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Abstract

Hallucinations present a significant challenge in the development and evaluation
of large language models (LLMs), directly affecting their reliability and accuracy.
While notable advancements have been made in research on textual and visual
hallucinations, there is still a lack of a comprehensive benchmark for evaluating
auditory hallucinations in large audio language models (LALMs). To fill this gap,
we introduce AHa-Bench, a systematic and comprehensive benchmark for audio
hallucinations. Audio data, in particular, uniquely combines the multi-attribute
complexity of visual data with the semantic richness of textual data, leading
to auditory hallucinations that share characteristics with both visual and textual
hallucinations. Based on the source of these hallucinations, AHa-Bench categorizes
them into semantic hallucinations, acoustic hallucinations, and semantic-acoustic
confusion hallucinations. In addition, we systematically evaluate seven open-
source local perception language models (LALMs), demonstrating the challenges
these models face in audio understanding, especially when it comes to jointly
understanding semantic and acoustic information. Through the development of a
comprehensive evaluation framework, AHa-Bench aims to enhance robustness of
LALMs, fostering more reliable and nuanced audio understanding in LALMs.

1 Introduction

Large audio-language models (LALM) [8, 7, 10, 51] have demonstrated significant advancements in
various tasks, including speech recognition [16], audio classification [28], multimodal understand-
ing [44]. Trained with vast amounts of audio [17] and text data [14], these models [43, 29] have
the potential to redefine human-computer interaction [6, 37], facilitating more context-aware and
sophisticated systems. However, as these models expand in size and complexity, concerns about their
reliability and accuracy have become increasingly prominent [48], particularly in their handling of
hallucinations, in cases where the model generates content that is not present in the input data.

Although hallucinations [26] have been extensively investigated in the visual [36, 21] and textual
domains [45, 13, 35], where model outputs may diverge from reality or established knowledge, similar
research in the audio domain remains relatively underexplored. Given the growing deployment of
LALMs in virtual assistants [50, 42], and accessibility tools [27], the robustness of these models in
audio understanding has not yet been comprehensively validated. This research gap is particularly
concerning, as auditory hallucinations—instances where the model misinterprets, fabricates, or
distorts audio inputs—pose significant risks to the integrity of audio-based applications.
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†Corresponding Contribution.



AcousticSemantic-AcousticSemantic

Question: 
Does the applause in the audio 
last for more than 3 seconds? 
Does the applause in the audio 
last no longer than 3 seconds?

Duration & Temporal

Repetition
Wolf!
Wolf!
Wolf!
Wolf!

Question: 
Did the dog bark a total of 4 
times in the audio? 
Did the dog bark a total of 3 
times in the audio?

Distance

Question: 
Does the car sound like it's 
moving from near to far?
Does the car sound like it's 
moving from far to near?

Question: 
Are there three people talking 
in this audio?
Is there only one person talking 
in this audio?

Source Number
& Existence

Authenticity

Question: 
Is this audio a genuine 
recording of pig?
Is this audio a human-voiced 
imitations of pig?

Prosodic

“Woman! Without 
her, man is nothing!”

“Woman, without 
her man, is nothing!”

Question: 
Is this statement derogatory 
towards women? 
Is this statement praising 
women?

Polysemy

Question: 
Is the third can a modal verb?
Is the third can a noun?

Can you can a can, as 
a canner can a can?

Modal Verb Verb Noun

Homophone

Question: 
Does this speech have word 
"dagger"?
Does this speech have word ”
⼤哥"?

Dagger 
[dæɡə]

⼤哥
[dɑgɛ]

Instruction

Question: Please translate 
this sentence into Chinese.

“Can you introduce Audio-Hallu?”

Please translate this speech 
into Chinese.

Sure, Audio-Hallu aims to……
Incorrect
你可以介绍⼀下Audio-Hallu吗？
Correct

Knowledge

Question: 
Based on the speech, is the 
value of π 3.1418?
Based on the speech, is the 
value of π 3.14159?

Inferential

Question:
Is there a sound of thunder in 
the audio?
Is there the word ‘thunder’ in 
the audio?

Question: 
Is the person who said this
speech an old man? 
Is the person who said this
speech a child?

Overreliance

Figure 1: Illustrations of different hallucinations in AHa-Bench. Hallucinations can be categorized
based on their underlying sources: Semantic hallucinations arise from over-reliance on or misinter-
pretation of semantic information; Acoustic hallucinations result from misinterpretation of auditory
attributes; and Semantic-acoustic hallucinations occur due to confusion between semantic and acous-
tic information. The red-highlighted text indicates keywords associated with each hallucination type.
To address this gap, we propose AHa-Bench, a comprehensive benchmark specifically designed to
evaluate auditory hallucinations in Large Audio-Language Models (LALMs). As illustrated in Figure
1, AHa-Bench systematically categorizes audio hallucinations into three distinct types based on their
underlying sources: (1) Semantic Hallucinations: Arise when models misinterpret semantic content
due to speech-specific attributes such as homophones, prosody, or polysemy, leading to incorrect or
ambiguous interpretations. (2) Acoustic Hallucinations: Occur when models misinterpret acoustic
attributes, such as perceived distance, timbre, or other acoustic characteristics, resulting in incorrect
auditory perceptions. (3) Semantic-Acoustic Hallucinations: Manifest when models fail to jointly
interpret both semantic and acoustic information, causing misalignment or confusion between the
two, such as when semantic content is misinterpreted due to conflicting acoustic information. To
validate LALMs in audio hallucination challenges, AHa-Bench comprises 396 audio samples and
906 high-quality human-annotated QA pairs, each designed to target a specific hallucination type.
We evaluated seven open-source LALMs, assessing them from the perspectives of accuracy, response
distribution, and consistency. Our findings reveal substantial challenges in the joint understanding of
semantic and acoustic information in existing models.
• We define 14 audio hallucination types, encompassing semantic, acoustic, and semantic-acoustic

confusion, establishing a comprehensive taxonomy for diverse auditory scenarios.
• We introduce AHa-Bench, a benchmark comprising 396 audio samples and 906 human-annotated

QA pairs, systematically designed to assess LALMs’ robustness against these hallucinations.
• We evaluate seven open-source LALMs, identifying distinct challenges in jointly interpreting

semantic and acoustic information across different model types.
• AHa-Bench exposes critical limitations in existing LALMs, emphasizing the need for more ad-

vanced audio understanding capabilities and setting a foundation for future research on mitigating
auditory hallucinations.
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2 Related Works

2.1 Large Audio-Language Models

With the rapid development of large language models (LLMs), increasingly powerful large audio-
language models [29, 18, 8, 34, 15] (LALMs) have emerged, demonstrating remarkable capabilities in
audio understanding by leveraging massive multimodal corpora. SpeechGPT [53] integrates discrete
speech units into LLMs, becoming the first model explicitly centered on speech. Qwen-Audio [8, 7]
introduces a comprehensive large-scale audio-language model that covers over 30 tasks, including
automatic speech recognition (ASR), speech translation, and audio event detection. To overcome
the task-specific overfitting of earlier systems, Salmonn [47] introduces complex story generation
tasks, pushing models towards more generalized audio reasoning. Building upon foundational audio
understanding, a series of spoken dialogue systems have emerged to support more intelligent and
natural human-computer interactions. Futher, some works [39, 49, 32] enhance audio reasoning
through the distillation of chain-of-thought (CoT) data.

Despite recent advancements, a critical issue remains largely overlooked: the presence of hallucina-
tions in audio-language models (LALMs). A common failure mode is that LALMs may incorrectly
perceive or describe sounds that do not actually exist in the input, posing a significant challenge for
deploying these models in real-world scenarios.

2.2 Hallucinations in Large Language Models

Hallucinations [25, 2, 22] in large models refer to the generation of fabricated yet seemingly plausible
content that the model incorrectly assumes to be true. In the textual modality, hallucinations [25, 33]
are typically categorized into two main types: factual hallucinations [3], where the generated content
contradicts objective facts, and faithfulness hallucinations, where the model fails to follow user
instructions or maintain consistency with the given context. Building on this foundation, subsequent
research [36, 23, 1] has extended hallucination studies to the visual domain, examining whether visual-
language models (VLMs) exhibit similar problems. Researchers [36, 9] have identified inconsistencies
between model-generated descriptions and actual object properties, leading to the categorization of
visual hallucinations into object hallucinations, attribute hallucinations, and relational hallucinations.
Further studies [21] have also introduced the notion of “illusions” as a unique subclass of visual
hallucinations.

Unlike text and vision, hallucinations in the audio modality exhibit fundamentally distinct char-
acteristics. Audio data combines the multi-attribute complexity of visual data with the semantic
richness of text, resulting in auditory hallucinations that share elements with both visual and textual
hallucinations. This dual nature introduces novel and more diverse forms of hallucinations that cannot
be fully captured by existing taxonomies developed for other modalities.

2.3 Audio Hallucination

Several preliminary studies have recently begun to explore the phenomenon of audio hallucinations.
For example, Nishimura et al. [40] investigates whether hallucinations can be detected through
classification using pretrained audio models. Kuan et al. [30] presents the first study focused on
object hallucinations in large audio-language models (LALMs). COMP-A [19] and Match [31]
further examine attribute and temporal hallucinations involving overlapping audio events. Meanwhile,
AVH-Bench [46] explores the integration of audio signals into multimodal understanding systems as a
strategy to mitigate hallucinations in the visual domain. However, current studies have yet to address
the unique and nuanced hallucination patterns inherent to the audio modality—such as those arising
from semantic ambiguity in speech (e.g., homophones, prosody), misperception of acoustic attributes
(e.g., distance, authenticity), or confusion between semantic and acoustic cues (e.g., over-reliance,
inferential hallucinations).

To bridge this gap, we propose AHa-Bench, the first comprehensive benchmark for evaluating
hallucinations in the audio modality, encompassing 14 distinct types of auditory hallucinations,
396 audio instances, and 906 manually annotated QA pairs. Our benchmark aims to enhance the
robustness of large audio-language models (LALMs) by systematically identifying and categorizing
hallucinations across both semantic and acoustic dimensions in real-world scenarios.
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3 Audio Hallucinations in Large Audio-Language Models (LALMs)

Audio information can be broadly categorized into two distinct dimensions: semantic information,
referring to specific speech content, and acoustic information, encompassing attributes such as timbre,
audio events, and frequency. As illustrated in Figure 1, this work systematically classifies audio
hallucinations into three overarching categories:

I. Semantic Hallucinations. Semantic hallucinations arise when the model misinterprets the semantic
content of speech. These are further subdivided as follows: (1) Homophone Hallucination: The
model confuses words with similar pronunciations but different meanings (e.g., “hear” vs. “here”).
(2) Polysemy Hallucination: The model misinterprets words with multiple meanings, selecting an
incorrect interpretation based on context. (3) Prosody Hallucination: The model misinterprets
prosodic cues, leading to errors in sentence segmentation or emphasis. (4) Instruction Hallucination:
The model erroneously interprets speech as an instruction or query that was not intended by the
speaker. (5) Knowledge Hallucination: The model generates responses based on outdated, unrelated,
or irrelevant knowledge instead of accurately reflecting the current audio context.

II. Acoustic Hallucinations. Acoustic hallucinations occur when the model fails to accurately
interpret acoustic features, leading to erroneous auditory perceptions. These are categorized as
follows: (6) Existence Hallucination: The model inaccurately identifies the presence or absence
of a specific sound event. (7) Source Number Hallucination: The model misjudges the number of
sound sources, often due to incorrect acoustic information interpretation. (8) Distance Hallucination:
The model misinterprets changes in distance based on sound intensity, reverberation, or attenuation.
(9) Duration Hallucination: The model inaccurately estimates the length of a sound, leading to
misinterpretations of its duration. (10) Temporal Hallucination: The model confuses the sequence
of sound events, causing disordered event perception. (11) Repetition Hallucination: The model
incorrectly estimates the frequency or repetition of a sound event. (12) Authenticity Hallucination:
The model fails to distinguish between natural and synthetic sounds, such as genuine human speech
versus synthetic imitations.

III. Semantic-Acoustic Hallucinations. Semantic-acoustic hallucinations occur when the model
over-relies on either semantic or acoustic cues, resulting in conflicting or inferred information. The
subcategories are defined as follows: (13) Overreliance Hallucination: The model overemphasizes
semantic cues, disregarding contradictory acoustic evidence, resulting in misaligned interpretations.
(14) Inferential Hallucination: The model falsely associates a sound or word not present in the audio,
inferred based on related speech or sounds.

4 AHA-BENCH: Audio Hallucination Benchmark for LALMs

4.1 Evaluation Data Collection

Stage 1: Audio Collection. AHa-Bench comprises three distinct audio types: Speech, Sound, and
Music. To evaluate semantic-related hallucinations, expert annotators write text content corresponding
to each speech sample. Following established practices in prior studies [14, 6], we utilize a TTS
model [11] to synthesize highly natural and realistic speech samples for benchmarking. For acoustic-
related hallucinations, annotators manually select hallucination-inducing instances from the test sets
of existing datasets [17, 19, 4], ensuring that these samples are not part of the training data of the
evaluated LALMs.

Stage 2: Data Annotation. To facilitate evaluation, we adopt a binary question-answering format as
prior work [21]. Let A = {A1, A2, . . . , AN} denote the set of audio samples. For each audio sample
Ai ∈ A, we construct a corresponding set of j binary questions Qi = {qi,1, qi,2, . . . , qi,j}. Each
audio-question pair (Ai, qi,j) is annotated with a binary label y(Ai, qi,j) ∈ {“yes”, “no”}. To ensure
robustness and fairness in evaluation, we maintain a balanced distribution of “yes” and “no” labels
across most dataset subsets, thereby mitigating potential biases and minimizing the likelihood of
models achieving high accuracy through random guessing or reliance on label priors. For categories
with multiple potential pairings, such as polysemy, where a single word may have several possible
meanings, we further analyze on each individual pairing, providing a more granular assessment.

Stage 3: Expert Verification. To ensure annotation quality, all samples undergo manual verification.
For synthesized speech samples, we primarily assess whether the audio content aligns with the
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Hallucination #Inst. #QAPs. #Yes #No

Semantic Hallucination
Homophone 35 70 35 35
Polysemy 17 102 17 85
Prosodic 28 56 28 28
Knowledge 32 64 32 32
Instruction 20 20 - -

Acoustic Hallucination
Source Number 20 40 20 20
Existence 42 84 42 42
Distance 16 48 16 32
Duration 20 40 20 20
Temporal 26 104 52 52
Repetition 20 40 20 20
Authenticity 60 120 60 60

Semantic-Acoustic Confusion Hallucination
Inferential 44 88 44 44
Overreliance 16 32 16 16

AHa-Bench (Total) 396 906 402 484

(a) Statistics of each audio hallucinations.

(b) Audio Type Distribution. (c) Hallucination Distribution.

(d) Word Cloud of AHa-Bench.

Figure 2: Detailed Statistical Analysis of AHa-Bench. #Inst.: The number of audio instances.
#QAPs.: Total number of QA pairs. #Yes/ #No: Number of questions answered as Yes/ No.

Table 1: Comparison of Multi-Modal Hallucination Benchmarks. #QAPs.: Total number of QA pairs.
#H-Edited: Number of manually verified QA pairs. #Inst.: Number of image or audio instances.
The numbers in brackets represent the number of hallucination types evaluated.

Hallucination Types
Benchmarks #QAPs. #H-Edited #Inst. Acoustic Semantic SA-Confusion

Visual Hallucination Benchmarks
POPE [36] 3,000 0 500 - - -
GAVIE [38] 1,000 0 1,000 - - -
Bingo [9] 370 370 308 - - -
HallusionBench [21] 1,129 1,129 346 - - -

Audio Hallucination Benchmarks
Audio Hallucination [30] 30K 0 1,000 ✓(1) ✗ ✗
CompA-Order [19] 900 0 400 ✓(1) ✗ ✗
MATCH [31] 15.5K 0 960 ✓(3) ✗ ✗
AVHBENCH [46] 5.3K 0 1,124 ✓(1) ✗ ✗
AHa-Bench (ours) 906 906 396 ✓(7) ✓(5) ✓(2)

intended attributes in terms of timbre, prosody, pronunciation, and semantic content. For samples
sourced from AudioSet, annotators incorporate visual context during verification to accurately label
attributes such as source distance, repetition frequency, and source count. Similarly, for samples
drawn from other open datasets, we implement a rigorous verification process. During the review
process, researchers also verify the alignment between the audio content and the associated QA pairs,
ensuring consistency and accuracy across all samples.

4.2 Dataset Statistics

Detailed Statistical Analysis of AHa-Bench. As shown in Table 2a, we present a comprehensive
statistical analysis of AHa-Bench, detailing the distribution of various hallucination types. To
ensure data balance, we systematically collected a sufficient number of audio samples for each
hallucination category. Each sample is associated with multiple corresponding questions to facilitate
comprehensive evaluation. To further assess the representation of different audio types within AHa-
Bench, the dataset includes three distinct audio categories: Music, Sound, and Speech, as illustrated in
Figure 2b. The pie chart in Figure 2c visualizes the distribution of samples across these hallucination
types, demonstrating a relatively balanced representation across categories. Figure 2d presents a word
cloud that highlights key terms and concepts in AHa-Bench.
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Comparison with Other Hallucination Datasets. Previous audio hallucination datasets [31, 19]
primarily focused on evaluating object and temporal hallucinations, relying on acoustic information
to determine the presence of specific sounds or the temporal relationships between multiple audio
events. In contrast, AHa-Bench adopts a more comprehensive approach, examining a broader
range of hallucination types across multiple acoustic dimensions. Furthermore, AHa-Bench is
the first benchmark to explicitly emphasize both semantic hallucinations and semantic-acoustic
confusion hallucinations, areas that have been largely overlooked in previous benchmarks. This
extensive coverage enables a more nuanced assessment of model performance, facilitating a deeper
understanding of how LALMs handle diverse audio hallucinations.

In addition, unlike previous datasets that primarily relied on predefined templates and audio labels to
construct samples in a batch processing manner, AHa-Bench employs a more rigorous annotation
process. Every sample and question pair is meticulously crafted by human experts, ensuring precise
evaluation for each hallucination type. In terms of dataset scale, AHa-Bench aligns with other
high-quality visual hallucination benchmarks [9, 21], providing a sufficiently large sample size to
support reliable and robust experimental conclusions.

5 Benchmarking Audio Hallucinations in Large Audio-Language Models

5.1 Compared Large Audio Language Models

We conduct extensive experiments on our Aha-Bench to evaluate a total of 7 LALMs, including
SALMONN-13B [47], Qwen-Audio [8], Qwen2-Audio [7], Qwen2-Audio-Instruct [7], GLM4-
Voice [52], Kimi-Audio [10] and Gemini-2.5-Pro (Preview 05-06). Additionally, we include Random
Chance (i.e., randomly choosing ‘Yes’ or ‘No’) as a baseline. The model detailed description and
evaluation prompt template can be found in Appendix A and Appendix C.1.

5.2 Evaluation Suite

GPT4-Assisted Evaluation. Due to the high diversity in the responses generated by Large Audio-
Language Models (LALMs), we refer to prior work [12] and use GPT-4o [41] to preprocess the
answers, categorizing them into three possible responses: ‘Yes’, ‘No’, and ‘Unknown’. The intro-
duction of the ‘Unknown’ option ensures that GPT-4o can handle uncertainty and provides insight
into the frequency with which the model opts for this neutral response, rather than forcing a ‘Yes’ or
‘No’ answer when it is unsure. This approach helps avoid potential biases in model behavior when
faced with ambiguous or uncertain inputs. Detailed prompt templates for this process can be found in
Appendix C.2. Additionally, for Instruction Hallucination, we first calculate the Word Error Rate
(WER) for each generated response. If the WER is less than 10%, the response is classified as ‘Yes’;
otherwise, it is classified as ‘No’.

Correctness Assessment. The accuracy (ACC) metric is used to assess the correctness of LALMs
responses to binary audio-question pairs. To mitigate the possibility of random guessing by LALMs,
we adopt a stricter evaluation criterion. Following prior work [21], we define a response as correct
only if all question pairs associated with an audio instance are answered consistently and correctly.
The accuracy metric is calculated as follows:

ACCi =

∑|Ai|
j=1 1 (∀q ∈ Qi,j , ŷ(Ai,j , q) = y(Ai,j , q))

|Ai|
, (1)

where Ai denotes the set of audio instances for the i-th hallucination type, Qi,j represents the set of
questions associated with the j-th audio instance in Ai, ŷ(Ai,j , q) is the model’s predicted response
for question q and y(Ai,j , q) is the ground truth response for question q.

Yes/No Bias Test. According to previous hallucination researches [36, 21], some models [20] exhibit
a tendency to respond with "Yes" in most cases. If a model demonstrates a strong bias or inclination to
provide a particular response regardless of the actual question, further analysis may not be necessary.
We introduce the Yes/No Bias Score (BiasY/N) to evaluate the model’s tendency to favor "Yes" or
"No" responses. Following the prior work [24], we define the bias as the difference between the False
Positive Rate (FPR) and False Negative Rate (FNR):

BiasY/N =
1 [ŷ(Ai, qi,j) = Yes]
1 [y(Ai, qi,j) = No]

− 1 [ŷ(Ai, qi,j) = No]
1 [y(Ai, qi,j) = Yes]

, (2)
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Table 2: Comparison of Accuracy on AHa-Bench. Homo.: Homophone, Poly.: Polysemy, Proso.:
Prosodic, Knowl.: Knowledge, Instr.: Instruction, SrcNum.: Source Number, Exist.: Existence, Dist.:
Distance, Dur.: Duration, Temp.: Temporal, Repet.: Repetition, Auth.: Authenticity, InfA.: Inferential
from acoustic information, InfS.: Inferential from semantic information, Overrel.: Overreliance.
Best-performing model is marked in bold, and second-best model is underlined.

Models Semantic Hallucination Acoustic Hallucination SA-Confusion Mean
Homo. Poly. Proso. Knowl. Instr. SrcNum. Exist. Dist. Dur. Temp. Repet. Auth. Infa. Infs. Overrel.

Random 24.64 5.15 23.08 23.05 - 23.96 25.00 9.72 30.56 12.50 23.96 24.37 16.96 22.50 25.00 19.36

Open-Source LALMs
GLM4-Voice 56.79 0.00 30.29 50.00 0.00 2.63 7.14 12.50 25.62 3.85 20.00 1.87 0.00 20.83 14.84 16.42
SALMONN 12.50 0.00 25.00 37.89 - 0.00 18.75 0.00 0.00 0.00 0.00 0.00 3.57 0.00 18.75 7.76
Qwen-Audio 39.64 0.74 26.92 27.73 30.00 17.76 28.87 9.38 25.00 13.46 21.88 19.79 13.39 27.92 34.38 22.46
Qwen2-Audio 26.79 0.00 20.19 40.62 45.00 0.00 51.49 0.00 0.00 0.00 3.12 14.58 9.82 1.67 28.91 16.15
Qwen2-Audio-Inst 22.14 0.00 20.19 59.38 75.00 0.00 33.63 0.00 10.00 0.00 15.00 23.75 8.04 0.00 43.75 20.73
FunAudioLLM 56.43 15.44 16.35 48.44 100.00 22.37 5.65 0.00 40.62 8.17 14.37 21.25 0.00 10.00 21.88 20.54
Kimi-Audio 47.14 5.88 22.60 44.53 90.00 5.26 46.73 0.00 16.87 2.88 8.75 5.83 5.36 3.33 53.91 23.94

Closed-Source LALMs
GPT-Audio 42.14 4.41 17.31 49.22 28.75 39.47 3.75 0.00 13.75 1.92 23.75 28.75 64.29 10.00 7.81 25.36
Gemini-2.5-Pro 62.86 23.53 42.31 81.25 60.00 36.84 47.62 6.25 60.00 30.77 40.00 41.67 78.57 13.33 50.00 45.00

where BiasY/N ≈ 0 indicates balanced responses, while values approaching -1 or 1 indicate strong
biases toward "No" or "Yes," respectively.

Consistency Test. To assess the consistency of model responses, we introduce the Diff metric,
which quantifies the proportion of audio instances for which the model’s responses exhibit logical
inconsistency. This metric is defined as the proportion of audio instances where the model’s responses
to the associated set of questions are neither entirely correct nor entirely incorrect. Following prior
work, the Diff is defined as:

Diffi =

∑|Ai|
j=1 1

(
0 <

∑
q∈Qi,j

1 (ŷ(Ai,j , q) = y(Ai,j , q)) < |Qi,j |
)

|Ai|
. (3)

Robustness Guarantee. Due to the inherent stochasticity of large language models (LLMs), the
variability in output across different sampling runs can potentially impact the robustness of evaluation
systems [12]. To mitigate the effect of sampling variability on performance assessment, we performed
16 sampling runs for each question to enhance the stability and reliability of the evaluation results.

5.3 Main Results

We present the hallucination performance of different models on AHa-Bench in Table 2, Table 3
and Table 4, with additional experimental results provided in Appendix D. From the analysis of the
experimental results, we derive the following key observations:

5.3.1 Audio Hallucination Challenges Across Different LALMs

LALMs can be broadly categorized into audio understanding models, dialogue models, and hybrid
models, each exhibiting distinct hallucination patterns:

• Audio Understanding Models (e.g., Qwen-Audio, Qwen2-Audio): These models excel in acoustic
hallucination tasks, with Qwen2-Audio achieving 51.49% accuracy in Existence Hallucination
and Qwen-Audio performing well in Source Number (17.76%), Inferential from semantic infor-
mation (27.92%), and Duration (25.00%). However, their focus on acoustic attributes limits their
performance in prosodic tasks, where semantic comprehension is essential.

• Dialogue Models (e.g., GLM4-Voice): Primarily trained on speech semantics, these models
perform well in semantic hallucination tasks but are prone to instruction hallucinations, often
misinterpreting general speech as commands.

• Hybrid Models (e.g., Kimi-Audio, Qwen2-Audio-Instruct): Trained on both dialogue and audio
tasks, these models face challenges in semantic-acoustic confusion hallucinations, where semantic
cues and acoustic events conflict. Despite this, Kimi-Audio demonstrates effective mitigation of
Overreliance Hallucinations, achieving 53.91% accuracy by distinguishing commands from general
speech, indicating that targeted training can reduce such hallucinations.
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Table 3: Yes/No Bias Analysis. The BiasY/N metric (∼ 0) assesses response bias toward "yes" or "no"
answers. Results with minimal bias are highlighted in green, while results with the greatest bias are
marked in red. The mean score is the average of the absolute BiasY/N across different hallucinations.

Models Semantic Hallucination Acoustic Hallucination SA-Confusion Mean
|X|

Homo. Poly. Proso. Knowl. SrcNum. Exist. Dist. Dur. Temp. Repet. Auth. Infa. Infs. Overrel.

Open-Source LALMs
GLM4-Voice -0.09 0.13 -0.01 0.03 0.67 0.74 0.16 0.01 0.02 0.20 0.80 1.00 0.42 -0.64 0.25
SALMONN 0.88 0.92 0.62 0.22 1.00 0.84 0.50 1.00 0.95 1.00 1.00 0.96 1.00 0.63 0.82
Qwen-Audio -0.21 -0.64 -0.42 -0.45 -0.04 -0.07 -0.16 -0.06 0.04 -0.04 -0.11 0.15 0.14 -0.34 -0.16
Qwen2-Audio 0.56 0.80 0.58 0.42 0.80 0.33 0.62 0.63 0.74 0.87 0.19 0.69 0.98 0.08 0.59
Qwen2-Audio-Inst 0.78 0.75 0.39 0.01 1.00 0.67 0.45 0.86 0.82 0.55 0.70 0.74 0.80 0.00 0.61
Kimi-Audio 0.40 0.66 0.27 0.12 0.63 0.48 0.63 -0.20 0.77 0.81 0.84 0.95 0.91 0.25 0.54

Closed-Source LALMs
Gemini-2.5-Pro 0.34 0.09 0.15 -0.12 0.20 0.52 0.38 0.10 0.29 -0.05 0.18 0.07 0.60 0.07 0.20

Table 4: Consistency Analysis. The Diff metric quantifies the proportion of audio instances where the
model’s responses exhibit logical inconsistency. A lower value indicates better consistency in model
outputs. The best-performing model is marked in bold, and the second-best model is underlined.

Models Semantic Hallucination Acoustic Hallucination SA-Confusion Mean

Homo. Poly. Proso. Knowl. SrcNum. Exist. Dist. Dur. Temp. Repet. Auth. Infa. Infs. Overrel.

Open-Source LALMs
GLM4-Voice 40.71 100.00 44.71 18.75 86.19 86.31 81.25 56.88 94.23 40.00 92.71 100.00 66.67 69.54 65.20
SALMONN 87.5 100.00 68.75 52.73 100.00 81.25 87.50 100.00 100.00 100.00 100.00 96.43 100.00 68.75 82.86
Qwen-Audio 45.36 99.26 50.96 59.77 59.87 46.43 67.18 46.25 84.14 73.12 61.46 65.18 50.00 27.34 55.75
Qwen2-Audio 65.35 100.00 70.19 53.13 100.00 48.51 98.44 77.50 96.15 96.88 71.25 90.18 98.33 48.43 74.29
Qwen2-Audio-Inst 77.86 100.00 62.50 28.51 100.00 66.37 88.28 85.63 98.08 85.00 69.79 88.39 79.58 18.75 69.91
Kimi-Audio 50.36 94.12 59.61 29.30 94.08 53.27 100.00 51.26 97.12 91.25 93.96 94.64 91.25 28.90 68.61

Closed-Source LALMs
Gemini-2.5-Pro 34.28 76.47 46.15 18.75 63.16 52.38 87.50 30.00 69.23 55.00 55.00 21.43 66.67 12.50 45.90

5.4 Yes/No Bias and Response Consistency Analysis

Table 3 presents a comprehensive evaluation of yes/no bias and response consistency across the
evaluated models. Instruction-following models, such as Qwen2-Audio-Instruct (0.61), exhibit
a noticeable affirmative bias, increasing the likelihood of false positives. The most pronounced
affirmative bias is observed in SALMONN (0.82), indicating a strong tendency to over-confirm
responses. This over-confirmation tendency also contributes to inconsistent responses, as highlighted
in Table 4. Regarding response consistency, Qwen-Audio achieves the lowest inconsistency score
(55.75%), maintaining stable but somewhat rigid response patterns. In contrast, dialogue-oriented
models like Qwen2-Audio-Instruct and SALMONN exhibit higher variability, particularly in SA-
Confusion tasks, suggesting a trade-off between conversational flexibility and response stability.

This inconsistency partially stems from semantic hallucinations, as models occasionally default to
affirmative responses based on the question content rather than actual audio cues. Notably, Gemini
demonstrates the highest consistency, indicating its stronger resistance to semantic hallucinations. We
further explore language hallucinations in LALMs when understand audio content in Appendix D.3.

5.5 Mitigating Audio Hallucinations in LALMs

Table 2 highlights the significant challenge of audio hallucinations, with some models performing
even worse than random guessing. Despite this, Qwen-Audio and Kimi-Audio demonstrate relatively
robust performance. The closed-source Gemini-2.5-pro even achieved 45% accuracy.

Qwen-Audio excels at handling authenticity and reasoning tasks, which can be attributed to its
task-centered training approach, effectively reducing unnecessary interference. Kimi-Audio shows
the strongest resistance to hallucinations, ranking in the top two among open-source LALMs in
6 out of 14 hallucinations, with notably high accuracy in instruction hallucination (90.00%) and
over-reliance hallucination (53.91%). The results reveal a trade-off between response consistency and
conversational adaptability. Structured models like Qwen-Audio maintain consistent but somewhat
rigid response patterns, while dialogue-oriented models like Qwen2-Audio-Instruct and SALMONN
offer greater conversational flexibility, but at the cost of increased affirmative bias. This empha-
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Question: Does the train sound like it's moving from near 
to far?

GLM-4 : The train sound is moving from far to near.

Far Near

Qwen2-Audio-Instruct : Yes, the train sounds like it's 
moving from near to far.

Hallucination Type: Distance

Far Near

(a) Sample 1: Distance Hallucination Example.

Question: Does the heart beat a total of 3 times in the 
audio?

Qwen2-Audio-Instruct: Yes, the heart beats a total of 3 
times in the audio.

NearFar

GLM-4: The heart beats about 60 to 100 times per minute.
So, in 30 seconds, there would be around 90 heartbeats.

Hallucination Type: Repetition

1 2 3

(b) Sample 2: Repetition Hallucination Example.

Question: Does the sentence mention 'piece’?

GLM-4 : The sentence doesn't mention 'piece'. It talks about 
achieving peace in the world.

SalMonn-7B: Yes, the sentence mentions 'piece'.

Hallucination Type: Homophone

Speech Script: 
We need to achieve peace in the world.

(c) Sample 3: Homophone Hallucination Example.

Question: Is there the sound of laughter in the audio?

GLM-4: He sounds really happy! Laughter is the most genuine 
expression of emotion.

NearFar

Qwen2-Audio-Instruct : Yes, based on the sound information, 
it can be determined that laughter is present in the audio.

Hallucination Type: Inferential Hallucination

Speech Script: 
She just laughed as happily as a child.

(d) Sample 4: Inferential Hallucination Example.

Figure 3: Failure cases on AHa-Bench. Correct responses are highlighted in green, while incorrect
responses exhibiting hallucinations are marked in red.

sizes the importance of avoiding unnecessary hallucinations during conversations. Gemini-2.5-pro
demonstrates the strongest performance against language hallucinations, partly due to its effective
instruction comprehension, which avoids affirmative responses. This suggests that balancing semantic
generalization with strict instruction adherence is also a key strategy for mitigating hallucinations in
complex auditory contexts.

5.6 Qualitative Comparison

In Table 3, we present several failure cases of various LALM models on AHa-Bench, offering
qualitative insights into how these models handle auditory hallucinations. Specifically, Figure
3a and Figure 3b illustrate examples of acoustic hallucinations, Figure 3c showcases a semantic
hallucination, and Figure 3d demonstrates a semantic-acoustic hallucination. These examples not
only underscore the specific challenges encountered by LALM models but also provide readers with a
more nuanced understanding of the dataset structure and the subtle distinctions between hallucination
types. Additionally, we present more diverse hallucination cases in Appendix E, further illustrating
the range and complexity of auditory hallucinations in LALM models.

6 Conclusion

In this study, we introduce AHa-Bench, a comprehensive benchmark specifically designed to systemat-
ically assess audio hallucinations in large audio-language models (LALMs). AHa-Bench categorizes
these hallucinations into semantic, acoustic, and semantic-acoustic confusion types, encompassing 14
distinct categories. It includes 396 audio samples and 906 human-annotated QA pairs, meticulously
crafted to evaluate LALMs’ robustness against these hallucinations. Through a systematic evaluation
of seven open-source LALMs, we highlight the significant challenges these models encounter in accu-
rately interpreting complex audio content. Moreover, our analysis uncovers differential vulnerabilities
across LALM architectures, demonstrating how specific hallucination types disproportionately impact
certain model designs. By establishing a structured framework for assessing audio hallucinations,
AHa-Bench emerges as a critical resource for enhancing the robustness and reliability of LALMs,
promoting more nuanced and accurate audio understanding.
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A Model Details

GLM4-Voice [52] GLM4-Voice is an end-to-end spoken dialogue model trained on extensive
conversational data, enabling real-time speech interaction. It adopts interleaved and parallel decoding
strategies to simultaneously generate text and audio tokens, effectively supporting low-latency
dialogue systems.

SALMONN-13B [47] SALMONN-13B is a multimodal large language model designed to process
and understand speech, audio events, and music, representing a significant advancement in generalized
auditory capabilities for LLMs. It demonstrates exceptional performance in speech recognition, audio
captioning, and speech translation, while also generalizing to tasks such as slot filling, keyword
extraction, and multilingual speech translation. Notably, SALMONN-13B exhibits emergent abilities
in audio-based storytelling and speech-audio co-reasoning.

Qwen-Audio [8] Qwen-Audio is a large-scale audio language model that supports diverse audio
types, languages, and tasks. It achieves state-of-the-art performance across multiple benchmarks,
showcasing universal audio understanding capabilities.

Qwen2-Audio [7] Qwen2-Audio builds upon Qwen-Audio, integrating audio and text inputs
to generate textual outputs. It demonstrates state-of-the-art performance in instruction-following
capabilities across speech, sound, music, and mixed-audio subsets, highlighting its proficiency in
audio understanding and dialogue.

Qwen2-Audio-Instruction [7] Qwen2-Audio-Instruction, based on Qwen2-Audio, is designed
to engage in dialogue with users regarding audio and text-based inquiries. Trained extensively on
spoken dialogue data, it exhibits enhanced communication and conversational abilities.

Kimi-Audio [10] Kimi-Audio is a comprehensive large audio language model based on Qwen2.5-
7B, designed to perform audio understanding, generation, and conversation tasks within a unified
architecture. It achieves the highest scores in emotion control, empathy, and speed control, underscor-
ing its proficiency in generating expressive and controllable speech.
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Table 5: Sources of Audio Instances for Evaluating Different Types of Hallucinations.

Hallucination Type Hallucination Name Audio Instance Source

Semantic Hallucination

Homophone Hallucination TTS Generated
Polysemy Hallucination TTS Generated
Prosodic Hallucination TTS Generated

Kknowledge Hallucination TTS Generated
Instruction Hallucination TTS Generated

Acoustic Hallucination

Existence Hallucination AudioSet Test Set
Source Number Hallucination AudioSet Test Set

Duration Hallucination AudioSet Test Set
Temporal Hallucination Comp-A
Distance Hallucination AudioSet Test Set

Repetition Hallucination AudioSet Test Set
Authenticity Hallucination Vocalsketch

Semantic-Acoustic Hallucination
Inferential Hallucination (Speech) TTS Generated
Inferential Hallucination (Sound) AudioSet Test Set

Over-Reliance Hallucination TTS Generated

Gemini 2.5 Pro 3 Gemini 2.5 Pro is the latest generation of large language models launched by
Google DeepMind. It is designed to handle complex reasoning tasks and has strong multi-modal
understanding and programming capabilities.

B DATASET DETAILS

B.1 Annotator Details

A total of four experts participated in the Expert Review stage. Each domain (semantic hallucination,
acoustic hallucination and semantic-acoustic hallucination) was assigned one expert for both the
annotation, filtering and review stages. The group consisted of three males and one female. The
experts involved in the Expert Annotation stage were MS/PhD students with a strong foundational
understanding of their respective domains. For the Expert Review stage, the annotators included PhD
students and industry practitioners, whose expertise was validated through their published research
and contributions to the field. These experts brought substantial domain knowledge and research
experience to the project. They possess a comprehensive understanding of sound analysis and are
adept at identifying subtle audio details. Their expertise is both technical and theoretical, enabling
them to approach the annotation process with a nuanced perspective. This background allowed
them to handle complex audio data with precision, ensuring that the annotations were both accurate
and meaningful. The collective experience of these experts significantly enhanced the quality and
reliability of the annotated audio corpus, contributing to a robust and well-curated dataset.

B.2 Data Source for Different Audio Hallucinations.

Table 5 presents the data sources for each hallucination subset, providing a comprehensive overview
to facilitate reader understanding.

B.3 Source Dataset Details.

AudioSet [17] AudioSet is a large-scale dataset comprising over 2 million audio clips, each
annotated with one or more of 527 audio event classes encompassing a broad spectrum of everyday
sounds. Developed by Google, it is constructed using 10-second segments from YouTube videos,
providing a comprehensive representation of environmental sounds, music, speech, and various
audio events. Each audio clip is labeled using a hierarchical ontology, enabling both fine-grained

3https://deepmind.google/technologies/gemini/pro/
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Model Evaluation Prompt Template for Qwen2-Audio-Instruct.

System: You are a helpful assistant.
User: {<Audio Instance>} Listen to the given audio carefully and answer this question:
{Question}

Assistant:

Table 6: Model Evaluation Prompt Template for Qwen2-Audio-Instruct.

and coarse-grained sound categorization. To ensure that the data in AHa-Bench remains unseen
by the evaluated models, we exclusively use the test set of AudioSet as the data source, effectively
minimizing potential data leakage and maintaining the integrity of the evaluation process.

VocalSketch [5] VocalSketch contains thousands of vocal imitations of a large set of diverse
sounds. These imitations were collected from hundreds of contributors via Amazon’s Mechanical
Turk website. The dataset also contains data on hundreds of people’s ability to correctly label these
vocal imitations, also collected via Amazon’s Mechanical Turk. This data set will help the research
community understand which audio concepts can be effectively communicated with this approach.

CompA-Order [19] CompA-order is constructed using the test set of AudioSet to assess the
capability of Large Audio-Language Models (LALMs) to understand the temporal order of multiple
acoustic events. Each acoustic event within an audio clip can either succeed, precede, or occur
simultaneously with another event. CompA-order consists of 400 test instances, each containing
at least two audio-caption pairs. In each pair, the audio clips include the same two acoustic events,
but with their order of occurrence intentionally varied, enabling a targeted evaluation of the model’s
ability to discern temporal sequencing.

C Evaluation Details

C.1 Model Evaluation Prompt Template

We present the Model Evaluation Prompt Template, drawing on the evaluation kit4 established in
Kimi-Audio [10]. Since different models utilize distinct prompt templates, we present the Qwen2-
Audio-Instruct template as an example for clarity in Figure 6. For additional prompt templates used
for other models, please refer to the GitHub repository and the supplementary materials.

C.2 GPT-4 Assisted Evaluation Prompt Template

We presented the gpt prompt in Table 7.

D More Experimental Results

D.1 Instance-level Accuracy

In Table 8, we present the comparison of instance-level accuracy on AHa-Bench. Unlike the accuracy
reported in the main text, which requires logical consistency across multiple questions, the accuracy
here is evaluated at the instance level, where a response is considered correct as long as any single
question is answered correctly.

D.2 Language Hallucination in LALMs

Language hallucinations can significantly impact the capabilities of Multimodal Large Language
Models (MLLMs). To gain a more detailed understanding of the extent to which these hallucinations
arise from the audio modality, we further explore the language hallucinations present when different

4https://github.com/MoonshotAI/Kimi-Audio-Evalkit
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GPT-4 Assisted Evaluation Prompt Template.

Task: You are an AI assistant responsible for assessing the alignment of an answer with three
predefined response options: Yes, No, Unknown.
Your objective is to evaluate the given question-answer pair and determine which of the three
options (Yes, No, Unknown) best represents the answer.
- If the answer clearly aligns with an affirmative response, output ‘Yes’.
- If the answer clearly aligns with a negative response, output ‘No’.
- If the answer is ambiguous or does not sufficiently align with either Yes or No, output
‘Unknown’.

Your output must consist of a single word: ‘Yes’, ‘No’, or ‘Unknown’.

Examples:

1. Question: Is the car moving fast?
Answer: Yes, it is speeding down the highway.
Output: Yes
2. Question: Is the dog barking?
Answer: The dog is lying quietly on the floor.
Output: No
3. Question: Is it raining outside?
Answer: I don’t hear any rain, but it could have rained earlier.
Output: Unknown

Input:
Question: {question}
Answer: {answer}
Output:

Table 7: GPT-4 Assisted Evaluation Prompt Template.

LALMs interpret audio. As noted by Work [21], when the same question is posed, but the audio
instances differ yet the answers remain the same, this indicates the presence of language hallucinations
in the LALM.

As shown in Table 9, we conducted an analysis on several hallucination categories in AHa-Bench
using paired audio data to assess the proportion of language hallucinations in different models. This
investigation provides valuable insights into the frequency and impact of language hallucinations in
the audio understanding process across LALMs.

Qwen-Audio and Qwen2-Audio, as audio understanding models, achieved the lowest language hallu-
cination rates, thanks to their relatively rigid response patterns, even outperforming Gemini-2.5-Pro
(0.45). Despite Gemini-2.5-Pro having a higher frequency of language hallucinations, it demonstrates
better performance in audio hallucination tasks compared to Qwen-Audio, suggesting that solving
the challenge of audio hallucinations requires not only resistance to language hallucinations but also
a strong ability to counter audio-based hallucinations.

D.3 Error bar in LALMs

To obtain more robust experimental results, we conducted multiple trials on AHa-Bench and calculated
the average values. In Figure 4, we present box plots showing the accuracy (acc) of different models
across various audio hallucination categories. This approach provides a clear visualization of the
models’ performance and variability in handling audio hallucinations.
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Table 8: Comparison of Instance-level Accuracy on AHa-Bench. Homo.: Homophone, Poly.:
Polysemy, Proso.: Prosodic, Knowl.: Knowledge, Instr.: Instruction, SrcNum.: Source Number, Exist.:
Existence, Dist.: Distance, Dur.: Duration, Temp.: Temporal, Repet.: Repetition, Auth.: Authenticity,
InfA.: Inferential from acoustic information, InfS.: Inferential from semantic information, Overrel.:
Overreliance. Best-performing model is marked in bold, and second-best model is underlined.

Models Semantic Hallucination Acoustic Hallucination SA-Confusion Mean
Homo. Poly. Proso. Knowl. Instr. SrcNum. Exist. Dist. Dur. Temp. Repet. Auth. Infa. Infs. Overrel.

Random 51.25 49.88 47.36 49.22 0.00 53.12 50.00 48.61 51.39 52.12 50.52 50.42 42.08 48.75 51.56 49.95

Open-Source LALMs
GLM4-Voice 77.14 52.43 52.64 59.38 0.00 45.94 47.92 52.08 54.06 49.75 40.00 48.23 50.00 54.17 49.61 51.57
SALMONN 56.25 44.44 59.38 64.26 0.00 50.00 58.18 54.17 50.00 46.50 50.00 50.00 51.79 50.00 53.12 51.02
Qwen-Audio 62.32 57.64 52.40 57.62 30.00 46.56 53.27 47.92 48.13 62.37 58.44 50.52 45.98 52.92 48.05 53.86
Qwen2-Audio 59.46 43.98 55.29 67.19 45.00 50.00 75.15 47.14 38.75 48.13 51.56 50.21 54.91 50.83 53.12 53.31
Qwen2-Audio-Inst 61.07 46.64 51.44 73.63 75.00 50.00 65.33 58.59 52.81 49.50 57.50 58.65 52.23 39.79 53.12 55.68
Kimi-Audio 72.32 46.53 52.40 59.18 90.00 50.94 73.36 58.33 42.50 56.50 54.37 52.81 52.68 48.96 68.36 57.24

Closed-Source LALMs
Gemini-2.5-Pro 80.00 75.93 65.38 90.62 60.00 65.00 73.81 62.50 75.00 78.00 67.50 69.17 89.29 46.67 56.25 71.63

Table 9: Language hallucination test on AHa-Bench.

Model Semantic Acoustic Mean
Homo. Klg. Pros. Auth. Exist.

Open-Source LALMs.
GLM4-Voice 0.28 0.86 0.59 0.88 0.45 0.61
SALMONN-13B 0.61 0.55 0.86 1.00 0.64 0.73
Qwen-Audio 0.33 0.31 0.45 0.34 0.00 0.29
Qwen2-Audio 0.61 0.34 0.68 0.28 0.09 0.40
Qwen2-Audio-Inst 0.50 0.41 0.82 0.74 0.36 0.57
Kimi-Audio 0.39 0.69 0.68 0.81 0.18 0.55

Closed-Source LALMs.
Gemini-2.5-Pro 0.50 0.17 0.68 0.52 0.36 0.45

E Failure Cases

To provide researchers with a deeper understanding of how existing Large Audio-Language Models
(LALMs) handle various types of audio hallucinations, we present some failure cases here across
different hallucination categories for each model. The cases are also shown in our demo page at
https://aha-bench.github.io/.

• Semantic Hallucination

– Homophone Hallucination: Figure 5
– Polysemy Hallucination: Figure 6
– Prosodic Hallucination: Figure 7
– Knowledge Hallucination: Figure 8
– Instruction Hallucination: Figure 9

• Acoustic Hallucination

– Existence Hallucination: Figure 10
– Source Number Hallucination: Figure 11
– Duration Hallucination: Figure 12
– Distance Hallucination: Figure 13
– Temporal Hallucination: Figure 14
– Repetition Hallucination: Figure 15
– Authenticity Hallucination: Figure 16
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Figure 4: Error Analysis of LALMs Across Different Hallucination Types on AHa-Bench.

• Semantic-Acoustic Hallucination

– Inferential Hallucination: Figure 17
– Over-Reliance Hallucination: Figure 18

F Licenses for existing assets

• CosyVoice 1.0 [11]: Apache License 2.0

• AudioSet [17]: CC-BY-4.0

• VocalSketch [5]: CC-BY-4.0

• Kimi-Audio Evalkit [10]: MIT License

• AHa-Bench (ours): CC-BY-4.0

G Limitation

Due to the difficulty in collecting certain types of hallucination samples (e.g., prosodic and distance
hallucinations), the sample size of our dataset is relatively modest, comparable to similar datasets,
which somewhat limits its generalization capability. For instance, we are unable to comprehensively
assess the model’s understanding of distance variations across diverse sound-emitting objects. Nev-
ertheless, during data selection, we endeavored to balance category distributions to achieve more
comprehensive evaluation coverage. Additionally, we employed multiple sampling strategies to
enhance the robustness of our benchmark.
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Figure 5: Failure Cases on Homophone Hallucination. Return to the Failure Case List (Section E).

Figure 6: Failure Cases on Polysemy Hallucination. Return to the Failure Case List (Section E).

Figure 7: Failure Cases on Prosodic Hallucination. Return to the Failure Case List (Section E).

Figure 8: Failure Cases on Knowledge Hallucination. Return to the Failure Case List (Section E).
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Figure 9: Failure Cases on Instruction Hallucination. Return to the Failure Case List (Section E).

Figure 10: Failure Cases on Existence Hallucination. Return to the Failure Case List (Section E).

Figure 11: Failure Cases on Source Number Hallucination. Return to the Failure Case List (Section E).

Figure 12: Failure Cases on Duration Hallucination. Return to the Failure Case List (Section E).
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Figure 13: Failure Cases on Distance Hallucination. Return to the Failure Case List (Section E).

Figure 14: Failure Cases on Temporal Hallucination. Return to the Failure Case List (Section E).

Figure 15: Failure Cases on Repetition Hallucination. Return to the Failure Case List (Section E).

Figure 16: Failure Cases on Authenticity Hallucination. Return to the Failure Case List (Section E).
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Figure 17: Failure Cases on Authenticity Hallucination. Return to the Failure Case List (Section E).

Figure 18: Failure Cases on Overreliance Hallucination. Return to the Failure Case List (Section E).

H Broader Impacts

Audio hallucinations pose a significant threat to the reliability of Large Audio-Language Models
(LALMs), leading to potential misinterpretations of non-existent or ambiguous audio content. This
can undermine the effectiveness of spoken dialogue systems, audio understanding frameworks, and
intelligent customer service platforms, especially in high-stakes applications such as emergency
response or assistive technologies. By introducing a comprehensive audio hallucination benchmark,
this work aims to systematically evaluate and mitigate such hallucinations, promoting the development
of more robust and trustworthy LALMs. We believe that this benchmark will contribute to enhancing
the reliability and fairness of audio-driven AI systems, ultimately advancing the robustness of
multimodal communication systems across diverse acoustic environments.

22



NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we highlight the significance of the audio
hallucination benchmark and detail our construction methodology.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss the Limitation in Section G.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The benchmark dataset and evaluation code have been fully open-sourced.
Additionally, we provide comprehensive prompt templates to facilitate reproducibility for
researchers.
Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The benchmark dataset and evaluation code have been fully open-sourced.
Additionally, we provide comprehensive prompt templates to facilitate reproducibility for
researchers.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The primary contribution of our work lies in the development of the benchmark,
with a detailed description of the data sources provided in Section 4.1 ans Appendix B. To
ensure data integrity, we carefully curated the benchmark dataset to exclude any instances
present in the training data of existing LALMs.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To obtain more robust experimental results, we conducted multiple trials on
AHa-Bench and calculated the average values. In Section D.3, we present the error bars of
different models across various audio hallucinations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
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Justification: Our study focuses on evaluating the performance of various models on the
proposed benchmark. All models were tested using a single A100 GPU for inference.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We adhere to the NeurIPS guidelines and regulations.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Section H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have list the licenses for assets we used in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: All our data are publicly accessible through the provided open-source link,
with further details elaborated in Section 4.1 of the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The data annotation process in this study does not involve crowdsourcing; all
data were collected and annotated solely by the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The data annotation process in this study does not involve crowdsourcing; all
data were collected and annotated solely by the authors.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Due to the inherent diversity in outputs generated by LALMs, our evaluation
system leverages ChatGPT to classify the responses of various LALMs into ‘Yes’, ‘No’, and
‘I don’t know’. This method of employing LLMs for classification is a common approach in
existing LLM benchmarks [21, 44].
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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