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ABSTRACT

Prediction intervals are essential for applying machine learning models in real
applications, yet most conformal prediction (CP) methods provide coverage guar-
antees that overlook the heterogeneity and domain knowledge that characterize
modern multimodal datasets. We introduce Mixture-of-Experts Conformal Pre-
diction (MoE-CP), a flexible and scalable framework that uses the gating prob-
ability vectors of Mixture-of-Experts (MoE) models as soft domain assignments
to guide similarity-weighted conformal calibration. MoE-CP weights calibration
residuals according to the similarity between gating vectors of calibration and test
points, producing prediction intervals that adapt to latent subpopulations without
requiring explicit domain labels. We provide theoretical justification showing that
MoE-CP preserves nominal marginal validity under common similarity measures
and improves conditional adaptivity when the gating captures domain structure.
Empirical results on synthetic and real-world datasets demonstrate that MoE-CP
yields more domain-aware, interpretable, and often tighter intervals than existing
conformal baselines while maintaining target coverage. MoE-CP offers a practical
route to reliable uncertainty quantification in latent heterogeneous, multi-domain
environments.

1 INTRODUCTION

Modern machine learning increasingly handles heterogeneous and latent multi-domain data. By
heterogeneous, we mean data whose characteristics such as noise level, feature distribution, or la-
bel variability that differ across regions of the input space. By multi-domain, we mean that these
differences often align with implicit or explicit groups (Hahnloser & Seung, 2000), such as pa-
tients from different hospitals, users across geographic regions, or sensor modalities in autonomous
systems. Specifically, such domains are not always labeled in advance, and they emerge as latent
sub-populations embedded in the data. In these settings, a single “one-size-fits-all” predictive un-
certainty such as standard conformal prediction (Vovk et al., 2005; Lei et al., 2018) is not adequate.
Intervals that are valid on average may be overly wide in low-variance domains and narrow in high-
variance ones. Reliable prediction intervals must therefore adapt to the underlying domain structure
in both observed or latent patterns while preserving rigorous coverage guarantees.

To address this challenge, we introduce Mixture-of-Experts Conformal Prediction (MoE-CP), a new
method that combines conformal prediction with the representational power of Mixture-of-Experts
(MoE) models (Jacobs et al., 1991). MoE architectures decompose complex prediction tasks into a
set of specialized expert functions, each responsible for modeling a sub-regime of the data. A gating
network assigns a probability vector over experts for each input, effectively acting as a soft domain
classifier. This structure has proven highly successful in scaling large language models (Shazeer
et al., 2017), multimodal learning (Nguyen et al., 2023), and domain adaptation, precisely because it
can capture heterogeneous or multi-domain structure without explicit domain labels. In our setting,
the gating vector plays a central role that it provides a natural similarity measure that identifies which
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calibration points belong to the same latent regime as a test point. By weighting calibration residuals
according to this similarity, MoE-CP tailors prediction intervals to the local predictive regime of the
test input. In effect, the MoE component solves the challenge of latent domain identification, while
the conformal component ensures rigorous coverage guarantees. Together, this integration yields
intervals that are both valid and adaptively sensitive to heterogeneous, multi-domain data. We show
the workflow of our framework in Figure 1.

This modification fundamentally adapts conformal prediction to data complexity. In heterogeneous
or multi-domain datasets, test points may lie in regions with very different conditional variances or
expert specialization. MoE-CP adjusts intervals using the most relevant calibration points, becoming
wider in noisy regions and narrower where predictions are reliable. In multi-domain data, the gating
distribution naturally links different domains, so intervals adapt across domains without manual
splitting. This work is related to randomly localized conformal prediction (RLCP) (Hore & Barber,
2025), where calibration points are chosen according to their proximity in the covariate space. By
contrast, MoE-CP identifies relevant calibration points based on proximity in a learned, label-aware
latent regime space defined by the gating probabilities of the mixture-of-experts. This makes the
intervals not only valid, but also sharper, more flexible, and easier to interpret than other local
weighted conformal methods, see Section 5 and Remark 5.

In this work, we also provide a theoretical analysis showing that MoE-CP (i) preserves marginal
validity when using KL or cross-entropy divergences, (ii) retains asymptotic validity under a wide
class of similarity measures, and (iii) approaches conditional coverage under a mixture representa-
tion under some conditions. Empirically, we show that MoE-CP consistently improves efficiency
and adaptivity across synthetic experiments and real multidomain data.

In summary, we highlight our contributions as follows.

• We propose MoE-CP, a conformal prediction framework that leverages MoE gating vectors
to adapt intervals to local domain structure.

• We establish theoretical guarantees for coverage under KL, cross-entropy, and general di-
vergences, as well as approximate conditional coverage under a mixture representation.

• We demonstrate empirically that MoE-CP yields domain-adaptive intervals compared to
existing conformal methods, particularly in heterogeneous and multi-domain settings.

Figure 1: A MoE model assigns each input to experts through a gating network, producing both
predictions and soft domain probabilities. Calibration residuals are weighted by the similarity of
gating vectors. The final conformal interval adapts automatically across domains.
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2 METHODOLOGY

2.1 PROBLEM SETUP AND NOTATIONS

We work in a supervised prediction setting where the goal is to produce valid prediction intervals
for unseen data, potentially coming from multiple latent domains. Let

Dtrain = {(Xi, Yi)}mi=1, Dcal = {(Xi, Yi)}ni=1

be the training and calibration set respectively. Both are drawn independently and identically dis-
tributed (i.i.d.) from an arbitrary distribution P that contains K latent domains. A prediction set
Ĉn(Xn+1) is called marginally valid interval if for any new test point (Xn+1, Yn+1) ∼ P ,

P{Yn+1 ∈ Ĉn(Xn+1)} ≥ 1− α,

where α ∈ (0, 1) is the desired miscoverage rate, and the probability P is over the randomness in
training, calibration, and test sampling. While marginal validity is a standard target in conformal
prediction, it does not guarantee coverage for each specific covariate x. The stronger property is
conditional validity, that is, for any x,

P{Yn+1 ∈ Ĉn(Xn+1) | Xn+1 = x} ≥ 1− α, ∀x.

In practice, exact conditional validity is unattainable without strong assumptions (Lei & Wasserman,
2014; Barber et al., 2021), but it motivates our method: assigning higher influence to calibration
points that are most similar to the test point.

2.2 MIXTURE-OF-EXPERTS (MOE) PREDICTOR

We consider the observed data are input-output pairs (Xi, Yi) ∈ X × R, which in practice may
arise from latent and unknown multi-domain structure. However, these domain assignments are not
observed. What we see (Xi, Yi) is drawn from an overall distribution P , which we treat as exchange-
able. Thus, although the data-generating mechanism is inherently heterogeneous and multi-domain,
the observed dataset appears as a single mixed population.

To model this heterogeneous and multidomain data, we use a Mixture-of-Experts (MoE) architecture.
The MoE partitions the input space into K sub-regimes and assigns each to a specialized expert
function µk(X) : X → R. Given an input X , a gating network produces probability vector

π(X) = (π1(X), . . . , πK(X)) ∈ [0, 1]K ,

K∑
k=1

πk(X) = 1,

where each πk(X) that approximates the latent domain probabilities π∗
k(X) which reflects the de-

gree to which expert k is responsible for predicting X . Each πk(X) is parameterized via a softmax:

πk(X) =
exp(ℓk(X))∑K
j=1 exp(ℓj(X))

, (1)

where ℓk(X) is a logit score for expert k of given X , from a Multi-layer perceptron (MLP) or
transformer block. The expert functions µk and gating logits ℓk are trained jointly on the training
dataset Dtrain to minimize a loss function such as mean squared error. The choice of K is discussed
in Section A.3. The MoE prediction is then defined as the weighted average of each expert:

µ̂(X) =

K∑
k=1

πk(X)µk(X), (2)

where µk(X) denotes the output of the k-th expert model, and πk(X) ∈ [0, 1] is the gating prob-
ability assigned to expert k at input X defined by (1). After training, each prediction µ̂(X) comes
with an interpretable domain probability vector π(x). This allows us to exploit domain structure in
a data-driven way when constructing adaptive conformal prediction intervals.
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2.3 MOE-BASED SIMILARITY WEIGHTED CONFORMAL

We now describe how to construct valid and adaptive prediction intervals using the domain structure
captured by the MoE model. Our approach extends standard conformal prediction by assigning
higher importance to calibration points that share similar domain affinities with the test point, where
similarity is measured in the MoE’s learned gating space.

Given the trained MoE model from Section 2.2, we first define a nonconformity score S for each
calibration point. While conformal prediction can be applied with many different scores, in this
work we use the absolute residual:

Si = |Yi − µ̂(Xi)|, (Xi, Yi) ∈ Dcal,

where µ̂(Xi) =
∑K

k=1 πk(X)µk(X) is the MoE’s point prediction for Xi and πk(Xi) represents
the model’s gating probability that input Xi belongs to expert/domain k. The MoE also outputs a
vector π (Xi) = (π1 (Xi) , . . . , πK (Xi)).

While we focus on absolute residual-based scores (Lei et al., 2018) for clarity, our MoE-weighted
framework is general and easily extensible to other conformity scores, such as quantile (Romano
et al., 2019) or distributional conformity (Chernozhukov et al., 2021a) scores. These extensions
would allow MoE-CP to adapt not only to mean prediction errors but also to richer forms of predic-
tive uncertainty, further enhancing its applicability in heteroscedastic or multi-domain environments.

Remark 1 In heterogeneous or multidomain datasets, calibration points are not equally informative
for every test point. Two points with the same covariates X distribution but different domain label
may exhibit different residual distributions. The gating vector π(x) acts as a soft domain assignment,
capturing the model’s internal partitioning of the input space. Thus, calibration points with similar
π(·) to the test point are statistically closer in the model’s latent space, and their residuals provide
a more accurate basis for interval calibration.

Randomized gating vector for validity. For a test input Xn+1, we first obtain its gating vector
π (Xn+1). To ensure coverage validity, we introduce randomization following the principles of
Zhang & Candès (2024) and Hore & Barber (2025). Specifically, we generate:

L̃ ∼ Multinomial (τ, π (Xn+1)) , π̃ (Xn+1) =
L̃

τ
, (3)

where τ ∈ N+is a temperature parameter controlling the randomization magnitude such that small
τ introduces more randomization and involves greater variability in weights, while large τ will let
π̃ approach π (Xn+1) and introduce less variability. This randomized π̃ (Xn+1) plays the same role
as randomized covariates in localized conformal prediction (Hore & Barber, 2025) but is computed
in gating space rather than the raw input space.

Similarity-based weighting. Our key idea of the weighting lies on the fact that calibration points
with similar gating vectors π(x) to the test point should have more influence. And thus we formalize
similarity via a divergence between probability vectors. Given π̃ (Xn+1) and each gating vector
π (Xi), we compute similarity-based weights:

wi = exp [−τ ·D (π̃ (Xn+1) , π (Xi))] , (4)

where D(·, ·) is a divergence between probability vectors. The weights are then normalized across
calibration points Dcal = {(Xi, Yi), i ∈ Ical = {1, · · · , n}} and the test point:

w̃i =
wi∑n+1

j=1 wj

, i ∈ Ical ∪ {n+ 1}. (5)

This normalization ensures that weights form a probability distribution over the calibration set plus
the testing point (Tibshirani et al., 2019; Barber et al., 2023).

Remark 2 Common choices of D(·, ·) include Kullback-Leibler divergence, cross-entropy, cosine
distance, or Euclidean distance. It aims to measure the similarity between π̃(Xn+1) and π(Xi).
Larger similarity between π̃(Xn+1) and π(Xi) results in smaller divergence, and thus carry out
higher weight wi.
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Remark 3 Although there is no well-established existing works on choice of τ , we show some prac-
tical implications to guide our choice. If π(x) is accurate and stable, we prefer larger τ to ex-
ploit domain-specific residuals for tighter intervals. However, if π(x) is noisy or high-variance,
smaller τ will be chosen to avoid over-committing to potentially spurious domain assignments. As
extreme cases, setting τ → 0 reduces the method to standard split conformal prediction with uniform
weights, while letting τ → ∞ places essentially all weight on the test point itself.

MoE-weighted conformal interval. The final MoE-weighted conformal prediction interval is:

ĈMoE
n (Xn+1) =

{
y ∈ R : |y − µ̂ (Xn+1)| ≤ Q1−α

(
n∑

i=1

w̃iδSi + w̃n+1δ+∞

)}
,

where Q1−α(·) is the weighted empirical ( 1− α )-quantile of the nonconformity scores. The term
δ+∞ corresponds to the standard conformal adjustment ensuring coverage (Tibshirani et al., 2019;
Barber et al., 2023). This approach yields adaptive, valid, and interpretable prediction intervals that
reflect the multimodal similarity structure inherent in the gating mechanism of MoE. It is particularly
effective when training examples are heterogeneously distributed across latent regimes defined by
multimodal signals. Algorithm 1 is the workflow of our MoE-weighted conformal framework, and
the full pipeline of the framework is provided in Appendix A.1.

Algorithm 1 MoE-Weighted Conformal Prediction
Require: Dtrain, Dcal, Xn+1, S, K, D, τ, α

Ensure: ĈMoE
n (Xn+1)

1: Fit MoE: learn experts and gate {µk, πk}Kk=1 on Dtrain by (1); let µ̂(X) =
∑

k πk(X)µk(X).
2: Calibration: for i ∈ Ical, compute si = S(Xi, Yi) and πi = π(Xi) = (π1(Xi), . . . , πk(Xi)).
3: Randomize: compute πn+1 = π(Xn+1); draw L̃ and π̃ by (3).
4: MoE weights: For i ∈ Ical ∪ {n+ 1}, let wi = exp{−τD(π̃, πi)}; normalize w̃i by (5).
5: Quantile: form F =

∑
i∈Ical

w̃i δsi + w̃n+1 δ+∞ and let Q1−α be its (1− α)-quantile.
6: return ĈMoE

n (Xn+1) = {y : S(Xn+1, y) ≤ Q1−α}.

Remark 4 The MoE-CP framework is flexible: users may specify the divergence measure, the num-
ber of experts K, and the temperature τ . Our theoretical and empirical results show that MoE-CP
is largely insensitive to these choices and admit simple practical defaults (see Appendix A.3 for
guidelines and Appendix A.4.3 for empirical ablation results). In practice, we recommend using the
KL divergence by default (it additionally satisfies exact marginal validity in our analysis); choosing
a small K (e.g., K = 2, 3) when the training/calibration sample size is modest (e.g., n ≤ 1500)
and allowing larger K when large amount of data is available; and setting τ to a moderate value
(e.g., τ ∈ [100, 300]) to balance adaptivity and effective sample size. When needed, standard model-
selection procedures such as cross-validation or an over-parameterized gating network with sparsity
regularization can be used to select or automatically prune K.

Remark 5 The core idea of our construction is to assign larger weights to calibration points whose
gating distributions are close to π̃(Xn+1), an estimate of the true gating probability π(Xn+1). A
randomization step is included to guarantee marginal validity (see the next section for theoretical
details). The novelty of our framework is to define conformal weights via MoE gating probabilities,
which—by leveraging the strong predictive performance of MoE models—yields improved adaptivity
and efficiency. Related localized conformal methods (Guan, 2023; Hore & Barber, 2025) weight
calibration points by the Euclidean distance between covariates; such an approach may fail to
identify latent domains or heterogeneity, and may perform poorly in high-dimensional settings where
many features are irrelevant. Zhang & Candès (2024) instead fit a mixture model on the conformity
scores to obtain weights, but this requires refitting the mixture for every candidate Yn+1 = y, which
is computationally expensive. By contrast, our weights are computed from an MoE gating network
trained once on the training data, making the procedure both adaptive and computationally efficient.

Remark 6 The MoE-CP admits several natural extensions. It can be paired with alternative confor-
mity scores; for example, one may use the conformalized quantile score (Romano et al., 2019; Sesia
& Romano, 2021): S(X,Y ) = max{q̂α/2(X)−Y, Y − q̂1−α/2(X)}, where q̂α/2(·) and q̂1−α/2(·)
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are lower and upper quantile regressors jointly estimated within an MoE model. The framework also
extends naturally to online and time-series settings (Gibbs & Candes, 2021); for instance, one can
combine MoE-CP with time-aware MoE architectures (e.g., Time-MoE (Shi et al., 2024)) to produce
adaptive, sequentially valid prediction intervals. Further details are given in Appendix A.6.

3 THEORETICAL RESULTS

We now present theoretical guarantees for the proposed MoE-weighted conformal prediction. Our
goal is to show that the method preserves valid coverage while adapting to domain similarity as
reflected in the gating space.

Theorem 1 Suppose that (Xi, Yi), i ∈ [n+1], are exchangeable. For the KL-based or cross-entropy
based divergence, and for any τ ∈ N+, the MoE weighted conformal interval satisfies

P{Yn+1 ∈ ĈMoE
n (Xn+1) | π̃(Xn+1)} ≥ 1− α.

Marginalizing over the randomization π̃(Xn+1), the MoE-weighted conformal interval is therefore
marginally valid:

P{Yn+1 ∈ ĈMoE
n (Xn+1)} ≥ 1− α.

Theorem 1 shows that when the divergence used in weighting is KL divergence or cross-entropy,
the constructed interval has the standard conformal property that covers the label of a new test point
with probability at least 1− α. Importantly, this holds conditional on the randomized gating vector
π̃(Xn+1), and remains valid after marginalization. This result ensures that our method retains the
baseline of conformal prediction even after introducing MoE-based similarity weighting. We next
consider divergences other than KL. To formalize this, we impose the following mild assumption.

Assumption 1 Denote w̃i,KL as the KL-based weight, as τ → ∞, the similarity measure D(·, ·)
satisfies w̃i,D = w̃i,KL + o(1).

Assumption 1 holds for any divergence measure that shares the same unique minimizer as the KL
divergence; this claim is formalized in Proposition 1 in Appendix A.2. In particular, provided a
sufficiently large calibration set, the assumption is satisfied by many divergences, e.g., Jeffreys di-
vergence, Hellinger distance, Euclidean distance, etc. See Proposition 1 for a detailed discussion.

Theorem 2 Under the assumption in Theorem 1, for any similarity measure D(·, ·) satisfying As-
sumption 1, and assuming the nonconformity score S has a continuous distribution, the MoE con-
formal interval based on D(·, ·) satisfies

P{Yn+1 ∈ ĈMoE
n (Xn+1) | π̃(Xn+1)} ≥ 1− α+ o(1).

Theorem 2 states that even if KL divergence is replaced with other similarity measures, the resulting
intervals still maintain the conformal coverage property up to a vanishing error term. In other words,
validity is robust to the choice of divergence, while the choice of D may influence efficiency. Finally,
we analyze the case where the nonconformity scores have a latent finite mixture representation.

Theorem 3 Under the assumption in Theorem 1, suppose that the nonconformity score satisfies
Si|Xi ∼

∑K
k=1 π

∗
k(Xi)f

∗
k , where πk(Xi) is the true domain probability and f∗

k is the score distri-
bution within domain k. Define the oracle MoE-weighted conformal interval using the true gating
probabilities:

ĈMoE,∗
n (Xn+1) =

{
y ∈ R : S(Xn+1, y) = Q1−α

(
n∑

i=1

w̃∗
i δSi

+ w̃∗
n+1δ+∞

)}
,

where the oracle weight w̃∗
i is defined as

w̃∗
i =

exp[−τD(π∗(Xn+1), π
∗(Xi))]∑n+1

i=1 exp[−τD(π∗(Xn+1), π∗(Xi))]
, i ∈ [n+ 1],

for any similarity measure D(·, ·) and τ ∈ N+. Then,

P{Yn+1 ∈ ĈMoE,∗
n (Xn+1) | Xn+1} = P{Yn+1 ∈ ĈMoE,∗

n (Xn+1) | π∗(Xn+1)}.
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Theorem 3 shows that if the true domain probabilities π(X) were known, then coverage conditional
on the covariates X is equivalent to coverage conditional on the domain probability vector π(X).
This implies that our method achieves approximate conditional validity whenever the learned gating
vector π̂(X) is close to the true π∗(X). In practice, the better the MoE captures domain structure,
the closer we approach conditional coverage.

4 NUMERICAL EXPERIMENTS

In this section, we conduct synthetic data and real-data experiments to demonstrate the performance
of the proposed method. Due to space constraints, details of the experiments and comprehensive
results are provided in the Appendix A.4.

4.1 SYNTHETIC DATA EXAMPLE

The synthetic data (X,Y ) are drawn from a three-domain distribution:

Y =


X + ε, p = p1;

X2 + ε, p = p2;

X3 + ε, p = p3;

where X ∼ Uniform([−3, 3]), ε ∼ N(0, 1), and pi, i = 1, 2, 3, are the proportions of each domain
that sum up to 1. We consider two settings: (1) Unbalanced proportions: p1 = 0.2, p2 = 0.3, p3 =
0.5; (2) Balanced proportions: p1 = p2 = p3 = 1/3. The sample size for training, calibration, and
testing are set equally to be n = 500. The experiments are repeated over 50 times. The miscoverage
level is set to be α = 0.1. We denote the MoE weighted conformal prediction as MoECP. The
divergence measure in MoECP is the KL divergence. The number of experts K and the temperature
τ for MoECP are set to be K = 3 and τ = 150, respectively. Several state-of-the-art methods are
compared, including CQR (Romano et al., 2019), CHR (Sesia & Romano, 2021), SCP+CC (Gibbs
et al., 2025), RLCP (Hore & Barber, 2025), and PCP (Zhang & Candès, 2024). Details of the
experimental setup are provided in the Appendix A.4.1.
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Figure 2: Marginal coverage and interval length for the setting 1 (unbalanced proportions) in syn-
thetic data over 50 experiments.

Here, we report results for the unbalanced setting; results for the balanced setting appear in the
Appendix A.4.2. Figure 2 shows marginal coverage and interval length for competing methods. All
methods satisfy the coverage guarantee, but PCP is conservative. Our method, MoECP, yields the
shortest prediction intervals while maintaining coverage. Notably, although MoECP is based on
mean regression, it outperforms two quantile-regression–based approaches (CQR and CHR), even
though quantile regression is typically more adaptive to heterogeneity. In addition, MoECP is more
efficient than the mean-regression–based methods SCP+CC, RLCP, and PCP.

To highlight the differences among methods, Figure 3 presents the conditional coverage for com-
peting approaches in a representative experiment. The coverage at each data point is computed by
averaging over its 100 nearest neighbors. Among all methods, MoECP achieves conditional cov-
erage closest to the nominal level. Figure 4 further displays the corresponding prediction intervals.
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Figure 3: Local average coverage rates of conformal intervals for the setting 1 (unbalanced propor-
tions) in synthetic data. The local coverage of a data point is average by its 100 nearest data points.
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Figure 4: Prediction intervals for CQR, CHR, SCP+CC, RLCP, PCP, and MoECP for the setting 1
(unbalanced proportions) in synthetic data.

Compared with MoECP, SCP+CC, RLCP, and PCP produce noticeably wider intervals. Although
CQR and CHR attain interval lengths comparable to MoECP (see Figure 2), their prediction inter-
vals fail to adapt when substantial domain shifts occur, i.e., X ∈ [−3,−2] ∪ [2, 3]. In contrast,
MoECP adapts effectively across all regions, achieving both adaptivity and efficiency.

4.2 REAL-DATA ANALYSIS

We evaluate methods on two public datasets. The Bike-sharing dataset contains 17,389 samples with
13 features (temporal indicators such as year/month/holiday and environmental variables including
weather, humidity, and wind speed); the response is rental count. The Temperature dataset comprises
7,750 summer observations (2013–2017) used to evaluate bias correction for LDAPS temperature
forecasts over Seoul.

For both datasets, the training, calibration, and test sets are each fixed at n = 1500, and the nominal
miscoverage level is set to α = 0.1. We evaluate methods using three metrics: marginal coverage,
interval length, and worst-slice coverage (Romano et al., 2020; Cauchois et al., 2021). Figure 5
reports the results. RLCP and PCP are slightly conservative, while the remaining methods attain the
nominal marginal coverage. Worst-slice coverage is approximately 0.90 for all methods, indicating
satisfactory conditional coverage. Importantly, MoECP produces the shortest prediction intervals,
demonstrating superior efficiency relative to the competing approaches.

It is worth noting that the MoECP framework is highly flexible, allowing us to vary the divergence
measure, the number of experts, and the temperature parameter. To assess this flexibility, we con-
duct comprehensive ablation studies on real-world datasets (Appendix A.4.3). The results show that
MoECP is robust with respect to both the divergence measure and the temperature parameter. Fur-

8



Published as a conference paper at ICLR 2026

CQR
CHR

SCP+C
C
RLC

P
PCP

MoE
CP

Method

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e 
ra

te

CQR
CHR

SCP+C
C
RLC

P
PCP

MoE
CP

Method

1.0

1.2

1.4

1.6

1.8

2.0

In
te

rv
al

 L
en

gt
h

CHR
CQR

SCP+C
C
RLC

P
PCP

MoE
CP

Method

0.6

0.7

0.8

0.9

1.0

W
or

st
-s

lic
e 

co
ve

ra
ge

 ra
te

CQR
CHR

SCP+C
C
RLC

P
PCP

MoE
CP

Method

0.6

0.7

0.8

0.9

1.0
C

ov
er

ag
e 

ra
te

CQR
CHR

SCP+C
C
RLC

P
PCP

MoE
CP

Method

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

In
te

rv
al

 L
en

gt
h

CHR
CQR

SCP+C
C
RLC

P
PCP

MoE
CP

Method

0.6

0.7

0.8

0.9

1.0

W
or

st
-s

lic
e 

co
ve

ra
ge

 ra
te

Figure 5: Marginal coverage, interval length and worst-slice coverage over 50 experiments. The
first row is the results for the Bike-sharing dataset; the second row is the results for the Temperature
dataset. From left to right, each column corresponds to marginal coverage, interval length, and
worst-slice coverage, respectively.

thermore, when the sample size is sufficiently large, MoECP also exhibits robustness to the choice
of the number of experts.

5 RELATED WORK

Conformal prediction (CP) provides a distribution-free framework for uncertainty quantification,
producing prediction intervals with guaranteed finite-sample coverage under minimal assumptions
(Vovk et al., 2005). The split conformal method calibrates a predictor by computing nonconformity
scores on a held-out set and forming intervals from quantiles of these scores (Lei et al., 2018; Ro-
mano et al., 2019). Its simplicity and rigorous guarantees have led to wide adoption across fields
such as medicine, natural language processing, and drug discovery (Cortés-Ciriano & Bender, 2020).

A key limitation is that standard CP ensures only marginal coverage: intervals contain the true label
with the desired probability on average, but coverage can vary across subgroups or regions of the
feature space (Cauchois et al., 2020; Tibshirani et al., 2019; Gibbs & Candes, 2021). This gap is
problematic in heterogeneous data, where certain populations may be undercovered.

To address this, several extensions have been developed. Attribute-based methods partition the
calibration data by known labels to achieve label-conditional validity (Boström et al., 2021). Lo-
calized conformal prediction assigns more weight to calibration points close to the test instance,
improving adaptivity to local structure (Guan, 2023; Zhang & Candès, 2024; Hore & Barber, 2025).
Another line of work considers distribution shifts, where covariate-weighted conformal prediction
adjusts calibration to maintain validity under shifted test distributions (Sugiyama et al., 2007; Tib-
shirani et al., 2019; Candès et al., 2021; Chernozhukov et al., 2021b). Recently, several works have
leveraged generative models to construct adaptive prediction intervals (Colombo, 2024; Fang et al.,
2025).

Across these developments, a common scene emerges: heterogeneous data require conformal pre-
diction methods that adapt conformity score to each example. Our work builds on this insight,
introducing a MoE perspective that leverages domain similarity.

6 CONCLUSION

In this paper, we proposed Mixture-of-Experts Distributed Conformal Prediction (MoE-CP), a
framework that leverages MoE gating vectors to construct adaptive and interpretable prediction
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intervals for heterogeneous and multi-domain data. MoE-CP demonstrates that combining expert
specialization with conformal calibration yields a principled and practical path toward reliable un-
certainty quantification in complex data environments. By producing intervals that adapt to hetero-
geneous subpopulations, MoE-CP may help improve fairness and transparency in real-world appli-
cation. We assume that all observations are i.i.d. samples from an overall distribution P , which can
be modeled as a mixture of K latent domains; this guarantees the exchangeability condition needed
for the finite-sample marginal validity. Extending MoE-CP to settings with known domain labels
or to more general non-exchangeable regimes is an interesting direction for future work. Looking
forward, extending to various conformity scores and scaling to large MoE architectures opens new
paths for trustworthy uncertainty quantification in real-world applications.
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A APPENDIX

Appendix A.1 outlines the full pipeline of the MoE-weighted conformal prediction procedure. Ap-
pendix A.2 contains the theoretical proofs. Appendix A.3 provides detailed guidance on hyper-
parameter selection. Appendix A.4 describes the experimental setup and results, including imple-
mentation details (Appendix A.4.1), additional results for the unbalanced setting in synthetic data
(Appendix A.4.2), and ablation studies on the real-data example (Appendix A.4.3). Appendix A.5
discusses the computational complexity analysis of MoECP. Appendix A.6 discusses the extension
of MoECP to the online setting.

A.1 ALGORITHM

Algorithm 2 MoE-Weighted Conformal Prediction
Require: Training set Dtrain = {(Xi, Yi), i ∈ Itra} and calibration set Dcal = {(Xi, Yi), i ∈ Ical},

test point Xn+1, nonconformity score function S(·, ·), number of experts K, divergence D(·, ·),
temperature τ , desired level 1− α.

Ensure: MoE weighted conformal prediction interval ĈMoE
n (Xn+1)

1: Step 1: Train MoE model
2: Initialize expert functions {µk(X)}Kk=1 and gating logits {ℓk(X)}Kk=1

3: Define gating probabilities πk(X) = exp(ℓk(X))∑K
j=1 exp(ℓj(X))

4: Define MoE prediction µ̂(X) =
∑K

k=1 πk(X)µk(X)
5: Optimize parameters by minimizing loss function on training set Dtrain.

6: Step 2: Compute nonconformity scores
7: for i ∈ Ical do
8: Compute nonconformity score Si := S(Xi, Yi) and gating vector π(Xi)
9: end for

10: Step 3: Compute weights for test point Xn+1

11: Compute gating vector π(Xn+1)

12: Sample L̃ ∼ Multinomial(τ, π(Xn+1))

13: Compute π̃(Xn+1) = L̃/τ
14: for i ∈ Ical ∪ {n+ 1} do
15: Compute randomized weight:

wi = exp [−τD (π̃ (Xn+1) , π (Xi))] ,

16: end for

17: Step 4: Normalize weights
18: for i ∈ Ical ∪ {n+ 1} do
19: w̃i =

wi∑
j∈Ical∪{n+1} wj

20: end for

21: Step 5: Construct weighted conformal interval
22: Form weighted empirical distribution:

∑
i∈Ical

w̃iδSi
+ w̃n+1δ+∞

23: Let Q1−α be the (1− α) quantile of this weighted distribution
24: return ĈMoE

n (Xn+1) = {y ∈ R : S(Xn+1, y) ≤ Q1−α}

A.2 THEORETICAL PROOF

Proof of Theorem 1. Denote Zi = (Xi, Yi), i ∈ [n + 1], and zi be the realization of Zi, for
i ∈ [n+ 1]. By exchangeability,

P{Zn+1 = zi} =
1

n+ 1
, i ∈ [n+ 1].

12
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Conditional on π̃(Xn+1) = L̃/τ , and using the Bayes theorem, we have

P{Zn+1 = zi | π̃(Xn+1)} =
P{π̃(Xn+1) | Zn+1 = zi}P{Zn+1 = zi}∑n+1

j=1 P{π̃(Xn+1) | Zn+1 = zj}P{Zn+1 = zj}

=

∏K
k=1[πk(xi)]

L̃k∑n+1
j=1

∏K
k′=1[πk′(xj)]L̃k′

= w̃i, i ∈ [n+ 1],

Here,

K∏
k=1

[πk(xi)]
L̃k = exp

(
K∑

k=1

L̃k log πk(xi)

)

= exp

(
τ

K∑
k=1

π̃k(xn+1) log πk(xi)

)
= exp (−τH(π̃(xn+1), π(xi)) ,

where H(·, ·) is Cross Entropy. Likewise, dividing both the numerator and denominator by the same
number does not change the result. We know that

K∏
k=1

[
πk(xi)

π̃k(xn+1)

]L̃k

= exp (−τKL(π̃(xn+1)∥π(xi))) ,

where KL(·∥·) is the KL divergence. Note that

Yn+1 /∈ ĈMoE
n (Xn+1) ⇐⇒ Sn+1 ≥ Q1−α

(
n∑

i=1

w̃iδSi
+ w̃n+1δ∞

)

⇐⇒ Sn+1 ≥ Q1−α

(
n+1∑
i=1

w̃iδSi

)
(Lemma A.1 in Guan (2023))

⇐⇒
n+1∑
i=1

w̃iI(Si ≥ Sn+1) ≤ α

Therefore, for the MoE weighted conformal prediction with Cross Entropy or KL divergence-based
weights, the probability conditional on π̃(Xn+!) is

P{Yn+1 /∈ ĈMoE
n (Xn+1) | π̃(Xn+1)}

=

n+1∑
j=1

P{Yn+1 /∈ ĈMoE
n (Xn+1) | π̃(Xn+1), Zn+1 = zj} × P{Zn+1 = zj | π̃(Xn+1)}

=

n+1∑
j=1

w̃jE

[
I

(
n+1∑
i=1

w̃iI(Si ≥ Sj) ≤ α

)]

= E

n+1∑
j=1

w̃jI

(
n+1∑
i=1

w̃iI(Si ≥ Sj) ≤ α

)
≤ E[α]
= α,

where I(·) is the indicator function, and the relationship “≤” holds due to Lamma A1 in Harrison
(2012). Therefore,

P{Yn+1 ∈ ĈMoE
n (Xn+1) | π̃(Xn+1} ≥ 1− α.

13
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Proof of Theorem 2. By Assumption 1, for each i, there exists ri = o(1) with

w̃i,D = w̃i,KL + ri, and
n+1∑
i=1

ri = 0.

Define

F̂
(D)
n+1(s) =

n+1∑
i=1

w̃i,D · I(Si ≤ s), and F̂
(KL)
n+1 (s) =

n+1∑
i=1

w̃i,KL · I(Si ≤ s).

For any fixed s,

|F̂ (D)
n+1(s)− F̂

(KL)
n+1 (s)| ≤

n+1∑
i=1

|ri| = o(1).

Then, ∥F̂ (D) − F̂ (KL)∥∞ = o(1).

Let
q
(D)
1−α = inf{s : F̂ (D)

n+1(s) ≥ 1− α}, and q
(KL)
1−α = inf{s : F̂ (KL)

n+1 (s) ≥ 1− α}.

As S is continuous, we have
q
(D)
1−α = q

(KL)
1−α + o(1).

The MoE weighted conformal interval with similarity measure D is

Ĉ(D)
n (Xn+1) = {y : S(Xn+1, y) ≤ q

(D)
1−α}.

Likewise, the interval with KL divergence is

Ĉ(KL)
n (Xn+1) = {y : S(Xn+1, y) ≤ q

(KL)
1−α }.

We know that

P{Yn+1 ∈ ĈKL
n (Xn+1) | π̃(Xn+1)} = P{Sn+1 ≤ q

(KL)
1−α | π̃(Xn+1)} ≥ 1− α.

Thus,

P{Yn+1 ∈ Ĉ(D)
n (Xn+1) | π̃(Xn+1)} = P{Sn+1 ≤ q

(D)
1−α | π̃(Xn+1)}

= P{Sn+1 ≤ q
(KL)
1−α + o(1) | π̃(Xn+1)}

≥ 1− α+ o(1),

which completes the proof.

Proof of Theorem 3. The proof is somewhat similar to Proposition 1 in Zhang & Candès (2024),
while they consider a different problem setting. Note that

w̃∗
i =

exp[−τD(π∗(Xn+1), π
∗(Xi))]∑n+1

i=1 exp[−τD(π∗(Xn+1), π∗(Xi))]
, i ∈ [n+ 1].

Therefore, for any similarity measure D(·, ·) and τ ∈ N+, we have w̃∗
1 , · · · , w̃∗

n+1 ⊥ Xn+1 |
π∗(Xn+1). By the construction of ĈMoE,∗

n (Xn+1),

Yn+1 /∈ ĈMoE,∗
n (Xn+1) ⇐⇒ P̂ ∗

n :=

n+1∑
i=1

w̃∗
i I(Si ≥ Sn+1) ≤ α,

which means that the event {Yn+1 /∈ ĈMoE,∗
n (Xn+1)} depends on Xn+1 only through Sn+1 and

π∗(Xn+1) in the weights w̃∗
i , i ∈ [n + 1]. If there is a finite mixture representation such that

Si|Xi ∼
∑K

k=1 π
∗
k(Xi)f

∗
k , i ∈ [n+ 1], we have

Sn+1 ⊥ Xn+1 | π∗(Xn+1).
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Therefore, the probability of the event given π∗(Xn+1) and Xn+1 is independent of Xn+1. i.e.,

P{P̂ ∗
n ≤ α | Xn+1, π

∗(Xn+1)} = P{P̂ ∗
n ≤ α | π∗(Xn+1)}.

Conversely, π(Xn+1) can be taken as a function of Xn+1. Once Xn+1 is given, π(Xn+1) can be
taken as fixed. Then,

P{P̂ ∗
n ≤ α | Xn+1, π

∗(Xn+1)} = P{P̂ ∗
n ≤ α | Xn+1}.

Consequently,
P{P̂ ∗

n ≤ α | π∗(Xn+1)} = P{P̂ ∗
n ≤ α | Xn+1}.

Taking the complement on both sides completes the proof.

Proposition related to Assumption 1. Here, we state a proposition that Assumption 1 is satisfied
under a specified condition. This condition satisfies many divergence measures if there are enough
calibration points. The rationale behind the claim is that, for a given π̃ := π̃(xn+1), if the calibration
set is sufficiently large and contains a point whose gating vector πj := π(xj) equals (or arbitrarily
closely approximates) π̃, then the KL divergence satisfies KL(π̃, πj) ≈ 0. Since KL(π̃, q) = 0
if and only if q = π̃, such a calibration point attains the minimizer of the KL divergence. For any
divergence D that likewise vanishes only at equality (for example, Jeffreys divergence, the Hellinger
distance, or the Euclidean distance, etc), we have D(π̃, πj) = 0. Hence, the minimizer condition is
satisfied.

Proposition 1 If a divergence D(·, ·) shares the same minimizer as with the KL divergence, then
Assumption 1 is verified, i.e., w̃i,D = w̃i,KL + o(1), as τ → ∞.

Proof of Proposition 1. If the divergence D shares the same unique minimizer with KL divergence,
we have

i∗ = arg min
i∈[n+1]

w̃i,D = arg min
i∈[n+1]

w̃i,KL.

Let
fi = D(π̃, πi), gi = KL(π̃, πi), i ∈ [n+ 1],

where π̃ := π̃(xn+1), πi := π(xi). Denote

f(1) = min
i

fi, f(2) = min
i:fi>f(1)

fi,

similar definition for g(1), g(2). Suppose that there exists the same minimizer, i.e.,

fi∗ = f(1), gi∗ = g(1).

We define
δ := min{f(2) − fi∗ , g(2) − gi∗} > 0.

Then, the normalized weights for the divergence D and KL can be expressed as

w̃
(f)
i (τ) :=

e−τfi∑n+1
j=1 e−τfj

, w̃
(g)
i (τ) :=

e−τgi∑n+1
j=1 e−τgj

.

We can rewrite the denominator as

Sf :=

n+1∑
j=1

e−τfj = e−τfi∗ (1 +Af ), Sg :=

n+1∑
j=1

e−τgj = e−τgi∗ (1 +Ag),

where Af :=
∑

j ̸=i∗ e
−τ(fj−fi∗ ), Ag :=

∑
j ̸=i∗ e

−τ(gj−gi∗ ). Clearly,

0 ≤ Af , Ag ≤ ne−τδ.

In case i = i∗, we know that

w̃
(f)
i∗ =

e−τfi∗

Sf
=

1

1 +Af
, w̃

(g)
i∗ =

e−τgi∗

Sg
=

1

1 +Ag
.
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Therefore,

|w̃(f)
i∗ − w̃

(g)
i∗ | = |Ag −Af |

(1 +Af )(1 +Ag)
≤ |Ag −Af | ≤ max{Ag, Af} ≤ ne−τδ, (6)

In case i ̸= i∗, we know that

w
(f)
i =

e−τfi

Sf
=

e−τ(fi−fi∗)

1 +Af
, w

(g)
i =

e−τgi

Sg
=

e−τ(gi−gi∗)

1 +Ag
.

Let ∆fi := fi − fi∗ ,∆gi := gi − gi∗ . We know that ∆fi ≥ δ,∆gi ≥ δ, for i ̸= i∗. Then, the
absolute difference between two weights can be decomposed as

|w̃(f)
i − w̃

(g)
i | =

∣∣∣∣e−τ∆fi

1 +Af
− e−τ∆gi

1 +Ag

∣∣∣∣
≤
∣∣∣∣e−τ∆fi − e−τ∆gi

1 +Af

∣∣∣∣+ e−τ∆gi

∣∣∣∣ 1

1 +Af
− 1

1 +Ag

∣∣∣∣
≤ |e−τ∆fi − e−τ∆gi |+ e−τ∆gi |Ag −Af |
≤ max{e−τ∆fi , e−τ∆gi}+ e−τ∆gi max{Ag, Af}
≤ e−τδ + ne−2τδ. (7)

Based on Equation (6) and (7), we can conclude that

w̃i,D = w̃i,KL + o(1),

as τ → ∞, if the divergence D shares the same the minimizer with the KL divergence.

A.3 CHOICE OF HYPERPARAMETERS

The MoECP framework allows the user to specify the divergence measure, the number of experts
K, and the temperature τ . The ablation studies (Appendix A.4.3) provide a detailed comparison
among these hyperparameters. Here, we provide practical guidance with respect to these choices.

Divergence measure D(·, ·). We demonstrate both theoretically (Theorem 2) and empirically
(Appendix A.4.3) that MoECP is largely insensitive to the particular divergence measure employed.
In addition, we prove that the KL divergence enjoys exact marginal validity within our framework.
For these reasons, combining theoretical guarantees and empirical robustness, we recommend the
KL divergence as the default choice for MoECP in practice.

Numbers of experts K. Our ablation studies show that whether K materially affects MoECP’s
interval length depends primarily on the training and calibration sample size. Intuitively, increasing
K partitions the calibration data across more experts and thus reduces the effective sample size per
expert; when the total sample size is modest (for example, n ≤ 1500), this reduction can noticeably
widen prediction intervals, so a smaller K (e.g., K = 2, 3) is preferable. For larger overall sample
sizes, each expert still receives sufficient data and the difference in interval length across different
K becomes negligible. In practice, choose K by balancing statistical efficiency and modeling flex-
ibility: use cross-validation or information criteria (BIC/AIC) when possible, taking into account
domain knowledge and computational constraints. As an alternative strategy, one may fit an over-
parameterized model and apply sparsity regularization on the gating network to automatically prune
unused experts, thereby producing an effective K without exhaustive manual tuning.

Temperature parameter τ . Our ablation studies (with τ scanned in the range 50–300) indicate
that MoECP is robust to the choice of temperature: marginal coverage, conditional coverage, and
interval length remain stable across a wide range of τ . Intuitively, τ controls the sharpness of
the MoE weights—very small τ produces nearly uniform weights and reduces adaptivity, while
very large τ concentrates weight on a few points (reducing the effective calibration sample size
and widening intervals). A moderate τ therefore provides a good trade-off between adaptivity and
statistical efficiency; we recommend τ ∈ [100, 300] as a practical default. When needed, τ can be
tuned by simple grid search or cross-validation.
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A.4 EXPERIMENT SETUP AND RESULTS

A.4.1 DETAILS OF THE EXPERIMENTAL SETUP

We use the Mixture of Experts (MoE) predictor as the base estimator for the proposed MoECP and
implement an MoE model with K experts and a single gating network. Each expert is a fully con-
nected feedforward network with three hidden layers and ReLU activations; the gating network uses
the same hidden-layer structure and outputs a softmax distribution over the K experts to weight their
predictions. A dropout layer with rate 0.1 is applied in both the experts and the gating network to
reduce overfitting. Models were trained with mini-batch gradient descent (batch size 64), a learning
rate of 1 × 10−4, and an early stopping ceiling on epochs. For the synthetic-data experiments we
set K = 3, temperature τ = 150, use hidden layers of size (32, 32, 32) for both experts and gate,
and train up to 600 epochs. For the real-data experiments we set K = 2, temperature τ = 100, use
hidden layers of size (64, 64, 64), and train up to 2000 epochs.

For Conformalized quantile regression (CQR) (Romano et al., 2019) and Conformalized histogram
regression (CHR) (Sesia & Romano, 2021), we used the original authors’ implementation using the
base estimator as a quantile random forest. 1. For Split conformal prediction with conditional cal-
ibration (SCP+CC) (Gibbs et al., 2025), Randomly-localized conformal prediction (RLCP) (Hore
& Barber, 2025), and Posterior conformal prediction (PCP) (Zhang & Candès, 2024), we use the
implementation in Zhang & Candès (2024) using the base estimator as a random forest regression2,
which use sklearn.ensemble.RandomForestRegressor in scikit-learn with de-
fault hyperparameter. Specifically, the bandwidth of RLCP is chosen such that the effective sample
size is 100 to balance the trade-off between the adaptivity and efficiency (Hore & Barber, 2025)).

To evaluate conditional coverage in the real-data experiments, we adopt the worst-slice coverage
metric, following Romano et al. (2020); Cauchois et al. (2021). This metric approximates the worst
coverage across all small subpopulations of the form {x : v⊤x ∈ [a, b]}, where a, b, and v may vary
arbitrarily.

The Bike-sharing dataset (UCI Machine Learning Repository)3 comprises 17,389 observations from
an urban bike-sharing system. Each record includes 13 explanatory features that capture temporal
context (e.g., year, month, weekday, holiday indicators, and working-day flags) and environmental
conditions (e.g., ambient temperature, perceived temperature, humidity, wind speed, and a coarse
weather category). The response is the total rental count. Categorical and ordinal variables were
encoded appropriately (binary flags or integer codes), and all numeric predictors and the response
were standardized to zero mean and unit variance prior to model training, calibration, and evaluation.

The Temperature dataset (UCI Machine Learning Repository)4 comprises 7,750 summer observa-
tions (2013–2017) assembled to evaluate bias-correction methods for LDAPS numerical temperature
forecasts over the Seoul region. Each record pairs LDAPS forecast outputs with the corresponding
ground-truth observation and includes temporal indicators (e.g., date/time, day-of-year) and local
meteorological covariates used for bias modeling. In our experiments we use the next day’s mini-
mum temperature as the response; we drop the fields station, Date, and Next Tmax, and retain
the remaining 21 variables as predictors. All variables - both features and response - are standardized
to zero mean and unit variance prior to training, calibration, and evaluation.

A.4.2 ADDITIONAL RESULTS IN SYNTHETIC DATA EXAMPLES

In section 4.1, the synthetic data (X,Y ) are drawn from a three-domain distribution:

Y =


X + ε, p = p1;

X2 + ε, p = p2;

X3 + ε, p = p3;

where X ∼ Uniform([−3, 3]), ε ∼ N(0, 1), and pi, i = 1, 2, 3, are the proportions of each domain
that sum up to 1. We consider two settings: (1) Unbalanced proportions: p1 = 0.2, p2 = 0.3, p3 =

1https://github.com/msesia/chr
2https://github.com/yaozhang24/pcp
3https://archive.ics.uci.edu/dataset/275/bike+sharing+dataset
4https://archive.ics.uci.edu/dataset/514/bias+correction+of+numerical+prediction+model+temperature+forecast
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Figure 6: Marginal coverage and interval length for the setting 2 (balanced proportions) in synthetic
data over 50 experiments.

3 2 1 0 1 2 3
X

0.5

0.6

0.7

0.8

0.9

1.0

Co
nd

iti
on

al
 C

ov
er

ag
e

CQR CHR SCP+CC RLCP PCP MoECP

Figure 7: Local average coverage rates of conformal intervals in the setting 2 (balanced proportion)
in synthetic data. The local coverage of a data point is average by its 100 nearest data points.

0.5; (2) Balanced proportions: p1 = p2 = p3 = 1/3. The sample size for training, calibration, and
testing are set equally to be n = 500. The experiments are repeated over 50 times. The miscoverage
level is set to be α = 0.1.

Figures 2, 3, and 4 present the results under Setting 1 (unbalanced proportions), while Figures 6,
7, and 8 correspond to Setting 2 (balanced proportions). Across both settings, the experimental re-
sults demonstrate that the proposed MoECP framework achieves reliable marginal coverage, strong
conditional coverage, and high efficiency with adaptively small interval lengths.

A.4.3 ABLATION STUDY

The MoECP framework is flexible, allowing different choices of divergence D(·, ·), number of ex-
perts K, and temperature τ . To examine the impact of these hyperparameters, we conduct ablation
studies on the Bike-sharing and Temperature datasets. The reported results are averaged over 10
independent runs.

Ablation studies on divergence D(·, ·) and temperature τ . We consider several divergence
measures, including KL divergence, Rényi divergence, Jeffreys divergence, Hellinger distance, Eu-
clidean distance, and Cosine distance. The temperature parameter τ is varied from 50 to 300, while
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Figure 8: Prediction intervals for CQR, CHR, SCP+CC, RLCP, PCP and MoECP for the setting 2
(balanced proportions) in synthetic data.

50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e 
ra

te

Cosine
Euclidean
Hellinger
Jeffreys
KL
Rényi

50 100 150 200 250 300
0.90

0.95

1.00

1.05

1.10

1.15

1.20

In
te

rv
al

 le
ng

th

Cosine
Euclidean
Hellinger
Jeffreys
KL
Rényi

50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

W
or

st
-s

lic
e 

co
ve

ra
ge

 ra
te

Cosine
Euclidean
Hellinger
Jeffreys
KL
Rényi

50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

C
ov

er
ag

e 
ra

te

Cosine
Euclidean
Hellinger
Jeffreys
KL
Rényi

50 100 150 200 250 300
1.00

1.05

1.10

1.15

1.20

1.25

1.30

In
te

rv
al

 le
ng

th

Cosine
Euclidean
Hellinger
Jeffreys
KL
Rényi

50 100 150 200 250 300

0.6

0.7

0.8

0.9

1.0

W
or

st
-s

lic
e 

co
ve

ra
ge

 ra
te

Cosine
Euclidean
Hellinger
Jeffreys
KL
Rényi

Figure 9: Ablation studies on divergence D(·, ·) and temperature parameter τ . The sample size for
training, calibration and testing is set equally to be n = 1500. The number of experts is K = 2. The
first row is the results of the Bike-sharing dataset; the second row is the results of the Temperature
dataset. From left to right, each column corresponds to marginal coverage, prediction interval length,
and worst-slice coverage, respectively.

the number of experts is fixed at K = 2. For all experiments, the training, calibration, and testing
sets are of equal size, with n = 1500 samples each.

Figure 9 reports the results of ablation studies over divergence measures and temperature, demon-
strating the robustness of the MoECP framework with respect to these hyperparameters. In particu-
lar, the marginal coverage remains close to the nominal level across different divergences and values
of τ . The interval length is also largely stable, with only minor variations across divergences and
temperatures. As τ increases, we observe a slight increase in interval length. This is expected, since
a larger τ reduces the effective sample size, thereby widening the prediction intervals (in the extreme
case τ → +∞, the normalized weights collapse to w̃n+1 = 1 and w̃i = 0 for all i ∈ 1, · · · , n, yield-
ing an infinite prediction interval). Moreover, the worst-slice coverage is consistently robust with
respect to both divergence and temperature.

The expressions of KL divergence, Rényi divergence, Jeffreys divergence, Hellinger distance, Eu-
clidean distance, and Cosine distance are listed below. For π̃(Xn+1), π(Xi) ∈ [0, 1]K ,
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KL divergence:

DKL(π̃(Xn+1), π(Xi)) =

K∑
k=1

π̃k(Xn+1) log
π̃k(Xn+1)

πk(Xi)
.

Jeffreys divergence:

DJeffreys(π̃(Xn+1), π(Xi)) = DKL(π̃(Xn+1), π(Xi)) +DKL(π(Xi), π̃(Xn+1)).

Rényi divergence with α = 0.5:

DRényi(π̃(Xn+1), π(Xi)) =
1

α− 1
log

(
K∑

k=1

π̃α
k (Xn+1)π

1−α
k (Xn+1)

)
.

Hellinger distance:

DHellinger(π̃(Xn+1), π(Xi)) =
1√
2

∥∥∥√π̃(Xn+1)−
√

π(Xi)
∥∥∥
2
.

Euclidean distance:

DEuclidean(π̃(Xn+1), π(Xi)) = ∥π̃(Xn+1)− π(Xi)∥2

Cosine distance:

DCosine(π̃(Xn+1), π(Xi)) = 1− π̃(Xn+1) · π(Xi)

∥π̃(Xn+!)∥2∥π(Xi)∥2
.

Note that for the cross-entropy,

Dcross-entropy(π̃(Xn+1), π(Xi)) = DKL(π̃(Xn+1), π(Xi))−
K∑

k=1

π̃k(Xn+1) log π̃k(Xn+1).

A direct calculation shows that the normalized weights in the MoE weighted conformal prediction
satisfy

w̃KL,i = w̃cross-entropy,i.

Therefore, it is unnecessary to include the cross-entropy in the ablation studies, although it can be
used equivalently.

Ablation studies on the experts K. We further conduct ablation studies by varying the number
of experts K ∈ [2, 3, 4, 5]. In addition, different sample sizes for training and calibration are con-
sidered, ranging from 500 to 2500 (e.g., n = 1000 means both training and calibration sets contain
1000 samples each). The test set size is fixed at n = 1000 throughout. The temperature is fixed at
τ = 100, and the divergence measure is chosen as the KL divergence.

Figure 10 presents the results of ablation studies with varying numbers of experts K and different
sample sizes. We observe that the marginal coverage consistently matches the nominal level across
all settings, and the worst-slice coverage remains robust with respect to both K and the sample
size. Regarding interval length, it naturally decreases as the training and calibration sample sizes
increase. When fixing the sample size and varying K, MoECP with smaller K generally yields
shorter intervals. This occurs because a smaller K corresponds to a larger effective sample size,
leading to narrower prediction intervals. For example, with calibration size n = 500 and assuming
balanced domains, K = 2 results in 250 samples per domain, whereas K = 5 leaves only 100
samples per domain, thus widening the intervals. However, this effect diminishes as the overall
sample size grows (e.g., n = 3000), since each domain still has sufficient data to construct tight
prediction intervals even with larger K.
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Figure 10: Ablation studies on the experts number K with different sample size. The temperature
parameter is set to be τ = 100. The divergence measure is the KL divergence. The sample size for
testing is set to be n = 1000, while the sample size for training and calibration varies from 500 to
2500. The first row is the results of the Bike-sharing dataset; the second row is the results of the
Temperature dataset. From left to right, each column corresponds to marginal coverage, prediction
interval length, and worst-slice coverage, respectively.
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Figure 11: Ablation studies on the impact of multinomial sampling on MoECP interval variability
and stability. The divergence measure is the KL divergence, and the number of experts k = 2. The
sample size for training and calibration is set equally to be n = 1500. The sample size for the test
set to calculate the variability measure is set to 100, and the multinomial sampling times are 500 for
each test point.

Ablation studies on the impact of multinomial sampling on MoECP interval variability and
stability For MoECP, the randomized gating probability π̃(Xn+1) is generated using the multi-
nomial sampling scheme in (3) with temperature parameter τ . Our goal is to examine how this
randomized construction influences the variability and stability of the resulting prediction intervals.
To quantify this effect, we adopt a variability metric inspired by Hore & Barber (2025):

D(τ) = E

 MAD
(
λ(ĈMoE

n (Xn+1))
)

Median
(
λ(ĈMoE

n (Xn+1))
)
 ,

where λ(·) denotes the Lebesgue measure of a prediction interval and MAD(X) = Median(|X −
Median(X)|). The only source of randomness comes from the multinomial sampling. Thus, D(τ)
captures the degree to which the MoECP interval width fluctuates. Experiments are performed on
the Bike-Sharing and Temperature datasets, with training/calibration size 1500 and test size 100.
The MoE model configuration follows Section 4.2, using KL divergence and two experts (K = 2).
For each test point, the multinomial sampling is repeated 500 times to estimate the variability.

21



Published as a conference paper at ICLR 2026

Figure 11 presents the interval variability and stability results. The variability metric D(τ) is stable
across values of the temperature parameter τ for both real datasets, indicating that the choice of τ is
robust on interval variability and stability.

A.5 COMPUTATIONAL COMPLEXITY ANALYSIS

For MoECP, it needs to train an MoE model in the training phase, and calculate the conformal score
in calibration phase. Here, we aim to investigate the computational complexity of MoECP. We
highlight that the dominant computational cost lies in training the MoE model, while the calibration
step of MoE-CP is lightweight.

• Training cost (dominant). Training the MoE involves forward/backward passes through
the gating network and all experts. If m is the training sample size, K the number
of experts, and E the number of epochs, the overall training cost is on the order of
O(Em(Cgate + KCexp)), where Cgate and Cexp denote one forward-backward cost of the
gate and a single expert, respectively. This is a one-time offline cost and represents the
main computational burden of the method. In our experiments, training is performed once
per dataset and is easily handled.

• Calibration cost (lightweight). Once the MoE is trained, we precompute and cache the
gating vectors π(Xi), i ∈ [n], of the calibration set. For each test point, MoE-CP computes
(1) one forward pass of the gating network, and (2) pairwise divergences between the test
gating vector and the n calibration gating vectors. This results in an O(n) cost, which is
extremely fast in practice. Actually, the computational complexity of the calibration stage
is analogous to RLCP (Hore & Barber, 2025).

We evaluate the practical runtime on the real datasets, averaging each result over 10 independent
runs. All experiments are conducted on an AMD Ryzen 5 4600H processor with Radeon graph-
ics. Note that the reported runtime would be substantially lower with more advanced computing
hardware. The details of the experimental setup are provided in Appendix A.4.1.

Table 1 reports the runtime for each method on the Bike-sharing and Temperature datasets. The
computational cost of MoE-CP is comparable to that of CHR and PCP. Figure 12 illustrates the run-
time as a function of the training/calibration sample size, showing an approximately linear increase
in computational time with sample size.

Table 1: Runtime (seconds) for each method and dataset

Methods CQR CHR SCP+CC RLCP PCP MoE-CP

Bike-sharing 3.3 151.7 27.0 5.1 134.7 153.2
Temperature 3.8 153.4 39.1 6.4 157.6 155.5
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Figure 12: Runtime (seconds) of MoECP under different sample sizes. For instance, a 1000 sample
size corresponds to training and calibration size equally to be 1000.
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A.6 EXTENSION OF MOECP TO THE ONLINE SETTING

In online setting (Gibbs & Candes, 2021; Zaffran et al., 2022), we have T0 observations
(X1, Y1), · · · , (XT0

, YT0
) in Rd × R. We aim to construct prediction intervals for T1 subsequent

observations XT0+1, · · · , XT0+T1
sequentially: at any prediction step t ∈ [T0 + 1, T0 + T1],

Yt−T0
, · · · , Yt−1 have been revealed. Therefore, the data (Xt−T0

, Yt−T0
), · · · , (Xt−1, Yt−1) are

available to construct the prediction interval for Yt.

The online MoECP proceeds by maintaining and adaptively updating a target miscoverage level
{αt} based on recent performance and similarity-weighted errors. Let the nominal miscoverage be
α ∈ (0, 1) and initialize αT0+1 = α. For each prediction time t = T0 + 1, . . . , T0 + T1, form the
MoE-based prediction set

ĈMoE
αt

(Xt) = {y ∈ R : S(Xt, y) ≤ Q1−αt
},

where Q1−αt denotes the (1 − αt)-quantile of the (weighted) conformity scores computed on the
current calibration window. The miscoverage level is then updated by

αt+1 = αt + γ

(
α−

t∑
s=t−T0+1

w̄s 1{Ys /∈ ĈMoE
αs

(Xs)}

)
,

with step size γ > 0. The normalized cumulative weight w̄s for s ∈ [t− T0 + 1, t] is defined as

w̄s =

∑s
i=t−T0+1 wi∑t
i=t−T0+1 wi

,

where each wi is computed analogously to Equation (4) using the current test covariate Xt. This
update combines the recent empirical miscoverage frequency with similarity information between
calibration and test points, making the online MoECP adaptive to recent errors while accounting for
domain similarity. A thorough theoretical and empirical investigation of this online strategy is left
for future work.
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