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ABSTRACT

Recent domain generalization (DG) approaches typically use the hypothesis learned
on source domains for inference on the unseen target domain. However, such a
hypothesis can be arbitrarily far from the optimal one for the target domain, induced
by a gap termed “adaptivity gap”. Without exploiting the domain information
from the unseen test samples, adaptivity gap estimation and minimization are
intractable, which hinders us to robustify a model to any unknown distribution. In
this paper, we first establish a generalization bound that explicitly considers the
adaptivity gap. Our bound motivates two strategies to reduce the gap: the first one
is ensembling multiple classifiers to enrich the hypothesis space, then we propose
effective gap estimation methods for guiding the selection of a better hypothesis
for the target. The other method is minimizing the gap directly by adapting model
parameters using online target samples. We thus propose Domain-specific Risk
Minimization (DRM). During training, DRM models the distributions of different
source domains separately; for inference, DRM performs online model steering
using the source hypothesis for each arriving target sample. Extensive experiments
demonstrate the effectiveness of the proposed DRM for domain generalization with
the following advantages: 1) it significantly outperforms competitive baselines on
different distributional shift settings; 2) it achieves either comparable or superior
accuracies on all source domains compared to vanilla empirical risk minimization;
3) it remains simple and efficient during training, and 4) it is complementary to
invariant learning approaches.

1 INTRODUCTION

Machine learning models generally suffer from degraded performance when the training and test
data are non-IID (independently and identically distributed). To overcome the brittleness of classical
empirical risk minimization (ERM), there is an emerging trend of developing out-of-distribution
(OOD) generalization approaches (Muandet et al., 2013; Li et al., 2018b), where models trained on
multiple source domains/datasets can be directly deployed on unseen target domains. Various OOD
frameworks are proposed, e.g., disentanglement (Zhang et al., 2022a), causal invariance (Arjovsky
et al., 2019), and adversarial training (Ganin et al., 2016; Li et al., 2018c).

Existing approaches might rely on two strong assumptions. (i) Hypothesis over-confidence. Most
works directly apply a source-trained hypothesis to any unseen target domains (Arjovsky et al.,
2019; Krueger et al., 2021; Rame et al., 2022) by implicitly assuming that the training hypothesis
space contains an ideal target hypothesis. However, the IID and OOD performances are not always
positively correlated (Teney et al., 2022), i.e., the optimal hypothesis on source domains might not
perform well on any target domains. The distance between the optimal source and target hypothesis
is termed adaptivity gap (Dubey et al., 2021), which is even shown can be arbitrarily large (Chu et al.,
2022). (ii) Pessimistic adaptivity gap reduction. Although the adaptivity gap is ubiquitous, it is
almost impossible to identify and minimize due to the unavailability of OOD target samples. As a
consequence, there exists no approach that can tackle all kinds of distribution shifts at once (e.g.,
diversity shift in PACS (Li et al., 2017) and correlation shift in the Colored MNIST (Arjovsky et al.,
2019)), but only a specific kind (Ye et al., 2022). In a word, it is almost impossible to robustify a
model to arbitrarily unknown distribution shift without utilizing the target samples during inference.

The two disadvantages are also neglected by the commonly-used domain adaptation and generalization
bounds (Ben-David et al., 2010; Albuquerque et al., 2020; Zhao et al., 2019), which mostly ignore
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the terms that are related to the target domain. To this end, we introduce a new generalization bound
that does not dependent on the choice of hypothesis space and explicitly considers the adaptivity gap
between source and target. The bound motivates two possible test-time adaptation strategies: the
first one is to train specific classifiers for different source domains, and then dynamically ensemble
them, which is shown able to enrich the set of the hypothesis space (Domingos, 1997). The other is
to utilize the arriving target samples, namely once a target sample is given, we update the model by
its provided target domain information. To summarize, this paper makes the following contributions:

• A novel perspective. We provide a new generalization bound that does not depend on
the choice of hypothesis space and explicitly considers the adaptivity gap between source
domains and the target domain. Our bound is shown tighter than the existing one and
provides intuition for reweighting methods, test-time adaptation methods, and classifier
ensembling methods for good domain generalization performance.

• A new approach. We propose a new Domain-specific Risk Minimization (DRM) method,
which consists of two components: (i) During training, DRM constructs specific classifiers
for source domains and is trained by reweighting empirical loss. (ii) During the test, DRM
performs test-time model selection and retraining for each target sample. Thus, the source
classifiers are dynamically changed for each target data and we can enrich the support set of
the hypothesis space in this way to minimize the adaptivity gap directly.

• Extensive experiments. We perform extensive experiments on popular OOD benchmarks
showing that DRM (1) achieves very competitive generalization performance on both
diversity shift benchmarks and correlation shift benchmarks; (2) beats most existing test-
time adaptation methods with a large margin; (3) is orthogonal to other DG methods; (4)
reserves strong recognition capability on source domains, and (5) is parameter-efficient and
converges even faster than ERM thanks to the structure.

2 RELATED WORK

Domain adaptation and domain generalization Domain/Out-of-distribution generalization (Muan-
det et al., 2013; Zhang et al., 2021b; Li et al., 2018c; Zhang et al., 2022b) aims to learn a model that
can extrapolate well in unseen environments. Representative methods like Invariant Risk Minimiza-
tion (IRM) (Arjovsky et al., 2019) concentrates on the objective of extracting data representations
that lead to invariant prediction across environments under a multi-environment setting. In this paper,
we emphasize the importance of considering adaptivity gap and use online target data for adaptation,
without an invariance strategy, the proposed DRM can attain superior generalization capacity.

Ensemble learning in domain generalization learn ensembles of multiple specific models for
different source domains to improve the generalization ability, e.g., domain-specific neural networks
layer (Ding & Fu, 2017), domain-specific classifiers (Wang et al., 2020), and domain-specific batch
normalization (Segu et al., 2020). Domain-specific classifiers are also used in this work, however,
empirical results show that directly ensembling multiple classifiers with a uniform weight degrades
the performance and the proposed DRM can attain superior generalization results in contrast.

Test-time adaptive methods are recently proposed to utilize target samples. Test-time Training
methods need to design proxy tasks during tests such as self-consistence (Zhang et al., 2021c),
rotation prediction (Sun et al., 2020) and need extra models; Test-time adaptation methods adjust
model parameters based on unsupervised objectives such as entropy minimization (Wang et al., 2021)
or update a prototype for each class (Iwasawa & Matsuo, 2021). Domain-adaptive method (Dubey
et al., 2021) needs extra models for adapting to the target domain. Our generalization bound indicates
that these methods can explicitly reduce the target loss upper bound. And in this paper, we propose
other ways to perform test-time adaptation, i.e., multi-classifier dynamic combination and retraining.

3 A BOUND BY CONSIDERING ADAPTIVITY GAP

Let X ,Y,Z denote the input, output, and feature space, respectively. We use X,Y, Z to denote the
random variables taking values from X ,Y,Z , respectively. In the DG setting, we have access to a
labeled training dataset that consists of several different but related training distributions (domains):
D = ∪Ki=1Di, where K is the number of domains. Each Di corresponds to a joint distribution
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Pi(X,Y ) with a optimal classifier fi : X → [0, 1]1. We focus on a deterministic setting where the
output Y = fi(X) is given by a deterministic classifier, fi, which varies from domain to domain.
Let g : X → Z and h : Z → {0, 1} denote the encoder/feature transformation and the prediction
head, respectively. The error incurred by hypothesis f̂ := h ◦ g under domain Di can be defined as
ϵi(f̂) = EX∼Di

[|f̂(X)− fi(X)|]. Given fi and f̂ as binary classification functions, we have

ϵi(f̂) = ϵi(f̂ , fi) = EX∼Di

[
|f̂(X)− fi(X)|

]
= PX∼Di

(f̂(X) ̸= fi(X)). (1)

Existing analysis on OOD Existing popular approaches on OOD focus on learning invariant
representations (Li et al., 2018b; Ganin et al., 2016) with the following theoretical intuition.

Proposition 1. (Adapted from (Ben-David et al., 2006)) Denote D̃ as the induced distribution over
feature space Z for every distribution D over raw space. Here we use H as a hypothesis space
defined on feature space, i.e., H ⊆ {h : Z → {0, 1}}. Define Di as a source distribution over
X , which enables a mixture construction of source domains as Dα =

∑K
i=1 αiDi(·). Denote a

fictitious distribution Dα
T =

∑K
i=1 α

∗
iDi(·) as the convex combination of source domains which

is the closest to DT , where α∗
1, ..., α

∗
K = argminα1,...,αK

dH, (DT ,
∑K

i=1 αiDi(·)). The fictitious
distribution induces a feature space distribution D̃α

T =
∑K

i=1 α
∗
i D̃i(·). The following inequality

holds for the risk ϵT (f̂) on target domain DT (See appendix C.1 for derivations and explanations):

ϵT (f̂) ≤ λα +

K∑
i=1

αiϵi(f̂) + dH(D̃α
T , D̃α) + dH(D̃T , D̃α

T ), (2)

where a feature transformation g is learned such that the induced source distributions on Z are close
to each other and a prediction head h over the feature space Z is to achieve small empirical errors on
source domains. The bound depends on the risk of the optimal hypothesis λα, namely. the hypothesis
space contains an optimal classifier that performs well on both the source and the target domains.
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Figure 1: A failure case of invariant rep-
resentations for domain generalization.
(a) Four domains in different colors: or-
ange, green, red and blue. (b) Invariant
representations learnt from domain Dr

and Db. The grey color indicates the
transformed target domains.

Adaptivity gap The above assumption cannot be guar-
anteed to hold true under all scenarios and is usually in-
tractable to compute for most practical hypothesis spaces,
making the bound conservative and loose. Besides, even
if we have the optimal classifier, it is almost impossible to
find the optimal one using given source domains. The rea-
son is that the classifier trained by the average risk across
domains can lie far from the optimal classifier for a target
domain (Dubey et al., 2021; Chu et al., 2022), induced by
adaptivity gap:2

Definition 1 (Adaptivity gap). The adaptivity gap between
Di and the target domain DT can be formally defined as
EDT [|fi − fT |], namely the error incurred by using fi
for inference in DT .

A failure case of invariant representation. We con-
struct a simple counterexample where invariant representations fail to generalize. As shown
in Figure 1, given the following four domains: Do ∼ N ([−3, 3], I),Dg ∼ N ([3, 3], I),Dr ∼
N ([−3,−3], I),Db ∼ N ([3,−3], I), where X = (x1, x2) and

fo(X) =

{
0 if x1 ≤ −3

1 otherwise
, fr(X) =

{
0 if x1 ≤ −3

1 otherwise
, fg(X) =

{
1 if x1 ≤ 3

0 otherwise
, fb(X) =

{
1 if x1 ≤ 3

0 otherwise
,

(3)
1Most theories and examples in this paper considers binary classification for easy understanding and can be

easily extended to multi-class classification.
2The adaptivity gap is NOT the same as labeling functions difference (Zhao et al., 2019), where the latter

measures the difference of two hypotheses: min{EDi [|fi − fT |],EDT [|fi−fT |]}. However, the error of target
hypothesis fT on the source domain is intractable to estimate and meaningless for DG (Kpotufe & Martinet,
2018). The definition of adaptivity gap directly measures if the source classifier performs well on the target.
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where I indicates the identity matrix. Then, the optimal hypothesis f∗(X) = 1 iff x1 ∈ (−3, 3)
achieves perfect classification on all domains. Let Dr,Db denote source domains and Do,Dg

denote target domains. Given hypothesis f̂ := h ◦ g where the feature transformation function is
g(X) = Ix1<0 · (x1 + 3) + Ix1>0 · (x1 − 3) in Figure 1 (b), namely, the invariant representation of
Dr,Db is learnt, which is Drb = g ◦ Db = g ◦ Dr = N ([0,−3], I). However, the labeling functions
fr of Dr and fb of Db are just the reverse such that fr(X) = 1 − fb(X);∀X ∈ Drb. In this case,
according to Eq. 1, we have:

ϵrb(f̂) = ϵr(h ◦ g) + ϵb(h ◦ g) = PX∼g◦Dr (h(X) ̸= fr(X)) + PX∼g◦Db
(h(X) ̸= fb(X))

= 1− PX∼Drb
(h(X) ̸= fb(X)) + PX∼Drb

(h(X) ̸= fb(X)) = 1
(4)

Therefore, the invariant representation leads to large joint errors on all source and target domains for
any prediction head h without considering the adaptivity gap. Motivated by this, we provide a tighter
OOD upper bound that considers the adaptivity gap.

Proposition 2. Let {Di, fi}Ki=1 and DT , fT be the empirical distributions and corresponding
labeling function for source and target domain, respectively. For any hypothesis f̂ ∈ H, given
mixed weights {αi}Ki=1;

∑K
i=1 αi = 1, αi ≥ 0, we have:

ϵT (f̂) ≤
K∑
i=1

(
EX∼Di

[
αi

PT (X)

Pi(X)
|f̂ − fi|

]
+ αiEDT [|fi − fT |]

)
. (5)

The two terms on the right-hand side have natural interpretations: the first term is the weighted source
errors, and the second one measures the distance between the labeling functions from the source
domain and target domain. Compared to Eq. 2, Eq. 5 does not depend on λα, i.e., the choice of the
hypothesis class H makes no difference. More importantly, the new upper bound in Eq. 5 reflects
the influence of adaptivity gaps between each source domain to the target, i.e., EDT [|fi − fT |]. The
most similar generalization bound to us is (Albuquerque et al., 2019), in Appendix C.3, we show that
the proposed bound is tighter. Although in this work, the density ratio PT (x)/Pi(x) is ignored and
regarded as a constant, it has an interesting connection between reweighting methods.

Connection to reweighting methods. Intuitively, the density ratio stresses the importance of data
sample reweighting, where data samples that are more likely from the target domain should have
larger weights. Existing methods (Liu et al., 2021a; Zhang et al., 2022b; Sagawa et al., 2020) use
similar reweighting strategies and our error bound provides a theoretical explanation for why they
work well on DG (See Appendix C.4 for formal definition and derivation).

4 DOMAIN-SPECIFIC RISK MINIMIZATION

Our error bound suggests a novel perspective on OOD algorithm design: DRM. DRM avoids the
calculation of untractable terms in Eq. 5 and approximately minimizes the bound.

4.1 DOMAIN-SPECIFIC LABELING FUNCTION

One natural idea is to use domain-specific classifiers {f̂i}Ki=1 rather than a shared classifier f̂ for
source domains. Each f̂i is responsible for classification in Di. In the training phase, our goal
is to minimize 1

K

∑K
i=1 Ex∼Di

[
|f̂i − fi|

]
by assuming that K training domains are uniformly

mixed (αi = 1/K). The generalization results are better with reweighting terms, e.g., using
GroupDRO (Sagawa et al., 2020), in the RotatedMNIST dataset, the accuracy of d = 5 with
reweighting terms is 97.3%, which is better than 96.8% without reweighting. We simply ignore the
reweighting term in this work since it is not our focus.

Specifically, given K source domains, DRM utilizes a shared encoder g and a group of prediction
head {hi}Ki=1 for all domains, respectively. The encoder is trained by all data samples while each
head hi is trained by images from domain Di. It is also possible (but less efficient and accurate) to
use specific gi for each domain.3

3Using domain-specific gi will inevitably increase the computation and memory burden. We observe that
hi ◦g gives an OOD accuracy of 70.1% while the result is only 64.8% for hi ◦gi on the Colored MNIST dataset.
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4.2 TEST-TIME MODEL SELECTION AND ADAPTATION

Test-time adaptive intuitions from the bound. After training, we can get K hypotheses f̂i that can
well approximate source labeling functions. During testing, our error bound provides two strategies
to minimize the second term in the upper bound, i.e.,

∑K
i=1 αiEDT [|fi − fT |]. One natural strategy

is to find α∗ = argminαiEDT [|fi − fT |], which is termed test-time model selection. The intuition
is that if we can find the source domain Di∗ with a labeling function fi∗ that minimizes the adaptivity
gap EDT [|fi∗ − fT |], then we have that αi = 1, iff i = i∗, otherwise 0 will minimize this term.
Second, if we suppose f̂i ≈ fi, then minimizing

∑K
i=1 EDT [|f̂i − fT |] will also minimize the bound.

The resulting strategy is termed test-time retraining. Since fT is unknown, we can update model
parameters by the inferred target pseudo labels or use some unsupervised losses such as entropy
minimization. Note that these two strategies are orthogonal and can be used simultaneously. In the
following, we articulate these two strategies.

4.2.1 TEST-TIME MODEL SELECTION

As mentioned above, we can manipulate αi to affect the second term in our bound: for every test
sample x ∈ DT , if we can estimate the adaptivity gap {Hi = |fi(x) − fT (x)|}Ki=1 and choose
i∗ = argmin{Hi}Ki=1. Then αi = 1, iff i = i∗, otherwise 0 makes this term the minimum and the
prediction will be f̂i∗(x). The challenge is estimating {Hi}Ki=1 and we propose two approximations.

Similarity Measurement (SM). We first reformulate αiEDT [|fi − fT |] as follows:

αiEDT [|fi − fT |] = αiEDT [|fi − EDi
[fi] + EDi

[fi]− fT |]
≤ αi (EDT [|fi − EDi [fi]|] + EDT [|EDi [fi]− fT |]) ,

(6)

where fT is intractable and we then focus on EDT [|fi − EDi [fi]|], which intuitively measures the
prediction difference of the given test data x ∈ DT and the average prediction result in domain
Di. However, taking the average of the prediction labels might produce ill-posed results4 and we
use EDT [|g − EDi

[g]|] to approximate this term, where we calculate the representation difference
between the test sample and the average representation of the domain Di. For each x ∈ DT , the
estimation Hi = Dist(g(x),EDi

[g]), i.e., the distance between g(x) and the average representation
of Di. The Dist function can be any distance metric such as lp-Norm, the negative of cosine
similarity, f−divergence (Nowozin et al., 2016), MMD (Li et al., 2018b), or A-distance (Ben-David
et al., 2010). We use cosine similarity (CSM) and l2-Norm (L2SM) in our experiments for simplicity.

Prediction Entropy Measurement (PEM). During testing, denote the K individual classification
logits as {ȳk}Kk=1, where ȳk = [yk1 , ..., y

k
C ], and C is the number of classes. Given the following

assumption: “the more confident prediction hi ◦ g makes on DT , the more similar fi and fT will
be”. Then, the prediction entropy of ȳk can be calculated as Hk = −

∑c
i=1

yk
i∑c

j=1 yk
j

log
yk
i∑c

j=1 yk
j

,
where the entropy is used as our expected estimation. In our experiments, we find that the prediction
entropy is consistent with domain similarities, which is similar to SM.

Model Ensembling. A one-hot mixed weight is too deterministic and cannot fully utilize all
learned classifiers. Softing mixed weights, on the other hand, can further boost generalization
performance and enlarge the hypothesis space, i.e., for ERM, we can generate the final prediction as∑K

k=1 ȳkH
−γ
k /

∑K
i=1 H

−γ
i , where H−γ

k indicates the contribution of each classifier. We use −γ, but
not γ since the smaller the adaptivity gap, the larger the contribution of fi should be. Specifically, for
γ = 0, we then have a uniform combination, i.e., αi = 1/K,∀i ∈ [1, 2, ...,K]; for γ →∞, we then
have a one-hot weight vector with αi = 1 iff i = i∗ otherwise 0. Refer to Appendix Algorithm 1,2
for the detail of the training and test pipelines of the proposed two selection strategies. In experiments,
we compare the different selection strategies and PEM generally performs the best, thus we later use
PEM as the default choice.

A possible reason is that a shared encoder g can be seen as an implicit regularization, which prevents the model
from overfitting specific domains.

4If all source domains have two data samples with different labels, e.g., two different one-hot labels
[0, 1], [1, 0]. Then the average prediction result of all source domains will be [0.5, 0.5] and have no difference.
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4.2.2 TEST-TIME RETRAINING

Table 1: Comparison between dif-
ferent pseudo label generalization
strategies.

Method Clf Full

ERM 80.3 80.3
DRM wo/ retraining 83.0 83.0

Vanilla retraining 83.0 83.8
DRM retraining 84.1 84.8

The simplest idea to retrain the model is that, for each predic-
tion head, we use the argmax of the prediction result as pseudo
labels and then train the model by cross-entropy loss, which
is termed Vanilla Retraining. However, it performs poorly
(Table 1) no matter only tuning the prediction heads (Clf) or
the overall model (Full). Thanks to the domain-specific classi-
fiers, we can produce more reliable pseudo labels. Specifically,
we generate pseudo labels by the weighted mix of predictions
by all heads where the weights are just mixed weights in the
model selection phase. We compare these generation strategies
on the PACS dataset with ‘A’ as the target. Table 1 shows that
with the proposed pseudo-label generation strategy, the retraining process can be well guided.

Remark. By modeling domain-specific labeling functions, DRM can further reduce source errors
(i.e., the first term in our upper bound); For the second term, the test-time model selection and
retraining reduce the adaptivity gap by enriching hypothesis class and target sample retraining. In
Appendix B, we show that by directly minimizing the adaptivity gap, the proposed DRM performs
well on the counterexample in Section 3.

5 EXPERIMENTAL RESULTS

We first conduct case studies on a popular correlation shift dataset (Colored MNIST). Then, we
compare DRM with other advanced methods on DG benchmarks (diversity shift). The results verify
the argument in the introduction: by utilizing the target data during test, we can better robustify a
model to both distribution shifts. We also compare DRM with different test-time adaptive methods
with various backbones. For fair comparisions, We use test-time retraining just when compared to
test-time adaptation methods, namely DRM denotes the method wo/ retraining by default.

Experimental Setup. We use four popular OOD generalization benchmark datasets: Colored
MNIST (Arjovsky et al., 2019), Rotated MNIST (Ghifary et al., 2015), PACS (Li et al., 2017),
VLCS (Torralba & Efros, 2011), and DomainNet (Peng et al., 2019). We compare our model with
ERM (Vapnik, 1999), IRM (Arjovsky et al., 2019), Mixup (Yan et al., 2020), MLDG (Li et al.,
2018a), CORAL (Sun & Saenko, 2016), DANN (Ganin et al., 2016), CDANN (Li et al., 2018c),
MTL (Blanchard et al., 2021), SagNet (Nam et al., 2021), ARM (Zhang et al., 2021a), VREx (Krueger
et al., 2021), RSC (Huang et al., 2020), Fish (Shi et al., 2022), and Fishr (Rame et al., 2022). All the
baselines in DG tasks are implemented using the codebase of Domainbed (Gulrajani & Lopez-Paz,
2021). See Appendix E for datasets and implementation details.

5.1 CASE STUDIES ON CORRELATION SHIFT DATASETS

In the following, we conduct thorough experiments and analysis of a popular correlation shift bench-
mark, i.e., the ColoredMNIST dataset (Arjovsky et al., 2019). It constructs a binary classification
problem based on the MNIST dataset (digits 0-4 are class one and 5-9 are class two). Digits in the
dataset are either colored red or green, and there is a strong correlation between color and label but
the correlations vary across domains. For example, green digits have a 90% chance of belonging
to class 1 in the first domain +90%(d = 0), and a 10% chance of belonging to class 1 in the third
domain −90%(d = 2).

DRM has superior generalization ability on the dataset with correlation shift. As shown in
Table 2, ERM achieves high accuracies on training domains but below-chance accuracy on the test
domain due to its reliance on spurious correlations. IRM (Arjovsky et al., 2019) forms a tradeoff
between training and testing accuracy. An ERM model trained on only gray images, i.e., ERM
(gray), is perfectly invariant by construction and attains a better tradeoff than IRM. The upper
bound performance of invariant representations (OIM) is a hypothetical model that not only knows
all spurious correlations but also has no modeling capability limit. For averaged generalization
performance, DRM, without any invariance regularization, outperforms IRM by a large margin
(> 2.4%). Besides, the source accuracy of DRM is even higher than ERM and significantly higher
than IRM and OIM. Note that DRM is complementary with invariant learning-based methods, where
incorporating CORAL (Sun & Saenko, 2016) can further boost both training and testing performances.
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Table 2: Accuracies (%) of different methods on training/testing domains for the Colored MNIST
synthetic task. OIM (optimal invariant model) and RG (random guess) are hypothetical mechanisms.

+90% (d = 0) +80% (d = 1) -90% (d = 2) Avg
Method train test train test train test train test

ERM 86.1±3.9 71.8±0.4 83.6±0.5 72.9±0.1 87.5±3.4 28.7±0.5 85.7 57.8
IRM 78.2±9.5 72.0±0.1 70.6±9.1 72.5±0.3 85.3±4.7 58.5±3.3 78.0 67.7
DRM 81.8±9.8 86.7±2.4 90.2±0.2 80.6±0.2 88.0±4.5 43.1±7.5 86.7 70.1

DRM+CORAL 83.4±8.6 85.3±2.3 91.6±0.7 80.7±0.2 89.4±4.9 47.2±3.6 88.1 71.1
RG 50 50 50 50 50 50 50 50

OIM 75 75 75 75 75 75 75 75
ERM (gray) 84.8±2.7 73.9±0.3 84.3±1.4 73.7±0.4 83.4±2.3 73.8±0.7 84.2 73.8
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Figure 2: The entropy of different predictions. (a) Training domain {0, 1} and testing domain
{2}. (b) The average of training/testing domains {0, 1}/{2}, {0, 2}/{1}, and {1, 2}/{0}. (c) Domain-
classifier correlation matrix, the value vij is the entropy of predictions incurred by predicting samples
in the domain i with classifier j. Dom.i indicates the classifier for the domain d = i. (d) Domain-
classifier correlation matrices on Rotated MNIST.

Though the Colored MNIST dataset is a good indicator to show the model capacity for avoiding
spurious correlation, these spurious correlations are unrealistic and utopian. Therefore, when testing
on large DG benchmarks, ERM outperforms IRM. Different from them, DRM not only performs
well on the semi-synthetic dataset but also attains state-of-the-art performance on large benchmarks.

PEM implicitly reduces prediction entropy and the entropy-based strategy performs well in
finding a proper labeling function for inference. The prediction entropy is often related to the fact
that more confident predictions tend to be correct (Wang et al., 2021). Figure 2(a) shows that the
entropy in target domain (d = 2) tends to be greater than the entropy in source domains, where the
source domain with stronger spurious correlations (d = 1) also has larger entropy than easier one
(d = 0). Fortunately, with the entropy minimization strategy, we can find the most confident classifier
for a given data sample, and DRM can reduce the prediction entropy (Figure 2(b)). To further analyze
the entropy minimization strategy, we visualize the domain-classifier correlation matrix in Figure 2(c),
where the entropy between the domain and its corresponding classifier is minimal, verifying the
efficacy of the entropy minimization strategy.

5.2 RESULTS ON GENERAL OOD BENCHMARKS

OOD results. The average OOD results on all benchmarks are shown in Table 3. We observe
consistent improvements achieved by DRM compared to existing algorithms. The results indicate
the superiority of DRM in real-world diversity shift datasets. See Appendix for multi-target domain
generalization and the detailed performance on every domain.

In-distribution results. Current DG methods ignore the performance of source domains since they
focus on target results. However, source domain performance is also of great importance in real-world
applications (Yang et al., 2021), i.e., the in-distribution performance. We then show the in-distribution
performances of VLCS and PACS in Table 4, and other domains are in Table 11. DRM achieves
comparable or superior performance on source domains compared to ERM and beats IRM by a large
margin, which indicates that DRM achieves satisfying in- and out-distribution performance.
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Table 3: Out-of-distribution generalization performance.
Method CMNIST RMNIST VLCS PACS DomainNet Avg
ERM (Vapnik, 1999) 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 41.3 ± 0.1 72.2
IRM (Arjovsky et al., 2019) 67.7 ± 1.2 97.5 ± 0.2 76.9 ± 0.6 84.5 ± 1.1 28.0 ± 5.1 70.9
CORAL (Sun & Saenko, 2016) 58.6 ± 0.5 98.0 ± 0.0 77.7 ± 0.2 87.1 ± 0.5 41.8 ± 0.1 72.6
MTL (Blanchard et al., 2021) 57.6 ± 0.3 97.9 ± 0.1 77.7 ± 0.5 86.7 ± 0.2 40.8 ± 0.1 72.1
SagNet (Nam et al., 2021) 58.2 ± 0.3 97.9 ± 0.0 77.6 ± 0.1 86.4 ± 0.4 40.8 ± 0.2 72.2
ARM (Zhang et al., 2021a) 63.2 ± 0.7 98.1 ± 0.1 77.8 ± 0.3 85.8 ± 0.2 36.0 ± 0.2 72.2
VREx (Krueger et al., 2021) 67.0 ± 1.3 97.9 ± 0.1 78.1 ± 0.2 87.2 ± 0.6 30.1 ± 3.7 72.1
Fish (Shi et al., 2022) 61.8 ± 0.8 97.9 ± 0.1 77.8 ± 0.6 85.8 ± 0.6 43.4 ± 0.3 73.3
Fishr (Rame et al., 2022) 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 41.8 ± 0.2 74.7
DRM 70.1 ± 2.0 98.1 ± 0.2 80.5 ± 0.3 88.5 ± 1.2 42.4 ± 0.1 75.9
DRM+CORAL 71.1 ± 1.7 98.3 ± 0.1 79.5 ± 2.4 88.4 ± 0.9 42.7 ± 0.1 76.0

Table 4: In-distribution performance on VLCS and PACS.

Method VLCS PACS
C L S V Avg A C P S Avg

ERM 78.2±3.3 87.8±9.0 86.3±10.2 83.3±11.6 83.9 96.7±0.3 96.4±1.5 95.3±1.2 96.3±0.1 96.2
IRM 76.9±2.9 88.2±8.9 85.3±9.8 77.3±1.0 81.9 95.9±1.6 94.2±2.5 94.3±1.0 94.5±1.8 94.7
DRM 78.5±2.9 87.2±9.2 87.3±9.0 84.0±10.9 84.3 96.9±0.3 96.4±1.3 95.2±0.9 96.1±0.6 96.2

Table 5: Comparison of our method and ex-
isting test-time adaptation methods on PACS.
The reported number is the average generalization
performance over P, A, C, S four domains.

Method BSZ=32 BSZ=8

ResNet50 83.98 83.98
PLClf 85.63 85.55
PLFull 86.50 85.88
SHOT 86.53 85.85
SHOTIM 86.40 85.68
T3A 86.23 86.00
ResNet50w/ BN 83.18 83.18
TentClf 84.15 84.15
TentNorm 85.60 84.00
DRM 86.57 86.57
+Retrain Cls 87.90 87.83
+Retrain Full 89.30 89.33

Table 6: Domain generalization accuracy with
different backbone networks on PACS. The re-
ported number is the average generalization perfor-
mance over P, A, C, S four domains.

Method BSZ=32 BSZ=8

ResNet18 79.98 79.98
DRM 80.30 80.30
+Retrain Cls 82.95 82.18
+Retrain Full 84.70 84.35
ResNet50 83.98 83.98
DRM 86.57 86.57
+Retrain Cls 87.90 87.83
+Retrain Full 89.30 89.33
ViT-B16 87.10 87.10
DRM 87.85 87.85
+Retrain Cls 90.08 90.08
+Retrain Full 90.95 90.85

Comparison with test-time adaptation methods. For fair comparisons, following (Iwasawa &
Matsuo, 2021), the base models (ERM and DRM) are trained only on the default hyperparameters
and without the fine-grained parametric search. Because (Gulrajani & Lopez-Paz, 2021) omits
the BN layer from pre-trained ResNet when fine-tuning on source domains, we cannot simply use
BN-based methods on the ERM baseline. For these methods, their baselines are additionally trained
on ResNet-50 with BN. Models with the highest IID accuracy are selected and all test-time adaptation
methods are applied to improve the generalization performance. The baselines include Tent (Wang
et al., 2021), T3A (Iwasawa & Matsuo, 2021), pseudo labeling (PL) (Lee et al., 2013), SHOT (Liang
et al., 2020), and SHOT-IM (Liang et al., 2020). For methods that use gradient backpropagation, we
implement both update the prediction head (Clf) and full model (Full). Results in Table 5 show that:
(i) Simply retraining the classifier or the full model by its own prediction is comparable to existing
methods; (ii) Tent (Wang et al., 2021) is sensitive to batch size but the proposed DRM is not; (iii) The
performance of DRM without retraining attains comparable results compared to existing methods,
and when incorporated by the proposed retraining method, the performance beats all baselines by a
large margin.

Results of various backbones. We conduct experiments with various backbones in Table 6, including
ResNet-50, ResNet-18, and Vision Transformers (ViT-B16). DRM achieves consistent performance
improvements compared to ERM. Specifically, DRM improves 5.3%, 4.7%, and 3.9% for ResNet-50,
ResNet-18, and ViT-B16 with evaluation batch size (BSZ) 32, respectively.
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Table 7: Comparison of different test-time model selection strategies on the PACS dataset.
Method A C P S Avg

DRM w/ Uniform weight 81.2 ± 2.2 71.2 ± 1.2 93.7 ± 0.3 78.6 ± 1.5 81.2
DRM w/ CSM 83.0 ± 2.1 74.6 ± 2.5 95.6 ± 0.8 80.4 ± 1.2 83.4
DRM w/ NNM 85.5 ± 2.4 76.8 ± 2.0 96.6 ± 0.4 81.8 ± 1.5 85.2
DRM w/ L2SM 87.7 ± 1.7 80.0 ± 0.5 96.0 ± 1.6 82.1 ± 1.2 86.5
DRM w/ PEM 88.3 ± 2.9 80.1 ± 0.8 97.0 ± 0.5 80.9 ± 0.7 86.6

5.3 ABLATION STUDIES AND ANALYSIS

Different model selection strategies. Here we also conduct another baseline termed Neural Network
Measurement (NNM). To fully utilize the modeling capability of the neural network, we propose
estimating αiEDT [|fi − fT |] by NN. Specifically, during training, a domain discriminator is trained
to classify which domain is each image from. During test, for x ∈ DT , the prediction result of the
discriminator will be {di}Ki=1, and {Hi = −di}Ki=1 is used as the estimation. We compare all the
proposed strategies and a simple ensembling learning baseline, which uses a uniform weight for
classifier ensembling. Table 7 shows that simple ensembling method works poorly in all domains. In
contrast, the proposed methods achieve consistent improvements and PEM generally performs best.

Correlation matrix. From the correlation matrices, we find that: (i) The entropy of predictions
between one source domain and its corresponding classifier is minimal. (ii) On the target domain,
classifiers cannot attain very low entropy as they attained on the corresponding source domains.
(iii) The entropy of predictions has a certain correlation with domain similarity. For example,
in Figure 2(d), classifier for domain d = 1 (with rotation angle 15◦) attains the minimum entropy
on the unseen target domain d = 0 (no rotation). As the rotation angle increases, the entropy also
increases. This phenomenon also occurs in other domains. Refer to the appendix for more analysis.

Table 8: Comparisons of different meth-
ods on the number of parameters and
training time on RotatedMNIST.

Method Time (sec) Params (M)

ERM 168.32 0.3546
IRM 236.80 0.3546
ARM 360.69 0.4562
FISH 251.76 0.3546
DRM 203.15 0.3595

Model complexity. As shown in Table 8, methods that
require manipulating gradients (Fish (Shi et al., 2022)) or
following the meta-learning pipeline (ARM (Zhang et al.,
2021a)) have much slower training speed compared to
ERM. The proposed DRM, without the need for aligning
representations (Ganin et al., 2016), matching gradient (Shi
et al., 2022), or learning invariant representations (Arjovsky
et al., 2019), has a training speed that is faster than most
existing DG methods, especially on small datasets Rotat-
edMNIST. The training speed of DRM is slower than ERM
because of training additional classifiers. See appendix for
more comparison.
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Figure 3: Loss curves.

Convergence analysis. The training dynamics of DRM and
several baselines on PACS dataset are shown in Figure 3, where
d = 0 is the target domain. IRM is unstable and hard to
converge. ARM follows a meta-learning pipeline and converges
slowly. In contrast, DRM converges even faster than ERM.

6 CONCLUDING REMARKS

We theoretically and empirically study the importance of the
adaptivity gap for domain generalization. Inspired by our the-
ory, we propose DRM to eliminate the negative effects brought by adaptivity gap. DRM achieve
great performance in both OOD and ID settings. We hope that our results can shed new light
on the model design for domain generalization problems. One possible direction is to estimate
αiPT (x)/Pi(x) and then reweight data samples. Besides, the additional parameters incurred by the
multi-classifiers structure can be reduced by advanced techniques and model designs, e.g., varying
coefficient technique (Nie et al., 2020; Hastie & Tibshirani, 1993).
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A EXTENDED RELATED WORKS

Labeling function shift and multi classifiers. Labeling function shift or correlation shift is not a
novel concept and is commonly used in domain adaptation Zhao et al. (2019); Stojanov et al. (2021);
Zhang et al. (2013) or domain generalization Ye et al. (2022). There are also some studies on DG
that are proposed to tackle this problem. CDANNLi et al. (2018c) considers the scenario where
both P (X) and P (Y |X) change across domains and proposes to learn a conditional invariant neural
network to minimize the discrepancy in P (X|Y ) across different domains. Liu et al. (2021b) explores
both the correlation and label shifts in DG and aligns the correlation shift via the variational Bayesian
inference. The proposed DRM is different from these studies because we want the labeling functions
P (Y |X) more specific to each domain rather than invariant.
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B A FAILURE CASE OF INVARIANT REPRESENTATION
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Figure 4: A failure case of invariant representations for domain generalization. (a) Four domains
in different colors: orange (µo = [−3.0, 3.0]), green (µg = [3.0, 3.0]), red (µr = [−3.0,−3.0]) and
blue (µb = [3.0,−3.0]). (b) Invariant representations learnt from domain Dr and Db by feature
transformation g(X) = Ix1<0 · (x1 +3)+ Ix1>0 · (x1− 3). The grey color indicates the transformed
target domains. (c) The classification boundary learned by DRM.

DRM can attain 0 source error in the above-mentioned counterexample by using g(X) = X and

hr(X) =

{
0 x1 ≤ −3
1 x1 > −3 , hb(X) =

{
1 x1 ≤ 3
0 x1 > 3

.

Furthermore, the choice of g is not a matter and we can easily generalize it to other cases. For
example, given g(X) = Ix1<0 · (x1 + 3) + Ix1>0 · (x1 − 3) for invariant representation. DRM can
still attain 0 source error by using

hr(X) =

{
0 x1 ≤ 0
1 x1 > 0

, hb(X) =

{
1 x1 ≤ 0
0 x1 > 0

Considering the test-time model selection strategy PEM, e.g., in the counterexample, Do is more
similar to Dr than to Db, hence the entropy when X ∈ Do is classified by hr is less than the entropy
classified by hb. In this way, Figure 4(c) shows that the learnt classification boundaries can attain 0
test errors on both the unseen target domains Do and Dg .

C PROOFS OF THEORETICAL STATEMENTS

To complete the proofs, we begin by introducing some necessary definitions.

Definition 2. (H-divergence Ben-David et al. (2006)). Given two domain distributions DS ,DT
over X , and a hypothesis classH, theH-divergence between DS ,DT is

dH(DS ,DT ) = 2 sup
f∈H
| Ex∼DS

[f(x) = 1]− Ex∼DT [f(x) = 1] | . (7)

C.1 DERIVATION AND EXPLANATION OF THE LEARNING BOUND IN EQ. 2

Let f∗ = argminf̂∈H

(
ϵT (f̂) +

∑K
i=1 ϵi(f̂)

)
, and let λT and λi be the errors of f∗ with respect

to DT and Di respectively. Notice that λα = λT +
∑K

i=1 λi. Similar to Ben-David et al. (2006)
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(Theorem 1), we have

ϵT (f̂) ≤ λT + PDT [Zh△Z∗
h]

≤ λT + PDα
[Zh△Z∗

h] + |PDα
[Zh△Z∗

h]− PDT [Zh△Z∗
h]|

≤ λT + PDα [Zh△Z∗
h] + dH(D̃T , D̃α)

≤ λT + PDα
[Zh△Z∗

h] + dH(D̃α
T , D̃α) + dH(D̃T , D̃α

T )

≤ λT +

K∑
i=1

λi +

K∑
i=1

αiϵi(f̂) + dH(D̃α
T , D̃α) + dH(D̃T , D̃α

T )

≤ λα +

K∑
i=1

αiϵi(f̂) + dH(D̃α
T , D̃α) + dH(D̃T , D̃α

T ),

(8)

The fourth inequality holds because of the triangle inequality. We provide the explanation for our
bound in Eq. 8. The second term is the empirical loss for the convex combination of all source
domains. The third term corresponds to “To what extent can the convex combination of the source
domain approximate the target domain”. The minimization of the third term requires diverse data or
strong data augmentation, such that the unseen distribution lies within the convex combination of
source domains. For the fourth term,the following equation holds for any two distributions D′

T , D
′′
T ,

which are the convex combinations of source domains (Albuquerque et al., 2020)

dH[D′
T ,D′′

T ] ≤
K∑
l=1

K∑
k=1

αlαkdH[Dl,Dk] (9)

Such an upper bound will be minimized when dH[Dl,Dk] = 0,∀ l, k ∈ {1, ...,K}. Namely
projecting the source domain data into a feature space, where the source domain labels are hard to
distinguish.

C.2 DERIVATION THE LEARNING BOUND IN EQ. 5

Proposition 3. Let {Di, fi}Ki=1 and DT , fT be the empirical distributions and corresponding
labeling function. For any hypothesis f̂ ∈ H, given mixed weights {αi}Ki=1;

∑K
i=1 αi = 1, αi ≥ 0,

we have:

ϵT (f̂) ≤
K∑
i=1

(
EX∼Di

[
αi

PT (X)

Pi(X)
|f̂ − fi|

]
+ αiEDT [|fi − fT |]

)

Proof.

ϵT (f̂) = ϵT (f̂ , fT ) = EX∼DT [|f̂(X)− fT (X)|]

=

K∑
i=1

αiEX∼DT [|f̂(X)− fT (X)|]

=

K∑
i=1

αi

(
EX∼DT [|f̂(X)− fi(X) + fi(X)− fT (X)|]

)
≤

K∑
i=1

αi

(
EX∼DT [|f̂(X)− fi(X)|] + EX∼DT [|fi(X)− fT (X)|]

)
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The above proof is based on absolute value inequality. After that, we ignore X in the hypothesis
f(X)→ f for simplicity and apply the change-of-measure trick.

ϵT (f̂) ≤
K∑
i=1

αi

(
EDT [|f̂ − fi|] + EDT [|fi − fT |]

)
=

K∑
i=1

αi

(∫
|f̂ − fi|PT (X)dX + EDT [|fi − fT |]

)

=

K∑
i=1

αi

(∫
|f̂ − fi|Pi(X)

PT (X)

Pi(X)
dX + EDT [|fi − fT |]

)

=

K∑
i=1

(
EX∼Di

[
αi

PT (X)

Pi(X)
|f̂ − fi|

]
+ αiEDT [|fi − fT |]

)
,

which completes our proof.

C.3 COMPARISON OF THE PROPOSED BOUND TO EXISTING BOUND.

Before deriving our main result, we first introduce some necessary theorems. For simplicity, given
hypothesis f̂ , f̂ ′ ∈ H and label function fS for DS , denote ϵS(f̂ , f̂

′) = ED̃S
[|f̂ − f̂ ′|] and ϵS(f̂) =

ϵS(f̂ , fS) = ED̃S
[|f̂ − fS |], we have

Theorem 1. (Lemma 4.1 and Theorem 4.1 in Albuquerque et al. (2019).) Given two distribution
over image space < DS , fS >,< DT , fT > and f̂ ∈ H, we have

|ϵS(fS , fT )− ϵT (fS , fT )| ≤ dH(DS ,DT ). (10)

The error in the target domain can then be bounded by

ϵT (f̂) ≤ ϵS(f̂) + dH(DS ,DT ) + min{ϵS(fS , fT ), ϵT (fS , fT )}, (11)

where the result is mainly based on the inequality in Eq. 10.

If only two domains are considered, namely given < DS , fS >,< DT , fT >, recall the derivation of
the proposed error bound, we have

ϵT (f̂) ≤ EDT [|h− fS |] + EDT [|fS − fT |]
= ϵT (f̂ , fS) + ϵT (fS , fT )

= EX∼DS

[
PT (X)

PS(X)
|f̂ − fS |

]
+ ϵT (fS , fT )

(12)

Then we will prove that Eq. 12 is upper bounded by Eq. 11. At first, the second line in Eq. 12 is
bounded by

ϵT (f̂ , fS) + ϵT (fS , fT ) ≤ ϵS(f̂ , fS) + dH(DS ,DT ) + ϵT (fS , fT )

= ϵS(f̂) + ϵT (fS , fT ) + dH(DS ,DT ).
(13)

Besides, as the density ration PT (X)
PS(X) is intractable and during implementation, this term is set to 1.

Namely, the last line of Eq. 12 is approximately equal to

EX∼DS

[
PT (X)

PS(X)
|f̂ − fS |

]
+ ϵT (fS , fT )

=ϵS(f̂) + ϵT (fS , fT )

≤ϵS(f̂) + ϵS(fS , fT ) + dH(DS ,DT )

(14)

Combining Eq. 13 and Eq. 14 we can get the error bound in Eq. 12 is upper bounded by

ϵS(f̂) + dH(DS ,DT ) + min{ϵS(fS , fT ), ϵT (fS , fT )}, (15)

which compeletes our proof.
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C.4 REFORMULATION OF THE DENSITY RATIO.

Although estimating PT (x)/Pi(x) directly is intractable, we can add constraints to the unseen target
domain and get applicable formulations, which is just what distributionally robust optimization
(DRO) (Ben-Tal et al., 2009) does. Specifically, if we restrict the target domain within a f -divergence
ball (such as Kullback-Leibler divergence) from the training distribution, which is also known
as KL-DRO (Hu & Hong, 2013), then the density ratio will be converted to a reweighting term
eℓ/τ

∗
/E[eℓ/τ∗

] used for training, where ℓ indicates the classification error incurred by (x, y) and τ∗

is a hyperparameter Namely the reweighting term is actually an approximate estimation of the density
ratio. Existing methods (Liu et al., 2021a; Zhang et al., 2022b; Sagawa et al., 2020) use similar
reweighting terms and our error bound provides a theoretical explanation for why they work well on
DG.

In this subsection, we first introduce some important definitions of the distributionally robust opti-
mization (DRO) framework Ben-Tal et al. (2009) and then reformulate the density ratio under some
necessary assumptions. In DRO, the worst-case expected risk over a predefined family of distributions
Q (termed uncertainty set) is used to replace the expected risk on the unseen target distribution T in
ERM. Therefore, the objective is as follows,

min
θ∈Θ

max
q∈Q

E(x,y)∈q[ℓ(x, y; θ)]. (16)

Specifically, the uncertainty set Q encodes the possible test distributions that we want our model to
perform well on. If Q contains T , the DRO object can upper bound the expected risk under T .

The construction of uncertainty set Q is of vital importance. Here we reformulate the density ratio
based on the KL-divergence ball constraint and other choices (e.g., using moment constraint Delage
& Ye (2010), f -divergence Michel et al. (2021), Wasserstein/MMD ball Sinha et al. (2017); Staib
& Jegelka (2019)) will lead to different reweighting methods. Given the KL upper bound (radius)
η, denote the empirical distribution P , we have the uncertainty set Q = {Q : KL(Q||P) ≤ η}. The
min-max problem in Eq. 16 can then be reformulated as

min
θ∈Θ

max
Q:KL(Q||P)≤η

E(x,y)∈Q [ℓ(x, y; θ)] . (17)

Then we have the following theorem, which derives the optimal density ratio and converts the original
problem to a reweighting version.

Theorem 2. (Modified from Section 2 in Hu & Hong (2013)) Assume the model family θ ∈ Θ and
Q to be convex and compact. The loss ℓ is continuous and convex for all x ∈ X , y ∈ Y . Suppose
empirical distribution P has density p(x, y). Then the inner maximum of Eq. 17 has a closed-form
solution

q∗(x, y) =
p(x, y)eℓ(x,y;θ)/τ

∗

EP
[
eℓ(x,y;θ)/τ∗] , (18)

where τ∗ satisfies EP

[
eℓ(x,y;θ)/τ∗

EP [eℓ(x,y;θ)/τ∗ ]

(
ℓ(x,y;θ)

τ∗ − logEP [e
ℓ(x,y;θ)/τ∗

]
)]

= η and q∗(x, y) is the
optimal density of Q. The min-max problem in Eq. 17 is then equivalent to

min
θ∈Θ,τ>0

τ logEP

[
eℓ(x,y;θ)/τ

]
+ ητ. (19)

D ALGORITHMS FOR TEST-TIME MODEL SELECTION STRATEGIES

E DATASET AND IMPLEMENTATION DETAILS

E.1 DATASET DETAILS

Colored MNIST Arjovsky et al. (2019) consists of digits in MNIST with different colors (either blue
or red). The label is a noisy function of the digit and color. First, a preliminary label ȳ is assigned
to images based on their digits, ȳ = 0 for digits 0-4 and ȳ = 1 for digits 5-9. The final label is
obtained by flipping ȳ with probability 0.25. The color signal z of each sample is obtained by flipping
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Algorithm 1: Cosine Similarity Measurement (CSM).

Input: training data {Di}Ki=1, test data DT , batch size N , learning rate η, training iterations T .
Initial: Classifiers {hi}Ki=1 with parameter {θhi }Ki=1, encoder g with parameter θg .
//During Training
for t = 1, . . . , T do
{(xk

i , y
k
i , dk)

N
i=1 ∼ Di}Kk=1 //Data sampling, (data, label, domain label)

L =
∑K

k=1

∑N
i=1 ℓ(x

k
i , y

k
i ; θ

g,t−1, θh,t−1
i )//Calculate the empirical loss

θg,t ← SGD
(
L, θg,t−1, η

)
; {θh,ti ← SGD

(
L, θh,t−1

i , η
)
}Ki=1//Update parameters

end
//During Test
Calculate domain representations. {zi = 1

|Di|
∑

x∈Di
g(x)}Ki=1

for x ∈ DT do
{Hi = cosinesimilarity(g(x), zi)}Ki=1 //Calculate similarities.
i∗ = argmax{Hi}Ki=1 //Similarity Maximization.
yt = argmax ȳi

∗
if not ensembling else argmax

∑K
k=1 ȳk

Hγ
k∑K

i=1 Hγ
i

//Result.

end

Algorithm 2: Prediction Entropy Measurement (PEM).

Input: training data {Di}Ki=1, test data DT , batch size N , learning rate η, training iterations T .
Initial: Classifiers {hi}Ki=1 with parameter {θhi }Ki=1, encoder g with parameter θg .
//Training Process is the same as Algorithm 1
//During Test
for x ∈ DT do
{ȳi := [yi1, ..., y

i
c] = hi ◦ g(x)}Ki=1 //Make prediction by every classifier

{Hk = −
∑c

i=1
yk
i∑c

j=1 yk
j

log
yk
i∑c

j=1 yk
j

}Kk=1 //Calculate the prediction entropy.

i∗ = argmin{Hi}Ki=1 //Prediction Entropy Minimization.

yt = argmax ȳi
∗
if not ensembling else argmax

∑K
k=1 ȳk

H−γ
k∑K

i=1 H−γ
i

//Result.

//The weighting term here is H−γ
i not Hγ

i in the other two strategies because the result
with small entropy should be assigned a large weight.

end

y with probability pd, where pd is {0.2, 0.1, 0.9} for three different domains. Finally, images with
z = 1 will be colored red and z = 0 will be colored blue. This dataset contains 70, 000 examples of
dimension (2, 28, 28) and 2 classes.

Rotated MNIST Ghifary et al. (2015) consists of 10,000 digits in MNIST with different rotated
angles where domain is determined by the degrees d ∈ {0, 15, 30, 45, 60, 75}.
PACS Li et al. (2017) includes 9, 991 images with 7 classes y ∈ { dog, elephant, giraffe, guitar,
horse, house, person } from 4 domains d ∈ {art, cartoons, photos, sketches}.
VLCS Torralba & Efros (2011) is composed of 10,729 images, 5 classes y ∈ { bird, car, chair, dog,
person } from domains d ∈ {Caltech101, LabelMe, SUN09, VOC2007}.
DomainNet Peng et al. (2019) has six domains d ∈ {clipart, infograph, painting, quickdraw, real,
sketch}. This dataset contains 586, 575 examples of size (3, 224, 224) and 345 classes.

E.2 IMPLEMENTATION AND HUPER-PARAMETER DETAILS

Hyperparameter search. Following the experimental settings in (Gulrajani & Lopez-Paz, 2021), we
conduct a random search of 20 trials over the hyperparameter distribution for each algorithm and test
domain. Specifically, we split the data from each domain into 80% and 20% proportions, where the
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Table 9: Domain generalization accuracies (%) on Colored MNIST.

Algorithm +90% +80% -90% Avg
ERM Vapnik (1999) 71.8 ± 0.4 72.9 ± 0.1 28.7 ± 0.5 57.8
IRM Arjovsky et al. (2019) 72.0 ± 0.1 72.5 ± 0.3 58.5 ± 3.3 67.7
GDRO Sagawa et al. (2020) 73.5 ± 0.3 73.0 ± 0.3 36.8 ± 2.8 61.1
Mixup Yan et al. (2020) 72.5 ± 0.2 73.9 ± 0.4 28.6 ± 0.2 58.4
MLDG Li et al. (2018a) 71.9 ± 0.3 73.5 ± 0.2 29.1 ± 0.9 58.2
CORAL Sun & Saenko (2016) 71.1 ± 0.2 73.4 ± 0.2 31.1 ± 1.6 58.6
MMD Li et al. (2018b) 69.0 ± 2.3 70.4 ± 1.6 50.6 ± 0.2 63.3
DANN Ganin et al. (2016) 72.4 ± 0.5 73.9 ± 0.5 24.9 ± 2.7 57.0
CDANN Li et al. (2018c) 71.8 ± 0.5 72.9 ± 0.1 33.8 ± 6.4 59.5
MTL Blanchard et al. (2021) 71.2 ± 0.2 73.5 ± 0.2 28.0 ± 0.6 57.6
SagNet Nam et al. (2021) 72.1 ± 0.3 73.2 ± 0.3 29.4 ± 0.5 58.2
ARM Zhang et al. (2021a) 84.9 ± 0.9 76.8 ± 0.6 27.9 ± 2.1 63.2
VREx Krueger et al. (2021) 72.8 ± 0.3 73.0 ± 0.3 55.2 ± 4.0 67.0
RSC Huang et al. (2020) 72.0 ± 0.1 73.2 ± 0.1 30.2 ± 1.6 58.5
DRM 86.7 ± 2.4 80.6 ± 0.2 43.1 ± 7.5 70.1
DRM + CORAL 85.3 ± 2.3 80.7 ± 0.2 47.2 ± 3.6 71.1

larger split is used for training and evaluation, and the smaller ones are used for select hyperparameters.
We repeat the entire experiment twice using different seeds to reduce the randomness. Finally, we
report the mean over these repetitions as well as their estimated standard error. We observe that the
proposed DRM does not converge within 5k iterations on the DomainNet dataset and we thus train it
with an extra 5k iterations.

Implementation details. During training, we use the average of all classifiers’ losses as the training
loss. To further enlarge the hypothesis space, we can simply add an additional prediction head that is
trained by all data samples, namely, we have total of K + 1 prediction heads in the test phase, such a
simple trick is optional and can bring performance gains on some of our benchmarks.

Model selection. The model selection in domain generalization is intrinsically a learning problem,
and we use test-domain validation, one of the three selection methods in (Gulrajani & Lopez-Paz,
2021). This strategy is an oracle-selection one since we choose the model maximizing the accuracy
on a validation set that follows the distribution of the test domain.

Model architectures. Following (Gulrajani & Lopez-Paz, 2021), we use as encoders ConvNet for
RotatedMNIST (detailed in Appdendix D.1 in (Gulrajani & Lopez-Paz, 2021)) and ResNet-50 for the
remaining datasets.

F GENERALIZATION RESULTS

F.1 DETAILED GENERALIZATION RESULTS

Table. 9 shows the generalization performance on the ColoredMNIST of all baseline algorithms.
No existing algorithm performs better than IRM, however, the proposed DRM and its variants
(incorporated with CORAL) beats these algorithms by a large margin. Generalization results on the
Rotated MNIST (Table 12) show that the proposed DRM and its variants perform much better than
baselines on challenging domains (domain d = 0 and domain d = 5) and then attain a better average
generalization accuracy. For large benchmarks VLCS, PACS, and DomainNet, generalization results
are shown in Table 13, Table 13, and Table 12 respectively. We observe that DRM outperforms
existing algorithms on all these benchmarks, however, because CORAL performs not better than
ERM in these benchmarks, incorporating CORAL with DRM is sometimes harmful.
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Table 10: Generalization performance on multiple unseen target domains.
Rotated MNIST

Target domains {0, 30, 60} Target domains {15, 45, 75}
Method 0 30 60 15 45 75 Avg
ERM 96.0±0.3 98.8±0.4 98.7±0.1 98.8±0.3 99.1±0.1 96.7±0.3 98.0
IRM 80.9±3.2 94.7±0.9 94.3±1.3 94.3±0.8 95.5±0.5 91.1±3.1 91.8
DRM 97.1±0.2 98.8±0.2 98.9±0.3 98.8±0.1 98.8±0.0 98.1±0.7 98.4

Table 11: In-distribution performance on Rotated MNIST and DomainNet.
Rotated MNIST

Method 0 15 30 45 60 75 Avg
ERM 99.1±0.2 98.8±0.5 99.0±0.1 99.1±0.2 99.0±0.2 98.9±0.4 99.0
IRM 92.9±1.8 92.6±2.5 94.7±1.0 89.9±1.5 92.1±2.2 94.9±1.5 92.9
DRM 99.0±0.2 99.0±0.3 99.0±0.3 99.0±0.2 99.1±0.2 99.0±0.2 99.0

DomainNet
Method clip info paint quick real sketch Avg
ERM 50.4±11.4 58.3±6.2 53.4±12.6 54.6±12.7 50.8±11.0 51.9±12.6 53.2
IRM 33.4±4.1 53.2±1.4 34.0±4.1 35.1±3.4 33.0±3.8 31.5±3.1 36.7
DRM 50.1±14.3 58.3±10.4 52.5±14.7 58.1±10.3 50.2±13.2 52.1±11.5 53.6

F.2 MULTI-TARGET DOMAIN GENERALIZATION.

IRM Arjovsky et al. (2019) introduces specific conditions for an upper bound on the number of
training environments required such that an invariant optimal model can be obtained, which stresses
the importance of several training environments. In this paper, we reduce the training environments on
the Rotated MNIST from five to three. As shown in Table 10, as the number of training environment
decreases, the performance of IRM fall sharply (e.g., the averaged accuracy from 97.5% to 91.8%),
and the performance on the most challenging domains d = {0, 5} decline the most (94.9%→ 80.9%
and 95.2% → 91.1%). In contrast, both ERM and DRM retain high generalization performances
while DRM outperforms ERM on domains d = {0, 5}.

G ADDITIONAL AANLYSIS

G.1 ADDITIONAL DOMAIN-CLASSIFIER CORRELATION MATRIXES

Figure 7 shows all Domain-classifier correlation matrixes on the Rotated MNIST, PACS, and VLCS
datasets with different domains as the unseen target domain. The three characteristics mentioned in
Sec. 5.3 still hold on to these matrixes. Besides, these Domain-classifier correlation matrixes reflect
some dataset properties that cannot be observed by humans directly. As shown in Figure 5, domains
in the VLCS dataset do not show significant visual differences, at least not as obvious as the rotation
angle on Rotated MNIST or image style on PACS. However, the correlation matrixes attained by
DRM still have distinct prediction entropy on different domain-classifier pairs.

G.2 SOFTING MIXED WEIGHTS

Figure 6 shows ablation experiments of hyper-parameter γ on three benchmarks. Different bench-
marks show different preferences on γ. For easy benchmarks Rotated MNIST and Colored MNIST,
softening mixed weights is needless. The reason behind this phenomenon can be found in Figure 2(d),
the optimal classifier for target domain 0 of Rotated MNIST is exactly the classifier 1 and the predic-
tion entropies will increase as the rotation angle increases. Hence, selecting the most approximate
classifier based on the minimum entropy selection strategy is enough to attain superior generalization
results. However, prediction entropies on other larger benchmarks, e.g., VLCS, are not so regular as
on the Rotated MNIST. On realistic benchmarks, a mixing of classifiers can bring some improvements.
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Table 12: Domain generalization accuracies (%) on Rotated MNIST and DomainNet.

Rotated MNIST
Algorithm 0 15 30 45 60 75 Avg
ERM Vapnik (1999) 95.3 ± 0.2 98.7 ± 0.1 98.9 ± 0.1 98.7 ± 0.2 98.9 ± 0.0 96.2 ± 0.2 97.8
IRM Arjovsky et al. (2019) 94.9 ± 0.6 98.7 ± 0.2 98.6 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 95.2 ± 0.3 97.5
GDRO Sagawa et al. (2020) 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 98.6 ± 0.1 96.3 ± 0.4 97.9
Mixup Yan et al. (2020) 95.8 ± 0.3 98.7 ± 0.0 99.0 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 96.6 ± 0.2 98.0
MLDG Li et al. (2018a) 95.7 ± 0.2 98.9 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 95.8 ± 0.4 97.8
CORAL Sun & Saenko (2016) 96.2 ± 0.2 98.8 ± 0.1 98.8 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 96.4 ± 0.2 98.0
MMD Li et al. (2018b) 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.8 ± 0.0 98.9 ± 0.0 96.4 ± 0.2 98.0
DANN Ganin et al. (2016) 95.9 ± 0.1 98.9 ± 0.1 98.6 ± 0.2 98.7 ± 0.1 98.9 ± 0.0 96.3 ± 0.3 97.9
CDANN Li et al. (2018c) 95.9 ± 0.2 98.8 ± 0.0 98.7 ± 0.1 98.9 ± 0.1 98.8 ± 0.1 96.1 ± 0.3 97.9
MTL Blanchard et al. (2021) 96.1 ± 0.2 98.9 ± 0.0 99.0 ± 0.0 98.7 ± 0.1 99.0 ± 0.0 95.8 ± 0.3 97.9
SagNet Nam et al. (2021) 95.9 ± 0.1 99.0 ± 0.1 98.9 ± 0.1 98.6 ± 0.1 98.8 ± 0.1 96.3 ± 0.1 97.9
ARM Zhang et al. (2021a) 95.9 ± 0.4 99.0 ± 0.1 98.8 ± 0.1 98.9 ± 0.1 99.1 ± 0.1 96.7 ± 0.2 98.1
VREx Krueger et al. (2021) 95.5 ± 0.2 99.0 ± 0.0 98.7 ± 0.2 98.8 ± 0.1 98.8 ± 0.0 96.4 ± 0.0 97.9
RSC Huang et al. (2020) 95.4 ± 0.1 98.6 ± 0.1 98.6 ± 0.1 98.9 ± 0.0 98.8 ± 0.1 95.4 ± 0.3 97.6
DRM 96.4 ± 0.2 98.4 ± 0.0 98.9 ± 0.2 99.0 ± 0.2 98.9 ± 0.2 96.8 ± 0.2 98.1
DRM + CORAL 96.9 ± 0.1 98.9 ± 0.2 98.9 ± 0.4 99.0 ± 0.1 98.9 ± 0.2 97.3 ± 0.3 98.3

DomainNet
Algorithm clip info paint quick real sketch Avg
ERM Vapnik (1999) 58.1 ± 0.3 18.8 ± 0.3 46.7 ± 0.3 12.2 ± 0.4 59.6 ± 0.1 49.8 ± 0.4 40.9
IRM Arjovsky et al. (2019) 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9
GDRO Sagawa et al. (2020) 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3
Mixup Yan et al. (2020) 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2
MLDG Li et al. (2018a) 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2
CORAL Sun & Saenko (2016) 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5
MMD Li et al. (2018b) 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4
DANN Ganin et al. (2016) 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3
CDANN Li et al. (2018c) 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3
MTL Blanchard et al. (2021) 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6
SagNet Nam et al. (2021) 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3
ARM Zhang et al. (2021a) 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5
VREx Krueger et al. (2021) 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6
RSC Huang et al. (2020) 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9
DRM 59.2 ± 0.2 20.8 ± 0.3 47.2 ± 0.1 15.2 ± 0.2 60.9 ± 0.6 50.8 ± 0.5 42.4
DRM + CORAL 59.3 ± 0.1 22.0 ± 0.9 48.0 ± 0.9 15.1 ± 0.2 61.0 ± 0.0 50.9 ± 0.1 42.7
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Figure 5: Samples on VLCS.

Besides, normalization, which is a method to reduce classification confidence5, is also needless for
semi-synthetic datasets (Rotated MNIST and Colored MNIST) and valuable for realistic benchmarks.

5Given two classification results from 2 classifiers [2.1, 0.4, 0.5], [0.3, 0.6, 0.1] and assume the weights are
all 1. The result is [2.4, 1.0, 0.6] with normalization and [1.0, 0.73, 0.27] without normalization. The former is
more confident than the latter.
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Figure 6: Different mixing weights on the (a) Colored MNIST (target domain d = 2) (b) Rotated
MNIST (target domain d = 0), and (c) PACS datasets (target domain d = 3). Given a classification
vector ȳ = [y1, y2, ..., yc], c is the number of classes, performing normalization means that let
yi = yi/

∑c
j=1 yj before mixing.

G.3 MODEL COMPLEXITY

As the number of domains/classes increases or the feature dimension increases, the training time of
DRM will increase accordingly, however, DRM is always comparable to ERM and much faster than
Fish and ARM (Table 14). For model parameters, since all classifiers in our implementation are just
a linear layer, the total parameters of DRM is similar to ERM and much less than existing methods
such as CDANN and ARM.
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(b) d2 as target.
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(c) d3 as target.
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(d) d4 as target.
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(e) d5 as target.
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(f) PACS, d1 as target.

Dom .0 Dom. 1 Dom. 2 Dom. 3

0
1

2
3

1 4 28

4 1 10

6 8 62

3 2 1

20

40

60

(g) PACS, d2 as target.

Dom .0 Dom. 1 Dom. 2 Dom. 3

0
1

2
3

4 6 7

6 1 4

6 6 2

8 6 7

2

4

6

8

(h) PACS, d3 as target.
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(i) VLCS, d1 as target.
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(j) VLCS, d2 as target.
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Figure 7: Domain-classifier correlation matrixes on (a,b,c,d,e) Rotated MNIST, (f,g,h) PACS, and
(i,j,k) VLCS datasets.
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Table 13: Domain generalization accuracies (%) on VLCS and PACS.

VLCS
Algorithm C L S V Avg
ERM Vapnik (1999) 97.6 ± 0.3 67.9 ± 0.7 70.9 ± 0.2 74.0 ± 0.6 77.6
IRM Arjovsky et al. (2019) 97.3 ± 0.2 66.7 ± 0.1 71.0 ± 2.3 72.8 ± 0.4 76.9
GDRO Sagawa et al. (2020) 97.7 ± 0.2 65.9 ± 0.2 72.8 ± 0.8 73.4 ± 1.3 77.4
Mixup Yan et al. (2020) 97.8 ± 0.4 67.2 ± 0.4 71.5 ± 0.2 75.7 ± 0.6 78.1
MLDG Li et al. (2018a) 97.1 ± 0.5 66.6 ± 0.5 71.5 ± 0.1 75.0 ± 0.9 77.5
CORAL Sun & Saenko (2016) 97.3 ± 0.2 67.5 ± 0.6 71.6 ± 0.6 74.5 ± 0.0 77.7
MMD Li et al. (2018b) 98.8 ± 0.0 66.4 ± 0.4 70.8 ± 0.5 75.6 ± 0.4 77.9
DANN Ganin et al. (2016) 99.0 ± 0.2 66.3 ± 1.2 73.4 ± 1.4 80.1 ± 0.5 79.7
CDANN Li et al. (2018c) 98.2 ± 0.1 68.8 ± 0.5 74.3 ± 0.6 78.1 ± 0.5 79.9
MTL Blanchard et al. (2021) 97.9 ± 0.7 66.1 ± 0.7 72.0 ± 0.4 74.9 ± 1.1 77.7
SagNet Nam et al. (2021) 97.4 ± 0.3 66.4 ± 0.4 71.6 ± 0.1 75.0 ± 0.8 77.6
ARM Zhang et al. (2021a) 97.6 ± 0.6 66.5 ± 0.3 72.7 ± 0.6 74.4 ± 0.7 77.8
VREx Krueger et al. (2021) 98.4 ± 0.2 66.4 ± 0.7 72.8 ± 0.1 75.0 ± 1.4 78.1
RSC Huang et al. (2020) 98.0 ± 0.4 67.2 ± 0.3 70.3 ± 1.3 75.6 ± 0.4 77.8
DRM 97.5 ± 0.2 71.8 ± 1.2 76.6 ± 0.3 76.4 ± 1.0 80.5
DRM + CORAL 97.1 ± 1.3 72.3 ± 1.1 73.6 ± 3.1 74.2 ± 0.4 79.5

PACS
Algorithm A C P S Avg
ERM Vapnik (1999) 86.5 ± 1.0 81.3 ± 0.6 96.2 ± 0.3 82.7 ± 1.1 86.7
IRM Arjovsky et al. (2019) 84.2 ± 0.9 79.7 ± 1.5 95.9 ± 0.4 78.3 ± 2.1 84.5
GDRO Sagawa et al. (2020) 87.5 ± 0.5 82.9 ± 0.6 97.1 ± 0.3 81.1 ± 1.2 87.1
Mixup Yan et al. (2020) 87.5 ± 0.4 81.6 ± 0.7 97.4 ± 0.2 80.8 ± 0.9 86.8
MLDG Li et al. (2018a) 87.0 ± 1.2 82.5 ± 0.9 96.7 ± 0.3 81.2 ± 0.6 86.8
CORAL Sun & Saenko (2016) 86.6 ± 0.8 81.8 ± 0.9 97.1 ± 0.5 82.7 ± 0.6 87.1
MMD Li et al. (2018b) 88.1 ± 0.8 82.6 ± 0.7 97.1 ± 0.5 81.2 ± 1.2 87.2
DANN Ganin et al. (2016) 87.0 ± 0.4 80.3 ± 0.6 96.8 ± 0.3 76.9 ± 1.1 85.2
CDANN Li et al. (2018c) 87.7 ± 0.6 80.7 ± 1.2 97.3 ± 0.4 77.6 ± 1.5 85.8
MTL Blanchard et al. (2021) 87.0 ± 0.2 82.7 ± 0.8 96.5 ± 0.7 80.5 ± 0.8 86.7
SagNet Nam et al. (2021) 87.4 ± 0.5 81.2 ± 1.2 96.3 ± 0.8 80.7 ± 1.1 86.4
ARM Zhang et al. (2021a) 85.0 ± 1.2 81.4 ± 0.2 95.9 ± 0.3 80.9 ± 0.5 85.8
VREx Krueger et al. (2021) 87.8 ± 1.2 81.8 ± 0.7 97.4 ± 0.2 82.1 ± 0.7 87.2
RSC Huang et al. (2020) 86.0 ± 0.7 81.8 ± 0.9 96.8 ± 0.7 80.4 ± 0.5 86.2
DRM 87.4 ± 2.9 83.5 ± 0.8 96.0 ± 0.5 83.0 ± 0.7 87.5
DRM + CORAL 87.7 ± 1,7 81.7 ± 0.5 97.1 ± 0.2 83.1 ± 1.2 87.4

Table 14: Comparisons of different methods on the number of parameters and training time.

Method Colored MNIST Rotated MNIST PACS

Time (sec) # Params (M) Time (sec) # Params (M) Time (sec) # Params (M)

ERM 71.02 0.3542 168.32 0.3546 2,717.5 22.4326
IRM 101.49 0.3542 236.80 0.3546 2,786.3 22.4326
ARM 161.51 0.4573 360.69 0.4562 6,616.9 22.5398
FISH 137.17 0.3542 251.76 0.3546 23,849.5 22.4326
DRM 83.39 0.3544 203.15 0.3595 2,895.1 22.46
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