 0.80 0.30
Zhang Yan 0.40 0.40 0.80 0.40
Zhang Jie 0.40 0.20 0.60 0.30

Collab Wang Fang 0.25 0.25 0.50 0
Li Wei 0.25 0.25 0.50 0
Zhang Tao 0.25 0.50 0.75 0.083
Zhang Jie 0.25 0.00 0.25 0
Zhang Yan 0.25 0.25 0.50 0

Round Wang Fang 0.40 0.20 0.60 0.15
Li Wei 0.20 0.20 0.40 0
Zhang Tao 0.40 0.40 0.80 0.25
Zhang Jie 0.20 0.20 0.40 0
Zhang Yan 0.00 0.40 0.40 0
Liu Li 0.20 0.00 0.20 0

Lyrical Prose

Lecture Li Wei 0.20 0.20 0.40 0
Zhang Jie 0.40 0.40 0.80 0.15
Liu Li 0.20 0.20 0.40 0
Zhang Yan 0.20 0.20 0.40 0
Zhang Tao 0.20 0.40 0.60 0.10
Wang Fang 0.20 0.00 0.20 0

Collab Li Wei 0.25 0.25 0.50 0
Liu Li 0.25 0.25 0.50 0
Zhang Tao 0.25 0.25 0.50 0
Zhang Yan 0.50 0.50 1.00 0.167
Zhang Jie 0.25 0.25 0.50 0

Round Wang Fang 0.20 0.20 0.40 0.10
Liu Li 0.20 0.00 0.20 0
Li Wei 0.20 0.40 0.60 0.10
Zhang Jie 0.20 0.40 0.60 0.10
Zhang Tao 0.20 0.20 0.40 0
Zhang Yan 0.40 0.20 0.60 0.10

Table A12: Human–agent interaction success rates across four tasks and three environments.
Values represent completion ratios (0–1).

Task Lecture Collab Round

Task 1: Peer chatting 0.533 0.667 0.733
Task 2: Peer academic response 0.267 0.400 0.400
Task 3: Teacher answering 1.000 1.000 1.000
Task 4: Teacher intervention 1.000 1.000 1.000
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son, in the Lecture setting Zhang Yan (Degree=0.80, Betweenness=0.40) and Liu Li (Degree=0.80,
Betweenness=0.30) emerged as core participants, while Zhang Tao exhibited stronger initiative
through higher outward connections (Out=0.40). In the Collab setting, interactions became more
reciprocal, with most students maintaining a Degree of around 0.50, but Zhang Tao rose to 0.75
with a nonzero betweenness (0.083), serving as a connector. In the Round setting, the network is
further decentralized, with bridging roles distributed: Zhang Tao (Degree=0.80, Betweenness=0.25)
and Wang Fang (Betweenness=0.15) acted as key connectors, while Zhang Yan showed a dis-
tinctive one-directional output pattern (In=0.00, Out=0.40). For the Lyrical Prose lesson, Zhang
Jie (Degree=0.80, Betweenness=0.15) was central in Lecture, Zhang Yan dominated in Collab
(Degree=1.00, Betweenness=0.167), and Round produced a more balanced structure with several
students sharing moderate centralities (Degree ≈ 0.60, Betweenness ≈ 0.10). These results indicate
that while classroom environment reshapes group structures, personality-driven individual traits
remain relatively stable and interpretable.

To support seamless human–agent interaction, we developed an initial version of the EduVerse
visual interaction interface. The interface adopts a ChatGPT-style input panel through which users
can communicate with virtual student agents in real time. At each timestep, EduVerse displays
each agent’s automatically generated Plan–Monitor–Regulate reasoning chain alongside its updated
behavior–emotion–cognition states, providing an interpretable snapshot of classroom dynamics.
Users may also click on any student avatar to open a detailed panel that reveals the agent’s internal
reasoning trace and state transitions (see Fig. A4). This interface design enhances transparency,
facilitates interactive debugging, and enables human participants to flexibly inspect or influence agent
behavior within multi-agent classroom simulations.

Human–agent interaction tests, reported in Tab. A12, further demonstrate EduVerse’s adaptability. In
Task 1 (peer chatting), the socially inclined Zhang Tao responded in most cases, with success rates
of 0.533, 0.667, and 0.733 in Lecture, Collab, and Round respectively, and occasionally initiated
chats himself in collaborative or roundtable settings. By contrast, in Task 2 (peer academic response),
the conscientious Zhang Jie rarely engaged during class, yielding lower success rates (0.267–0.400).
In Tasks 3 (teacher answering) and 4 (teacher intervention), success rates consistently reached 1.000
across all environments, confirming that the teacher agent reliably answered questions and actively
intervened in off-task behaviors.

Taken together, these supplementary results confirm that EduVerse not only reproduces realistic
group dynamics and individual differences but also sustains authentic role-driven behavior when
human users are integrated. Socially oriented students show high willingness to engage, academically
conscientious students remain task-focused, and teacher agents reliably maintain instructional order.
This underscores the robustness and applicability of EduVerse in complex interaction and human-in-
the-loop classroom scenarios.
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D.5 EXPERIMENT III

D.5.1 DEFINITION AND THEORETICAL BASIS OF EFFECTIVE LEARNING TRAJECTORIES

Importantly, an effective trajectory does not imply monotonic improvement. Educational psychology
and dynamic systems theories of cognitive development (Council et al. (2000); Thelen & Smith
(1994); Rodrigues et al. (2023)) show that real learners typically exhibit nonlinear, oscillatory, and
spiral patterns of growth. Short-term plateaus, fluctuations, or temporary regressions commonly
occur when students encounter complex concepts or increased cognitive load, and these patterns
possess meaningful pedagogical significance.

Within this theoretical framework, we define an effective learning trajectory as one that:

• exhibits an overall upward developmental trend across sessions;
• demonstrates locally plausible fluctuations reflecting cognitive load or task difficulty;
• shows evidence of self-correction driven by feedback and metacognitive regulation.

This definition is grounded in three considerations. First, real student behavior is inherently phase-
dependent and unstable; fluctuations often signal knowledge consolidation or strategic adjustment.
Second, smooth, strictly increasing curves typically represent idealized expert models rather than au-
thentic student learning dynamics. Third, because EduVerse incorporates memory and metacognitive
mechanisms through the Plan–Monitor–Regulate (PMR) cycle, it aims to generate trajectories that
follow a realistic “progress–adjust–advance” pattern consistent with cognitive-development theory.

D.5.2 DETAILED RESULTS

Table A13: Longitudinal positive transition rates of student agent behavior, emotion, and
cognition across four instructional sessions. Values are normalized to [0, 1]; Overall indicates the
average across three dimensions.

Session Student B_Pos E_Pos C_Pos Overall

1

Wang Fang 0.000 0.138 0.034 0.057
Zhang Jie 0.379 0.966 0.103 0.483
Zhang Yan 0.103 1.000 0.069 0.391
Li Wei 0.759 0.966 0.172 0.632
Liu Li 0.000 0.034 0.000 0.011
Zhang Tao 0.034 0.207 0.000 0.080

2

Wang Fang 0.583 0.125 0.125 0.278
Zhang Jie 0.500 1.000 0.250 0.583
Zhang Yan 0.292 1.000 0.125 0.472
Li Wei 0.375 1.000 0.208 0.528
Liu Li 0.125 0.792 0.000 0.306
Zhang Tao 0.583 0.333 0.125 0.347

3

Wang Fang 0.500 0.567 0.067 0.378
Zhang Jie 0.533 1.000 0.167 0.567
Zhang Yan 0.867 1.000 0.367 0.744
Li Wei 0.633 1.000 0.133 0.589
Liu Li 0.033 0.067 0.000 0.033
Zhang Tao 0.367 0.700 0.100 0.389

4

Wang Fang 0.192 0.346 0.077 0.205
Zhang Jie 0.654 1.000 0.154 0.603
Zhang Yan 0.923 1.000 0.115 0.679
Li Wei 0.192 1.000 0.115 0.436
Liu Li 0.269 0.231 0.038 0.179
Zhang Tao 0.385 0.308 0.077 0.256

To complement the main text on long-term evolution, this section applies the above equations to
compute the positive transition rate R+ across behavior (B), emotion (E), and cognition (C), as
summarized in Tab. A13. Overall, we observe a pattern of gradual improvement followed by a mild
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pullback: many students improve steadily from Session 1 to 3 (e.g., Zhang Yan: 0.391→ 0.744;
Wang Fang: 0.057→ 0.378; Zhang Jie: 0.483→ 0.567), whereas Session 4 shows partial regressions
under higher cognitive demands (e.g., Wang Fang: 0.378→ 0.205; Zhang Tao: 0.389→ 0.256). We
also observe “high start—dip—partial recovery” patterns (e.g., Li Wei: 0.632→ 0.528→ 0.589),
followed by another decline in Session 4 (0.436).

Dimension-wise, behavior is most sensitive, with several students peaking in Session 2 or 3 (e.g.,
Zhang Yan’s B_Pos: 0.103→ 0.867→ 0.923). Emotion remains high and stable for many students,
reflecting effective teacher regulation (e.g., Zhang Jie and Li Wei with E_Pos = 1.000 in Sessions 2–4),
though some show fluctuations (e.g., Wang Fang: 0.125/0.567/0.346; Liu Li drops after a high of
0.792). Cognition progresses more slowly with larger variability (e.g., Zhang Yan’s C_Pos spikes to
0.367 in Session 3 and softens to 0.115 in Session 4), consistent with the view that cognitive growth
requires extended accumulation and reflection.

At the individual level, trajectories reveal personality-consistent stability with interpretable diver-
gence: Zhang Jie remains high and stable (Overall: 0.483/0.583/0.567/0.603); Zhang Yan makes a
pronounced leap in Session 3 and sustains a high level in Session 4 (0.744/0.679); Li Wei starts high,
dips, then partially recovers (0.632→ 0.528→ 0.589) before declining again (0.436); Wang Fang
improves then recedes (0.057 → 0.378 → 0.205); Liu Li remains low overall with episodic re-
covery (0.011/0.306/0.033/0.179); and Zhang Tao shows greater volatility and context sensitivity
(0.080/0.347/0.389/0.256). Altogether, R+ provides a compact and interpretable quantification
of learning progression and self-regulation, reinforcing the main text’s conclusions on long-term
evolution and individual differentiation (see Tab. A13).
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D.6 EXPERIMENT IV

To examine whether EduVerse generalizes beyond language-arts instruction, we extend our evaluation
to a junior-secondary world-history lesson on the Renaissance. This experiment keeps the teacher
agent, student personas, and interaction settings unchanged, altering only the subject domain, which
differs substantially from Chinese literature in discourse style, instructional goals, and knowledge
structure. We analyze model behavior from two perspectives: IRF discourse structures and student
group interaction across three classroom layouts (lecture, collab, round).

D.6.1 IRF STRUCTURE GENERALIZATION

Real-world evidence shows that IRF patterns vary substantially across subjects. Chinese literature
typically emphasizes open-ended questioning, personal interpretation, and affective expression,
resulting in frequent teacher prompts and dense IRF cycles. History lessons, by contrast, prioritize
chronological reasoning, factual recall, and causal explanation. Questions are more convergent,
and teachers rely more on continuous exposition, yielding sparser IRF structures with lower overall
questioning frequency.

EduVerse successfully reproduces these subject-specific tendencies. Under identical teacher instruc-
tions, the virtual history class exhibits a noticeably lower IRF density than the Chinese literature
classes (Spring, The Emperor’s New Clothes, Dedication and Joy). Students respond to factual
prompts in shorter turns, and the teacher initiates fewer open-ended probes—mirroring authentic
disciplinary norms.

Despite these shifts in frequency, the canonical IRF sequence (“Initiation → Response → Feedback”)
remains stable across subjects. Students continue to provide aligned responses, and the teacher’s
feedback remains structurally appropriate. This consistency indicates that EduVerse maintains
structural discourse robustness, while still adapting interaction frequency to the demands of a new
discipline. These results provide initial evidence that the system captures cross-disciplinary transfer
of pedagogical interaction patterns.

D.6.2 GROUP INTERACTION ANALYSIS

We further analyze student-to-student social interactions using networks extracted from three seating
layouts. Visualizations (Fig. A5) reveal clear cross-subject differences: Chinese literature lessons
produce more peer elaboration chains, especially in collaborative and round-table layouts, aligning
with the subject’s emphasis on discussion and interpretive sharing. The history lesson shows shorter,
more localized interaction edges, with fewer multi-hop exchanges—consistent with subject norms
that require individual comprehension before discussion.

Network metrics confirm these observations. Across layouts, the history lesson yields network densi-
ties between 0.33 and 0.50, indicating that peer interaction still emerges, even in a domain with less
built-in discussion. Degree averages (1.50–1.67) further demonstrate that students maintain a baseline
level of collaborative engagement rather than collapsing into purely teacher-driven interaction.

These findings suggest that EduVerse adapts to different instructional cultures while preserving
coherent, personality-driven peer interactions. The system demonstrates transferable group-behavior
dynamics: interaction structures reorganize to match disciplinary demands, yet remain socially
meaningful and pedagogically aligned.

D.6.3 BEHAVIOR DISTRIBUTION OF INDIVIDUAL LEVEL ACROSS DIFFERENT SUBJECTS

Across subjects, lessons, and layout conditions, student agents exhibit distinct yet personality-
consistent behavioral tendencies. As shown in Fig. A6- A11, the same student displays different
behavior patterns when switching from Chinese literature to history, and from narrative texts to
argumentative essays, reflecting subject-dependent cognitive demand and discourse style. However,
the relative behavioral style of each agent remains stable — highly engaged learners (e.g., Zhang Jie )
consistently show interactive and positive states across subjects, while more reserved or fluctuating
learners (e.g., Zhang Tao ) maintain their characteristic variability. Overall, the results demonstrate
that EduVerse captures both context-driven behavioral adaptation and trait-driven intra-individual
stability, aligning with established findings in educational psychology.
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(a) Lecture layout of interaction network.

(b) Collab layout of interaction network.

(c) Round layout of interaction network.

Figure A5: Students Interaction Network in different Layouts
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Figure A6: The behavior distribution of Wang Fang in different layouts.

Figure A7: The behavior distribution of Zhang Jie in different layouts.
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Figure A8: The behavior distribution of Zhang Yan in different layouts.

Figure A9: The behavior distribution of Li Wei in different layouts.
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Figure A10: The behavior distribution of Liu Li in different layouts.

Figure A11: The behavior distribution of Zhang Tao in different layouts.
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E MULTI-AGENT INSTRUCTIONAL INTERACTION CASES ACROSS
GENRE-SPECIFIC TASKS

To illustrate how virtual students respond under varying instructional task types, we present represen-
tative multi-agent interaction cases from three distinct genres: the lyrical prose Spring, the foreign
fable The Emperor’s New Clothes, and the argumentative essay Dedication and Joy. These texts differ
in linguistic style, cognitive structure, and affective demand, offering a natural basis for evaluating
behavioral variation.

For each task, we sampled three consecutive instructional time steps from the full simulation. We
report the complete behavioral logs of selected student agents during these windows, including
learning plans, cognitive levels, emotional states, and social behaviors. These interaction snapshots
offer micro-level evidence of how agents coordinate cognition, emotion, and participation in real-time.

These examples illustrate how agent behavior adapts to differences in instructional phase, task genre,
and teacher–student dynamics. They also provide direct evidence of cross-genre generalizability and
personality-driven response stability within the simulation system.

Case: Multi-Agent Interaction in "Spring" (Step 8)

Teacher Content: “Excellent, everyone. Your understanding and analysis are impressive.
Now, I would like to ask: While reading this text, did you notice how Mr. Zhu Ziqing vividly
portrayed the beauty of spring through delicate descriptions? For example: ‘Peach trees,
apricot trees, and pear trees are all blooming in competition—bright red like fire, pink like
clouds, white like snow. The flowers are sweet-scented; close your eyes, and the trees seem
already full of peaches, apricots, and pears.’ With these metaphors and personifications,
Zhu Ziqing presents spring as a sensory experience. Zhang Yan , could you share how you
interpret this passage?”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang → Zhang Yan : Side talk – “I agree with your point. Zhu Ziqing’s
use of personification really helps us feel the vibrancy of spring—it’s like a person
waking up, full of hope and energy.” (Emotion: Positive; Cognition: Application)

• Zhang Jie : Question – “Teacher, I really love this passage. It feels like he’s painting
spring with a brush. The sentence ‘Peach trees, apricot trees, pear trees. . . ’ vividly
brings to life the competitive blooming. And ‘the flowers are sweet-scented; close
your eyes, and the trees seem already full of fruit’—this conveys not just the beauty,
but also the sweetness and hope of spring. I think this is what Zhu Ziqing intended:
spring is not just visual, but deeply emotional.” (Emotion: Positive; Cognition:
Application)

• Zhang Yan : Stand-up response – “I believe Mr. Zhu’s descriptions truly immerse
us in the atmosphere of spring. The use of personification and metaphor makes
the imagery come alive. That line about blooming trees really shows the vitality of
spring.” (Emotion: Positive; Cognition: Application)

• Li Wei : Question – “I agree with the teacher and classmates. Zhu’s descriptions
are not only vivid but also metaphorical. They reflect the beauty of life and hope. I
think this is what he wants us to feel—resilience and positivity even in the face of
difficulties. Do others feel the same?” (Emotion: Positive; Cognition: Application)

• Liu Li → Zhang Tao : Side talk – “Maybe. . . I’m not really sure.” (Emotion:
Positive; Cognition: Application)

• Zhang Tao → Liu Li : Side talk – “Ugh, don’t overthink it. It’s not a big deal
anyway.” (Emotion: Negative; Cognition: Understanding)

Teacher Feedback: “Liu Li , great improvement—keep up your active participation. Zhang
Jie , your engagement is excellent—looking forward to your insights. Zhang Yan , your
communication and understanding are outstanding—keep it up, and remember to listen to
others too.”
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Case: Multi-Agent Interaction in "Spring" (Step 9)

Teacher Content: “Wonderful work, everyone. You’ve gained deep insights into Zhu Ziqing’s
text. Now let’s think: How does he express his emotions when portraying spring? Through
what language or imagery can we feel his admiration for spring? Wang Fang , would you
like to share your thoughts first?”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang : Stand-up response – “Uh. . . I think Zhu Ziqing. . . in ‘Spring’. . . he
uses delicate descriptions to. . . vividly portray spring. He uses emotional language
to describe flowers, trees, rivers. . . and the word ‘lively’ to reflect his feelings
of joy. That’s how I understand his admiration.” (Emotion: Positive; Cognition:
Application)

• Zhang Jie : Hand raised – “Sure. I think his vivid language makes it feel like we’re
witnessing spring with our own eyes. It’s not just about beauty—it’s about his deep
love for this season. His writing really impresses me.” (Emotion: Positive; Cognition:
Application)

• Zhang Yan →Wang Fang : Side talk – “Exactly, Wang Fang . The personification
he uses really makes spring feel alive, full of hope.” (Emotion: Positive; Cognition:
Application)

• Li Wei : Head up, listening, no verbal response (Emotion: Positive; Cognition:
Understanding)

• Liu Li : Hand raised – “Uh. . . I think Zhu Ziqing. . . really liked spring. . . his words,
um. . . show he really loved it.” (Emotion: Positive; Cognition: Understanding)

• Zhang Tao → Liu Li : Side talk – “Liu Li , can you explain how Zhu Ziqing shows
his love for spring through language and imagery?” (Emotion: Confused; Cognition:
Understanding)

Teacher Feedback: “Liu Li , great participation and deep thinking—just be mindful of
classroom order. Zhang Yan , well done with your insightful understanding of ‘Spring’—keep
up the collaborative spirit.”

Case: Multi-Agent Interaction in "Spring" (Step 10)

Teacher Content: “Now let’s examine the structure of ‘Spring’. Zhu Ziqing divides the essay
into three parts. First, he begins with anticipation: ‘Looking forward, looking forward, the east
wind is coming, and spring’s footsteps are near.’ Then he uses vivid metaphors and delicate
imagery to depict spring scenes like blooming trees. Finally, he uses personification—spring
is a newborn baby, a little girl, a strong youth—bringing vitality to the season. This layered
structure gives the essay rhythm and emotional resonance. Zhang Jie , would you like to
share your understanding of this structure?”
Teacher Emotion: Encouragement Teacher Behavior: Explanation
Student Responses:

• Wang Fang → Zhang Yan : Side talk – “Zhang Yan . . . you’re right. . . Zhu’s
personification really shows the vitality and hope of spring!” (Emotion: Positive;
Cognition: Application)

• Zhang Jie : Stand-up response – “Of course, teacher. I think the structure is brilliant.
The beginning sets the tone of anticipation, the middle provides vivid descriptions,
and the end gives spring symbolic meaning—energy, rebirth, youth. It’s rhythmic
and emotionally deep.” (Emotion: Positive; Cognition: Application)

• Zhang Yan →Wang Fang : Side talk – “I’m glad you felt the vitality too, Wang
Fang . His words awaken everything—dispelling winter and bringing hope.” (Emo-
tion: Positive; Cognition: Application)
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• Li Wei → Zhang Yan : Side talk – “Zhang Yan , what’s your unique take on Zhu’s
metaphors? I love his personification—it inspires our own writing, don’t you think?”
(Emotion: Positive; Cognition: Understanding)

• Liu Li → Zhang Tao : Side talk – “Zhang Tao , I think Zhu’s vivid words reflect
not just spring, but also his love for life and respect for nature.” (Emotion: Positive;
Cognition: Understanding)

• Zhang Tao → Liu Li : Side talk – “Hmm, I like ‘Back Shadow’ more than ‘Spring’.
Have you read that one?” (Emotion: Positive; Cognition: Understanding)

Teacher Feedback: “Zhang Jie , wonderful—your structural analysis is spot on. Liu Li , your
input shows a deep grasp of the text—keep it up! Zhang Yan , excellent discussion—maintain
your positive attitude and spirit of exploration.”

Case: Multi-Agent Interaction in "Dedication and Joy" (Step 12)

Teacher Content: “Now, let us explore the meaning of ’finding joy in one’s work’ (leye).
It refers to discovering happiness in our work or studies, enjoying what we do. In this
way, our tasks become less of a burden and more of a pleasure. How does Liang Qichao
interpret leye? In his essay, he writes, ‘Be at peace with your dwelling, and find joy in your
work’—suggesting that we should experience peace and pleasure in what we do. Zhang Jie ,
could you share your understanding of leye?”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang : Note-taking – No verbal response (Emotion: Positive; Cognition:
Understanding)

• Zhang Jie : Stand-up response – “I’m happy to share my view. I think leye means
finding joy and value in what we do. As Liang Qichao said, ‘Be at peace with your
dwelling, and find joy in your work’—to me, this means experiencing happiness and
satisfaction through learning or working. When we love what we do, it becomes our
source of joy rather than pressure.” (Emotion: Positive; Cognition: Application)

• Zhang Yan : Hand raised – “I think leye is about finding enjoyment in our learning
or work. As Liang Qichao says, we should find peace and joy in our duties. That
way, work becomes something we enjoy. This reflects my experience—I enjoy
the learning process and hope others can find that joy too.” (Emotion: Positive;
Cognition: Application)

• Li Wei : Hand raised – “I believe leye is about finding joy and satisfaction in the
process of doing things. Liang Qichao’s quote applies not only to work but also to
learning. If we find joy in learning, we’ll better understand knowledge and be more
motivated. But I wonder, when facing stress or difficulties, how can we still embrace
leye?” (Emotion: Positive; Cognition: Application)

• Liu Li : Head down sleeping – No response (Emotion: Negative; Cognition: Mem-
ory)

• Zhang Tao → Liu Li : Chatting – “Liu Li , did you watch that basketball game
yesterday? That dunk was insane!” (Emotion: Negative; Cognition: Memory)

Teacher Feedback: “Liu Li , great to see your improvement—keep participating actively.
Zhang Jie , your engagement is excellent. Zhang Yan , you’ve shown strong understanding
and communication—keep it up, and remember to listen to your peers.”

Case: Multi-Agent Interaction in "Dedication and Joy" (Step 13)

Teacher Content: “Let’s now see how Liang Qichao argues for the importance of leye. In
his essay ‘Dedication and Joy’, he uses the phrase ‘Be at peace with your dwelling, and find
joy in your work’ to explain his perspective. He believes that only when we feel peace and
happiness in our duties can we truly understand what leye means. The ‘joy’ here refers not
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only to enjoyment but also to love and appreciation. Zhang Jie raised a great question: is leye
limited to our work, or can it also apply to learning, life, and hobbies? Li Wei , what do you
think?”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang : Note-taking – No response (Emotion: Positive; Cognition: Applica-
tion)

• Zhang Jie : Question – “I fully agree with Liang Qichao. He helps us realize that
only by loving our work can we find true joy and meaning in it. Then it’s not a
burden anymore. But I have a question: can leye apply to things beyond work, like
learning, life, or hobbies? I think anything we love deeply could be part of leye.
What do you think, teacher?” (Emotion: Positive; Cognition: Application)

• Zhang Yan : Question – “Teacher, I’ve also been thinking about Liang’s view. He’s
suggesting that when we genuinely love and enjoy what we do, it becomes a joy.
This attitude should apply to learning as well—finding enjoyment rather than just
completing tasks. But what if we’re not feeling that joy? How should we adjust our
mindset?” (Emotion: Positive; Cognition: Application)

• Li Wei : Stand-up response – “Liang’s reasoning is inspiring. He shows that
when we love what we do, it stops being pressure—it becomes joy. But I’m a bit
confused about ‘being at peace with your dwelling.’ Does that mean we must accept
and embrace our current life situation to experience leye? I’d love to hear others’
thoughts.” (Emotion: Positive; Cognition: Application)

• Liu Li : Head up listening – No response (Emotion: Positive; Cognition: Under-
standing)

• Zhang Tao : Head up listening – No response (Emotion: Positive; Cognition:
Understanding)

Teacher Feedback: “Zhang Yan , your thoughtful and active participation is wonder-
ful—keep it up! Zhang Jie , your engagement and depth of understanding help lead the class.
Li Wei , your ideas are insightful—continue contributing in discussions!”

Case: Multi-Agent Interaction in "Dedication and Joy" (Step 14)

Teacher Content: “Your reflections have been fantastic. Zhang Jie asked a great ques-
tion—can leye apply beyond work, such as to learning or hobbies? I believe leye is broad—it
applies to any domain where we invest passion. As for Zhang Yan ’s question about learning
struggles: First, we must accept that difficulties are part of the process. Then, try to see them
as challenges and growth opportunities. That’s how we rediscover joy in learning. Does
anyone want to share how they’ve done this?”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang : Hand raised – “Uh, I. . . I think when we face learning difficulties. . .
we shouldn’t give up. We. . . should accept them and. . . find solutions. If we stay
optimistic, we’ll rediscover leye.” (Emotion: Positive; Cognition: Application)

• Zhang Jie : Stand-up response – “Teacher, I think leye is a broad concept—it def-
initely applies to learning, life, and hobbies. If we commit and love what we do,
that’s leye. When facing challenges, we should adjust our mindset and find opportu-
nities—that’s how we enjoy learning.” (Emotion: Positive; Cognition: Application)

• Zhang Yan : Stand-up response – “I agree. Leye means loving not just work but all
aspects of life. When we face challenges in learning, changing our perspective helps
us turn obstacles into joy. Has anyone had a similar experience? How did you regain
your joy in learning?” (Emotion: Positive; Cognition: Application)

• Li Wei : Question – “Everyone’s ideas are inspiring. I also believe leye is a holistic
attitude that includes work, learning, and hobbies. As long as we’re passionate,
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we’ll find joy and self-worth. Though there may be difficulties, they are growth
opportunities. I’d like to hear how others adjusted their mindset during such times.”
(Emotion: Positive; Cognition: Understanding)

• Liu Li : Head up listening – No response (Emotion: Positive; Cognition: Under-
standing)

• Zhang Tao : Head up listening – No response (Emotion: Positive; Cognition:
Understanding)

Teacher Feedback: “Wang Fang , great focus and thinking—keep it up, and don’t let
anxiety affect your learning. Zhang Yan , your helpfulness and ability to apply learning are
admirable—keep going!”

Case: Multi-Agent Interaction in "The Emperor’s New Clothes"(Step 12)

Teacher Content: “Today, we will be reading The Emperor’s New Clothes, a satirical tale by
the famous Danish author Hans Christian Andersen. Andersen is one of the most renowned
figures in children’s literature, with a diverse range of works spanning fairy tales, novels,
poems, and plays. Some of his most beloved stories include The Little Match Girl, The Ugly
Duckling, and The Little Mermaid. In his fairy tales, Andersen often reveals human flaws and
social injustice from a unique perspective, offering us valuable life lessons.”
Teacher Emotion: Neutral Teacher Behavior: Lecture
Student Responses:

• Wang Fang : Head up listening – No response (Emotion: Positive; Cognition:
Understanding)

• Zhang Jie : Question – “Teacher, I find this story very interesting. The emperor is
tricked by two swindlers who claim that only intelligent people can see their fabric.
The emperor never checks the clothes himself but sends others. I wonder—if he had
gone himself, would he have seen through the deception? Or if he had the courage
to admit he saw nothing, could he have avoided the embarrassment? This story not
only mocks vanity and fear of losing face, but also reminds us to have the courage to
face the truth. What do others think?” (Emotion: Positive; Cognition: Analysis)

• Zhang Yan : Question – “Teacher, this story made me reflect a lot. Andersen’s
works always carry deep meaning. Through this tale, he highlights human vanity and
blind conformity, showing us the importance of honesty and truth. That’s probably
why his works remain so popular—they are both entertaining and meaningful. I also
want to ask: does this story still hold relevance today? Don’t we sometimes act like
the emperor, pursuing superficial appearances while ignoring real value?” (Emotion:
Positive; Cognition: Analysis)

• Li Wei : Question – “Teacher, I’ve also thought about what Zhang Jie and Zhang
Yan said. To me, this story not only satirizes people who care too much about
appearances, but also encourages independent thinking. That’s a key takeaway
Andersen wants us to have. I’d love to hear how others interpret it.” (Emotion:
Positive; Cognition: Analysis)

• Liu Li → Zhang Tao : Chatting – “Zhang Tao , have you watched the latest Marvel
movie Eternals? I heard the plot is great and the effects are amazing. What did you
think?” (Emotion: Negative; Cognition: Memory)

• Zhang Tao → Li Wei : Chatting – “Li Wei , do you think our school’s football
team will win this weekend’s match?” (Emotion: Negative; Cognition: Memory)

Teacher Feedback: “Zhang Tao , please stay focused and participate actively so you can
better understand the story. Liu Li , you show strong independent learning ability, but
classroom interaction is important too—try joining the discussion!”

65



3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2026

Case: Multi-Agent Interaction in "The Emperor’s New Clothes"(Step 13)

Teacher Content: “Students, the questions raised by Zhang Jie , Zhang Yan , and Li
Wei were excellent and show deep thinking about the story. Now, can anyone tell me what
genre The Emperor’s New Clothes belongs to? Is it a novel, a poem, an essay, or a fairy tale?”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang : Note-taking – No response (Emotion: Positive; Cognition: Applica-
tion)

• Zhang Jie : Stand-up response – “I think it’s a fairy tale. The plot—like the
emperor being deceived—is common in fairy tales. And it teaches us a lesson: to
think independently and not blindly follow others.” (Emotion: Positive; Cognition:
Analysis)

• Zhang Yan : Stand-up response – “I agree—it’s a fairy tale. Although the characters
are familiar—like emperors and tailors—the story includes magical elements such as
invisible clothes and collective pretending. It also teaches a moral, which is typical
of fairy tales.” (Emotion: Positive; Cognition: Application)

• Li Wei : Stand-up response – “I also think it’s a fairy tale. It includes fantasy
elements and makes us think deeply. But I’d also like to hear what others think.”
(Emotion: Positive; Cognition: Application)

• Liu Li : Head down reading – No response (Emotion: Negative; Cognition: Under-
standing)

• Zhang Tao → Liu Li : Chatting – “Liu Li , what book are you reading? It looks
interesting.” (Emotion: Negative; Cognition: Understanding)

Teacher Feedback: “Liu Li , let’s try to stay focused—your intelligence should be used to
understand the story. Wang Fang , your thoughtful interpretation is excellent—please keep
sharing. Zhang Tao , let’s all focus on the lesson—we’re eager to hear your ideas too.”

Case: Multi-Agent Interaction in "The Emperor’s New Clothes"(Step 14)

Teacher Content: “Great work, everyone. Zhang Jie mentioned that if the emperor had the
courage to admit he couldn’t see the fabric, he could have avoided embarrassment—a sharp
observation. Zhang Yan asked about the story’s modern relevance, and that’s a very valuable
question: do we, too, sometimes pursue surface appearances and ignore real value? Li
Wei talked about the importance of independent thinking—something we should all cultivate.
We’ll continue exploring these ideas in future lessons.”
Teacher Emotion: Encouragement Teacher Behavior: Questioning
Student Responses:

• Wang Fang : Head up listening – No response (Emotion: Positive; Cognition:
Analysis)

• Zhang Jie : Stand-up response – “I think this story is really meaningful. Like Zhang
Jie said, the emperor’s fear of embarrassment kept him from facing the truth. This
happens in real life too. The story teaches us to be brave and value independent
thinking—just like Li Wei said. I’ll try to apply this understanding in the future and
learn from my classmates’ views as well.” (Emotion: Positive; Cognition: Analysis)

• Zhang Yan : Stand-up response – “I agree with both Zhang Jie and Li Wei .
Courage and critical thinking are crucial. I’d add that in chasing a beautiful life,
we shouldn’t lose sight of what’s real. Like the emperor, we risk embarrassment
when we chase appearances. This story warns us not to be modern-day emperors.”
(Emotion: Positive; Cognition: Analysis)

• Li Wei : Stand-up response – “Thank you, teacher. I agree with Zhang Jie ’s point
about courage and Zhang Yan ’s insights on modern relevance. We often do focus
too much on appearance and forget real values. This story encourages us to think
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independently, face truth, and care about substance over form.” (Emotion: Positive;
Cognition: Analysis)

• Liu Li → Zhang Yan : Chatting – “Zhang Yan , have you seen that popular TV
show Green Fields Under Moonlight? The characters are so well-written. You should
check it out.” (Emotion: Negative; Cognition: Understanding)

• Zhang Tao → Li Wei : Chatting – “Li Wei , did you notice Liu Li was chatting
during class? Do you know what they were talking about?” (Emotion: Negative;
Cognition: Understanding)

Teacher Feedback: “Wang Fang , great job observing and thinking—don’t be anxious, we’re
all learning together. Try sharing your ideas next time. Zhang Yan , your active participation
and deep thinking are a real asset to the class. Zhang Jie , your analytical skills and eloquence
are excellent—keep up the enthusiasm!”
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