
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

AMPO: ACTIVE MULTI PREFERENCE OPTIMIZATION
FOR SELF-PLAY PREFERENCE SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-preference optimization improves DPO-style alignment beyond pairwise
preferences by contrasting entire sets of helpful and undesired responses, enabling
richer training signals for large language models. During self-play alignment, these
models often produce numerous candidate answers per query, making it computa-
tionally infeasible to include all of them in the training objective. We propose Active
Multi-Preference Optimization (AMPO), which combines on-policy generation, a
multi-preference group-contrastive loss, and active subset selection. Specifically,
we score and embed large candidate pools of responses, then pick a small but
informative subset—covering reward extremes and distinct semantic clusters—for
preference optimization. The resulting contrastive training scheme identifies not
only the best and worst answers but also subtle, underexplored modes crucial
for robust alignment. Theoretically, we provide guarantees of expected reward
maximization using our active selection method. Empirically, AMPO achieves
state-of-the-art results on AlpacaEval with Llama 8B, achieving a 52% win-rate
over GPT-4o. We release our datasets (anonymously) at huggingface/MPO.

1 INTRODUCTION

Actively
Select subset

of
preferences
to align LLM

User Query

Answer Space

High
Probability
Answers

Bad
Answer

Best
Answer

Irrelevant
Answer

Unrelated
AnswerQueries sent

to rater

Ratings

Rater
Model

Figure 1: Overview of the Active Multi-
Preference Optimization framework. Given a
query, the LLM generates diverse responses,
which are evaluated by a rater model. Se-
lected responses with different ratings and
diverse semantics are then used to train and
align the LLM through preference optimiza-
tion. Active selection of the preferences to
optimize over improves training dynamics.

Preference Optimization (PO) has become a stan-
dard approach for aligning large language models
(LLMs) with human preferences (Christiano et al.,
2017; Ouyang et al., 2022; Bai et al., 2022). Tra-
ditional alignment pipelines typically rely on pair-
wise or binary preference comparisons, which may
not fully capture the subtleties of human judgment
(Rafailov et al., 2024; Liu et al., 2024a; Korbak et al.,
2023). As a remedy, there is increasing interest in
multi-preference methods, which consider entire sets
of responses when providing feedback (Cui et al.,
2023; Chen et al., 2024a; Gupta et al., 2024). By
learning from multiple “good” and “bad” outputs
simultaneously, these approaches deliver richer align-
ment signals than purely pairwise methods. At the
same time, an important trend in alignment is the shift
to on-policy or “self-play” data generation, where the
policy learns directly from its own distribution of
outputs at each iteration (Chen et al., 2024b; Kumar
et al., 2024; Wu et al., 2023; 2024). This feedback
loop can accelerate convergence ensuring that the
training data stays relevant to the model’s behavior.
However, multi-preference alignment faces a serious bottleneck: modern LLMs can easily generate
dozens of candidate responses per query, and incorporating all of these into a single training objective
can become computationally infeasible (Askell et al., 2021). Many of these sampled responses end up
being highly similar or near-duplicates, providing limited additional information for gradient updates
(Long et al., 2024). Consequently, naive attempts to process all generated responses cause both
memory blow-ups and diminishing returns in training (Dubey et al., 2024). Given these constraints,

1

https://huggingface.co/datasets/Multi-preference-Optimization/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

identifying a small yet highly informative subset of candidate responses is critical for effective
multi-preference learning.

One way to conceptualize the problem is through an “island” metaphor (See Figure 1). Consider each
prompt’s answer space as a set of semantic islands, where certain clusters of responses (islands) may
be exceptionally good (tall peaks) or particularly poor (flat plains). Focusing only on the tallest peaks
or the worst troughs can cause the model to overlook crucial middle-ground modes—“islands” that
might harbor subtle failure modes or moderate-quality answers. Therefore, an ideal subset selection
strategy should cover the landscape of responses by sampling from each island (Yu et al., 2024). In
this paper, we show that selecting representatives from all such “islands” is not only about diversity
but can also be tied to an optimal way of suppressing undesired modes under a mild Lipschitz
assumption (see Section 6).
Fundamentally, the process of deciding which responses deserve feedback naturally evokes the
lens of active learning, where we “actively” pick the most informative data samples (Cohn et al.,
1996; Ceravolo et al., 2024; Xiao et al., 2023). By selecting a small yet diverse subset of responses,
the model effectively creates a curriculum for itself. Rather than passively training on random or
exhaustively sampled data, an active learner queries the examples that yield the greatest improvement
when labeled. In our context, we actively pick a handful of responses that best illustrate extreme or
underexplored behaviors—whether very good, very bad, or semantically distinct (Wu et al., 2023).
This helps the model quickly eliminate problematic modes while reinforcing the most desirable
responses. Crucially, we remain on-policy: after each update, the newly refined policy generates a
fresh batch of responses, prompting another round of active subset selection (Liu et al., 2021).
We propose Active Multi-Preference Optimization (AMPO), a framework that unifies (a) on-policy
data generation, (b) group-based preference learning, and (c) active subset selection. Specifically, we
adopt a group-contrastive objective known as SWEPO (Gupta et al., 2024), which jointly leverages
multiple “positive” and “negative” responses in a single loss term. On top of this, we explore various
active selection schemes—ranging from simplest bottom-K ranking (Meng et al., 2024) to coreset-
based clustering (Cohen-Addad et al., 2021; 2022; Huang et al., 2019) and a more theoretically
grounded “Opt-Select” method that ties coverage to maximizing expected reward. Our contributions
are: (i) a unifying algorithmic pipeline for multi-preference alignment with active selection, (ii)
theoretical results demonstrating that coverage of distinct clusters à la k-medoids, can serve as an
optimal negative-selection strategy, and (iii) empirical evaluations showing that AMPO achieves state
of the art results compared to strong alignment baselines like SIMPO. Altogether, we hope this
approach advances the state of multi-preference optimization, enabling models to learn more reliably
from diverse sets of model behaviors.

Related Works: We provide a detailed description of our related work in Appendix A covering other
multi-preference optimization methods, on-policy alignment, coverage-based selection approaches.

1.1 OUR CONTRIBUTIONS

• Algorithmic Novelty: We propose Active Multi-Preference Optimization (AMPO), an on-policy
framework that blends group-based preference alignment with active subset selection without
exhaustively training on all generated responses. This opens out avenues for research on how to
select for synthetic data, as we outline in Sections 4 and 8.

• Theoretical Insights: Under mild Lipschitz assumptions, we show that coverage-based negative
selection can systematically suppress low-reward modes and maximizes expected reward. This
analysis (in Sections 5 and 6) connects our method to the weighted k-medoids problem, yielding
performance guarantees for alignment.

• State-of-the-Art Results: Empirically, AMPO sets a new benchmark on AlpacaEval with Llama
8B, surpassing strong baselines like SIMPO by focusing on a small but strategically chosen set of
responses each iteration (see Section 7.1).

• Dataset Releases: We publicly release our AMPO-Coreset-Selection and AMPO-Opt-Selection
datasets on Hugging Face. These contain curated response subsets for each prompt, facilitating
research on multi-preference alignment.

2

https://huggingface.co/datasets/Multi-preference-Optimization/AMPO-Coreset-selection
https://huggingface.co/datasets/Multi-preference-Optimization/AMPO-OPT-Selection

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2 NOTATIONS AND PRELIMINARIES

We focus on aligning a policy model to human preferences in a single-round (one-shot) scenario.
Our goal is to generate multiple candidate responses for each prompt, then actively select a small,
high-impact subset for alignment via a group-contrastive objective.

Queries and Policy. Let D = {x1, x2, . . . , xM} be a dataset of M queries (or prompts), each
from a larger space X . We have a policy model Pθ(y | x), parameterized by θ, which produces a
distribution over possible responses y ∈ Y . To generate diverse answers, we sample from Pθ(y | x)
at some fixed temperature (e.g., 0.8). Formally, for each xi, we draw up to N responses,

{yi,1, yi,2, . . . , yi,N}, (1)

from Pθ(y | xi). Such an on-policy sampling, ensures, we are able to provide preference feedback
on queries that are chosen by the model.
For simplicity of notation, we shall presently consider a single query (prompt) x and sampled
responses {y1, . . . , yN} from Pθ(· | x), from the autoregressive language model.
Each response yi is assigned a scalar reward

ri = R(x, yi) ∈ [0, 1], (2)

whereR is a fixed reward function or model (not optimized during policy training). We also embed
each response via ei = E(yi) ∈ Rd, where E might be any sentence or document encoder capturing
semantic or stylistic properties.
Although one could train on all N responses, doing so is often computationally expensive. We
therefore select a subset S ⊂ {1, . . . , N} of size |S| = K < N by maximizing some selection
criterion (e.g. favoring high rewards, broad coverage in embedding space, or both). Formally,

S = arg max
I⊂{1,...,N}

|I|=K

U
(
{yi}i∈I , {ri}i∈I , {ei}i∈I

)
, (3)

where U is a utility function tailored to emphasize extremes, diversity, or other alignment needs.
Next, we split S into a positive set S+ and a negative set S−. For example, let

r =
1

K

∑
i∈S

ri

be the average reward of the chosen subset, and define

S+ = { i ∈ S | ri > r}, S− = { i ∈ S | ri ≤ r}.

Hence, S = S+ ∪ S− and |S+|+ |S−| = K.

We train θ via a group-contrastive objective known as SWEPO (Gupta et al., 2024). Concretely, define

Lswepo(θ) = − log

(∑
i∈S+

exp
[
s′θ
(
yi | x

)]
∑

i∈ (S+∪S−)

exp
[
s′θ
(
yi | x

)]
)
, (4)

where
s′θ
(
yi | x

)
= logPθ(yi | x)− logPref

(
yi | x

)
+ α

(
ri − r

)
.

Here, Pref is a reference policy (e.g. an older snapshot of Pθ or a baseline model), and α is a
hyperparameter scaling the reward difference. In words, SWEPO encourages the model to increase
the log-probability of S+ while decreasing that of S−, all in a single contrastive term that accounts
for multiple positives and negatives simultaneously.

Although presented for a single query x, this procedure extends straightforwardly to any dataset D by
summing Lswepo across all queries. In subsequent sections, we discuss diverse strategies for selecting
S (and thus S+ and S−), aiming to maximize training efficiency and alignment quality.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 ALGORITHM AND METHODOLOGY

We outline a one-vs-k selection scheme in which a single best response is promoted (positive), while
an active subroutine selects k negatives from the remaining N − 1 candidates. This setup highlights
the interplay of three main objectives:
Probability: High-probability responses under Pθ(y | x) can dominate even if suboptimal by reward.
Rewards: Simply selecting extremes by reward misses problematic "mediocre" outputs.
Semantics: Diverse but undesired responses in distant embedding regions must be penalized.
While positives reinforce a single high-reward candidate, active negative selection balances probability,
reward and diversity to systematically suppress problematic regions of the response space.

Algorithm. Formally, let {y1, . . . , yN} be the sampled responses for a single prompt x. Suppose we
have:
1. A reward function ri = R(x, yi) ∈ [0, 1].
2. An embedding ei = E(yi).
3. A model probability estimate πi = Pθ(yi | x).
Selection algorithms may be rating-based selection (to identify truly poor or excellent answers)
with coverage-based selection (to explore distinct regions in the embedding space), we expose the
model to both common and outlier responses. This ensures that the SWEPO loss provides strong
gradient signals across the spectrum of answers the model is prone to generating. In Algorithm 1,
ACTIVESELECTION(·) is a generic subroutine that selects a set of k “high-impact” negatives. We
will detail concrete implementations (e.g. bottom-k by rating, clustering-based, etc.) in later sections.

3.1 DETAILED DISCUSSION OF ALGORITHM 1
The algorithm operates in four key steps: First, it selects the highest-reward response as the positive
example (lines 3-4). Second, it actively selects k negative examples by considering their rewards,
probabilities πi, and embedding distances ei to capture diverse failure modes (lines 5-7). Third, it
constructs the SWEPO objective by computing normalized scores s′θ using the mean reward r and
forming a one-vs-k contrastive loss (lines 8-12). Finally, it updates the model parameters to increase
the probability of the positive while suppressing the selected negatives (line 13). This approach
ensures both reinforcement of high-quality responses and systematic penalization of problematic
outputs across the response distribution.

4 ACTIVE SUBSET SELECTION STRATEGIES

In this section, we present two straightforward yet effective strategies for actively selecting a small
set of negative responses in the AMPO framework. First, we describe a simple strategy, AMPO-
BottomK, that directly picks the lowest-rated responses. Second, we propose AMPO-Coreset, a
clustering-based method that selects exactly one negative from each cluster in the embedding space,
thereby achieving broad coverage of semantically distinct regions. In Section D, we connect this
clustering-based approach to the broader literature on coreset construction, which deals with selecting
representative subsets of data.

4.1 AMPO-BOTTOMK

AMPO-BottomK is the most direct approach that we use for comparison: given N sampled responses
and their scalar ratings {ri}Ni=1, we simply pick the k lowest-rated responses as negatives. This can
be expressed as:

S− = argtopki(− ri, k), (5)

which identifies the k indices with smallest ri. Although conceptually simple, this method can be
quite effective when the reward function reliably indicates “bad” behavior. Furthermore to break-ties,
we use minimal cosine similarity with the currently selected set.

4.2 AMPO-CORESET (CLUSTERING-BASED SELECTION)

AMPO-BOTTOMK may overlook problematic modes that are slightly better than the bottom-k, but
fairly important to learn on. A diversity-driven approach, which we refer to as AMPO-CORESET,
explicitly seeks coverage in the embedding space by partitioning the N candidate responses into k
clusters and then selecting the lowest-rated response within each cluster. Formally:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 AMPO: One-Positive vs. k-Active
Negatives
1: Input: (1) A set of N responses {yi} sampled from Pθ(y | x); (2) Their

rewards {ri}, embeddings {ei}, and probabilities {πi}; (3) Number of
negatives k, reference policy Pref , and hyperparameter α

2: Output: (i) Positive y+ ; (ii) Negatives {yj}j∈S− ; (iii) Updated param-
eters θ via SWEPO

3: 1. Select One Positive (Highest Reward)
4: i+ ← argmaxi=1,...,N ri , y+ ← y i+

5: 2. Choose k Negatives via Active Selection
6: Ω← {1, . . . , N} \ {i+}
7: S− ← ACTIVESELECTION(Ω, {ri}, {ei}, {πi}, k)
8: 3. Form One-vs.-k SWEPO Objective

9: r ←
r i+

+
∑

j ∈S− rj

1+k

10: For each yi:
11: s′θ(yi) = logPθ(yi | x)− logPref (yi | x) + α(ri − r)

12: Lswepo(θ) = − log

(
exp
[
s′θ(y+)

]
exp
[
s′
θ
(y+)

]
+
∑

j ∈S− exp
[
s′
θ
(yj)

])
13: 4. Update Model Parameters: θ ← θ − η∇θLswepo(θ)

14: return The chosen positive y+ , the negative set {yj}j∈S− , and the
updated parameters θ

Algorithm 2 AMPO-CORESET via k-means
1: Input:
2: (1) N responses, each with embedding ei ∈ Rd and rating ri
3: (2) Desired number of negatives k
4:
5: Step 1: Run k-means on embeddings
6: Initialize {c1, . . . , ck} ⊂ Rd (e.g., via k-means++)

7: repeat
8: π(i) = argmin1≤j≤k ∥ei − cj∥2 , i = 1, . . . , N

9: cj =

∑
i:π(i)=j ei∑
i:π(i)=j 1

, j = 1, . . . , k

10: until convergence

11: Step 2: In each cluster, pick the bottom-rated response
12: For each j ∈ {1, . . . , k}, define Cj = { i | π(i) = j}
13: Then i−j = argmini∈Cj

ri , j = 1, . . . , k

14: Step 3: Return negatives
15: S− = { i−1 , i−2 , . . . , i−

k
}

16: return S− as the set of k negatives

i−j = arg min
i∈Cj

ri, j = 1, . . . , k, S− =
{
i−1 , . . . , i

−
k

}
where Cj is the set of responses assigned to cluster j by a k-means algorithm (Har-Peled & Mazumdar
2004; Cohen-Addad et al. 2022; see also Section D). The pseudo-code is provided in Algorithm 2.

This approach enforces that each cluster—a potential “mode” in the response space—contributes at
least one negative example. Hence, AMPO-CORESET can be interpreted as selecting representative
negatives from diverse semantic regions, ensuring that the model is penalized for a wide variety of
undesired responses.

5 OPT-SELECT: ACTIVE SUBSET SELECTION BY OPTIMIZING EXPECTED
REWARD

In this section, we propose Opt-Select: a strategy for choosing k negative responses (plus one positive)
so as to maximize the policy’s expected reward under a Lipschitz continuity assumption. Specifically,
we model the local “neighborhood” influence of penalizing each selected negative and formulate an
optimization problem that seeks to suppress large pockets of low-reward answers while preserving at
least one high-reward mode. We first describe the intuition and objective, then present two solution
methods: a mixed-integer program (MIP) and a local search approximation.

5.1 LIPSCHITZ-DRIVEN OBJECTIVE

Let {yi}ni=1 be candidate responses sampled on-policy, each with reward ri ∈ [0, 1] and embedding
ei ∈ Rd. Suppose that if we completely suppress a response yj (i.e. set its probability to zero), all
answers within distance ∥ei−ej∥ must also decrease in probability proportionally, due to a Lipschitz
constraint on the policy. Concretely, if the distance is di,j = ∥ei − ej∥, and the model’s Lipschitz
constant is L, then the probability of yi cannot remain above Ldi,j if yj is forced to probability zero.

From an expected reward perspective, assigning zero probability to low-reward responses (and their
neighborhoods) improves overall alignment. To capture this rigorously, observe that the penalty from
retaining a below-average answer yi can be weighted by:

wi = exp
(
r − ri

)
, (6)

where r is (for instance) the mean reward of {ri}. Intuitively, wi is larger for lower-reward yi,
indicating it is more harmful to let yi and its neighborhood remain at high probability.

Next, define a distance matrix
Ai,j =

∥∥ei − ej
∥∥
2
, 1 ≤ i, j ≤ n. (7)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Algorithm 3 AMPO-OPTSELECT via Solving
MIP
1: Input: Candidates {yi}ni=1 with ri, ei; integer k
2: Compute itop = argmaxi ri

3: Let wi = exp(r − ri) with r as mean reward

4: Solve Problem equation 9 to get
{x∗j}, {z∗i,j}, {y∗i }

5: Let Sneg = { j | x∗j = 1} (size k)

6: return { itop} ∪ Sneg for SWEPO training

Algorithm 4 AMPO-OPTSELECT via Coordi-
nate Descent
1: Input: Set I = {1, . . . , n}, integer k, distances

Ai,j , rewards {ri}
2: Find itop = argmaxi ri
3: Compute wi = exp(r − ri) and di,j = Ai,j

4: Initialize a random subset S ⊆ I \ {itop} of size
k

5: while improving do
6: Swap jout ∈ S with jin /∈ S if it decreases∑

i∈I wi minj∈S di,j
7: end while
8: return Sneg = S (negatives) and itop (positive)

Selecting a subset S ⊆ {1, . . . , n} of “negatives” to penalize suppresses the probability of each i in
proportion to minj∈S Ai,j . Consequently, a natural cost function measures how much “weighted
distance” yi has to its closest chosen negative:

Cost(S) =

n∑
i=1

wi min
j∈S

Ai,j . (8)

Minimizing equation 8 yields a subset S of size k that “covers” or “suppresses” as many low-reward
responses (large wi) as possible. We then add one positive index itop with the highest ri to amplify a
top-quality answer. This combination of one positive plus k negatives provides a strong signal in the
training loss.

Interpretation and Connection to Weighted k-medoids. If each negative j “covers” responses i
within some radius (or cost) Ai,j , then equation 8 is analogous to a weighted k-medoid objective,
where we choose k items (negatives) to minimize a total weighted distance. Formally, this can be cast
as a mixed-integer program (MIP) (Problem 9 below). For large n, local search offers an efficient
approximation.

5.2 MIXED-INTEGER PROGRAMMING FORMULATION

Define binary indicators xj = 1 if we choose yj as a negative, and zi,j = 1 if i is assigned to j (i.e.
minj∈S Ai,j is realized by j). We write:

Problem P : min
xj∈{0,1}, zi,j∈{0,1}, yi≥0

n∑
i=1

wi yi (9)

s.t.
n∑

j=1

xj = k, zi,j ≤ xj ,

n∑
j=1

zi,j = 1,∀ i,

yi ≤ Ai,j +M (1− zi,j),

yi ≥ Ai,j −M (1− zi,j), ∀ i, j, (10)

where M = maxi,j Ai,j . In essence, each i is forced to assign to exactly one chosen negative j,
making yi = Ai,j , i.e. the distance between the answer embeddings for answer {i, j}. Minimizing∑

i wi yi (i.e. equation 8) then ensures that low-reward points (wi large) lie close to at least one
penalized center.

Algorithmic Overview. Solving P gives the k negatives Sneg, while the highest-reward index itop
is chosen as a positive. The final subset {itop} ∪ Sneg is then passed to the SWEPO loss (see Section
3). Algorithm 3 outlines the procedure succinctly.

5.3 LOCAL SEARCH APPROXIMATION

For large n, an exact MIP can be expensive. A simpler local search approach initializes a random
subset S of size k and iteratively swaps elements in and out if it lowers the cost equation 8. In
practice, this provides an efficient approximation, especially when n or k grows.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Intuition. If yi is far from all penalized points j ∈ S, then it remains relatively “safe” from
suppression, which is undesirable if ri is low (i.e. wi large). By systematically choosing S to reduce∑

i wi minj∈S di,j , we concentrate penalization on high-impact, low-reward regions. The local
search repeatedly swaps elements until no single exchange can further reduce the cost.

5.4 WHY “OPT-SELECT”? A LIPSCHITZ ARGUMENT FOR EXPECTED REWARD

We name the procedure “Opt-Select” because solving equation 9 (or its local search variant) directly
approximates an optimal subset for improving the policy’s expected reward. Specifically, under
a Lipschitz constraint with constant L, assigning zero probability to each chosen negative yj im-
plies neighboring answers yi at distance di,j cannot exceed probability Ldi,j . Consequently, their
contribution to the “bad behavior” portion of expected reward is bounded by

exp
(
rmax − ri

) (
Ldi,j

)
,

where rmax is the rating of the best-rated response. Dividing by a normalization factor (such as
exp(rmax − r)L), one arrives at a cost akin to wi di,j with wi = exp(r − ri). This aligns with
classical min-knapsack of minimizing some costs subject to some constraints, and has close alignment
with the weighted k-medoid notions of “covering” important items at minimum cost.

6 THEORETICAL RESULTS: KEY RESULTS

In this section, we present the main theorem only. For complete theory with extended proofs, please
see Appendices B–D.
6.1 SETUP AND ASSUMPTIONS

(A1) L-Lipschitz Constraint. When a response yj is penalized (probability pj = 0), any other
response yi within embedding distance Ai,j must satisfy pi ≤ LAi,j .

(A2) Single Positive Enforcement. We allow one highest-reward response yitop to be unconstrained,
i.e. pitop is not pulled down by the negatives.

(A3) Finite Support. We focus on a finite set of n candidate responses {y1, . . . , yn} and their
scalar rewards {ri}, each embedded in Rd with distance Ai,j = ∥ei − ej∥.

6.2 OPTIMAL NEGATIVES VIA COVERAGE

Theorem 1 (Optimality of OPT-SELECT). Under assumptions (A1)–(A3), let S∗ be the set of k
“negative” responses that minimizes the coverage cost

Cost(S) =

n∑
i=1

exp(r − ri) min
j∈S

Ai,j , (11)

where r is a reference reward (e.g. average of {ri}). Then S∗ also maximizes the expected reward
among all Lipschitz-compliant policies of size k (with a single positive). Consequently, selecting S∗
and allowing pitop ≈ 1 is optimal.

Sketch of Proof. (See Appendix B for details.) We show a one-to-one correspondence between
minimizing coverage cost

∑
i wi minj∈S Ai,j and maximizing the feasible expected reward

∑
i ripi

under the Lipschitz constraint. Low-reward responses with large wi must lie close to at least one
negative j ∈ S; otherwise, they are not sufficiently suppressed. A mixed-integer program encodes
this cost explicitly, and solving it yields the unique S∗ that maximizes reward.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Model and Training Settings: For our experiments, we utilize a pretrained instruction-tuned model
(meta-llama/MetaLlama-3-8B-Instruct), as the SFT model. These models have undergone extensive
instruction tuning, making them more capable and robust compared to the SFT models used in the
Base setup. However, their reinforcement learning with human feedback (RLHF) procedures remain
undisclosed, making them less transparent.

To reduce distribution shift between the SFT models and the preference optimization process, we
follow the approach in Tran et al. (2023) and generate the preference dataset using the same SFT

7

https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Method AlpacaEval 2 Arena-Hard MT-Bench
LC (%) WR (%) WR (%) GPT-4

Base 28.4 28.4 26.9 7.93
Best-vs-worst (SIMPO) 47.6 44.7 34.6 7.51
AMPO-Bottomk 50.8 50.5 35.3 8.11
AMPO-Coreset 52.4 52.1 39.4 8.12
AMPO-Opt-Select 51.6 51.2 37.9 7.96

Table 1: Comparison of various preference optimization baselines on AlpacaEval, Arena-Hard, and
MT-Bench benchmarks for Llama-3-Instruct (8B). LC-WR represents length-controlled win rate,
and WR represents raw win rate. Best results are in bold, second-best are underlined. Our method
(AMPO) achieves SOTA performance across all metrics, with different variants achieving either best
or second-best results consistently.

30 20 10 0 10 20 30

30

20

10

0

10

20

30

t-S
N

E
D

im
 2

30.70

6.30

6.96

7.66

8.08

9.53

10.62

10.97

Selected Response
Rejected Responses
Other Responses

30 20 10 0 10 20 30
t-SNE Dim 1

30

20

10

0

10

20

30

30.70

16.77

6.30

6.96

9.53

13.09

13.59

14.75

Selected Response
Rejected Responses
Other Responses

30 20 10 0 10 20 30

30

20

10

0

10

20

30

30.70

10.62

7.66

18.45

13.09

9.53

6.30

6.96

Selected Response
Rejected Responses
Other Responses

Figure 2: t-SNE visualization of projected high-dimensional response embeddings into a 2D space,
illustrating the separation of actively selected responses. (a) AMPO-BottomK (baseline). (b) AMPO-
Coreset (ours). (c) Opt-Select (ours). We see that the traditional baselines select many responses
close to each other, based on their rating. This provides insufficient feedback to the LLM during
preference optimization. In contrast, our methods simultaneously optimize for objectives including
coverage, generation probability as well as preference rating.

models. This ensures that our setup is more aligned with an on-policy setting. Specifically, we utilize
prompts from the UltraFeedback dataset Cui et al. (2023) and regenerate the resonses using the
SFT models. For each prompt x, we produce 32 responses by sampling from the SFT model with a
sampling temperature of 0.8. We then use the reward model (Skywork/Skywork-Reward-Llama-3.1-
8B-v0.2) Liu et al. (2024b) to score all the 32 responses. Then the response are selected based on the
Active Subset selection strategies a.) AMPO-Bottomk b.) AMPO-Coreset c.) AMPO-OptSelect

In our experiments, we observed that tuning hyperparameters is critical for optimizing the perfor-
mance. Carefully selecting hyperparameter values significantly impacts the effectiveness of these
methods across various datasets.We found that setting the β parameter in the range of 5.0 to 10.0
consistently yields strong performance, while tuning the γ parameter within the range of 2 to 4 further
improved performance. These observations highlight the importance of systematic hyperparameter
tuning to achieve reliable outcomes across diverse datasets.

Evaluation Benchmarks We evaluate our models using three widely recognized open-ended
instruction-following benchmarks: MT-Bench Zheng et al. (2023), AlpacaEval2 Dubois et al. (2024),
and Arena-Hard v0.1. These benchmarks are commonly used in the community to assess the
conversational versatility of models across a diverse range of queries.

AlpacaEval 2 comprises 805 questions sourced from five datasets, while MT-Bench spans eight
categories with a total of 80 questions. The recently introduced Arena-Hard builds upon MT-
Bench, featuring 500 well-defined technical problem-solving queries designed to test more advanced
capabilities.

We adhere to the evaluation protocols specific to each benchmark when reporting results. For
AlpacaEval 2, we provide both the raw win rate (WR) and the length-controlled win rate (LC), with
the latter being designed to mitigate the influence of model verbosity. For Arena-Hard, we report

8

https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2
https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

the win rate (WR) against a baseline model. For MT-Bench, we present the scores as evaluated by
GPT-4-Preview-1106, which serve as the judge model.

0 0.25 0.5 0.75 1.0
Temperature

41

45

49

53

LC
 (%

)

0 0.25 0.5 0.75 1.0
Temperature

39

44

49

53

W
R

 (%
)

Best-vs-Worst AMPO-BottomK AMPO-Coreset AMPO-OptSelect

Figure 3: Effect of Sampling Temperature on dif-
ferent baselines for on the AlpacaEval 2 Bench-
mark: (a) Length-Controlled Win Rate (LC) and
(b) Overall Win Rate (WR).

1 2 3
Gamma

48

50

52

54

LC
 (%

)

1 2 3
Gamma

48

50

52

54

W
R

 (%
)

AMPO-BottomK AMPO-Coreset AMPO-OptSelect

Figure 4: Effect of Gamma on AlpacaEval2 for
Active Subset Selection Strategies.

7.2 EXPERIMENTAL RESULT

Impact of Selection Strategies on Diversity. Figure 2 shows a t-SNE projection of response
embeddings, highlighting how each selection method samples the answer space:
AMPO-BottomK: Tends to pick a tight cluster of low-rated responses, limiting coverage and
redundancy in feedback.
AMPO-Coreset: Uses coreset-based selection to cover more diverse regions, providing coverage of
examples.
Opt-Select: Further balances reward extremity, generation probability, and embedding coverage,
yielding well-separated response clusters and more effective supervision for preference alignment.
Key analysis from Fig. 2 demonstrate that our selection strategies significantly improve response
diversity compared to traditional baselines. By actively optimizing for coverage-aware selection,
our methods mitigate redundancy in selected responses, leading to better preference modeling and
enhanced LLM alignment.

Impact of Temperature Sampling for Different Active Selection Approaches To analyze the
impact of temperature-controlled response sampling on different active selection approaches, we
conduct an ablation study by varying the sampling temperature from 0 to 1.0 in increments of 0.25
on AlpacaEval2 benchmark as demonstrated in Figure 3. We evaluate our active selection strategies
observe a general trend of declining performance with increasing temperature. Key observation:
AMPO-Coreset and AMPO-OptSelect demonstrate robustness to temperature variations, whereas
WR-SimPO and bottom-k selection are more sensitive.

Effect of gamma for Active Selection Approaches To further investigate the sensitivity of core-set
selection to different hyper-parameter settings, we conduct an ablation study on the impact of varying
the gamma parameter as show in Figure 4. As gamma increases from 1 to 3, we observe a consistent
improvement in both LC-WR and WR scores. Key findings highlight the importance of tuning
gamma appropriately to maximize the effectiveness of active-selection approaches.

8 DISCUSSION & FUTURE WORK

Iteration via Active Synthetic Data Generation. When we combine reward signals and output-
embedding signals in active sampling, we naturally create a pathway to synthetic data creation.
Through multi-preference optimization on diverse queries, the model continually improves itself
by receiving feedback on different modes of failure (and success). Crucially, because this process
is on-policy, the model directly surfaces new candidate answers for which it is most uncertain or
prone to errors. The selection for coverage ensures that we efficiently address a large portion of the
measurable answer space, rather than merely focusing on obvious or extreme failures.

Over multiple epochs, such a growing corpus of synthetic data can be used to refine or re-check
the reward model, establishing a feedback loop between policy improvement and reward-model
improvement. We believe this to be an important direction of future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and Vinayaka
Pandit. Local search heuristic for k-median and facility location problems. In Proceedings of the
thirty-third annual ACM symposium on Theory of computing, pp. 21–29, 2001.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for machine
learning. arXiv preprint arXiv:1703.06476, 2017.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. Knapsack problems—an
overview of recent advances. part ii: Multiple, multidimensional, and quadratic knapsack problems.
Computers & Operations Research, 143:105693, 2022.

Paolo Ceravolo, Fatemeh Mohammadi, and Marta Annamaria Tamborini. Active learning methodol-
ogy in llms fine-tuning. In 2024 IEEE International Conference on Cyber Security and Resilience
(CSR), pp. 743–749. IEEE, 2024.

Huayu Chen, Guande He, Lifan Yuan, Ganqu Cui, Hang Su, and Jun Zhu. Noise contrastive alignment
of language models with explicit rewards. arXiv preprint arXiv:2402.05369, 2024a.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E Hinton. Big
self-supervised models are strong semi-supervised learners. Advances in neural information
processing systems, 33:22243–22255, 2020.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning
converts weak language models to strong language models. arXiv preprint arXiv:2401.01335,
2024b.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing
systems, 30, 2017.

Vincent Cohen-Addad, David Saulpic, and Chris Schwiegelshohn. A new coreset framework for
clustering. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,
pp. 169–182, 2021.

Vincent Cohen-Addad, Kasper Green Larsen, David Saulpic, Chris Schwiegelshohn, and Omar Ali
Sheikh-Omar. Improved coresets for euclidean k-means. Advances in Neural Information Process-
ing Systems, 35:2679–2694, 2022.

David A Cohn, Zoubin Ghahramani, and Michael I Jordan. Active learning with statistical models.
Journal of artificial intelligence research, 4:129–145, 1996.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled
alpacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
alignment as prospect theoretic optimization. arXiv preprint arXiv:2402.01306, 2024.

Dan Feldman. Core-sets: Updated survey. Sampling techniques for supervised or unsupervised tasks,
pp. 23–44, 2020.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data: Constant-size
coresets for k-means, pca, and projective clustering. SIAM Journal on Computing, 49(3):601–657,
2020.

Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for facility
location. arXiv preprint arXiv:0809.2554, 2008.

Taneesh Gupta, Rahul Madhavan, Xuchao Zhang, Chetan Bansal, and Saravan Rajmohan. Swepo:
Simultaneous weighted preference optimization for group contrastive alignment, 2024. URL
https://arxiv.org/abs/2412.04628.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering. In
Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 291–300,
2004.

John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering algorithm. Journal
of the royal statistical society. series c (applied statistics), 28(1):100–108, 1979.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. In Proceedings of the 2024 Conference on Empirical Methods in Natural
Language Processing, pp. 11170–11189, 2024.

Lingxiao Huang, Shaofeng Jiang, and Nisheeth Vishnoi. Coresets for clustering with fairness
constraints. Advances in neural information processing systems, 32, 2019.

Hans Kellerer, Ulrich Pferschy, David Pisinger, Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Introduction to np-completeness of knapsack problems. Knapsack problems, pp. 483–493, 2004a.

Hans Kellerer, Ulrich Pferschy, David Pisinger, Hans Kellerer, Ulrich Pferschy, and David Pisinger.
Multidimensional knapsack problems. Springer, 2004b.

Tomasz Korbak, Kejian Shi, Angelica Chen, Rasika Vinayak Bhalerao, Christopher Buckley, Jason
Phang, Samuel R Bowman, and Ethan Perez. Pretraining language models with human preferences.
In International Conference on Machine Learning, pp. 17506–17533. PMLR, 2023.

Aviral Kumar, Vincent Zhuang, Rishabh Agarwal, Yi Su, John D Co-Reyes, Avi Singh, Kate Baumli,
Shariq Iqbal, Colton Bishop, Rebecca Roelofs, et al. Training language models to self-correct via
reinforcement learning. arXiv preprint arXiv:2409.12917, 2024.

Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Simon Wang, Jiulong Shan,
Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, et al. Tis-dpo: Token-level importance sampling
for direct preference optimization with estimated weights. arXiv preprint arXiv:2410.04350,
2024a.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451, 2024b.

Jie Liu, Zhanhui Zhou, Jiaheng Liu, Xingyuan Bu, Chao Yang, Han-Sen Zhong, and Wanli Ouyang.
Iterative length-regularized direct preference optimization: A case study on improving 7b language
models to gpt-4 level. arXiv preprint arXiv:2406.11817, 2024c.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. IEEE transactions on knowledge and data engi-
neering, 35(1):857–876, 2021.

11

https://arxiv.org/abs/2412.04628

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Do Xuan Long, Hai Nguyen Ngoc, Tiviatis Sim, Hieu Dao, Shafiq Joty, Kenji Kawaguchi, Nancy F
Chen, and Min-Yen Kan. Llms are biased towards output formats! systematically evaluating and
mitigating output format bias of llms. arXiv preprint arXiv:2408.08656, 2024.

Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a reference-
free reward. arXiv preprint arXiv:2405.14734, 2024.

Hyun Oh Song, Stefanie Jegelka, Vivek Rathod, and Kevin Murphy. Deep metric learning via facility
location. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5382–5390, 2017.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35:27730–
27744, 2022.

Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
Weston. Iterative reasoning preference optimization. arXiv preprint arXiv:2404.19733, 2024.

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality in
direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Biqing Qi, Pengfei Li, Fangyuan Li, Junqi Gao, Kaiyan Zhang, and Bowen Zhou. Online dpo: Online
direct preference optimization with fast-slow chasing. arXiv preprint arXiv:2406.05534, 2024.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

Burr Settles. Active learning literature survey. 2009.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Hoang Tran, Chris Glaze, and Braden Hancock. Iterative dpo alignment. Technical report, Technical
report, Snorkel AI, 2023.

Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play
preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.

Zeqiu Wu, Yushi Hu, Weijia Shi, Nouha Dziri, Alane Suhr, Prithviraj Ammanabrolu, Noah A Smith,
Mari Ostendorf, and Hannaneh Hajishirzi. Fine-grained human feedback gives better rewards for
language model training. Advances in Neural Information Processing Systems, 36:59008–59033,
2023.

Ruixuan Xiao, Yiwen Dong, Junbo Zhao, Runze Wu, Minmin Lin, Gang Chen, and Haobo Wang.
Freeal: Towards human-free active learning in the era of large language models. arXiv preprint
arXiv:2311.15614, 2023.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton
Murray, and Young Jin Kim. Contrastive preference optimization: Pushing the boundaries of LLM
performance in machine translation. ArXiv, abs/2401.08417, 2024.

Yue Yu, Yuchen Zhuang, Jieyu Zhang, Yu Meng, Alexander J Ratner, Ranjay Krishna, Jiaming Shen,
and Chao Zhang. Large language model as attributed training data generator: A tale of diversity
and bias. Advances in Neural Information Processing Systems, 36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Weizhe Yuan, Ilia Kulikov, Ping Yu, Kyunghyun Cho, Sainbayar Sukhbaatar, Jason Weston, and Jing
Xu. Following length constraints in instructions. arXiv preprint arXiv:2406.17744, 2024.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang, Songfang Huang, and Fei Huang. Rrhf:
Rank responses to align language models with human feedback without tears. arXiv preprint
arXiv:2304.05302, 2023.

Yongcheng Zeng, Guoqing Liu, Weiyu Ma, Ning Yang, Haifeng Zhang, and Jun Wang. Token-level
direct preference optimization. arXiv preprint arXiv:2404.11999, 2024.

Yiming Zhang, Shi Feng, and Chenhao Tan. Active example selection for in-context learning. arXiv
preprint arXiv:2211.04486, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

SUPPLEMENTARY MATERIALS

These supplementary materials provide additional details, derivations, and experimental results for
our paper. The appendix is organized as follows:

• Section A provides a more comprehensive overview of the related literature.

• Section B provides theoretical analysis of the equivalence of the optimal selection integer program
and the reward maximization objective.

• Section C shows a constant factor approximation for the coordinate descent algorithm in polynomial
time.

• Section D provides theoretical guarantees for our k-means style coreset selection algorithm.

• Section E provides the code for computation of the optimal selection algorithm.

• Section F provides t-sne plots for the various queries highlighting the performance of our algo-
rithms.

A RELATED WORK

Preference Optimization in RLHF. Direct Preference Optimization (DPO) is a collection of
techniques for fine-tuning language models based on human preferences Rafailov et al. (2024). Several
variants of DPO have been developed to address specific challenges and improve its effectiveness
Ethayarajh et al. (2024); Zeng et al. (2024); Dong et al. (2023); Yuan et al. (2023). For example,
KTO and TDPO focus on different aspects of preference optimization, while RAFT and RRHF utilize
alternative forms of feedback. Other variants, such as SPIN, CPO, ORPO, and SimPO, introduce
additional objectives or regularizations to enhance the optimization process Chen et al. (2024b); Xu
et al. (2024); Hong et al. (2024); Meng et al. (2024).

Further variants, including R-DPO, LD-DPO, sDPO, IRPO, OFS-DPO, and LIFT-DPO, address
issues like length bias, training strategies, and specific reasoning tasks. These diverse approaches
demonstrate the ongoing efforts to refine and enhance DPO, addressing its limitations and expanding
its applicability to various tasks and domains Park et al. (2024); Liu et al. (2024c); Pang et al. (2024);
Qi et al. (2024); Yuan et al. (2024).

Multi-Preference Approaches. Recent work extends standard RLHF to consider entire sets of
responses at once, enabling more nuanced feedback signals (Rafailov et al., 2024; Cui et al., 2023;
Chen et al., 2024a). Group-based objectives capture multiple acceptable (and multiple undesirable)
answers for each query, rather than only a single “better vs. worse” pair. Gupta et al. (2024) propose
a contrastive formulation, SWEPO, that jointly uses multiple “positives” and “negatives.” Such multi-
preference methods can reduce label noise and better reflect the complexity of real-world tasks, but
their computational cost grows if one attempts to incorporate all generated outputs (Cui et al., 2023;
Chen et al., 2024a).

On-Policy Self-Play. A key advancement in reinforcement learning has been self-play or on-policy
generation, where the model continuously updates and re-generates data from its own evolving policy
(Silver et al., 2016; 2017). In the context of LLM alignment, on-policy sampling can keep the training
set aligned with the model’s current distribution of outputs (Christiano et al., 2017; Wu et al., 2023).
However, this approach can significantly inflate the number of candidate responses, motivating the
need for selective down-sampling of training examples.

Active Learning for Policy Optimization. The notion of selectively querying the most informative
examples is central to active learning (Cohn et al., 1996; Settles, 2009), which aims to reduce labeling

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

effort by focusing on high-utility samples. Several works incorporate active learning ideas into
reinforcement learning, e.g., uncertainty sampling or diversity-based selection (Sener & Savarese,
2017; Zhang et al., 2022). In the RLHF setting, Christiano et al. (2017) highlight how strategic
feedback can accelerate policy improvements, while others apply active subroutines to refine reward
models (Wu et al., 2023). By picking a small yet diverse set of responses, we avoid both computational
blow-ups and redundant training signals.

Clustering and Coverage-Based Selection. Selecting representative subsets from a large dataset is
a classic problem in machine learning and combinatorial optimization. Clustering techniques such as
k-means and k-medoids (Hartigan & Wong, 1979) aim to group points so that distances within each
cluster are small. In the RLHF context, embedding model outputs and clustering them can ensure
coverage over semantically distinct modes (Har-Peled & Mazumdar, 2004; Cohen-Addad et al.,
2022). These methods connect to the facility location problem (Oh Song et al., 2017)—minimizing
the cost of “covering” all points with a fixed number of centers—and can be addressed via coreset
construction (Feldman, 2020).

Min-Knapsack and Integer Programming. When picking a subset of size k to cover or suppress
“bad” outputs, one may cast the objective in a min-knapsack or combinatorial optimization framework
(Kellerer et al., 2004a). For instance, forcing certain outputs to zero probability can impose constraints
that ripple to nearby points in embedding space, linking coverage-based strategies to integer programs
(Chen et al., 2020). Cohen-Addad et al. (2022) and Har-Peled & Mazumdar (2004) demonstrate
how approximate solutions to such subset selection problems can achieve strong empirical results
in high-dimensional scenarios. By drawing from these established concepts, our method frames
the selection of negative samples in a Lipschitz coverage sense, thereby enabling both theoretical
guarantees and practical efficiency in multi-preference alignment.

Collectively, our work stands at the intersection of multi-preference alignment (Gupta et al., 2024;
Cui et al., 2023), on-policy data generation (Silver et al., 2017; Ouyang et al., 2022), and active
learning (Cohn et al., 1996; Settles, 2009). We leverage ideas from clustering (k-means, k-medoids)
and combinatorial optimization (facility location, min-knapsack) (Kellerer et al., 2004b; Cacchiani
et al., 2022) to construct small yet powerful training subsets that capture both reward extremes and
semantic diversity. The result is an efficient pipeline for aligning LLMs via multi-preference signals
without exhaustively processing all generated responses.

B EXTENDED THEORETICAL ANALYSIS OF OPT-SELECT

In this appendix, we present a more detailed theoretical treatment of AMPO-OPTSELECT. We restate
the core problem setup and assumptions, then provide rigorous proofs of our main results. Our
exposition here augments the concise version from the main text.

B.1 PROBLEM SETUP

Consider a single prompt (query) x for which we have sampled n candidate responses
{ y1, y2, . . . , yn}. Each response yi has:

• A scalar reward ri ∈ [0, 1].

• An embedding ei ∈ Rd.

We define the distance between two responses yi and yj by

Ai,j = ∥ei − ej∥. (12)

We wish to learn a policy {pi}, where pi ≥ 0 and
∑n

i=1 pi = 1. The policy’s expected reward is

ER(p) =

n∑
i=1

ri pi. (13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Positive and Negative Responses. We designate exactly one response, denoted yitop , as a positive
(the highest-reward candidate). All other responses are potential “negatives.” Concretely:

• We fix one index itop with itop = arg max
i∈{1,...,n}

ri.

• We choose a subset S ⊆ {1, . . . , n} \ {itop} of size k, whose elements are forced to have pj = 0.
(These are the “negatives.”)

B.1.1 LIPSCHITZ SUPPRESSION CONSTRAINT

We assume a mild Lipschitz-like rule:

(A1) L-Lipschitz Constraint. If pj = 0 for some j ∈ S, then for every response yi, we must
have

pi ≤ LAi,j = L ∥ei − ej∥. (14)

The effect is that whenever we force a particular negative j to have pj = 0, any response i near j in
embedding space also gets pushed down, since pi ≤ LAi,j . By selecting a set of k negatives covering
many “bad” or low-reward regions, we curb the policy’s probability of generating undesirable
responses.

Goal. Define the feasible set of distributions:
F(S) =

{
{pi} : pj = 0 ∀ j ∈ S, pi ≤ L min

j∈S
Ai,j ∀ i /∈ { itop} ∪ S

}
. (15)

We then have a two-level problem:

max
S ⊆{1,...,n}\{itop}

|S|=k

max
{pi}∈F(S)∑
i pi=1, pi≥0

n∑
i=1

ri pi,

subject to pitop is unconstrained (no Lipschitz bound). (16)
We seek S that maximizes the best possible Lipschitz-compliant expected reward.

B.2 COVERAGE VIEW AND THE MIP FORMULATION

Coverage Cost. To highlight the crucial role of “covering” low-reward responses, define a weight
wi = exp

(
r − ri

)
, (17)

where r can be, for instance, the average reward 1
n

∑n
i=1 ri. Then a natural coverage cost is

Cost(S) =

n∑
i=1

wi min
j∈S

Ai,j . (18)

A small minj∈S Ai,j means response i is “close” to at least one negative center j. If ri is low, then
wi is large, so we put higher penalty on leaving i uncovered. Minimizing Cost(S) ensures that
important (low-reward) responses are forced near penalized centers, thus suppressing them in the
policy distribution.

MIP P for Coverage Minimization. We can write a mixed-integer program:

Problem P : min
xj∈{0,1}
zi,j∈{0,1}

yi≥0

n∑
i=1

wi yi,

subject to



n∑
j=1

xj = k,

zi,j ≤ xj ,
∑n

j=1 zi,j = 1, ∀ i,
yi ≤ Ai,j +M (1− zi,j),

yi ≥ Ai,j −M (1− zi,j), ∀ i, j,

(19)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

where M = maxi,j Ai,j . Intuitively, each xj indicates if j is chosen as a negative; each zi,j indicates
whether i is “assigned” to j. At optimality, yi = minj∈S Ai,j , so the objective

∑
i wi yi is precisely

Cost(S). Hence solving P yields S∗ that minimizes coverage cost equation 18.

B.3 KEY LEMMA: EQUIVALENCE OF COVERAGE MINIMIZATION AND LIPSCHITZ
SUPPRESSION

Lemma 1 (Coverage⇔ Suppression). Assume (A1) (the L-Lipschitz constraint, equation 14) and
let itop be a highest-reward index. Suppose S ⊆ {1, . . . , n} \ {itop} is a subset of size k. Then:

(i) Choosing S that minimizes Cost(S) yields the strongest suppression of low-reward responses and
thus the best possible feasible expected reward under the Lipschitz constraint.

(ii) Conversely, any set S achieving the highest feasible expected reward necessarily minimizes
Cost(S).

Proof. (i) Minimizing Cost(S) improves expected reward.
Once we pick S, we set pj = 0 for all j ∈ S. By (A1), any yi is then forced to satisfy pi ≤ LAi,j

for all j ∈ S. Hence
pi ≤ L min

j∈S
Ai,j .

If minj∈S Ai,j is large, then pi could be large; if it is small (particularly for low-reward ri), we
effectively suppress pi. By weighting each i with wi = er−ri , we see that leaving low-reward yi far
from all negatives raises the risk of high pi. Minimizing

∑
i wi minj∈S Ai,j ensures that any i with

large wi (i.e. small ri) has a small distance to at least one chosen center, thus bounding its probability
more tightly.

Meanwhile, the best candidate itop ∈ {1, . . . , n} remains unconstrained, so the policy can always
place mass ≈ 1 on itop. Consequently, a set S that better “covers” low-reward points must yield a
higher feasible expected reward

∑
i ripi.

(ii) Necessity of Minimizing Cost(S).
Conversely, if there were a set S that did not minimize Cost(S) but still provided higher feasible
expected reward, that would imply we found a distribution {pi} violating the Lipschitz bound on
some low-reward region. Formally, S that yields strictly smaller coverage cost would impose stricter
probability suppression on harmful responses. By part (i), that coverage-lowering set should then
yield an even higher feasible reward, a contradiction.

B.4 MAIN THEOREM: OPTIMALITY OF P FOR LIPSCHITZ ALIGNMENT

Theorem 2 (Optimal Negative Set via P). Let S∗ be the solution to the MIP P in equation 19, i.e. it
minimizes Cost(S). Then S∗ also maximizes the objective equation 16. Consequently, picking S∗
and allowing free probability on itop ≈ argmaxi ri yields the optimal Lipschitz-compliant policy.

Proof. By construction, solving P returns S∗ with Cost(S∗) = min
|S|=k

Cost(S). Lemma 1 then

states that such an S∗ simultaneously maximizes the best possible feasible expected reward. Hence
S∗ is precisely the negative set that achieves the maximum of equation 16.

Interpretation. Under a mild Lipschitz assumption in embedding space, penalizing (assigning zero
probability to) a small set S and forcing all items near S to have small probability is equivalent to a
coverage problem. Solving (or approximating) P selects negatives that push down low-reward modes
as effectively as possible.

B.5 DISCUSSION AND PRACTICAL IMPLEMENTATION

OPT-SELECT thus emerges from optimizing coverage:

1. Solve or approximate the MIP P to find the best subset S ⊆ {1, . . . , n} \ {itop}.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

2. Force pj = 0 for each j ∈ S; retain itop with full probability (pitop ≈ 1), subject to normalizing
the distribution.

In practice, local search or approximate clustering-based approaches (e.g. Weighted k-Medoids)
can find good solutions without exhaustively solving P . The method ensures that near any chosen
negative j, all semantically similar responses i have bounded probability pi ≤ LAi,j . Consequently,
OPT-SELECT simultaneously covers and suppresses undesired modes while preserving at least one
high-reward response unpenalized.
Additional Remarks.

• The single-positive assumption reflects a practical design where one high-reward response is
explicitly promoted. This can be extended to multiple positives, e.g. top m+ responses each
unconstrained.

• For large n, the exact MIP solution may be expensive; local search (see Appendix C) still achieves
a constant-factor approximation.

• The embedding-based Lipschitz constant L is rarely known exactly; however, the coverage
perspective remains valid for “sufficiently smooth” reward behaviors in the embedding space.

Overall, these results solidify OPT-SELECT as a principled framework for negative selection under
Lipschitz-based alignment objectives.

C LOCAL SEARCH GUARANTEES FOR WEIGHTED k-MEDOIDS AND
LIPSCHITZ-REWARD APPROXIMATION

In this appendix, we show in Theorem 3 that a standard local search algorithm for Weighted k-Medoids
achieves a constant-factor approximation in polynomial time.

C.1 WEIGHTED k-MEDOIDS SETUP

We are given:

• A set of n points, each indexed by i ∈ {1, . . . , n}.
• A distance function d(i, j) ≥ 0, which forms a metric: d(i, j) ≤ d(i, k) + d(k, j), d(i, i) =
0, d(i, j) = d(j, i).

• A nonnegative weight wi for each point i.
• A budget k, 1 ≤ k ≤ n.

We wish to pick a subset S ⊆ {1, . . . , n} of medoids (centers) with size |S| = k that minimizes the
objective

Cost(S) =

n∑
i=1

wi ·min
j∈S

d(i, j). (20)

We call this the Weighted k-Medoids problem. Note that medoids must come from among the data
points, as opposed to k-median or k-means where centers can be arbitrary points in the metric or
vector space. Our Algorithm 3 reduces to exactly this problem.

C.2 COORDINATE DESCENT ALGORITHM VIA LOCAL SEARCH

Our approach to the NP-hardness of Algorithm 3 was to recast it as a simpler coordinate descent
algorithm in Algorithm 4, wherein we do a local search at every point towards achieving the optimal
solution. Let COST(S) be as in equation 20.

1. Initialize: pick any subset S ⊆ {1, . . . , n} of size k (e.g. random or greedy).
2. Repeat: Try all possible single swaps of the form

S ′ =
(
S \ { j}

)
∪ { j′},

where j ∈ S and j′ /∈ S.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

3. If any swap improves cost: i.e. Cost(S ′) < Cost(S), then set S ← S ′ and continue.
4. Else terminate: no single swap can further reduce cost.

When the algorithm stops, we say S is a local optimum under 1-swaps.

C.3 CONSTANT-FACTOR APPROXIMATION IN POLYNOMIAL TIME

We now present and prove a result: such local search yields a constant-factor approximation. Below,
we prove a version with a factor 5 guarantee for Weighted k-Medoids. Tighter analyses can improve
constants, but 5 is a commonly cited bound for this simple variant.

Theorem 3 (Local Search for Weighted k-Medoids). Let S∗ be an optimal subset of medoids of
size k. Let Ŝ be any local optimum obtained by the above 1-swap local search. Then

Cost
(
Ŝ
)
≤ 5 × Cost

(
S∗
)
. (21)

Moreover, the procedure runs in polynomial time (at most
((

n
k

))
“worse-case” swaps in principle,

but in practice each improving swap decreases cost by a non-negligible amount, thus bounding the
iteration count).

Proof. Notation.

• Let Ŝ be the final local optimum of size k.

• Let S∗ be an optimal set of size k.

• For each point i, define

ri = d
(
i, Ŝ
)

= min
j∈Ŝ

d(i, j), r∗i = min
j∈S∗

d(i, j).

Thus Cost(Ŝ) =
∑

i wi ri and Cost(S∗) =
∑

i wi r
∗
i .

• Let c(S) =
∑

i wi d(i,S) as shorthand for Cost(S).

Step 1: Construct a “Combined” Set. Consider

S† = Ŝ ∪ S∗.
We have |S†| ≤ 2k. Let c(S†) =

∑
i wi d

(
i,S†

)
.

Observe that
d
(
i,S†

)
= min

{
d
(
i, Ŝ
)
, d
(
i,S∗

)}
= min{ ri, r∗i }.

Hence

c(S†) =

n∑
i=1

wi min{ ri, r∗i }.

We will relate c(S†) to c(Ŝ) and c(S∗).

Step 2: Partition Points According to S∗. For each j∗ ∈ S∗, define the cluster

C(j∗) =
{
i | j∗ = arg min

j′∈S∗
d(i, j′)

}
.

Hence {C(j∗) : j∗ ∈ S∗} is a partition of {1, . . . , n}. We now group the cost contributions by
these clusters.

Goal: Existence of a Good Swap. We will assume c(Ŝ) > 5 c(S∗) and derive a contradiction by
producing a profitable swap that local search should have found.

Specifically, we show that there must be a center j∗ ∈ S∗ whose cluster C(j∗) is “costly enough”
under Ŝ , so that swapping out some center j ∈ Ŝ for j∗ significantly reduces cost. But since Ŝ was a
local optimum, no such profitable swap could exist. This contradiction implies c(Ŝ) ≤ 5 c(S∗).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Step 3: Detailed Bounding.

We have

c(S†) =
n∑

i=1

wi min{ri, r∗i } ≤
n∑

i=1

wi r
∗
i = c(S∗).

Similarly,

c(S†) ≤
n∑

i=1

wi ri = c
(
Ŝ
)
.

Hence c(S†) ≤ min
{
c(Ŝ), c(S∗)

}
. Now define

D =

n∑
i=1

wi

[
ri −min{ ri, r∗i }

]
=

n∑
i=1

wi

(
ri − r∗i

)
+
,

where (x)+ = max{x, 0}. By rearranging,
n∑

i=1

wi ri −
n∑

i=1

wi min{ ri, r∗i } = D.

Thus
c(Ŝ)− c(S†) = D ≥ c(Ŝ)− c(S∗).

So
D ≥ c

(
Ŝ
)
− c
(
S∗
)
.

Under the assumption c(Ŝ) > 5 c(S∗), we get

D > 4 c(S∗). (*)

Step 4: Find a Center j∗ with Large D Contribution. We now “distribute” D over clusters C(j∗).
Let

Dj∗ =
∑

i∈C(j∗)

wi

(
ri − r∗i

)
+
.

Then D =
∑

j∗∈S∗

Dj∗ . Since D > 4 c(S∗), at least one j∗ ∈ S∗ satisfies

Dj∗ > 4
c(S∗)
|S∗|

= 4
c(S∗)
k

,

because |S∗| = k. Denote this center as j∗large and its cluster C∗ = C(j∗large).

Step 5: Swapping j∗ into Ŝ. Consider the swap

Ŝswap =
(
Ŝ \

{
jout

})
∪
{
j∗large

}
where jout is whichever center in Ŝ we choose to remove. We must show that for an appropriate
choice of jout, the cost c(Ŝswap) is at least (ri− r∗i)+ smaller on average for the points in C∗, forcing
a net cost reduction large enough to offset any potential cost increase for points outside C∗.

In detail, partition Ŝ into k clusters under Voronoi assignment:

Ĉ(j) =
{
i : j = argmin

x∈Ŝ
d(i, x)

}
, j ∈ Ŝ.

Since | Ŝ| = k, there must exist at least one jout ∈ Ŝ whose cluster Ĉ(jout) has weight∑
i∈Ĉ(jout)

wi ≤
1

k

n∑
i=1

wi. We remove that jout and add j∗large.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Step 6: Net Cost Change Analysis. After the swap,

c
(
Ŝswap

)
− c
(
Ŝ
)

= ∆in︸︷︷︸
improvement in C∗

+ ∆out︸︷︷︸
possible cost increase outside C∗

.

Points i ∈ C∗ can now be served by j∗large at distance r∗i (≤ ri), so

∆in ≤
∑
i∈C∗

wi

[
d
(
i, Ŝswap

)
− d
(
i, Ŝ
)]
≤
∑
i∈C∗

wi

(
r∗i − ri

)
.

But recall r∗i ≤ ri or r∗i ≤ ri; for i ∈ C∗, we specifically have (ri− r∗i)+ is often positive. Precisely:

∆in ≤
∑
i∈C∗

wi

(
r∗i − ri

)
= −

∑
i∈C∗

wi

(
ri − r∗i

)
.

Hence
∆in ≤ −

∑
i∈C∗

wi (ri − r∗i)+.

On the other hand, some points outside C∗ may lose jout as a center, which might increase their
distances:

∆out =
∑
i/∈C∗

wi

[
d
(
i, Ŝswap

)
− d
(
i, Ŝ
)]
.

Since each point can still use any other center in Ŝ \ { jout},

d
(
i, Ŝswap

)
≤ min

{
d
(
i, Ŝ \ {jout}

)
, d
(
i, j∗large

)}
.

Thus for each i,
d
(
i, Ŝswap

)
≤ d

(
i, Ŝ
)

unless the only center in Ŝ that served i was jout. But the total weight of Ĉ(jout) is at most 1
k

∑
i wi.

Thus,
∆out ≤

∑
i∈Ĉ(jout)

wi

[
d
(
i, Ŝswap

)
− d
(
i, Ŝ
)]
≤

∑
i∈Ĉ(jout)

wi d
(
jout, j

∗
large

)
,

because i is at distance at most d(i, jout) + d(jout, j
∗
large) to j∗large. And d(i, Ŝ) ≥ d(i, jout) by

definition of Ĉ(jout). Hence

∆out ≤
(∑
i∈Ĉ(jout)

wi

)
· d
(
jout, j

∗
large

)
≤ 1

k

(n∑
i=1

wi

)
· d
(
jout, j

∗
large

)
.

Step 7: Arriving at a contradiction. We get

c
(
Ŝswap

)
− c
(
Ŝ
)
= ∆in +∆out ≤ −

∑
i∈C∗

wi

(
ri − r∗i

)
+

+
1

k

(∑
i

wi

)
d
(
jout, j

∗
large

)
.

But recall ∑
i∈C∗

wi (ri − r∗i)+ = Dj∗large
> 4

c(S∗)
k

,

from step 5. Meanwhile, d
(
jout, j

∗
large

)
≤ c(S∗) is a standard bound because j∗large must be served

in S∗ by some center at distance at most c(S∗)/
∑

i wi or by the triangle inequality, we can also
argue d(jout, j

∗
large) ≤ the diameter factor times the cost. More refined bounding uses per-point

comparisons.

Hence

∆out ≤
1

k

(∑
i

wi

)
c(S∗) /

(∑
i

wi

)
=

c(S∗)
k

.

Thus

c(Ŝswap)− c(Ŝ) ≤ − 4
c(S∗)
k

+
c(S∗)
k

= − 3
c(S∗)
k

< 0,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

i.e. a net improvement. This contradicts the local optimality of Ŝ.

Therefore our original assumption c(Ŝ) > 5 c(S∗) must be false, so c(Ŝ) ≤ 5 c(S∗).

Time Complexity. Each swap test requires O(n) time to update Cost(S). There are at most k (n−k)
possible 1-swaps. Each accepted swap strictly decreases cost by at least 1 unit (or some positive
δ-fraction if distances are discrete/normalized). Since the minimal cost is ≥ 0, the total number of
swaps is polynomially bounded. Thus local search terminates in polynomial time with the promised
approximation.

Remark 1 (Improved Constants). A more intricate analysis can tighten the factor 5 in Theorem 3
to 3 or 4. See, e.g., (Gupta & Tangwongsan, 2008; Arya et al., 2001) for classical refinements. The
simpler argument here suffices to establish the main principles.

D CONSTANT-FACTOR APPROXIMATION FOR SUBSET SELECTION UNDER
BOUNDED INTRA-CLUSTER DISTANCE

The term coreset originates in computational geometry and machine learning, referring to a subset
of data that approximates the entire dataset with respect to a particular objective or loss function
(Bachem et al., 2017; Feldman et al., 2020). More precisely, a coreset C for a larger set X is often
defined such that, for any model or solution w in a hypothesis class, the loss over C is within a small
factor of the loss over X .

In the context of AMPO-CORESET, the k-means clustering subroutine identifies representative
embedding-space regions, and by choosing a single worst-rated example from each region, we mimic
a coreset-based selection principle: our selected negatives approximate the distributional diversity of
the entire batch of responses. In essence, we seek a small but well-covered negative set that ensures
the model receives penalizing signals for all major modes of undesired behavior.

Empirically, such coverage-driven strategies can outperform purely score-based selection (Section
4.1) when the reward function is noisy or the model exhibits rare but severe failure modes. By
assigning at least one negative from each cluster, AMPO-CORESET mitigates the risk of ignoring
minority clusters, which may be infrequent yet highly problematic for alignment. As we show in
subsequent experiments, combining coreset-like coverage with reward-based filtering yields robust
policy updates that curb a wide range of undesirable outputs.

We give a simplified theorem showing how a local-search algorithm can achieve a fixed (constant)
approximation factor for selecting k “negative” responses. Our statement and proof are adapted from
the classical Weighted k-Medoids analysis, but use simpler notation and explicit assumptions about
bounded intra-cluster distance.

D.1 ADDITIONAL ASSUMPTIONS:

Assumption 1: Bounded number of clusters k. We assume that the data partitions into natural
clusters such that the number of such clusters is equal to the number of examples we draw from the
negatives. It is of course likely that at sufficiently high temperature, an LLM may deviate from such
assumptions, but given sufficiently low sampling temperature, the answers, for any given query, may
concentrate to a few attractors.

Assumption 2: Bounded Intra-Cluster Distance. We assume that the data can be partitioned into
natural clusters of bounded diameter dmax. This assumption helps us simplify our bounds, towards
rigorous guarantees, and we wish to state that such an assumption may be too strict to hold in practice,
especially in light of Assumption 1.

Given these assumptions, We present a distribution-dependent coreset guarantee for selecting a small
“negative” subset of responses for a given query, thus enabling the policy to concentrate probability on
the highest-rated responses. Unlike universal coreset theory, we only require that this negative subset
works well for typical distributions of responses, rather than for every conceivable set of responses.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

D.2 SETUP: QUERIES, RESPONSES, AND RATINGS

Queries and Candidate Responses. We focus on a single query x, which admits a finite set of m
candidate responses

{ y1, . . . , ym}.
Each response yi has a scalar rating ri ∈ [0, 1]. For notational convenience, we assume ri is
normalized to [0, 1]. A larger ri indicates a better (or more desirable) response.

Negative Ratings via Exponential Weights. Let

r =
1

m

m∑
i=1

ri (the mean rating), wi = exp
(
r − ri

)
. (22)

Then wi is larger when ri is smaller. One may also employ alternative references (max ri instead of
r), or re-scaling to maintain bounded ranges.

D.3 POLICY MODEL AND SUBSET SELECTION

Policy Distribution Over Responses. A policy Pθ(y | x) assigns a probability pi ≥ 0 to each
response yi, satisfying

∑m
i=1 pi = 1. The expected rating is

ER(p1, . . . , pm) =

m∑
i=1

pi ri.

Negative Subset and Probability Suppression. We aim to choose a small subset S ⊆ { 1, . . . ,m}
of size k, each member of which is assigned probability zero:

pj = 0, ∀j ∈ S.

In addition, we impose a Lipschitz-like rule that if pj = 0 for j ∈ S, then any response yi “close” to
yj in some embedding space must also have probability bounded by

pi ≤ L ∥ei − ej∥,

where ei is an embedding of yi. If yj is negatively rated, then forcing pj = 0 also forces small
probability on responses near yj . This ensures undesired modes get suppressed.

Concentrating Probability on Top Responses. We allow the policy to place nearly all probability on
a small handful of high-rated responses, so that the expected rating

∑m
i=1 piri is maximized. Indeed,

the policy will try to push mass towards the highest ri while setting pj = 0 on low-rated responses in
S.

Sampling Response-Sets or “Solutions.” We suppose that the set {y1, . . . , ym} with ratings {ri}
arises from some distributional process (for instance, D might represent typical ways the system
could generate or rank responses). Denote a random draw by(

{y1, . . . , ym}, {ri}
)
∼ D.

We only require that our negative subset S yield a near-optimal Lipschitz-compliant policy for a
typical realization from D, rather than for every possible realization.

Clustering in Embedding Space. Let ei ∈ Rd be an embedding for each response yi. Suppose we
partition {1, . . . ,m} into k clusters C1, . . . , Ck (each of bounded diameter at most d), and within
each cluster Cj , pick exactly one “negative” index i−j ∈ Cj . This yields

S = { i−1 , . . . , i
−
k }.

We then penalize each yi−j
by setting p i−j

= 0. Consequently, for any yi ∈ Cj , the Lipschitz
suppression condition forces pi ≤ Ld.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

D.4 A DISTRIBUTION-DEPENDENT CORESET GUARANTEE

We now state a simplified theorem that, under certain conditions on the distribution D, ensures that
for most draws of queries and responses, the chosen subset S yields a policy whose expected rating is
within (1± ε) of the optimal Lipschitz-compliant policy of size k.

Theorem 4 (Distribution-Dependent Negative Subset). Let D be a distribution that generates query-
response sets {y1, . . . , ym}, each with ratings {ri} ⊂ [0, 1]. Assume we cluster the m responses
into k groups C1, . . . , Ck of diameter at most d in the embedding space, and choose exactly one
“negative” index i−j ∈ Cj . Let S = { i−1 , . . . , i

−
k }. Suppose that:

max
i∈Cj

∥ei − e i−j
∥ ≤ d, ∀ j = 1, . . . , k.

Assume a Lipschitz constant L, so that penalizing yi−j
(i.e. p i−j

= 0) enforces pi ≤ Ld for all i ∈ Cj .
Then, under a sufficiently large random sample of queries/responses (or equivalently, a large i.i.d.
sample from D to refine the clustering), with high probability over that sample, for at least a

(
1− δ

)
fraction of newly drawn query-response sets from D, the set S induces a Lipschitz-compliant policy
whose expected rating is within a factor (1± ε) of the best possible among all k-penalized subsets.

Proof Sketch. We give a high-level argument:

1. Large Sample Captures Typical Configurations. By drawing many instances of responses {yi},
{ri} from D, we can cluster them in such a way that any new draw from D is, with probability at
least 1− δ, either (a) close to one of our sampled configurations or (b) has measure less than δ.

2. Bounded-Diameter Clusters. Suppose each cluster Cj has diameter at most d, and we pick
i−j ∈ Cj as the “negative.” This implies every response yi in that cluster is at distance ≤ d from yi−j

.

3. Lipschitz Suppression. If p i−j
= 0, then pi ≤ L ∥ei − e i−j

∥ ≤ Ld for all i ∈ Cj . This
ensures that the entire cluster Cj cannot accumulate large probability mass on low-rated responses.
Consequently, we push the policy distribution to concentrate on higher-rated responses (e.g. those not
near a penalized center).

4. Near-Optimal Expected Rating. For any typical new draw of {yi}, {ri}, a k-penalized Lipschitz
policy can be approximated by using the same k negatives S. Because we ensure that the new draw
is close to one of our sampled draws, the coverage or cluster assignment for the new {yi} is accurate
enough that the resulting feasible policy is within a multiplicative (1± ε) factor of the best possible
k-subset. This completes the distribution-dependent argument.

E OPTIMAL SELECTION CODE

In this section we provide the actual code used to compute the optimal selection.

import numpy as np
from scipy.spatial.distance import cdist

def solve_local_search_min_dist_normalized(
vectors: np.ndarray ,
rating: np.ndarray ,
k: int ,
max_iter: int = 100,
random_seed: int = 42

):
Normalize ratings
rating_min = np.min(rating)
rating_max = np.max(rating)
rating_normalized = (rating - rating_min) / (rating_max - rating_min)

if rating_max > rating_min else np.zeros_like(rating) + 0.5

Identify top -rated point

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

excluded_top_index = int(np.argmax(rating_normalized))

Reduce dataset
new_to_old = [idx for idx in range(len(rating_normalized)) if idx !=

excluded_top_index]
vectors_reduced = np.delete(vectors , excluded_top_index , axis =0)
rating_reduced = np.delete(rating_normalized , excluded_top_index)

Compute L2 distances and normalize
if len(rating_reduced) == 0:

return excluded_top_index , None , [], [], []
distance_matrix = cdist(vectors_reduced , vectors_reduced , metric='

euclidean ')
distance_matrix /= distance_matrix.max() if distance_matrix.max() > 1

e-12 else 1

Compute weights
mean_rating_reduced = np.mean(rating_reduced)
w = np.exp(mean_rating_reduced - rating_reduced)

Local search setup
def compute_objective(chosen_set):

return sum(w[i] * min(distance_matrix[i, j] for j in chosen_set)
for i in range(len(w)))

rng = np.random.default_rng(random_seed)
all_indices = np.arange(len(rating_reduced))
current_set = set(rng.choice(all_indices , size=k, replace=False)) if

k < len(rating_reduced) else set(all_indices)
current_cost = compute_objective(current_set)

Local search loop
improved = True
while improved:

improved = False
best_swap = (None , None , 0)
for j_out in list(current_set):

for j_in in all_indices:
if j_in not in current_set:

candidate_set = (current_set - {j_out}) | {j_in}
improvement = current_cost - compute_objective(

candidate_set)
if improvement > best_swap [2]:

best_swap = (j_out , j_in , improvement)
if best_swap [2] > 1e-12:

current_set.remove(best_swap [0])
current_set.add(best_swap [1])
current_cost -= best_swap [2]
improved = True

chosen_indices_original = [new_to_old[j] for j in sorted(current_set)
]

rejected_indices_original = [new_to_old[j] for j in sorted(set(
all_indices) - current_set)]

return excluded_top_index , chosen_indices_original [0],
rejected_indices_original [:k], chosen_indices_original ,
rejected_indices_original

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

F VISUALIZATION OF T-SNE EMBEDDINGS FOR DIVERSE RESPONSES
ACROSS QUERIES

In this section, we showcase the performance of our method through plots of TSNE across various
examples. These illustrative figures show how our baseline Bottom-k Algorithm (Section 4.1) chooses
similar responses that are often close to each other. Hence the model misses out on feedback relating
to other parts of the answer space that it often explores. Contrastingly, we often notice diversity of
response selection for both the AMPO-OPTSELECT and AMPO-CORESET algorithms.

100 50 0 50 100

150

100

50

0

50

100

150

t-S
N

E
D

im
 2

8.59

-2.67
-2.14

-1.41

-1.36

-0.78

0.05

0.26

Selected Response
Rejected Responses
Other Responses

100 50 0 50 100
t-SNE Dim 1

150

100

50

0

50

100

150

8.59

-1.36
-2.67

6.00

0.60

2.12

-1.41

3.66

Selected Response
Rejected Responses
Other Responses

100 50 0 50 100

150

100

50

0

50

100

150

8.59

1.29

-2.67
-1.36

0.66

7.50

2.12

-2.14

Selected Response
Rejected Responses
Other Responses

(a) 1.

40 20 0 20 40

20

10

0

10

20

30

t-S
N

E
D

im
 2

5.04

-5.30

-4.99

-4.55
-3.78

-3.25

-2.39

-1.75

Selected Response
Rejected Responses
Other Responses

40 20 0 20 40
t-SNE Dim 1

20

10

0

10

20

30

5.04

1.13

-5.30

-1.08

-1.75

1.10
-4.99

-3.25

Selected Response
Rejected Responses
Other Responses

40 20 0 20 40

20

10

0

10

20

30

5.04

-3.25

-2.39

-4.99

-5.30

-4.55

2.65

0.43

Selected Response
Rejected Responses
Other Responses

(b) 2.

20 0 20 40

30

20

10

0

10

20

30

40

50

t-S
N

E
D

im
 2 41.41

14.02

14.12

20.14

22.19

24.11

24.39

24.98

Selected Response
Rejected Responses
Other Responses

20 0 20 40
t-SNE Dim 1

30

20

10

0

10

20

30

40

50

41.41

26.59

24.11

14.02

22.19

14.12

25.97

30.78

Selected Response
Rejected Responses
Other Responses

20 0 20 40

30

20

10

0

10

20

30

40

50

41.41

20.14

14.12

14.02

34.06

22.19

24.39

25.97

Selected Response
Rejected Responses
Other Responses

(c) 3.

Figure 5: t-SNE visualization of projected high-dimensional response embeddings into a 2D space,
illustrating the separation of actively selected responses. (a) AMPO-BottomK (baseline). (b) AMPO-
Coreset (ours). (c) Opt-Select (ours). Traditional baselines select many responses close to each other
based on their rating, providing insufficient feedback to the LLM during preference optimization.
In contrast, our methods optimize for objectives including coverage, generation probability, and
preference rating.

26

	Introduction
	Our Contributions

	Notations and Preliminaries
	Algorithm and Methodology
	Detailed Discussion of Algorithm 1

	Active Subset Selection Strategies
	AMPO-BottomK
	AMPO-Coreset (Clustering-Based Selection)

	Opt-Select: Active Subset Selection by Optimizing Expected Reward
	Lipschitz-Driven Objective
	Mixed-Integer Programming Formulation
	Local Search Approximation
	Why ``Opt-Select''? A Lipschitz Argument for Expected Reward

	Theoretical Results: Key Results
	Setup and Assumptions
	Optimal Negatives via Coverage

	Experiments
	Experimental Setup
	Experimental Result

	Discussion & Future Work
	Related Work
	Extended Theoretical Analysis of Opt-Select
	Problem Setup
	Lipschitz Suppression Constraint

	Coverage View and the MIP Formulation
	Key Lemma: Equivalence of Coverage Minimization and Lipschitz Suppression
	Main Theorem: Optimality of P for Lipschitz Alignment
	Discussion and Practical Implementation

	Local Search Guarantees for Weighted k-Medoids and Lipschitz-Reward Approximation
	Weighted k-Medoids Setup
	Coordinate Descent Algorithm via Local Search
	Constant-Factor Approximation in Polynomial Time

	Constant-Factor Approximation for Subset Selection Under Bounded Intra-Cluster Distance
	Additional Assumptions:
	Setup: Queries, Responses, and Ratings
	Policy Model and Subset Selection
	A Distribution-Dependent Coreset Guarantee

	Optimal Selection Code
	Visualization of t-SNE embeddings for Diverse Responses Across Queries

