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Abstract
Masked reconstruction, which predicts ran-
domly masked patches from unmasked ones,
has emerged as an important approach in self-
supervised pretraining. However, the theoreti-
cal understanding of masked pretraining is rather
limited, especially for the foundational architec-
ture of transformers. In this paper, to the best of
our knowledge, we provide the first end-to-end
theoretical guarantee of learning one-layer trans-
formers in masked reconstruction self-supervised
pretraining. On the conceptual side, we posit
a mechanism of how transformers trained with
masked vision pretraining objectives produce em-
pirically observed local and diverse attention pat-
terns, on data distributions with spatial structures
that highlight feature-position correlations. On
the technical side, our end-to-end characteriza-
tion of training dynamics in softmax-attention
models simultaneously accounts for input and po-
sition embeddings, which is developed based on
a careful analysis tracking the interplay between
feature-wise and position-wise attention correla-
tions.

1 Introduction
Self-supervised learning has been a leading approach to pre-
train neural networks for downstream applications since the
introduction of BERT (Devlin et al., 2018) and GPT (Rad-
ford et al., 2018) in natural language processing (NLP).
On the other hand, in vision, self-supervised learning was
initially focused more on discriminative methods, which in-
clude contrastive learning (He et al., 2020; Chen et al., 2020)
and non-contrastive learning methods (Grill et al., 2020;
Chen et al., 2020; Caron et al., 2021; Zbontar et al., 2021).
Inspired by masked language models in NLP, together with
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the crucial progress made by (Dosovitskiy et al., 2020) in
successfully implementing vision transformers (ViTs), gen-
erative approaches, such as masked reconstruction-based
methods, have become popular in self-supervised pretrain-
ing, especially since emergences of masked autoencoders
(MAE) (He et al., 2022) and SimMIM (Xie et al., 2022).

In masked vision pretraining, neural networks are instructed
to reconstruct some or all patches of an image given a
masked version, aiming to learn certain abstract semantics
of visual contents when trained to fill in the missing patches.
In practice, this approach not only proves to be very success-
ful with remarkable finetuning performance but also shows
intriguing phenomena that differ significantly from the be-
haviors observed in other self-supervised learning methods.
The seminal work of (He et al., 2022) showed that MAE can
conduct visual reasoning when filling in masked patches
even with very high masking rates, suggesting that masked
image modeling learns some complex relationships between
visual objects. Some critical observations from recent re-
search (Wei et al., 2022b; Park et al., 2023; Xie et al., 2023)
have suggested that the ViTs trained via masked reconstruc-
tion objectives display diverse attention patterns: different
query patches pay attention to distinct local areas. This is
in sharp contrast to the discriminative self-supervised learn-
ing approaches, whose attention maps mostly capture the
most significant global pattern regardless of where the query
patches are, leading to a phenomenon known as “attention
collapse”, as shown in Figure 1. Given these empirical
observations, it naturally prompts the question: from a theo-
retical standpoint, how do ViTs learn these varied attention
patterns during masked pretraining? Despite the substan-
tial empirical effort dedicated to investigating masked vi-
sion pretraining, our theoretical understanding of it is still
nascent. Most existing theories for self-supervised pretrain-
ing focused on discriminative methods (Arora et al., 2019;
Chen et al., 2021a; Robinson et al., 2021; HaoChen et al.,
2021; Wen & Li, 2021; Tian et al., 2021; Wang et al., 2021;
Wen & Li, 2022), such as contrastive learning. Among very
few attempts towards masked image modeling, (Cao et al.,
2022) studied the patch-based attention via an integral ker-
nel perspective; (Zhang et al., 2022) analyzed MAE through
an augmentation graph framework, which connects MAE
to contrastive learning. (Pan et al., 2022) characterized the
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Figure 1: Visualization of attention maps in the last layer of ViT
for query patches from two different spatial locations, trained by
the generative self-supervised learning approach of masked recon-
struction (MAE) and two discriminative self-supervised learning
methods (DINO (Caron et al., 2021), MoCo (Chen et al., 2021b)).
optimization process of MAE with shallow convolutional
neural networks (CNNs). However, transformers, as the
prevailing architecture in current deep learning practice,
were not addressed in the aforementioned theoretical stud-
ies of vision pretraining and, more broadly, self-supervised
pretraining, leaving a significant gap in the literature.

Building on the mind-blowing empirical advances and rec-
ognizing the lack of theoretical understanding of masked
reconstruction-based methods with transformers in self-
supervised learning, we are motivated to ask:

Our Research Questions
Can we theoretically characterize what solutions trans-
formers converge to in masked vision pretraining? How
do transformers learn diverse local attention patterns
rather than object-focused global attention in such pre-
training?

Contributions. In this paper, we take a step towards answer-
ing the above questions by studying the training process of
one-layer transformers trained by gradient descent (GD) for
masked reconstruction objectives. We focus on spatially
structured data distributions, where each image is sampled
from different clusters characterized by different patch-wise
associations. Under such setting:

1. We provide the global convergence guarantee of the
masked reconstruction loss and characterize how atten-
tion is distributed at convergence to demonstrate the non-
collapsed diverse local attention patterns obtained by
masked pretraining , which to our knowledge is the first
end-to-end theory of learning transformers for masked-
reconstruction type self-supervised methods.

2. We analyze the training dynamics of attention correla-
tions (see Definition A.1) and prove that ViTs manage
to capture desirable diverse local patterns in masked
pretraining by learning the target feature-position at-
tention correlations for all visual features irrespective
of their significance i.e., whether they are global or lo-
cal features. This marks the first result of learning the

softmax attention model that jointly considers input and
position encodings.

3. We design a novel empirical metric, termed as the at-
tention diversity metric, to probe vision transformers
trained by different methods. Our new observations (see
Figure 4) provide further evidence for the diverse local
patterns revealed through masked image modeling.

2 Problem Setup
In this section, we present our problem formulations for
studying the training process of transformers during masked
vision pretraining. We begin with some background infor-
mation, followed by a description of our dataset settings. We
then detail the masked pretraining strategy and the specific
transformer architecture considered in this paper.

2.1 Masked Vision Pretraining with Transformers
We follow the masked reconstruction frameworks in (He
et al., 2022; Xie et al., 2022). Each data sample X ∈ Rd×P

has the form X = (Xp)p∈P , which has |P| = P patches,
and each patch Xp ∈ Rd.

Random masking. Given an input image X , let M(X) →
Rd×P denote the random masking operation, which ran-
domly selects (without replacement) a subset of patches M
in X with a masking ratio γ = Θ(1) ∈ (0, 1) and masks
them to be M := 0 ∈ Rd, i.e.,

M(X)p =

{
[X]p p ∈ U := P \M
M p ∈ M . (1)

Masked reconstruction objective. Let F : X 7→ X̂ be
an architecture that outputs a reconstructed image X̂ ∈
Rd×P for any given input X ∈ Rd×P . To train the model
F (·), in masked pretraining, we minimize the mean-squared
reconstruction loss over the masked patches, which can be
written as

L(F ) = 1
2E
[∑

p∈M

∥∥∥[X]p − [F (M(X))]p

∥∥∥2
2

]
. (2)

where the expectation is with respect to both the data distri-
bution and the masking.

Our theoretical framework is based on F being a simplified
version of vision transformers (Dosovitskiy et al., 2020)
which utilizes the attention mechanism (Vaswani et al.,
2017), which consists of the following components: a query
matrix WQ, a key matrix WK , and a value matrix WV .
Given an input X , the output of a self-attention layer can be
described by the mapping G(X;WQ,WK ,WV ) =

softmax
(
(WQX)⊤WKX

)
· (WV X)⊤, (3)

where the softmax(·) function is applied row-wisely.

To simplify the theoretical analysis, we consolidate the prod-
uct of query and key matrices (WQ)⊤WK into one weight
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matrix denoted as Q. Furthermore, we set WV to be the
identity matrix and fixed during the training. These simplifi-
cations are often taken in recent theoretical works (Jelassi
et al., 2022; Huang et al., 2023; Zhang et al., 2023a) in order
to allow tractable analysis. Moreover, to retain the crucial
positional information as in practices (Dosovitskiy et al.,
2020; He et al., 2022), we add positional encodings to the
input embeddings, which has the following assumptions:

Assumption 2.1 (Positional encoding). We assume fixed
positional encodings, which is consistent with the implemen-
tation in MAE (He et al., 2022): E = (ep)p∈P ∈ Rd×P

where positional embedding vectors ep are orthogonal to
each other and to all the features vk,j , and are of unit-norm.

We now define the actual network for masked pretraining.

Definition 2.2 (Transformer network for masked pretrain-
ing). We assume that our vision transformer F (X;Q) con-
sists of a single-head self-attention layer with an attention
weight matrix Q ∈ Rd×d. For an input image X ∼ D,
we add positional encoding by letting X̃ = X + E. The
attention score from patch Xp to patch Xq is denoted by

attnp→q(X;Q) := e
X̃⊤

p QX̃q∑
r∈P e

X̃⊤
p QX̃r

, for p,q ∈ P. (4)

Then the output of the transformer for p ∈ P is given by

[F (X;Q)]p =
∑

q∈P attnp→q(X;Q) ·Xq. (5)

Training algorithm. The learning objective in (2) is min-
imized via GD with learning rate η > 0. At t = 0, we
initialize Q(0) := 0d×d as the zero matrix. The parameter
is updated as follows:

Q(t+1) = Q(t) − η∇QL(Q(t)).

2.2 Data Distribution

We assume the data samples X ∈ Rd×P are drawn indepen-
dently based on some data distribution D. To capture the
feature-position (FP) correlation in the learning problem,
we consider the following setup for vision data. We assume
that the data distribution consists of many different clusters,
where each cluster captures a distinct spatial pattern, and
hence is defined by a different partition of patches with a
different set of visual features. We define the data distribu-
tion D formally as follows. An intuitive illustration of data
generation is given in Figure 2.

Definition 2.3 (Data distribution D). The data distribution
D has K = O(1) different clusters {Dk}Kk=1. For every
cluster Dk, k ∈ [K], there is a corresponding partition of P
into Nk disjoint subsets P =

⋃Nk

j=1 Pk,j which we call ar-
eas. For each sample X = (Xp)p∈P , its sampling process
is as follows:

Sampling

Local

Global

𝒫!,#𝒫!,$
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𝒫!,&
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Figure 2: Illustration of our data distribution (see Definition 2.3).
Each cluster Dk is segmented into distinct areas Pk,j , with squares
in the same color representing the same area Pk,j . The global
area Pk,1 (depicted in orange) contains a larger count of patches
compared to any other local areas.

• We draw Dk uniformly at random from all clusters and
draw a sample X from Dk.

• Given k ∈ [K], for any j ∈ [Nk], all patches Xp in the
area Pk,j are given the same content Xp = vk,jzj(X),
where vk,j ∈ Rd is the visual feature and zj(X) is the
latent variable. We assume

⋃K
k=1

⋃Nk

j=1{vk,j} are orthog-
onal to each other with unit norm.

• Given k ∈ [K], for any j ∈ [Nk], zj(X) ∈ [L,U ], where
0 ≤ L < U are on the order of Θ(1).1

Global and local features in an image. Image data nat-
urally contains two types of features: the global features
and the local features. For instance, in an image of an ob-
ject, global features can capture the shape and texture of
the object, such as the fur color of an animal, whereas local
features describe specific details of local areas, such as the
texture of leaves in the background. Recent empirical stud-
ies on self-supervised pretraining with transformers (Park
et al., 2023; Wei et al., 2022b) and observations in Figure 1
collectively show that masked pretraining exhibits the capac-
ity to avoid attention collapse concentrating towards those
global shapes by identifying diverse local attention patterns.
Consequently, unraveling their mechanisms necessitates a
thorough examination of data characteristics that embody
both global and local features. In this paper, we characterize
these two types of features by the following assumption.

Assumption 2.4 (Global feature vs local feature). Let Dk

with k ∈ [K] be a cluster from D. We let Pk,1 be the
global area of cluster Dk, and all the other areas Pk,j , j ∈
[Nk] \ {1} be the local areas. Since each area corresponds
to an assigned feature, we also call them the global and local
features, respectively. Moreover, we assume:

• Global area: given k ∈ [K], we set Ck,1 = |Pk,1| =
Θ(Pκc) with κc ∈ [0.5005, 1], where Ck,1 is the number
of patches in the global area Pk,1.

• Local area: given k ∈ [K], we choose Ck,j = Θ(Pκs)
with κs ∈ [0.001, 0.5] for j > 1, where Ck,j denotes the
number of patches in the local area Pk,j .

The rationale for defining the global feature in this man-

1The distribution of zj(X) can be arbitrary within the above
support set.

3



How Transformers Learn Diverse Attention Correlations in Masked Vision Pretraining

Figure 3: The mechanism of how the masked patch attends to other patches via attention correlations.

ner stems from observing that patches representing global
features (Ck,1) typically occur more frequently than those
representing local features (Ck,j , for j > 1), since global
features capture the primary visual information of an im-
age, offering a dominant view, while local features focus on
subtler details within the image.

3 Statements of Main Results
In this section, we present the main theorems of this paper.
Our results are structured into two parts: i). analysis of con-
vergence, which includes the global convergence guarantee
of the masked reconstruction loss and characterization of
the attention pattern at the end of training to demonstrate the
diverse locality; ii). learning dynamics of attention correla-
tions, which shows how transformers capture target Feature-
Position correlations while downplaying Position-Position
correlations as discussed in Appendix A.

Notations for theorem presentations. We introduce a no-
tion of information gap to quantify the difference of signifi-
cance between global and local areas (cf. Assumption 2.4).

∆ ≜ (1− κs)− 2(1− κc). (6)

We define the unmasked area attention as follows:

Attnp→Pk,m
(M(X);Q) ≜

∑
q∈U∩Pk,m

attnp→q(X;Q).

Moreover, we focus on patch-level reconstruction loss:

Lp(Q) = 1
2E
[
1{p∈M}

∥∥∥[F (M(X);Q)]p −Xp

∥∥∥2] . (7)

Attention correlations: Let p ∈ P , and we define two
types of attention correlations as:

1. Feature-Position (FP): Φp→vk,m
≜ e⊤pQvk,m, k ∈ [K]

and m ∈ [Nk];

2. Position-Position (PP): Υp→q ≜ e⊤pQeq, ∀q ∈ P.

Now we present our first main result regarding the conver-
gence of masked pretraining.
Theorem 3.1 (Training convergence). Suppose the informa-
tion gap ∆ ∈ [−0.5,−Ω(1)] ∪ [Ω(1), 1]. Under some mild
assumptions2, given any 0 < ϵ < 1, for each patch p ∈ P ,

2see Appendix K

1. Loss converges: Lp(Q
(T⋆)) − L⋆

p ≤ ϵ in T ⋆ =

O
(

1
η log(P )Pmax{2(U

L−1),1}(1−κs) + 1
ηϵ log

(
P
ϵ

))
iter-

ations, where L⋆
p is the global minimum of (7).

2. Area-wide pattern of attention: given cluster k ∈ [K],
and p ∈ Pk,j for some j ∈ [Nk], if Xp is masked, then
the one-layer transformer nearly “pays all attention" to
all unmasked patches in the same area Pk,j as p, i.e.,(

1−Attn
(T⋆)
p→Pk,j

)2
≤ O(ϵ).

The location of the patch p determines the above area-wide
attention and can be achieved no matter if p belongs to the
global or local areas, which jointly highlight the diverse
local patterns for masked vision pretraining.

Next, we detail the training phases of attention correlations
in the following theorem, which explicitly confirms that
the model learns target FP correlations while ignoring PP
correlations to achieve the desirable area-wide attention
patterns (see Appendix A and B for intuitive explanations).

Theorem 3.2 (Learning Feature-Position correlations). Fol-
lowing the same assumptions in Theorem 3.1, for p ∈ P ,
given k ∈ [K], if p ∈ Pk,j for some j ∈ [Nk], we have

For positive information gap ∆ ∈ [Ω(1), 1]:

a. Global areas (j = 1) learn FP correlation in one-phase:
Φ

(t)
p→vk,1 monotonically increases during training with

all other attention correlations nearly unchanged.
b. Local areas (j > 1) learn FP correlation in two-phase:

phase I: FP correlation Φ
(t)
p→vk,1 between local area

and the global area feature quickly decreases whereas
all other attention correlations stay close to zero; phase
II: FP correlation Φ

(t)
p→vk,j for the target local area

starts to grow until convergence with all other attention
correlations nearly unchanged.

For negative information gap ∆ ∈ [−0.5,−Ω(1)]:

c. All areas learn FP correlation through one-phase:
Φ

(t)
p→vk,j monotonically increases throughout the train-

ing, with all other attention correlations close to 0.

Typically, the target FP correlations are learned directly in
a single phase. However, for a positive information gap
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∆, when patch p is located in a local area, the learning
process contains an additional decoupling phase, to reduce
the FP correlation with the non-target global features (see
Appendix B for proof sketch).
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A Attention Patterns and Feature-Position Correlations
To show the significance of the data distribution design and understand the nature of the masked reconstruction task, in this
section, we will provide some preliminary implications of the spatial structures in Definition 2.3. Intuitively, for a given
cluster Dk, to reconstruct a missing patch p ∈ Pk,j ∩M, the attention head should exploit all unmasked patches in the
target area Pk,j to find the same visual feature vk,j to fill in the blank, which emphasizes the locality for p in different
areas. This approach remains effective even at high masking rates, provided that a small number of patches in Pk,j remain
unmasked. We will elaborate this point by describing the area attentions and illustrating the intuition about how they can be
learned via attention correlations (Definition A.1).

Area attention. We first define a new notation for a cleaner presentation. For X ∼ D and p ∈ P , we write the attention of
patch Xp to a subset A ⊂ P of patches by

Ãttnp→A(X;Q) :=
∑

q∈A attnp→q(X;Q).

Let us explain why the above notion of area attention matters in understanding how attention works in masked reconstruction.
Suppose we have a sample X picked from Dk, and the patch Xp with p ∈ Pk,j is masked. Then the prediction of Xp given
masked input M(X) can be written as

[F (M(X);Q)]p =
∑

q∈P M(X)q · attnp→q(M(X);Q)

=
∑

i∈[Nk]
zi(X)vk,i · Ãttnp→U∩Pk,i

(M(X);Q) (since M(X)q = 0 if q ∈ M).

To reconstruct the original patch Xp, the transformer should not only focus on the correct area Pk,j , but must also prioritize

attention to the unmasked patches within this area. This specificity is denoted by the area attention Ãttnp→U∩Pk,j
over

U ∩ Pk,j , a requirement imposed by masking operations. To further explain how transformers perform such prioritization,
we introduce the following quantities, which capture the major insights of our analysis that differentiate from those in
(Jelassi et al., 2022).

Definition A.1. (Attention correlations) Let p ∈ P , and we define attention correlations as:

1. Feature-Position (FP) Correlation: Φp→vk,m
:= e⊤pQvk,m, for k ∈ [K] and m ∈ [Nk];

2. Position-Position (PP) Correlation: Υp→q := e⊤pQeq, ∀q ∈ P.

Due to our (zero) initialization of Q(0), we have Φ
(0)
p→vk,m = Υ

(0)
p→q = 0.

These two types of attention correlations, FP correlation Φp→vk,m
and PP correlation Φp→q, act as the exponent terms

within the softmax calculations for attention scores. Given p ∈ Pk,j is masked, the (unnormalized) attention attnp→q

directed towards an unmasked patch q is influenced jointly by these correlations. Hence, the described attention pattern can
emerge from either a substantial FP correlation Φp→vk,j

or a significant PP correlation Φp→q for q in the same area as p.
However, in our setting, the latter mechanism—learning via PP correlation—fails to produce desired attention patterns, as
explained below on a notable gap that prior work (Jelassi et al., 2022) did not address.

Can pure positional attention explain the transformer’s ability to learn locality? (Jelassi et al., 2022) theoretically
analyzed how ViTs can identify spatially localized patterns by minimizing the supervised cross-entropy loss with GD. Their
analysis focused on a spatially structured dataset equivalent to our settings when K = 1 without distinguishing the global
and local features. Hence, the association between patch p and q is fixed since there is only a single cluster. Based on such
invariant patch-wise relations, they showed that ViTs can achieve optimal attention patterns by solely learning the “patch
association”, where e⊤pQeq is large for p,q coming from the same area, corresponding to large PP correlation Γp→q in our
settings. However, such an assumption of invariant patch associations is often unrealistic for vision datasets in practice, for
instance, a cube-shaped building typically requires a different attention pattern from a bird inside the woods. Therefore,
when multiple patterns appear in the data distribution (e.g., in our settings with K > 1 clusters), relying solely on PP
correlations is insufficient, and is often undesirable due to variations of PP correlations across clusters. This highlights the
necessity of examining FP correlations for a deeper understanding of the local representation power of transformers.

B Proof Sketch
The framework for constructing attention correlations, as outlined in Appendix A, offers insights into how transformers
may achieve specific localities during masked pretraining. Within this framework, we start this section with a warm-up

8



How Transformers Learn Diverse Attention Correlations in Masked Vision Pretraining

discussion to further clarify why target FP correlations, rather than PP correlations, should be the focus of learning. We then
offer an overview of our proof, which analyzes the dynamics of these attention correlations.

Warm-up intuition for attention correlations. Let us start by exploring the role of attention correlations in determining
the area attention scores. Given a masked input M(X) with p ∈ Pk,j ∩M, it holds that

Ãttnp→Pk,j
(M(X);Q) ∝

∑
q∈U∩Pk,j

eΦp→vk,j
+Υp→q +

∑
q∈M∩Pk,j

eΥp→q .

The first term on the RHS is proportional to our unmasked area attention Attnp→Pk,j
, which is balanced by the relative

magnitudes between Feature-Position and Position-Position correlations. Upon initial observation, large FP correlation
Φp→vk,j

or PP correlation Υp→q for patch q ∈ Pk,j may both contribute to the attention towards the area U ∩ Pk,j .
However, two key issues can arise from the PP correlation, which jointly lead to the suppression of PP correlation for
reconstruction: i). such a mechanism inadvertently directs attention to the masked patches, which is not desirable; ii). such
position association could be vulnerable to the variation across different clusters, i.e., p,q ∈ Pk,j does not necessarily hold
for all k ∈ [K]. Consequently, as illustrated in Figure 3, to obtain a perfect reconstruction of the masked patch, learning a
relatively large FP correlation Φp→vk,j

from the patches to the correct features is required.

Main idea of the proof. The main idea of our analysis is to track the dynamics of those attention correlations. We first
provide the following lemma of GD updates for Φ(t)

p→vk,m and Υ
(t)
p→q.

Lemma B.1 (Gradient of attention correlations, informal). Given p,q ∈ P , let α(t)
p→vk,m = 1

η

(
Φ

(t+1)
p→vk,m − Φ

(t)
p→vk,m

)
with

k ∈ [K],m ∈ [Nk], and β
(t)
p→q = 1

η

(
Υ

(t+1)
p→q −Υ

(t)
p→q

)
. We use ak,p to indicate that the index of the area that patch p is

located in the cluster Dk.

a. For the same area, α(t)
p→vk,ak,p

≈ Attn
(t)
p→Pk,ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
;

b. If ak,p ̸= 1, for the global area, α(t)
p→vk,1 ≈ −

(
Attn

(t)
p→Pk,1

)2
;

c. For other area m /∈ {ak,p} ∪ {1}, |α(t)
p→vk,m | = O

(α(t)
p→vk,ak,p

+1{n ̸=1}|α(t)
p→vk,1

|

Nk

)
;

d. β
(t)
p→q =

∑
k∈[K] β

(t)
k,p→q, where |β(t)

k,p→q| = O
( |α(t)

k,p→ak,q
|

Ck,ak,q

)
.

Here, β(t)
k,p→q can be interpreted as the projected gradient for PP correlation Υ

(t)
p→q on the k-th cluster. Thus, Lemma B.1.d.

directly implies that the overall increment of PP correlation Υ
(t)
p→q should be negligible compared to the corresponding FP

correlations Φ(t)
p→vk,ak,q

on certain cluster Dk since Ck,ak,q
≫ 1 and K = Θ(1), which implies that all PP correlations

are small.

Moreover, from Lemma B.1, it is observed that the target FP correlation Φ
(t)
p→vk,ak,p

exhibits a monotonically increasing
trend, while FP-correlations for feature vk,1 will monotonically decrease if ak,p ̸= 1. Moreover, FP gradients of the patch p
to other unrelated local features are significantly smaller and become negligible since Nk ≫ 1. Based on these observations,
we now explain how the trend of FP-correlations determines the different learning behaviors varied across different locations
ak,p and information gap ∆.

• For local areas with ak,p > 1: at the beginning of training, attn(0)
p→q = 1

P for any q ∈ P due to zero initialization.
However, with high probability, the count of unmasked patches in the global area Pk,1 significantly exceeds that in other
areas.

1. ∆ = (1 − κs) − 2(1 − κc) ≥ Ω(1): |α(0)
p→vk,1 | ≈

(
Attn

(0)
p→Pk,1

)2
= Ω( 1

P 2(1−κc)
) ≫ Θ( 1

P 1−κs ) =

Attn
(0)
p→Pk,ak,p

≈ α
(0)
p→vk,ak,p

. Thus, Φ(t)
p→vk,1 enjoys a much larger decreasing rate initially, which defines

the decoupling phase of non-target global FP correlations. The significant decrease in Φ
(t)
p→vk,1 leads to a reduction

in Attn
(t)
p→Pk,1

, which in turn makes a drop in |α(t)
p→vk,1 |. As the gradient decreases below α

(t)
p→vk,ak,pb

, Φ(t)
p→vk,ak,p

within the target local area begins to have a larger gradient, which triggers the growth of target FP correlation phase,
leading to continuous growth until convergence.

2. ∆ ≤ −Ω(1): the above relationship reverses, and Φ
(t)
p→vk,ak,p

starts with a fast initial increase, which moves directly

into the growth phase, eliminating the need to decouple Φ
(t)
p→vk,1 .
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• For global areas with ak,p = 1: the global area is exactly the target area that FP correlations should be learned, and thus
the second term in Lemma B.1 will not exist in this case. As a result, the training process also skips the initial decoupling
phase and starts with the growth phase for Φ(t)

p→vk,1 . Such an effect is independent of the value of ∆.

C Additional Related Work
Empirical studies of transformers in vision. A number of works have aimed to understand the transformers in vision from
different perspectives: comparison with CNNs (Raghu et al., 2021; Ghiasi et al., 2022; Park & Kim, 2022), robustness (Bho-
janapalli et al., 2021; Paul & Chen, 2022), and role of positional embeddings (Melas-Kyriazi, 2021; Trockman & Kolter,
2022). Recent studies (Xie et al., 2023; Wei et al., 2022b; Park et al., 2023) have delved into ViTs with self-supervision to
uncover the mechanisms at play, particularly through visualization and analysis of metrics related to self-attention. (Xie
et al., 2023) compared the masked image modeling (MIM) method with supervised models, revealing MIM’s capacity to
enhance diversity and locality across all ViT layers, w which significantly boosts performance on tasks with weak semantics
following fine-tuning. Building on MIM’s advantages, (Wei et al., 2022b) further proposed a simple feature distillation
method that incorporates locality into various self-supervised methods, leading to an overall improvement in the finetuning
performance. (Park et al., 2023) conducted a detailed comparison between masked image modeling (MIM) and contrastive
learning. They demonstrated that contrastive learning will make the self-attentions collapse into homogeneity for all query
patches due to the nature of discriminative learning, while MIM leads to a diverse self-attention map since it focuses on
local patterns.

Theory of self-supervised learning. A major line of theoretical studies falls into one of the most successful self-supervised
learning approaches, contrastive learning (Wen & Li, 2021; Robinson et al., 2021; Chen et al., 2021a; Arora et al., 2019),
and its variant non-contrastive self-supervised learning (Wen & Li, 2022; Pokle et al., 2022; Wang et al., 2021). Some
other works study the mask prediction approach (Lee et al., 2021; Wei et al., 2021; Liu et al., 2022), which is the focus of
this paper. (Lee et al., 2021) provided statistical downstream guarantees for reconstructing missing patches. (Wei et al.,
2021) studied the benefits of head and prompt tuning with masked pretraining under a Hidden Markov Model framework.
(Liu et al., 2022) provided a parameter identifiability view to understand the benefit of masked prediction tasks, which
linked the masked reconstruction tasks to the informativeness of the representation via identifiability techniques from tensor
decomposition.

Theory of transformers and attention models. Prior work has studied the theoretical properties of transformers from
various aspects: representational power (Yun et al., 2019; Edelman et al., 2022; Vuckovic et al., 2020; Wei et al., 2022a;
Sanford et al., 2024a), internal mechanism (Tarzanagh et al., 2023a; Weiss et al., 2021), limitations (Hahn, 2020; Sanford
et al., 2024b), and PAC learning (Chen & Li, 2024). Recently, there has been a growing body of research studying in-context
learning with transformers due to the remarkable emergent in-context ability of large language models (Zhang et al., 2023b;
Von Oswald et al., 2023; Giannou et al., 2023; Ahn et al., 2023; Zhang et al., 2023a; Huang et al., 2023; Nichani et al., 2024;
Li et al., 2024). Regarding the training dynamics of attention-based models, (Li et al., 2023a) studied the training process
of shallow ViTs in a classification task. Subsequent research expanded on this by exploring the graph transformer with
positional encoding (Li et al., 2023b) and in-context learning performance of transformers with nonlinear self-attention and
nonlinear MLP (Li et al., 2024). However, all of these analyses rely crucially on stringent assumptions on the initialization of
transformers and hardly generalize to our setting. (Tian et al., 2023) mathematically described how the attention map evolves
trained by SGD for one-layer transformer but did not provide any convergence guarantee, and the follow-up work (Tian et al.,
2024) considered a generalized case with multiple layers. (Tarzanagh et al., 2023b; Vasudeva et al., 2024) investigated the
implicit bias for self-attention models trained with GD. Furthermore, (Huang et al., 2023) proved the in-context convergence
of a one-layer softmax transformer trained via GD and illustrated the attention dynamics throughout the training process.
More recently, (Nichani et al., 2024) studied GD dynamics on a simplified two-layer attention-only transformer and proved
that it can encode the causal structure in the first attention layer. However, none of the previous studies analyzed the training
of transformers under self-supervised learning, which is the focus of this paper.

D Experiments
Previous studies on the attention mechanisms of ViT-based pre-training approaches have mainly utilized a metric known as
the attention distance (Dosovitskiy et al., 2020). Such a metric quantifies the average spatial distance between the query and
key tokens, weighted by their self-attention coefficients. The general interpretation is that larger attention distances indicate
global understanding, and smaller values suggest a focus on local features. However, such a metric does not adequately
determine if the self-attention mechanism is identifying a unique global pattern. A high attention distance could result
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Figure 4: Attention Diversity Metric: We examined the last layer of ViTs trained by masked reconstruction (MAE), discriminative
self-suprvised learning (MoCo, DINO), and supervised learning (DeiT). Lower values of this metric signify focused attention on a similar
area across different patches, reflecting a global pattern of focus. Conversely, higher values suggest that attention is dispersed, focusing on
different, localized areas. The results show that the MAE model excels in capturing diverse local patterns (see Appendix D for more
details).

from different patches focusing on varied distant areas, which does not necessarily imply that global information is being
effectively synthesized. To address this limitation, we introduce a novel and revised version of average attention distance,
called attention diversity metric, which is designed to assess whether various patches are concentrating on a similar region,
thereby directly capturing global information.

Attention diversity metric, in distance. This metric is computed for self-attention with a single head of the specific layer.
For a given image divided into P × P patches, the process unfolds as follows: for each patch, it is employed as the query
patch to calculate the attention weights towards all P 2 patches, and those with the top-n attention weights are selected.
Subsequently, the coordinates (e.g. (i, j) with i, j ∈ [P ]) of these top-n patches are concatenated in sequence to form a
2 × n-dimensional vector. The final step computes the average distance between all these 2n-dimensional vectors, i.e.,
P 2 × P 2 vector pairs.

Setup. In this work, we compare the performance of ViT-B/16 encoder pre-trained on ImageNet-1K (Russakovsky et al.,
2015) among the following four models: masked reconstruction model (MAE), contrastive learning model (MoCo v3 (Chen
et al., 2021b)), other self-supervised model (DINO (Caron et al., 2021)), and supervised model (DeiT (Touvron et al., 2021)).
We focus on 12 different attention heads in the last layer of ViT-B on different pre-trained models. The box plot visualizes
the distribution of the top-10 averaged attention focus across 152 example images, as similarly done in (Dosovitskiy et al.,
2020).

Implications. The experiment results based on our new metric are provided in Figure 4. Lower values of the attention
diversity metric signify a focused attention on a coherent area across different patches, reflecting a global pattern of focus.
On the other hand, higher values suggest that attention is dispersed, focusing on different, localized areas. It can be seen
that the masked pretraining model is particularly effective in learning more diverse attention patterns, setting it apart from
other models that prioritize a uniform global information with less attention diversity. This aligns with and provides further
evidence for the findings in (Park et al., 2023).

E Overview of the Proof Techniques
In this section, we explain our key proof techniques in analyzing the masked pretraining of transformers. We focus on the
reconstruction of a specific patch Xp for p ∈ P . We aim to elucidate the training phases through which the model learns FP
correlations related to the area associated with p across different clusters k ∈ [K].

Our characterization of training phases differentiates between whether Xp is located in the global or local areas and further
varies based on whether ∆ is positive or negative. Specifically, for ∆ ∈ [Ω(1), 1], we observe distinct learning dynamics for
FP correlations between local and global areas:
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• Local area attends to FP correlation in two-phase: given k ∈ [K], if ak,p ̸= 1, then

1. Φ
(t)
p→vk,1 first quickly decreases whereas all other Φ(t)

p→vk,m with m ̸= 1 and Υ
(t)
p→q do not change much;

2. after some point, the increase of Φ(t)
p→vk,ak,p

takes dominance. Such Φ
(t)
p→vk,ak,p

will keep growing until conver-
gence with all other FP and PP attention correlations nearly unchanged.

• Global areas learn FP correlation in one-phase: given k ∈ [K], if ak,p = 1, the update of Φ(t)
p→vk,1 will dominate

throughout the training, whereas all other Φ(t)
p→vk,m with m ̸= 1 and learned PP correlations remain close to 0.

For ∆ ∈ [−0.5,−Ω(1)], the behaviors of learning FP correlations are uniform for all areas. Namely, all areas learn FP
correlation through one-phase: given k ∈ [K], throughout the training, the increase of Φ(t)

p→vk,ak,p
dominates, whereas all

other Φ(t)
p→vk,m with m ̸= ak,p and PP correlations Υ(t)

p→q remain close to 0.

For clarity, this section will mainly focus on the learning of local feature correlations with a positive information gap
∆ ≥ Ω(1) in Appendices E.2 and E.3, which exhibits a two-phase process. The other scenarios will be discussed briefly in
Appendix E.4.

E.1 GD Dynamics of Attention Correlations
Based on the crucial roles that attention correlations play in determining the reconstruction loss, the main idea of our analysis
is to track the dynamics of those attention correlations. We first provide the following GD updates of Φ(t)

p→vk,m and Υ
(t)
p→q

(see Appendix F.1.1 for formal statements).

Lemma E.1 (FP correlations, informal). Given k ∈ [K], for p ∈ P , denote n = ak,p, let α(t)
p→vk,m = 1

η

(
Φ

(t+1)
p→vk,m −

Φ
(t)
p→vk,m

)
for m ∈ [Nk], and suppose Xp is masked. Then

1. for the same area, α(t)
p→vk,n ≈ Attn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

)2
;

2. if k ∈ Bp, for the global area,

α(t)
p→vk,1

≈ −Attn
(t)
p→Pk,1

·

(
Attn

(t)
p→Pk,1

(
1−Attn

(t)
p→Pk,1

)
+Attn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))
;

3. for other area m /∈ {n} ∪ {1},

α(t)
p→vk,m

≈ Attn
(t)
p→Pk,m

(
1 {n ̸= 1}

(
Attn

(t)
p→Pk,1

)2
−
(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)
.

From Lemma E.1, it is observed that for p ∈ Pk,n, the feature correlation Φ
(t)
p→vk,n exhibits a monotonically increasing

trend over time because α
(t)
p→vk,n ≥ 0. Furthermore, if n > 1, i.e., Pk,n is the local area, Φ(t)

p→vk,1 will monotonically
decrease.
Lemma E.2 (PP attention correlations, informal). Given p,q ∈ P , let β(t)

p→q = 1
η

(
Υ

(t+1)
p→q −Υ

(t)
p→q

)
, and suppose Xp is

masked. Then β
(t)
p→q =

∑
k∈[N ] β

(t)
k,p→q, where β

(t)
k,p→q satisfies

1. if ak,p = ak,q = n, β(t)
k,p→q ≈ attn

(t)
p→q

(
1−Attn

(t)
p→Pk,n

)2
;

2. if k ∈ Bp ∩ Cq, where ak,p = n > 1 and ak,q = 1:

β
(t)
k,p→q ≈ −attn(t)

p→q ·

(
Attn

(t)
p→Pk,1

(
1−Attn

(t)
p→Pk,1

)
+Attn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))
;

3. if ak,q = m /∈ {n} ∪ {1}, where ak,p = n,

β
(t)
k,p→q ≈ attn(t)

p→q ·

(
1 {n ̸= 1}

(
Attn

(t)
p→Pk,1

)2
−
(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)
.

12
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Based on the above gradient update for Υ(t)
p→q, we further introduce the following auxiliary quantity Υ

(t)
k,p→q, which can be

interpreted as the PP attention correlation “projected" on the k-th cluster Dk, and will be useful in the later proof.

Υ
(t+1)
k,p→q := Υ

(t)
k,p→q + ηβ

(t)
k,p→q, with Υ

(0)
k,p→q = 0. (8)

We can directly verify that Υ(t)
p→q =

∑
k∈[K] Υ

(t)
k,p→q.

The key observation by comparing Lemma E.1 and E.2 is that the gradient of projected PP attention β
(t)
k,p→q is smaller

than the corresponding FP gradient α(t)
p→vk,ak,q

in magnitude since attn
(t)
p→q ≈

Attn
(t)
p→Pk,ak,q

(1−γ)Ck,ak,q
. We will show that the

interplay between the increase of Φ(t)
p→vk,n and the decrease of Φ(t)

p→vk,1 determines the learning behaviors for the local
patch p ∈ Pk,n with n > 1, and which effect will happen first depends on the initial attention, which is also determined by
the value of information gap ∆.

E.2 Phase I: Decoupling the Global FP Correlations
We now explain how the attention correlations evolve at the initial phase of the training to decouple the correlations of the
non-target global features when p is located in the local area for the k-th cluster. This phase can be further divided into the
following two stages.

Stage 1. At the beginning of training, Φ(0)
p→vk,m = Υ

(0)
k,p→q = 0, and hence attn

(0)
p→q = 1

P for any q ∈ P , which
implies that the transformer equally attends to each patch. However, with high probability, the number of unmasked global
features in the global area Pk,1 is much larger than others. Hence, Attn

(0)
p→Pk,1

=
|U∩Pk,1|

P ≥ Ω( 1
P 1−κc ) ≫ Θ( 1

P 1−κs ) =

Attn
(0)
p→Pk,m

for m > 1. Therefore, by Lemma E.1 and E.2, we immediately obtain

• α
(0)
p→vk,1 = −Θ

(
1

P 2(1−κc)

)
, whereas α(0)

p→vk,ak,p
= Θ

(
1

P (1−κs)

)
;

• all other FP correlation gradients α(0)
p→vk,m with m ̸= 1, ak,p are small;

• all projected PP correlation gradients β(0)
k,p→q are small.

Since ∆ = (1− κs)− 2(1− κc) ≥ Ω(1), it can be seen that Φ(t)
p→vk,1 enjoys a much larger decreasing rate initially. This

captures the decoupling process of the feature correlations with the global feature vk,1 in the global area for p. It can be
shown that such an effect will dominate over a certain period that defines stage 1 of phase I. At the end of this stage, we will
have Φ

(t)
p→vk,1 ≤ −Ω (log(P )), whereas all FP attention correlation Φ

(t)
p→vk,m with m > 1 and all projected PP correlations

Υ
(t)
k,p→q stay close to 0 (see Appendix H.1).

During stage 1, the significant decrease of the global FP correlation Φ
(t)
p→vk,1 leads to a reduction in the attention score

Attn
(t)
p→Pk,1

. Meanwhile, attention scores Attn
(t)
p→Pk,m

(where m > 1) for other patches remain consistent, reflecting a

uniform distribution over unmasked patches within each area. By the end of stage 1, Attn
(t)
p→Pk,1

drops to a certain level,

resulting in a decrease in |α(t)
p→vk,1 | as it approaches α(t)

p→vk,n , which indicates that stage 2 begins.

Stage 2. Soon as stage 2 begins, the dominant effect switches as |α(t)
p→vk,1 | reaches the same order of magnitude as

α
(t)
p→vk,ak,p

. The following result shows that Φ(t)
p→vk,ak,p

must update during stage 2.

Lemma E.3 (Switching of dominant effects (See Appendix H.2)). Under the same conditions as Theorem 3.1, for p ∈ P ,
there exists T̃1, such that at iteration t = T̃1 + 1, we have

a. Φ
(T̃1+1)
p→vk,ak,p

≥ Ω (log(P )), and Φ
(T̃1+1)
p→vk,1 = −Θ(log(P ));

b. all other FP correlations Φ(t)
p→vk,m with m ̸= 1, ak,p are small;

c. all projected PP correlations Υ(t)
k,p→q are small.

13
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Intuition of the transition. Once Φ
(t)
p→vk,1 decreases to − ∆

2L log(P ), we observe that |α(t)
p→vk,1 | is approximately equal

to α
(t)
p→vk,ak,p

. After this point, reducing Φ
(t)
p→vk,1 further is more challenging compared to the increase in Φ

(t)
p→vk,ak,p

.

To illustrate, a minimal decrease of Φ(t)
p→vk,1 by an amount of 0.001

L log(P ) will yield |α(t)
p→vk,1 | ≤ O(

α(t)
p→vk,n

P 0.002 ). Such a
discrepancy triggers the switch of the dominant effect.

E.3 Phase II: Growth of Target Local FP Correlation

Moving beyond phase I, FP correlation Φ
(t)
p→vk,ak,p

within the target local area p already enjoys a larger gradient α(t)
p→vk,ak,p

than other Φ(t)
p→vk,m with m ̸= ak,p and all projected PP correlations Υ(t)

k,p→q. We can show that the growth of Φ(t)
p→vk,ak,p

will continue to dominate until the end of training by recognizing the following two stages.

Rapid growth stage. At the beginning of phase II, α
(t)
p→vk,ak,p

is mainly driven by Attn
(t)
p→Pk,ak,p

since 1 −

Attn
(t)
p→Pk,ak,p

remains at the constant order. Therefore, the growth of Φ
(t)
p→vk,ak,p

naturally results in a boost in

Attn
(t)
p→Pk,ak,p

, thereby promoting an increase in its own gradient α(t)
p→vk,ak,p

, which defines the rapid growth stage.
On the other hand, we can prove that the following gap holds for FP and projected PP correlation gradients (see Ap-
pendix H.3):

• all other FP correlation gradients α(t)
p→vk,m with m ̸= ak,p are small;

• all projected PP correlation gradients β(t)
k,p→q are small.

Convergence stage. After the rapid growth stage, the desired local pattern with a high target feature-position correlation
Φ

(t)
p→vk,ak,p

is learned. In this last stage, it is demonstrated that the above conditions for non-target FP and projected PP

correlations remain valid, while the growth of Φ(t)
p→vk,ak,p

starts to decelerate as Φ(t)
p→vk,ak,p

reaches Θ(log(P )), resulting

in Attn
(t)
p→Pk,n

≈ Ω(1), which leads to convergence (see Appendix H.4).

E.4 Learning Processes in Other Scenarios
In this section, we talk about the learning process in other settings, including learning FP correlations for the local area
when the information gap is negative, learning FP correlations for the global area, and failure to learn PP correlations.

What is the role of positive information gap? As described in stage 1 of phase 1 in Appendix E.2, the decoupling effect
happens at the beginning of the training because α

(0)
p→vk,1 ≫ α

(0)
p→vk,ak,p

attributed to ∆ ≥ Ω(1). However, in cases where

∆ ≤ −Ω(1), this relationship reverses, with α
(0)
p→vk,1 becoming significantly smaller than α

(0)
p→vk,ak,p

. Similarly, other

FP gradients α(0)
p→vk,m with m ̸= 1, ak,p and all the projected gradients of PP correlation β

(0)
p→q are small in magnitude.

Consequently, Φ(t)
p→vk,ak,p

starts with a larger gradient, eliminating the need to decouple FP correlations for the global area.

As a result, training skips the initial phase, and moves directly into Phase II, during which Φ
(t)
p→vk,ak,p

continues to increase
until it converges (see Appendix I).

Learning FP correlations for the global area. When the patch Xp is located in the global area of cluster k, i.e., ak,p = 1,
the attention score Attn

(0)
p→Pk,1

directed towards the target area Pk,1 is initially higher compared to other attention scores
due to the presence of a significant number of unmasked patches in the global area. This leads to an initially larger gradient
α
(0)
p→vk,ak,p

. Such an effect is independent of the value of ∆. As a result, the training process skips the initial phase, which
is typically necessary for the cases where ak,p > 1 with a positive information gap, and moves directly into Phase II (see
Appendix J).

All PP correlations are small. Integrating the analysis from all previous discussions, we establish that for every cluster
k ∈ [K], regardless of its association with Cp (global area) or Bp (local area), and for any patch Xq with q ∈ P , the
projected PP correlation Υ

(t)
k,p→q remains nearly zero in comparison to the significant changes observed in the FP correlation,

because the gradient β(t)
k,p→q is relatively negligible. Therefore, the overall PP correlation Υ

(t)
p→q =

∑K
k=1 Υ

(t)
k,p→q also

stays close to zero, given that the number of clusters K = Θ(1).
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F Preliminaries
In this section, we will introduce warm-up gradient computations and probabilistic lemmas that establish essential properties
of the data and the loss function, which are pivotal for the technical proofs in the upcoming sections. Throughout the
appendix, we assume Nk = N and Ck,n = Cn for all k ∈ [K] for simplicity. We will also omit the explicit dependence on
X for zn(X). We use kX ∈ [K] to denote the cluster index that a given image X is drawn from.

F.1 Gradient Computations
We first calculate the gradient with respect to Q. We omit the superscript ‘(t)’ and write L(Q) as L here for simplicity.
Lemma F.1. The gradient of the loss function with respect to Q is given by

∂L
∂Q

= −E

∑
p∈M

∑
q

attnp→qM(X)⊤q (Xp − [F (M(X);Q)]p)·

M̃(X)p

(
M̃(X)q −

∑
r

attnp→rM̃(X)r

)⊤
 .

Proof. We begin with the chain rule and obtain

∂L
∂Q

= E[
∑
p∈M

∂[F (M(X);Q)]p
∂Q

([F (M(X);Q)]p −Xp)]

= E[
∑
p∈M

∑
q

∂attnp→q

∂Q
M(X)⊤q ([F (M(X);Q)]p −Xp)]. (9)

We focus on the gradient for each attention score:

∂attnp→q

∂Q
=
∑
r

exp
(
M̃(X)⊤pQ(M̃(X)r + M̃(X)q)

)
(∑

r exp(M̃(X)⊤pQM̃(X)r)
)2 M̃(X)p(M̃(X)q − M̃(X)r)

⊤

= attnp→q

∑
r

attnp→rM̃(X)p(M̃(X)q − M̃(X)r)
⊤

= attnp→qM̃(X)p ·

[
M̃(X)q −

∑
r

attnp→rM̃(X)r

]⊤
.

Substituting the above equation into (9), we complete the proof.

Recall that the quantities Φ
(t)
p→vk,m and Υ

(t)
p→q are defined in Definition A.1. These quantities are associated with the

attention weights for each token, and they play a crucial role in our analysis of learning dynamics. We will restate their
definitions here for clarity.
Definition F.2. (Attention correlations) Given p,q ∈ P , for t ≥ 0, we define two types of attention correlations as follows:

1. Feature Attention Correlation: Φ(t)
p→vk,m

:= e⊤pQ
(t)vk,m for k ∈ [K] and m ∈ [N ];

2. Positional Attention Correlation: Υ(t)
p→q := e⊤pQ

(t)eq.

By our initialization, we have Φ
(0)
p→vk,m = Υ

(0)
p→q = 0.

Next, we will apply the expression in Lemma F.1 to compute the gradient dynamics of these attention correlations.

F.1.1 FORMAL STATEMENTS AND PROOF OF LEMMA E.1 AND E.2

We first introduce some notations. Given r ∈ U , for p ∈ P , k ∈ [K] and n ∈ [N ] define the following quantities:

Jp
r := M(X)⊤r (Xp − [F (M(X);Q)]p)

15
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Ip,k,nr :=

(
M̃(X)r −

∑
w∈P

attnp→wM̃(X)w

)⊤

vk,n

Kp,q
r :=

(
M̃(X)r −

∑
w∈P

attnp→wM̃(X)w

)⊤

eq

Lemma F.3 (Formal statement of Lemma E.1). Given k ∈ [K], for p ∈ P , denote n = ak,p, let α(t)
p→vk,m = 1

η

(
Φ

(t+1)
p→vk,m −

Φ
(t)
p→vk,m

)
for m ∈ [Nk], then

a. for m = n,

α(t)
p→vk,n

= E

[
1{p ∈ M, kX = k}Attn

(t)
p→Pk,n

·z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
a̸=n

z2azn

(
Attn

(t)
p→Pk,a

)2];
b. for m ̸= n,

α(t)
p→vk,m

= E

[
1{p ∈ M, kX = k}Attn

(t)
p→Pk,m

·

( ∑
a̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2
−

(
zmz2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+ z3m

(
1−Attn

(t)
p→Pk,m

)
Attn

(t)
p→Pk,m

))]
.

Proof. From Lemma F.1, we have

α(t)
p→vk,m

= e⊤p (−
∂L
∂Q

)vk,m

= E[1{p ∈ M}
∑
r∈U

attnp→rJ
p
r · Ip,k,mr ]

= E[1{p ∈ M, kX = k}
∑
r∈U

attnp→rJ
p
r · Ip,k,mr ]

where the last equality holds since when kX ̸= k, Ip,k,mr = 0 due to orthogonality. Thus, in the following, we only need to
consider the case kX = k.

Case 1: m = n.

• For r ∈ U ∩ Pk,n, since vk,n′ ⊥ vk,n for n′ ̸= n, and vk,n ⊥ {eq}q∈P we have

Jp
r = znv

⊤
k,n

znvk,n −
∑

q∈U∩Pk,n

attnp→qznvk,n


= z2n

(
1−Attnp→Pk,n

)
Ip,k,nr = (znvk,n −

∑
q∈U∩Pk,n

attnp→qznvk,n)
⊤vk,n = Jp

r /zn

• For r ∈ U ∩ Pk,n′ with n′ ̸= n

Jp
r = zn′v⊤k,n′

znvk,n −
∑

q∈U∩Pk,n′

attnp→qzn′vk,n′


16
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= −z2n′Attnp→Pk,n′

Ip,k,nr =

zn′vk,n′ −
∑

q∈U∩Pk,n

attnp→qznvk,n

⊤

vk,n

= −znAttnp→Pk,n

Putting it together, then we obtain:

e⊤p (−
∂L

∂Q
)vk,n = E

[
1{{p ∈ M, kX = k}}Attn

(t)
p→Pk,n

·z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
a̸=n

z2azn

(
Attn

(t)
p→Pk,a

)2
Case 2: m ̸= n. Similarly

• For r ∈ U ∩ Pk,n

Jp
r = znv

⊤
k,n

znvk,n −
∑

q∈U∩Pk,n

attnp→qznvk,n


= z2n(1−Attnp→Pk,n

)

Ip,k,mr =

znvk,n −
∑

q∈U∩Pk,m

attnp→qzmvk,m

⊤

vk,m

= −zmAttnp→Pk,m

• For r ∈ U ∩ Pk,m

Jp
r = zmv⊤k,m

znvk,n −
∑

q∈U∩Pk,m

attn(t)
p→qzmvk,m


= −z2mAttnp→Pk,m

Ip,k,nr =

zmvk,m −
∑

q∈U∩Pk,m

attn(t)
p→qzmvk,m

⊤

vk,m

= zn(1−Attnp→Pk,m
)

• For r ∈ U ∩ Pk,a, a ̸= n,m

Jp
r = zav

⊤
k,a

znvk,n −
∑

q∈U∩Pk,a

attn(t)
p→qzavk,a


= −z2aAttnp→Pk,a

Ip,k,nr =

zavk,a −
∑

q∈U∩Pk,m

attn(t)
p→qzmvk,m

⊤

vk,m

= −zmAttnp→Pk,m
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Putting them together, then we complete the proof.

Lemma F.4 (Formal statement of Lemma E.2). Given p,q ∈ P , let β(t)
p→q = 1

η

(
Υ

(t+1)
p→q) −Υ

(t)
p→q)

)
, then

β(t)
p→q =

∑
k∈[K]

β
(t)
k,p→q, where β

(t)
k,p→q satisfies

a. if ak,p = ak,q = n,

β
(t)
k,p→q = E

[
1{p ∈ M, kX = k}attn(t)

p→q ·

(∑
a̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
+

z2n

(
1−Attn

(t)
p→Pk,n

)(
1{q ∈ U} −Attn

(t)
p→Pk,n

))]
;

b. for ak,p = n ̸= m = ak,q,

β
(t)
k,p→q = E

[
1{p ∈ M, , kX = k}attn(t)

p→q ·

(∑
a ̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
−

(
z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+ 1{q ∈ U}z2mAttn
(t)
p→Pk,m

))]
.

Proof.

β(t)
p→q = e⊤p (−

∂L
∂Q

)eq = E[1{p ∈ M}
∑
r∈U

attn(t)
p→rJ

p
r K

p,q
r ]

Then we let

β
(t)
k,p→q := E[1{p ∈ M, kX = k}

∑
r∈U

attn(t)
p→rJ

p
r K

p,q
r ].

In the following, we denote ak,p = n and ak,q = m for simplicity.

Case 1: m = n. If q ∈ U ∩ Pk,n:

• For r = q

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n

(
1−Attnp→Pk,n

)
Kp,q

r = (eq − (attnp→qeq +
∑
w ̸=q

attnp→wew))⊤eq

= 1− attnp→q.

• For r ∈ U ∩ Pk,n, and r ̸= q

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n

(
1−Attnp→Pk,n

)
18
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Kp,q
r = (er − (attnp→qeq +

∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

Thus ∑
r∈U∩Pk,n

attnp→rJ
p
r ·Kp,q

r

= z2n

1−
∑

w∈U∩Pk,n

attnp→w


·

−
∑

r∈U∩Pk,n

attnp→rattnp→q + attnp→q


= z2n

(
1−Attnp→Pk,n

)2
attn(t)

p→q

• For r ∈ U ∩ Pk,a, a ̸= n

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2a

∑
w∈U∩Pk,a

attnp→w

Kp,q
r = (er − (attnp→qeq +

∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

Thus

∑
r∈U

attnp→rJ
p
r K

p,q
r = attnp→q ·

z2n
(
1−Attnp→Pk,n

)2
+
∑
a̸=n

z2a
(
Attnp→Pk,a

)2
If q ∈ M∩Pk,n:

• For r ∈ U ∩ Pk,n,

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n

(
1−Attnp→Pk,n

)
Kp,q

r = (er − (attnp→qeq +
∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

• For r ∈ U ∩ Pk,a, a ̸= n

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2a

∑
w∈U∩Pk,a

attnp→w
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Kp,q
r = (er − (attnp→qeq +

∑
w ̸=q

attnp→wew))⊤eq

= −attnp→q

Thus ∑
r∈U

attnp→rJ
p
r K

p,q
r

= attnp→q ·

z2n
(
1−Attnp→Pk,n

)2 − z2n
(
1−Attnp→Pk,n

)
+
∑
a̸=n

z2a
(
Attnp→Pk,a

)2
Putting it together,

β
(t)
k,p→q = E [1{p ∈ M, kX = k}attnp→q·−z2n

(
1−Attnp→Pk,n

)
1{q ∈ M}+ z2n

(
1−Attnp→Pk,n

)2
+
∑
m ̸=n

z2m
(
Attnp→Pk,m

)2
Case 2: m ̸= n. Similarly, if q ∈ U ∩ Pk,m:

• For r ∈ U ∩ Pk,n,

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n(1−Attnp→Pk,n

)

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q

• For r = q

Jp
r = zmv⊤k,m

znvk,n −
∑

w∈U∩Pk,m

attnp→wzmvk,m


= −z2mAttnp→Pk,m

Kp,q
r = (eq − attnp→qeq −

∑
w ̸=w

attnp→wew)⊤eq

= 1− attnp→q

• For r ∈ U ∩ Pk,a, a ̸= n, and r ̸= q

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2aAttnp→Pk,a

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q
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Thus ∑
r∈U

attnp→rJ
p
r K

p,q
r

= attnp→q ·

−z2n
(
1−Attnp→Pk,n

)
Attnp→Pk,n

− z2mAttnp→Pk,m
+
∑
a̸=n

z2a
(
Attnp→Pk,a

)2
If q ∈ M∩Pk,m:

• For r ∈ U ∩ Pk,n,

Jp
r = znv

⊤
k,n

znvk,n −
∑

w∈U∩Pk,n

attnp→wznvk,n


= z2n(1−Attnp→Pk,n

)

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q

• For r ∈ U ∩ Pk,a, a ̸= n

Jp
r = zav

⊤
k,a

znvk,n −
∑

w∈U∩Pk,a

attnp→wzavk,a


= −z2aAttnp→Pk,a

Kp,q
r = (er − attnp→qeq −

∑
w ̸=q

attnp→wew)⊤eq

= −attnp→q

Thus ∑
r∈U

attnp→rJ
p
r K

p,q
r

= attnp→q ·

−z2n
(
1−Attnp→Pk,n

)
Attnp→Pk,n

+
∑
a ̸=n

z2a
(
Attnp→Pk,a

)2 .

Therefore

β
(t)
k,p→q = E [1{p ∈ M, kX = k}attnp→q·(

−z2n
(
1−Attnp→Pk,n

)
Attnp→Pk,n

− 1{q ∈ U}z2mAttnp→Pk,m

+
∑
a̸=n

z2a
(
Attnp→Pk,a

)2 .

Based on the above gradient update for Υ(t)
p→q, we further introduce the following auxiliary quantity, which will be useful in

the later proof.

Υ
(t+1)
k,p→q := Υ

(t)
k,p→q + ηβ

(t)
k,p→q, with Υ

(0)
k,p→q = 0 (10)

It is easy to verify that Υ(t)
p→q =

∑
k∈[K] Υ

(t)
k,p→q.
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F.2 High-probability Event
We first introduce the following exponential bounds for the hypergeometric distribution Hyper (m,D,M). Hyper (m,D,M)
describes the probability of certain successes (random draws for which the object drawn has a specified feature) in m draws,
without replacement, from a finite population of size M that contains exactly D objects with that feature, wherein each draw
is either a success or a failure.

Proposition F.5 ((Greene & Wellner, 2017)). Suppose S ∼ Hyper (m,D,M) with 1 ≤ m,D ≤ M . Define µM := D/M .
Then for all t > 0

P (|S −mµM | > t) ≤ 2 exp

(
− t2

4mµM + 2t

)
.

We then utilize this property to prove the high-probability set introduced in Appendix E.1.

Lemma F.6. For k ∈ [K] n ∈ [N ], define

Ek,n(γ, P ) := {M : |Pk,n ∩ U| = Θ(Cn)}, (11)

we have

P(M ∈ Ek,n) ≥ 1− 2 exp(−cn,1Cn) (12)

where cn,0 > 0 is some constant.

Proof. Under the random masking strategy, given k ∈ [K] and n ∈ [N ], Yk,n = |U ∩ Pk,n| follows the hypergeometric
distribution, i.e. Yk,n ∼ Hyper((1− γ)P,Cn, P ). Then by tail bounds, for t > 0, we have:

P[|Yk,n − (1− γ)Cn| > t] ≤ 2 exp(− t2

4(1− γ)Cn + 2t
)

Letting t = Θ(Cn), we have

P[Yk,n = Θ(Cn)] ≥ 1− 2e−cn,1Cn .

We further have the following fact, which will be useful for proving the property of loss objective in the next subsection.

Lemma F.7. For k ∈ [K] and n ∈ [N ], we have

P(|U ∩ Pk,n| = 0) ≤ exp(−cn,0Cn). (13)

where cn,0 > 0 is some constant.

Proof. By the form of probability density for Hyper((1− γ)P,Cn, P ), we have

P(|U ∩ Pk,n| = 0) =

(
Cn

0

)(
(P−Cn)
(1−γ)P

)(
P

(1−γ)P

)
≤ γCn = exp(−cn,0Cn).

22



How Transformers Learn Diverse Attention Correlations in Masked Vision Pretraining

F.3 Properties of Loss Function
Recall the training and regional reconstruction loss we consider are given by:

L(Q) :=
1

2
E

∑
p∈P

1{p ∈ M}∥[F (M(X);Q,E)]p −Xp∥2
 (14)

Lp(Q) =
1

2
E
[
1{p ∈ M}∥[F (M(X), E)]p −Xp∥2

]
(15)

In this part, we will present several important lemmas for such a training objective. We first single out the following lemma,
which connects the loss form with the attention score.

Lemma F.8 (Loss Calculation). The population loss L(Q) can be decomposed into the following form:

L(Q) =
∑
p∈P

Lp(Q), where

Lp(Q) =
1

2

K∑
k=1

E [1{p ∈ M, kX = k} ·z2ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a ̸=ak,p

z2a

(
Attn

(t)
p→Pk,a

)2
Proof.

Lp(Q)

=
1

2

K∑
k=1

E
[
1{p ∈ M, kX = k} ∥[F (M(X), E)]p −Xp∥2

]

=
1

2

K∑
k=1

E

1{p ∈ M, kX = k}

∥∥∥∥∥∥
∑

m∈[N ]

Attnp→Pk,m
zmvk,m − zak,p

vk,ak,p

∥∥∥∥∥∥
2


(i)
=

1

2

K∑
k=1

E

1{p ∈ M, kX = k}

z2ak,p

(
1−Attnp→Pk,ak,p

)2
+

∑
m̸=ak,p

z2m
(
Attnp→Pk,m

)2
where (i) follows since the features are orthogonal.

We then introduce some additional crucial notations for the loss objectives.

L∗
p = min

Q∈Rd×d
Lp(Q), (16a)

Llow
p =

1

2
(σ2

z +
L2

N − 1
)
∑

k∈[K]

P
(
|U ∩ Pk,zak,p

| = 0
)

(16b)

L̃p(Q) =

K∑
k=1

L̃k,p(Q), where

L̃k,p(Q) =
1

2
E
[
1{p ∈ M, kX = k,M ∈ Ek,zak,p

} ·z2ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a̸=ak,p

z2a

(
Attn

(t)
p→Pk,a

)2 (16c)
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Here σ2
z = E[Zn(X)2]. L⋆

p denotes the minimum value of the population loss in (15), and Llow
p represents the unavoidable

errors for p ∈ P , given that all the patches in Pk,ak,p
are masked. We will show that Llow

p serves as a lower bound for L⋆
p,

and demonstrate that the network trained with GD will attain nearly zero error compared to Llow
p . Our convergence will be

established by the sub-optimality gap with respect to Llow
p , which necessarily implies the convergence to L⋆

p. (It also implies
L⋆
p − Llow

p is small.)

Lemma F.9. For L⋆
p and Llow

p defined in (16a) and (16b), respectively, we have Llow
p ≤ L⋆

p and they are both at the order of

Θ
(
exp

(
−
(
c1P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c2P

κs
)))

where c1, c2 > 0 are some constants.

Proof. We first prove Llow
p ≤ L⋆

p:

L⋆
p = min

Q∈Rd×d

1

2

K∑
k=1

E [1{p ∈ M, kX = k} ·z3ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a̸=ak,p

z2azak,p

(
Attn

(t)
p→Pk,a

)2
≥ min

Q∈Rd×d

1

2

K∑
k=1

E
[
1{p ∈ M, kX = k}1{|U ∩ Pk,ap,k

| = 0} ·z3ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a̸=ak,p

z2azak,p

(
Attn

(t)
p→Pk,a

)2

Notice that when all patches in Pk,ak,p
are masked, Attn

(t)
p→Pk,ak,p

= 0. Moreover,

∑
m ̸=ak,p

z2mAttn
(t)
p→Pk,m

≥ L2

N − 1

by Cauchy–Schwarz inequality. Thus

L⋆
p ≥ 1

2

K∑
k=1

(σ2
z +

L2

N − 1
)P
(
|U ∩ Pk,ak,p

| = 0
)
= Llow

p .

Llow
p = Θ

(
exp

(
−
(
c1P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c2P

κs
)))

immediately comes from Lemma F.7. Furthermore, we

only need to show L⋆
p = O

(
exp

(
−
(
c1P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c2P

κs
)))

. This can be directly obtained by
choosing Q = σId for some sufficiently large σ and hence omitted here.

Lemma F.10. Given p ∈ P , for any Q, we have

L̃p(Q) ≤ Lp(Q)− Llow
p ≤ L̃p(Q) +O

(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

.

where c3, c4 > 0 are some constants.

Proof. The lower bound is directly obtained by the definition and thus we only prove the upper bound.

Lp(Q)− L̃p(Q)

=
1

2

K∑
k=1

E

1{p ∈ M, kX = k,M ∈ Ec
k,zak,p

} ·
(
z2ak,p

(
1−Attn

(t)
p→Pk,ak,p

)2
+
∑

a ̸=ak,p

z2a

(
Attn

(t)
p→Pk,a

)2 )
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≤
K∑

k=1

U2P(M ∈ Ec
k,zak,p

)

≤ O
(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

.

where the last inequality follows from Lemma F.6.

G Overall Induction Hypotheses and Proof Plan
Our main proof utilizes the induction hypotheses. In this section, we introduce the main induction hypotheses for the positive
and negative information gaps, which will later be proven to be valid throughout the entire learning process.

G.1 Positive Information Gap
We first state our induction hypothesis for the case that the information gap ∆ is positive.
Induction Hypothesis G.1. For t ≤ T , given p,q ∈ P , for k ∈ [K], the following holds

a. Φ
(t)
p→vk,ak,p

is monotonically increasing, and Φ
(t)
p→vk,ak,p

∈ [0, Õ(1)];

b. if ak,p ̸= 1, then Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [−Õ(1), 0];

c. |Φ(t)
p→vk,m | = Õ( 1

P 1−κs ) for m /∈ {1} ∪ {ak,p};

d. for q ̸= p, Υ(t)
p→q = Õ( 1

Pκs );

e. Υ
(t)
p→p = Õ( 1

P ).

G.2 Negative Information Gap
Now we turn to the case that ∆ ≤ −Ω(1).
Induction Hypothesis G.2. For t ≤ T , given p,q ∈ P , for k ∈ [K], the following holds

a. Φ
(t)
p→vk,ak,p

is monotonically increasing, and Φ
(t)
p→vk,ak,p

∈ [0, Õ(1)];

b. if ak,p ̸= 1, then Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [−Õ( 1

P−∆ ), 0];

c. |Φ(t)
p→vk,m | = Õ( 1

P 1−κs ) for m /∈ {1} ∪ {ak,p};

d. for q ̸= p, Υ(t)
p→q = Õ( 1

Pκs );

e. Υ
(t)
p→p = Õ( 1

P ).

G.3 Proof Outline

In both settings, we can classify the process through which transformers learn the feature attention correlation Φ
(t)
p→vk,ak,p

into two distinct scenarios. These scenarios hinge on the spatial relation of the area p within the context of the k-th partition
Dk, specifically, whether p is located in the global area of the k-th cluster, i.e. whether ak,p = 1. The learning dynamics
exhibit different behaviors of learning the local FP correlation in the local area with different ∆, while the behaviors for
features located in the global area are very similar, unaffected by the value of ∆. Therefore, through Appendices H to J, we
delve into the learning phases and provide technical proofs for the local area with ∆ ≥ Ω(1), local area with ∆ ≤ −Ω(1)
and the global area respectively. Finally, we will put this analysis together to prove that the Induction Hypothesis G.1 (resp.
Induction Hypothesis G.2) holds during the entire training process, thereby validating the main theorems in Appendix K.
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H Analysis for the Local Area with Positive Information Gap
In this section, we focus on a specific patch p ∈ P with the k-th cluster for k ∈ [K], and present the analysis for the case
that Xp is located in the local area for the k-th cluster, i.e. ak,p > 1. We will analyze the case that ∆ ≥ Ω(1). Throughout
this section, we denote ak,p = n for simplicity. We will analyze the convergence of the training process via two phases
of dynamics. At the beginning of each phase, we will establish an induction hypothesis, which we expect to remain valid
throughout that phase. Subsequently, we will analyze the dynamics under such a hypothesis within the phase, aiming to
provide proof of the hypothesis by the end of the phase.

H.1 Phase I, Stage 1
In this section, we shall discuss the initial stage of phase I. Firstly, we present the induction hypothesis in this stage.

We define the stage 1 of phase I as all iterations t ≤ T1, where

T1 ≜ max

{
t : Φ(t)

p→vk,n
≥ − 1

U

(
∆

2
− 0.01

)
log(P )

}
.

We state the following induction hypotheses, which will hold throughout this period:
Induction Hypothesis H.1. For each 0 ≤ t ≤ T1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈ [0, O

(
(∆

2 −0.01) log(P )

P 0.02

)
];

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [− 1

U

(
∆
2 − 0.01

)
log(P ), 0];

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

H.1.1 PROPERTY OF ATTENTION SCORES

We first introduce several properties of the attention score if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold.

Lemma H.1. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration t ≤ T1, then the
following holds

1. 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

≥ Ω(1);

2. If M ∈ Ek,n, Attn
(t)
p→Pk,n

= Θ
(

1
P 1−κs

)
;

3. Moreover, if M ∈ Ek,1, we have Attn
(t)
p→Pk,1

= Ω
(

1

P
1−κs

2
−0.01

)
;

4. For q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,1

−Attn
(t)
p→Pk,n

P

)
.

Lemma H.2. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration t ≤ T1, then for
m ̸= n, 1, the following holds:

1. For any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,1

−Attn
(t)
p→Pk,n

)
P ).
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2. Moreover, Attn
(t)
p→Pk,m

≤ O
( 1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)
.

The above properties can be easily verified through direct calculations by using the definition in (4) and conditions in
Induction Hypothesis H.1, which are omitted here for brevity.

H.1.2 BOUNDING THE GRADIENT UPDATES FOR FP CORRELATIONS

Lemma H.3. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration 0 ≤ t ≤ T1, then
α
(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

= Θ
(Cn

P

)
= Θ

( 1

P 1−κs

)
.

Proof. By Lemma E.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≤P(M ∈ Ek,n)

· E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


+O(1) · P(M ∈ Ec
k,n)

≤ O
(Cn

P
) +O(exp(−cn,1Cn)

)
≤ O

(Cn

P

)
,

where the second inequality invokes Lemma H.1 and Lemma F.6, and the last inequality is due to exp(−cn,1Cn) ≪ Cn

P .
Similarly, we can show that α(t)

p→vk,n ≥ Ω(Cn

P ).

Lemma H.4. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration 0 ≤ t ≤ T1, then
α
(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,1

| ≥ Ω
( 1

P 2( 1−κs
2 −0.01)

)
= Ω

( 1

P 0.98−κs

)
.

Proof. We first single out the following fact:

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

+
∑

a ̸=1,n

z2az1

(
Attn

(t)
p→Pk,a

)2
≤ z1

(
max
a̸=1,n

z2aAttn
(t)
p→Pk,a

− z2nAttn
(t)
p→Pk,n

− z21Attn
(t)
p→Pk,1

)
(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)
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= −z1(1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

)
. (17)

Therefore, by Lemma E.1, we have

α(t)
p→vk,1

≤ E

[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·

(
−z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

))]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a ̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ P(M ∈ Ek,1) ·

(
−
(
Ω(1) · Ω( 1

P 2×( 1−κs
2 −0.01)

)
))

+O(1) · P(M ∈ Ec
k,1)

≤ −Ω
( 1

P 2×( 1−κs
2 −0.01)

)
= −Ω

( 1

P 0.98−κs

)
where the second inequality invokes Lemma H.1 and the last inequality comes from Lemma F.6.

Lemma H.5. At each iteration t ≤ T1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold, then for any m > 1
with m ̸= n, the following holds

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

N

)
= O

(α(t)
p→vk,n − α

(t)
p→vk,1

P 1−κs

)
.

Proof. By Lemma E.1, for m ̸= n, we have

α(t)
p→vk,m

≤ E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,m

·

 ∑
a̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2 (18)

−α(t)
p→vk,m

≤ E

[
1{kX = k,p ∈ M}Attn

(t)
p→Pk,m

·
(
zmz2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+z3m

(
1−Attn

(t)
p→Pk,m

)
Attn

(t)
p→Pk,m

)]
(19)

For (18), we have

α(t)
p→vk,m

≤ E

1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,m

·

 ∑
a̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2
+ E

1{kX = k, (Ek,1 ∩ Ek,n)c ∩ p ∈ M}Attn
(t)
p→Pk,m

·

 ∑
a̸=m,n

z2azm

(
Attn

(t)
p→Pk,a

)2
≤ E

1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}O

(
1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)

·
(
z21zm

(
Attn

(t)
p→Pk,1

)2
+O

( 1

N

))]
+O(1) · P(M ∈ (Ek,1 ∩ Ek,n)c)

≤ O
( |α(t)

p→vk,1 |
N

)
+O(1) · P(M ∈ (Ek,1 ∩ Ek,n)c)
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≤ O
( |α(t)

p→vk,1 |
P 1−κs

)
where the second inequality is due to Lemma H.2, the last inequality follows from Lemma H.4 and Lemma F.6.

On the other hand, for (19), we can use the similar argument by invoking Lemma H.2 and Lemma H.3, and thus obtain

−α(t)
p→vk,m

≤ O
(α(t)

p→vk,n

P 1−κs

)
.

Putting them together, we have

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
.

H.1.3 BOUNDING THE GRADIENT UPDATES FOR POSITIONAL CORRELATIONS

Lemma H.6. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration 0 ≤ t ≤ T1, then for
q ∈ P \ {p} and ak,q = n, we have β

(t)
k,p→q ≥ 0 and satisfies:

β
(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
.

Furthermore, we have |β(t)
k,p→p| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.

Proof. By Lemma E.2, for q ∈ Pk,n with q ̸= p, we have

β
(t)
k,p→q =

E

1{kX = k,p ∈ M,q ∈ U}attn(t)
p→q ·

z2n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
︸ ︷︷ ︸

H1

+ E
[
1{kX = k,p ∈ M,q ∈ M}attn(t)

p→q ·
(
−z2nAttn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))]
︸ ︷︷ ︸

H2

+ E

1{kX = k,p ∈ M,q ∈ M}attn(t)
p→q ·

∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
︸ ︷︷ ︸

H3

.

Firstly, for H1, notice that

(Cn − 1)H1 = E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z2n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
= Θ(α(t)

p→vk,n
).

For H2, since p,q ∈ M, by Lemma H.1, we can upper bound attn
(t)
p→q by O

(
1
P

)
, thus

−H2 ≤ E
[
1{kX = k,p ∈ M}O

( 1

P

)
·
(
z2nAttn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))]
≤ O

(α(t)
p→vk,n

P

)
.
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Further notice that H3 can be upper bounded by O(H1), putting it together, we have

β
(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
.

Turn to β
(t)
k,p→p, when q = p,

β(t)
n = E

[
1{kX = k,p ∈ M}attn(t)

p→p ·
(
−z2nAttn

(t)
p→Pk,n

(
1−Attn

(t)
p→Pk,n

))]
︸ ︷︷ ︸

J2

+ E

1{kX = k,p ∈ M}attn(t)
p→p ·

∑
m ̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
︸ ︷︷ ︸

J3

.

We can bound J2 in a similar way as H2. Thus, we only focus on further bounding J3:

J3 ≤ E

1{kX = k,p ∈ M}O(
1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

P
) ·

∑
m̸=n

z2m

(
Attn

(t)
p→Pk,m

)2
≤ O

(
|α(t)

p→vk,1 |
P

)
.

where the first inequality holds by invoking Lemma H.1 and the last inequality follows similar arguments as analysis for
(18).

Lemma H.7. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration 0 ≤ t ≤ T1, then for
q ∈ P \ {p} and ak,q = 1, we have β

(t)
k,p→q satisfies:

|β(t)
k,p→q| = O

(
|α(t)

p→vk,n − α
(t)
p→vk,1 |

P

)
+O

(
|α(t)

p→vk,1 |
C1

)
.

Proof. By Lemma E.2, for q ∈ Pk,1, we have

β
(t)
k,p→q =

− E
[
1{kX = k,p ∈ M,q ∈ U}attn(t)

p→q·z21Attn
(t)
p→Pk,1

(1−Attn
(t)
p→Pk,1

) + z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

−
∑

a ̸=1,n

z2a

(
Attn

(t)
p→Pk,a

)2 (20)

−E
[
1{kX = k,p ∈ M,q ∈ M}attn(t)

p→q ·
(
z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)]
︸ ︷︷ ︸

G2

+E

1{kX = k,p ∈ M,q ∈ M}attn(t)
p→q ·

∑
a ̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
︸ ︷︷ ︸

G3

.

For (20) denoted as G1, following the direct calculations, we have

−(C1 − 1)G1 = Θ(α(t)
p→vk,1

)
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We can further bound G2 and G3 in a similar way as H2 and H3 in Lemma H.6 and thus obtain

−G2 ≤ O
(α(t)

p→vk,n

P

)
,

G3 ≤ O

(
|α(t)

p→vk,1 |
P

)
.

which completes the proof.

Lemma H.8. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold at iteration 0 ≤ t ≤ T1, then for
q ∈ P \ {p} and n ̸= ak,q, β(t)

k,p→q satisfies:

|β(t)
k,p→q| = O

(α(t)
p→vk,n − α

(t)
p→vk,1

P

)
.

Proof. By Lemma E.2, for q ∈ Pk,m, we have

β
(t)
k,p→q =

− E
[
1{kX = k,p ∈ M,q ∈ U}attn(t)

p→q·z2mAttn
(t)
p→Pk,m

(1−Attn
(t)
p→Pk,m

) + z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

−
∑

a ̸=n,m

z2a

(
Attn

(t)
p→Pk,a

)2 (21)

−E
[
1{kX = k,p ∈ M,q ∈ M}attn(t)

p→q ·
(
z2n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

)]
︸ ︷︷ ︸

I2

+E

1{kX = k,p ∈ M,q ∈ M}attn(t)
p→q ·

∑
a̸=n

z2a

(
Attn

(t)
p→Pk,a

)2
︸ ︷︷ ︸

I3

.

(21) can be upper bounded by O
( |α(t)

p→vk,m
|

Cm

)
= O

( |α(t)
p→vk,1

−α(t)
p→vk,1

|
NCm

)
= O

( |α(t)
p→vk,1

−α(t)
p→vk,1

|
P

)
, where the first equality

holds by invoking Lemma H.5. I2 and I3 can be bounded similarly as G2 and G3, which is omitted here.

H.1.4 AT THE END OF PHASE I, STAGE 1

Lemma H.9. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.1 hold for all 0 ≤ t ≤ T1 =

O
(

log(P )P 0.98−κs

η

)
, At iteration t = T1 + 1, we have

a. Φ
(T1+1)
p→vk,1 ≤ − 1

U

(
∆
2 − 0.01

)
log(P );

b. Attn
(T1+1)
p→Pk,1

= O
(

1

P (1−κc)+
L
U

(∆
2

−0.01)

)
.

Proof. By comparing Lemma H.3 and Lemma H.4, we have |α(t)
p→vk,1 | ≫ α

(t)
p→vk,n . Then the existence of T1,k =

O
(

log(P )P 0.98−κs

η

)
directly follows from Lemma H.4.

H.2 Phase I, Stage 2

During stage 1, Φ(t)
p→vk,1 significantly decreases to decouple the FP correlations with the global feature, resulting in a decrease

in Attn
(t)
p→Pk,1

, while other Attn
(t)
p→Pk,n

with m > 1 remain approximately at the order of O
(

1
P 1−κs

)
(Θ
(

1
P 1−κs

)
). By
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the end of phase I, (Attn
(t)
p→Pk,1

)2 decreases to O( 1
P 1.96−2κs ), leading to a decrease in |α(t)

p→vk,1 | as it approaches towards

α
(t)
p→vk,n . At this point, stage 2 begins. Shortly after entering this phase, the prior dominant role of the decrease of Φ(t)

p→vk,1

in learning dynamics diminishes as |α(t)
p→vk,1 | reaches the same order of magnitude as α(t)

p→vk,n .

We define stage 2 of phase I as all iterations T1 < t ≤ T̃1, where

T̃1 ≜ max

{
t > T1 : Φ(t)

p→vk,n
− Φ(t)

p→vk,1
≤
(

∆

2L
+

0.01

L
+

c∗1(1− κs)

U

)
log(P )

}
.

for some small constant c∗1 > 0.

For computational convenience, we make the following assumptions for κc and κs, which can be easily relaxed with the
cost of additional calculations.

∆

2

( 1
L

− 1

U

)
+

0.01

L
+

0.01

U
≤ c∗0(1− κs)

U
(22a)

(1− c∗1L

U
)(1− κs) ≤ (1− κc) +

U

L
(
∆

2
+ 0.01) (22b)

Here c∗0 is some small. We state the following induction hypotheses, which will hold throughout this period:
Induction Hypothesis H.2. For each T1 < t ≤ T̃1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈ [0,

c∗0+c∗1
U log(P )];

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈ [− 1

L

(
∆
2 + 0.01

)
log(P ),− 1

U

(
∆
2 − 0.01

)
log(P )];

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1.;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

H.2.1 PROPERTY OF ATTENTION SCORES

We first single out several properties of attention scores that will be used for the proof of Induction Hypothesis H.2.
Lemma H.10. if Induction Hypothesis G.1 and Induction Hypothesis H.2 hold at iteration T1 + 1 ≤ t ≤ T̃1, then the
following holds

1. 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

≥ Ω(1);

2. if M ∈ Ek,n, Attn
(t)
p→Pk,n

∈
[
Ω
(

1
P 1−κs

)
, O
(

1

P (1−c∗1−c∗0)(1−κs)

)]
;

3. Moreover, Attn
(t)
p→Pk,1

= O
(

1

P (1−κc)+
L
U

(∆
2

−0.01)

)
; if M ∈ Ek,1, we have Attn

(t)
p→Pk,1

= Ω
(

1

P (1−κc)+
U
L

(∆
2

+0.01)

)
;

4. for q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

P

)
.

Lemma H.11. if Induction Hypothesis G.1 and Induction Hypothesis H.2 hold at iteration T1 + 1 ≤ t ≤ T̃1, then for
m ̸= n, the following holds:

1. for any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,n

−Attn
(t)
p→Pk,1

P

)
;

2. Moreover, Attn
(t)
p→Pk,m

≤ O
( 1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)
.
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H.2.2 BOUNDING THE GRADIENT UPDATES OF FP CORRELATIONS

Lemma H.12. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.2 hold at iteration T1 + 1 ≤ t ≤ T̃1,
then α

(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

= Ω
( 1

P 1−κs

)
.

Proof. By Lemma E.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≳P(M ∈ Ek,n)

· E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


≥ Ω
(Cn

P

)
where the last inequality invokes Lemma H.10.

Lemma H.13. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.2 hold at iteration T1 + 1 ≤ t ≤ T̃1,
then α

(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,1

| ≥ Ω
( 1

P 2(1−κc)+
U
L (∆+0.02)

)
.

Proof. Following (17), we have

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

+
∑

a ̸=1,n

z2az1

(
Attn

(t)
p→Pk,a

)2
≤ −z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

)
Therefore, by Lemma E.1, we obtain

α(t)
p→vk,1

≤ E
[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·(
−z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

·
(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

))
]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a ̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
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≤ P(M ∈ Ek,1) ·

(
− Ω(1) · Ω

( 1

P 2(1−κc)+
2U
L (∆

2 +0.01)

))
+O(1) · P(M ∈ Ec

k,1)

≤ −Ω
( 1

P 2(1−κc)+
U
L (∆+0.02)

)
where the second inequality invokes Lemma H.10 and the last inequality comes from Lemma F.6. The upper bound can be
obtained by using similar arguments and invoking the upper bound for Attn

(t)
p→Pk,1

in Lemma H.10.

Lemma H.14. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.2 hold at iteration T1 + 1 ≤ t ≤ T̃1,
then for any m > 1 with m ̸= n, the following holds

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
.

The proof is similar to Lemma H.5, and thus omitted here.

H.2.3 BOUNDING THE GRADIENT UPDATES OF POSITIONAL CORRELATIONS

We then summarize the properties for gradient updates of positional correlations, which utilize the identical calculations as
in Section H.1.3.

Lemma H.15. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.2 hold at iteration T1 + 1 ≤ t ≤ T̃1,
then

a. if ak,q = n and q ̸= p, β(t)
k,p→q ≥ 0; β(t)

k,p→q = Θ
(α(t)

p→vk,n

Cn

)
and |β(t)

n | = O(
α(t)

p→vk,n
−α(t)

p→vk,1

P ).

b. if ak,q = 1, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
+O

( |α(t)
p→vk,1

|
C1

)
.

c. if ak,q = m and m ̸= 1, n, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.

H.2.4 END OF PHASE I, STAGE 2

Lemma H.16. Induction Hypothesis H.2 holds for all iteration T1 + 1 ≤ t ≤ T̃1 = T1 +O
(

log(P )P 1−κs

η

)
, and at iteration

t = T̃1 + 1, we have

a. Φ
(T̃1+1)
p→vk,n ≥ c∗1(1−κs) log(P )

U ;

b. Φ
(T̃1+1)
p→vk,1 ≥ −( ∆

2L + 0.01
L ) log(P ).

Proof. The existence of T̃1 = T1 +O
(

log(P )P 1−κs

η

)
directly follows from Lemma H.12 and Lemma H.13. Moreover, since

α
(t)
p→vk,1 < 0, then

Φ(T̃1+1)
p→vk,n

≤
(

∆

2L
+

0.01

L
+

c∗1(1− κs)

U

)
log(P )− 1

U
(
∆

2
− 0.01) ≤ (c∗0 + c∗1)(1− κs)

U
log(P )

where the last inequality invokes (22a). Now suppose Φ
(T̃1+1)
p→vk,n <

c∗1(1−κs) log(P )
U , then Φ

(T̃1+1)
p→vk,1 < −( ∆

2L + 0.01
L ) log(P ).

Denote the first time that Φ(t)
p→vk,1 reaches −( ∆

2L + 0.001
L ) log(P ) as T̃ . Note that T̃ < T̃1 since α

(t)
p→vk,1 , the change of

Φ
(t)
p→vk,1 , satisfies |α(t)

p→vk,1 | ≪ log(P ). Then for t ≥ T̃ , the following holds:

1. Attn
(t)
p→Pk,n

≥ Ω
(

1
P 1−κs

)
;
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2. Attn
(t)
p→Pk,1

≤ O
(

1

P
1−κs

2
+0.001

)
.

Therefore,

|α(t)
p→vk,1

| ≤ E
[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·

z1

(
z2nAttn

(t)
p→Pk,n

(1−Attn
(t)
p→Pk,n

) + z21Attn
(t)
p→Pk,1

(1−Attn
(t)
p→Pk,1

)
)
]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a ̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ O(

α
(t)
p→vk,1

P
1−κs

2 +0.001
) + P(M ∈ Ek,1) ·

(
O(1) ·O

( 1

P
1−κs

2 +0.001

))
+O(1) · P(M ∈ Ec

k,1)

≤ O
( α

(t)
p→vk,1

P
1−κs

2 +0.001

)
+O

( 1

P (1−κs)+0.002

)
.

Lemma H.12 still holds, and thus

|α(t)
p→vk,1

| ≤ O
(α(t)

p→vk,n

P 0.002

)
.

Since |Φ(T̃1+1)
p→vk,1 − Φ

(T̃ )
p→vk,1 | ≥ Ω (log(P )), we have

Φ(T̃1+1)
p→vk,n

≥ |Φ(T̃1+1)
p→vk,1

− Φ(T̃ )
p→vk,1

| · Ω(P 0.002) + Φ(T̃ )
p→vk,n

≫ Ω(P 0.002 log(P )),

which contradicts the assumption that Φ(T̃1+1)
p→vk,n <

c∗1(1−κs) log(P )
U .

H.3 Phase II, Stage 1

For n > 1, we define stage 1 of phase II as all iterations T̃1 + 1 ≤ t ≤ T2, where

T2 ≜ max

{
t : Φ(t)

p→vk,n
≤ (1− κs)

L
log(P )

}
.

We state the following induction hypotheses, which will hold throughout this stage:
Induction Hypothesis H.3. For each T̃1 + 1 ≤ t ≤ T2, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈

[
c∗1(1−κs)

U log(P ), (1−κs)
L log(P )

]
;

b. Φ
(t)
p→vk,1 is monotonically decreasing and

Φ(t)
p→vk,1

∈
[
− 1

L

(
∆

2
+ 0.01

)
log(P )− o(1),− 1

U

(
∆

2
− 0.01

)
log(P )

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1.;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.
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H.3.1 PROPERTY OF ATTENTION SCORES

We first single out several properties of attention scores that will be used for the proof of Induction Hypothesis H.3.

Lemma H.17. if Induction Hypothesis G.1 and Induction Hypothesis H.3 hold at iteration T̃1 + 1 ≤ t ≤ T2, then the
following holds

1. if M ∈ Ek,n, Attn
(t)
p→Pk,n

≥ Ω
(

1

P (1−
c∗1L

U
)(1−κs)

)
. Moreover, if Attn

(t)
p→Pk,n

does not reach the constant level,

1−Attn
(t)
p→Pk,n

= Ω(1); otherwise, 1−Attn
(t)
p→Pk,n

= Ω
(

1

P (U
L

−1)(1−κs)

)
.

2. Attn
(t)
p→Pk,1

= O
( 1−Attn

(t)
p→Pk,n

P (1−κc)+
L
U

(∆
2

−0.01)

)
; if M ∈ Ek,1, we have Attn

(t)
p→Pk,1

= Ω
(

1

P (1−κc)+
U
L

(∆
2

+0.01)

)
;

3. for q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,n

P

)
Lemma H.18. if Induction Hypothesis G.1 and Induction Hypothesis H.3 hold at iteration T̃1 + 1 ≤ t ≤ T2, then for
m ̸= n, the following holds:

1. for any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,n

P

)
.

2. Moreover, Attn
(t)
p→Pk,n

≤ O
( 1−Attn

(t)
p→Pk,1

−Attn
(t)
p→Pk,n

N

)
.

H.3.2 BOUNDING THE GRADIENT UPDATES OF FP CORRELATIONS

Lemma H.19. if Induction Hypothesis G.1 and Induction Hypothesis H.3 hold at iteration T̃1 + 1 ≤ t ≤ T2, then
α
(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

≥ min

{
Ω(

1

P (1− c∗1L

U )(1−κs)
),Ω

(
1

P 2(U
L−1)(1−κs)

)}
.

Proof. By Lemma E.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≳P(M ∈ Ek,n)·

E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


+O(1) · P(M ∈ Ec
k,n)

≳ min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
,Ω

(
1

P 2(U
L−1)(1−κs)

)}
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where the last inequality invokes Lemma H.17 by observing that for M ∈ Ek,n,

Attn
(t)
p→Pk,n

(1−Attn
(t)
p→Pk,n

)2 ≥ min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
· Ω(1),Ω(1) · Ω

(
1

P 2×(U
L−1)(1−κs)

)}
.

Lemma H.20. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.3 hold at iteration T̃1 + 1 ≤ t ≤ T2,
then α

(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,m

| ≥ min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
,Ω

(
1

P (U
L−1)(1−κs)

)}
· Ω
( 1

P (1−κc)+
L
U (∆

2 −0.01)

)
,

|α(t)
p→vk,m

| ≤ max
{
O
( α

(t)
p→vk,n

P (1−κc)+
L
U (∆/2−0.01)

)
, O
( α

(t)
p→vk,n

P 2(1−κc)+
L
U (∆−0.02)−(1− c∗1L

U )(1−κs)

)}
.

Proof. Following (17), we have

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

+
∑

a ̸=1,n

z2az1

(
Attn

(t)
p→Pk,a

)2
≤ −z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a ̸=1,n

z2aAttn
(t)
p→Pk,a

)
.

Therefore, by Lemma E.1, we obtain

α(t)
p→vk,1

≤ E
[
1{kX = k, Ek,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·(
−z1(1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,1

)

(
z2nAttn

(t)
p→Pk,n

+ z21Attn
(t)
p→Pk,1

− max
a̸=1,n

z2aAttn
(t)
p→Pk,a

))
]

+ E

1{kX = k, Ec
k,1 ∩ p ∈ M}Attn

(t)
p→Pk,1

·
∑

a̸=1,n

z21za

(
Attn

(t)
p→Pk,a

)2
≤ −min

{
Ω

(
1

P (1− c∗1L

U )(1−κs)

)
,Ω

(
1

P (U
L−1)(1−κs)

)}
· Ω
( 1

P (1−κc)+
L
U (∆

2 −0.01)

)
where the second inequality invokes Lemma H.17 and (22b). Moreover,

|α(t)
p→vk,1

| ≲E
[
1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}Attn

(t)
p→Pk,1

·(
z1z

2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

+ z31

(
1−Attn

(t)
p→Pk,1

)
Attn

(t)
p→Pk,1

)
]

= E
[
1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}z1z2nAttn

(t)
p→Pk,1

·
(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

]
+ E

[
1{kX = k, Ek,1 ∩ Ek,n ∩ p ∈ M}z31(Attn

(t)
p→Pk,1

)2 ·
(
1−Attn

(t)
p→Pk,1

)]
≤ max

{
O

(
α
(t)
p→vk,n

P (1−κc)+
L
U (∆

2 −0.01)

)
, O

(
α
(t)
p→vk,n

P 2(1−κc)+
2L
U (∆

2 −0.01)−(1− c∗1L

U )(1−κs)

)}
where the second inequality invokes Lemma H.17.

Lemma H.21. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.3 hold at iteration T̃1 + 1 ≤ t ≤ T2 for
any m > 1 with m ̸= n, the following holds

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
.

The proof is similar to Lemma H.5, and thus omitted here.
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H.3.3 BOUNDING THE GRADIENT UPDATES OF POSITIONAL CORRELATIONS

We then summarize the properties for gradient updates of positional correlations, which utilizes the identical calculations as
in Section H.1.3.

Lemma H.22. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.3 hold at iteration T̃1 + 1 ≤ t ≤ T2,
then

a. if ak,q = n and q ̸= p, β(t)
k,p→q ≥ 0; β(t)

k,p→q = Θ(
α(t)

p→vk,n

Cn
) and |β(t)

n | = O
(α(t)

p→vk,n
−α(t)

p→vk,1

P

)
.

b. if ak,q = 1, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
+O

( |α(t)
p→vk,1

|
C1

)
.

c. if ak,q = m and m ̸= 1, n, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.

H.3.4 END OF PHASE II, STAGE 1

Lemma H.23. Induction Hypothesis H.3 holds for all T̃1 + 1 ≤ t ≤ T2, and at iteration t = T2 + 1, we have

a. Φ
(t)
p→vk,n > (1−κs)

L log(P );

b. Attn
(t)
p→Pk,n

= Ω(1) if M ∈ Ek,n.

Proof. By comparing Lemma H.19 and Lemma H.20-H.23, we have α
(t)
p→vk,n ≫ |α(t)

p→vk,m |, |β(t)
k,p→q|. Then the existence

of T2 = T̃1 +O
(

log(P )PΛ

η

)
directly follows from Lemma H.19, where

Λ = max
{
(1− c∗1L

U
), 2(

U

L
− 1)

}
· (1− κs).

The second statement can be directly verified by noticing that Φ(t)
p→vk,n > (1−κs)

L log(P ) while all other attention correlations
are sufficiently small.

H.4 Phase II, Stage 2
In this final stage, we establish that these structures indeed represent the solutions toward which the algorithm converges.

Given any 0 < ϵ < 1, for n > 1, define

T ϵ
2 ≜ max

{
t > T2 : Φ(t)

p→vk,n
≤ log

(
c5

((
3

ϵ

) 1
2

− 1

)
N

)}
. (23)

where c5 is some largely enough constant.

We state the following induction hypotheses, which will hold throughout this stage:
Induction Hypothesis H.4. For n > 1, suppose polylog(P ) ≫ log( 1ϵ ), for each T2 + 1 ≤ t ≤ T ϵ

2 , q ∈ P \ {p}, the
following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈ [ (1−κs)

L log(P ), O(log(P/ϵ))];

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[
− 1

L

(
∆
2 + 0.01

)
log(P )− o(1),− 1

U

(
∆
2 − 0.01

)
log(P )

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;
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e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1.;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

H.4.1 PROPERTY OF ATTENTION SCORES

We first single out several properties of attention scores that will be used for the proof of Induction Hypothesis H.4.

Lemma H.24. if Induction Hypothesis G.1 and Induction Hypothesis H.4 hold at iteration Tn,2 < t ≤ T ϵ
n,2, then the

following holds

1. if M ∈ Ek,n, Attn
(t)
p→Pk,n

= Ω(1) and (1−Attn
(t)
p→Pk,n

)2 ≥ O(ϵ).

2. Moreover, Attn
(t)
p→Pk,1

= O
( 1−Attn

(t)
p→Pk,n

P (1−κc)+
L
U

(∆
2

−0.01)

)
; if M ∈ Ek,1, we have Attn

(t)
p→Pk,1

= Ω
( 1−Attn

(t)
p→Pk,n

P (1−κc)+
U
L

(∆
2

+0.01)

)
;

3. for q ∈ M∩ (Pk,n ∪ Pk,1), attn
(t)
p→q = O

( 1−Attn
(t)
p→Pk,n

P

)
.

Lemma H.25. if Induction Hypothesis G.1 and Induction Hypothesis H.4 hold at iteration Tn,2 < t ≤ T ϵ
n,2,then for m ̸= n,

the following holds:

1. for any q ∈ Pk,m, attn(t)
p→q ≤ O

( 1−Attn
(t)
p→Pk,n

P

)
.

2. Attn
(t)
p→Pk,n

≤ O
( 1−Attn

(t)
p→Pk,n

N

)
, and if M ∈ Ek,m, Attn

(t)
p→Pk,n

= Θ
( 1−Attn

(t)
p→Pk,n

N

)
.

H.4.2 BOUNDING THE GRADIENT UPDATES OF FP CORRELATIONS

Lemma H.26. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.4 hold at iteration T2 + 1 ≤ t ≤ T ϵ
2 ,

then α
(t)
p→vk,n ≥ 0 and satisfies:

α(t)
p→vk,n

≥ Ω(ϵ).

Proof. By Lemma E.2, we have

α(t)
p→vk,n

= E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
= E

1{kX = k, Ek,n ∩ p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
+ E

1{kX = k, Ec
k,n ∩ p ∈ M}Attn

(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m ̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2
≳P(M ∈ Ek,n)·

E

1{kX = k,p ∈ M}Attn
(t)
p→Pk,n

·

z3n

(
1−Attn

(t)
p→Pk,n

)2
+
∑
m̸=n

z2mzn

(
Attn

(t)
p→Pk,m

)2∣∣∣Ek,n


+O(1) · P(M ∈ Ec
k,n)
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≳ Ω(ϵ)

where the last inequality invokes Lemma H.24, Lemma F.6 and the fact that

ϵ ≥ exp(− polylog(K)) ≫ exp (−cn,1Cn) .

Lemma H.27. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.4 hold at iteration Tn,3 < t ≤ T ϵ
n,4,

then α
(t)
p→vk,1 < 0 and satisfies

|α(t)
p→vk,m

| ≤ max

{
O
( α

(t)
p→vk,n

P (1−κc)+
L
U (∆/2−0.01)

)
, O

(
α
(t)
p→vk,n

P 2(1−κc)+
L
U (∆−0.02)−(1− c∗1L

U )(1−κs)

)}

The proof follows the similar arguments Lemma H.20 by noticing that ϵ ≫ P(M ∈ Ec
k,m) for any m ̸= n.

Lemma H.28. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.4 hold at iteration T2 < t ≤ T ϵ
2 , then

for any m > 1 with m ̸= n, the following holds

−O(
α
(t)
p→vk,n

P 1−κs
) ≤ α(t)

p→vk,m
≤ 0

Proof. We first note that

− z1z
2
n

(
1−Attn

(t)
p→Pk,n

)
Attn

(t)
p→Pk,n

− z3m

(
1−Attn

(t)
p→Pk,m

)
Attn

(t)
p→Pk,1

+
∑

a̸=1,n

z2azm

(
Attn

(t)
p→Pk,a

)2
≤ zm

(
max
a̸=m,n

z2aAttn
(t)
p→Pk,a

− z2nAttn
(t)
p→Pk,n

− z2mAttn
(t)
p→Pk,m

)(
1−Attn

(t)
p→Pk,n

−Attn
(t)
p→Pk,m

)
≲ −Ω(1−Attn

(t)
p→Pk,n

)

since when M ∈ Ek,n, we have Attn
(t)
p→Pk,n

= Ω(1) ≫ Attn
(t)
p→Pk,a

. Thus, we have

0 ≥ α(t)
p→vk,m

≳ −E
[
1{kX = k, Ek,n ∩ p ∈ M}Attn

(t)
p→Pk,m

· Ω(1−Attn
(t)
p→Pk,n

)
]

≥ −O
(α(t)

p→vk,n

P 1−κs

)
.

H.4.3 BOUNDING THE GRADIENT UPDATES OF POSITIONAL CORRELATIONS

We then summarize the properties for gradient updates of positional correlations, which utilizes the identical calculations as
in Section H.1.3.

Lemma H.29. For n > 1, if Induction Hypothesis G.1 and Induction Hypothesis H.4 hold at iteration T2 + 1 ≤ t ≤ T ϵ
2 ,

then

a. if ak,q = n and q ̸= p, β(t)
k,p→q ≥ 0; β(t)

k,p→q = Θ
(α(t)

p→vk,n

Cn

)
and |β(t)

n | = O
(α(t)

p→vk,n
−α(t)

p→vk,1

P

)
.

b. if ak,q = 1, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
+O

( |α(t)
p→vk,1

|
C1

)
.

c. if ak,q = m and m ̸= 1, n, |β(t)
k,p→q| = O

(α(t)
p→vk,n

−α(t)
p→vk,1

P

)
.
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H.4.4 END OF PHASE II, STAGE 2

Lemma H.30. For n > 1, and 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). Then Induction Hypothesis H.4 holds for all

T2 < t ≤ T ϵ
2 = T2 +O

(
log(Pϵ−1)

ηϵ

)
, and at iteration t = T ϵ

2 + 1, we have

1. L̃k,p(Q
T ϵ
2+1) < ϵ

2K ;

2. If M ∈ Ek,n , we have (1−Attn
(T ϵ

2+1)
p→Pk,n

)2 ≤ O(ϵ).

Proof. The existence of T ϵ
2,k = T2,k +O( log(Pϵ−1)

ηϵ ) directly follows from Lemma H.26. We further derive

L̃k,p(Q
T ϵ
2+1) =

1

2
E

1{kX = k,p ∈ M∩M ∈ Ek,n}

z2n
(
1−Attnp→Pk,n

)2
+
∑
m ̸=n

z2m (Attnn,m)
2


≤ 1

2K
· γ · U2 · (1 + o(1)) ·O(ϵ)

≤ ϵ

2K

where the first inequality is due to direct calculations by the definition of T ϵ
2 , and the second inequality can be obtained by

setting cn,2 in (23) sufficiently large.

I Analysis for Local Areas with Negative Information Gap
In this section, we focus on a specific patch p ∈ P with the k-th cluster for k ∈ [K], and present the analysis for the case
that Xp is located in the local area for the k-th cluster, i.e. ak,p > 1. Throughout this section, we denote ak,p = n for
simplicity. When ∆ ≤ −Ω(1), we can show that the gap of attention correlation changing rate for the positive case does not
exist anymore, and conversely α

(t)
p→vk,n ≫ α

(t)
p→vk,1 from the beginning. We can reuse most of the gradient calculations in

the previous section and only sketch them in this section.

Stage 1: we define stage 1 as all iterations 0 ≤ t ≤ Tneg,1, where

Tneg,1 ≜ max

{
t : Φ(t)

p→vk,n
≤ (1− κs)

L
log(P )

}
.

We state the following induction hypothesis, which will hold throughout this stage:
Induction Hypothesis I.1. For each 0 ≤ t ≤ Tneg,1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈

[
0, (1−κs)

L log(P )
]
;

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[
−O

(Φ(t)
p→vk,n

P−∆

)
, 0

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.
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Through similar calculations for phase II, stage 1 in Appendix H.3, we obtain the following lemmas to control the gradient
updates for attention correlations.

Lemma I.1. If Induction Hypothesis G.2 and Induction Hypothesis I.1 hold for 0 ≤ t ≤ Tneg,1, then we have

α(t)
p→vk,n

≥ min

{
Ω
( 1

P (1−κs)

)
,Ω

(
1

P 2(U
L−1)(1−κs)

)}
, (24a)

0 ≥ α(t)
p→vk,1

≥ −O
(α(t)

p→vk,n

P−∆

)
, (24b)

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
for all m ̸= n, 1 (24c)

β
(t)
k,p→q = Θ

(α(t)
p→vk,n

Cn

)
for ak,q = n,q ̸= p (24d)

|β(t)
k,p→q| = O

(α(t)
p→vk,n

P

)
+O

( |α(t)
p→vk,1 |
C1

)
for ak,q = 1, (24e)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,n − α

(t)
p→vk,1

P

)
for all ak,p ̸= n, 1. (24f)

Here ∆ < 0 implies |α(t)
p→vk,1 | ≪ α

(t)
p→vk,n . Induction Hypothesis I.1 can be directly proved by Lemma I.1 and we have

Tneg,1 = O
(Pmax{1,2(U

L−1)}·(1−κs) log(P )

η

)
. (25)

Stage 2: Given any 0 < ϵ < 1, define

T ϵ
neg,1 ≜ max

{
t > T1 : Φ(t)

p→vk,n
≤ log

(
c6

((
3

ϵ

) 1
2

− 1

)
P 1−κs

)}
. (26)

where c6 is some largely enough constant. We then state the following induction hypotheses, which will hold throughout
this stage:
Induction Hypothesis I.2. For n > 1, suppose polylog(P ) ≫ log( 1ϵ ), for q ∈ P \ {p}, and each Tneg,1 < t ≤ T ϵ

neg,1, the
following holds:

a. Φ
(t)
p→vk,n is monotonically increasing, and Φ

(t)
p→vk,n ∈

[
(1−κs)

L log(P ), O(log(P/ϵ))
]
;

b. Φ
(t)
p→vk,1 is monotonically decreasing and Φ

(t)
p→vk,1 ∈

[
−O

(Φ(t)
p→vk,n

P−∆

)
, 0

]
;

c. |Φ(t)
p→vk,m | = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P 1−κs

)
for m ̸= 1, n;

d. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,n

Cn

)
for ak,q = n, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,n
−Φ(t)

p→vk,1

P

)
;

e. |Υ(t)
k,p→q| = O

( |Φ(t)
p→vk,1

|
C1

)
+O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q = 1;

f. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,n

−Φ(t)
p→vk,1

P

)
for ak,q ̸= 1, n.

Lemma I.2. If Induction Hypothesis G.2 and Induction Hypothesis I.2 hold for Tneg,1 < t ≤ T ϵ
neg,1, then we have

α(t)
p→vk,n

≥ Ω(ϵ), (27a)
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0 ≥ α(t)
p→vk,1

≥ −O
(α(t)

p→vk,n

P−∆

)
, (27b)

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,n − α
(t)
p→vk,1

P 1−κs

)
for all m ̸= n, 1 (27c)

β
(t)
k,p→q = Θ(

α
(t)
p→vk,n

Cn
) for ak,q = n,q ̸= p (27d)

|β(t)
k,p→q| = O

(α(t)
p→vk,n

P

)
+O

( |α(t)
p→vk,1 |
C1

)
for ak,q = 1, (27e)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,n − α

(t)
p→vk,1

P

)
for all ak,p ̸= n, 1. (27f)

Induction Hypothesis I.2 can be directly proved by Lemma I.2. Furthermore, at the end of this stage, we will have:

Lemma I.3. Suppose polylog(P ) ≫ log( 1ϵ ), then Induction Hypothesis I.2 holds for all Tneg,1 < t ≤ T ϵ
neg,1 =

Tneg,1 +O
(

log(Pϵ−1)
ηϵ

)
, and at iteration t = T ϵ

neg,1 + 1, we have

1. L̃k,p(Q
T ϵ
neg,1+1) < ϵ

2K ;

2. If M ∈ Ek,n , we have
(
1−Attn

(T ϵ
neg,1+1)

p→Pk,n

)2
≤ O(ϵ).

J Analysis for the Global area
When ap,k = 1, i.e. the patch lies in the global area, the analysis is much simpler and does not depend on the value of ∆.
We can reuse most of the gradient calculations in Appendix H and only sketch them in this section.

For Xp in the global region Pk,1, since the overall attention Attn
(0)
p→Pk,1

to the target feature already reaches Ω
(

C1

P

)
=

Ω
(

1
P 1−κc

)
due to the large number of unmasked patches featuring vk,1 when M ∈ Ek,1, which is significantly larger than

Attn
(0)
p→Pk,m

= Θ
(

1
P 1−κs

)
for all other m > 1. This results in large α(t)

p→vk,1 initially, and thus the training directly enters
phase II.

Stage 1: we define stage 1 as all iterations 0 ≤ t ≤ Tc,1, where

Tc,1 ≜ max

{
t : Φ(t)

p→vk,1
≤ (1− κc)

L
log(P )

}
.

We state the following induction hypotheses, which will hold throughout this stage:
Induction Hypothesis J.1. For each 0 ≤ t ≤ Tc,1, q ∈ P \ {p}, the following holds:

a. Φ
(t)
p→vk,1 is monotonically increasing, and Φ

(t)
p→vk,1 ∈

[
0, (1−κc)

L log(P )
]
;

b. Φp→vk,m
is monotonically decreasing for m > 1 and Φp→vk,m

∈
[
−O

( log(P )
N

)
, 0
]
;

c. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,1

C1

)
for ak,q = 1, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,1

P

)
;

d. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,1

P

)
for ak,q ̸= 1.

Through similar calculations for phase II, stage 1 in Appendix H.3, we obtain the following lemmas to control the gradient
updates for attention correlations.
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Lemma J.1. If Induction Hypothesis G.1 (or Induction Hypothesis G.2) and Induction Hypothesis J.1 hold for 0 ≤ t ≤ Tc,1,
then we have

α(t)
p→vk,1

≥ min

{
Ω
( 1

P (1−κc)

)
,Ω

(
1

P 2(U
L−1)(1−κc)

)}
, (28a)

|α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,1

P 1−κs

)
for all m ̸= 1, (28b)

β
(t)
k,p→q = Θ

(α(t)
p→vk,1

C1

)
, for ak,q = 1,q ̸= p, (28c)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,1

P

)
for all ak,q > 1. (28d)

Induction Hypothesis J.1 can be directly proved by Lemma J.1 and we have

Tc,1 = O

(
Pmax{1,2(U

L−1)}·(1−κc) log(P )

η

)
. (29)

Stage 2: Given any 0 < ϵ < 1, define

T ϵ
c,1 ≜ max

{
t > Tc,1 : Φ(t)

p→vk,1
≤ log

(
c7

((
3

ϵ

) 1
2

− 1

)
P 1−κc

)}
. (30)

where c7 is some largely enough constant. We then state the following induction hypotheses, which will hold throughout
this stage:
Induction Hypothesis J.2. For n > 1, suppose polylog(P ) ≫ log( 1ϵ ), q ∈ P \ {p}, for each Tc,1 + 1 ≤ t ≤ T ϵ

c,1, the
following holds:

a. Φ
(t)
p→vk,1 is monotonically increasing, and Φ

(t)
p→vk,1 ∈

[
(1−κc)

L log(P ), O(log(P/ϵ))
]
;

b. Φp→vk,m
is monotonically decreasing for n > 1 and Φp→vk,m

∈
[
−O

( log(P )
N

)
, 0
]
;

c. Υ
(t)
k,p→q = O

(Φ(t)
p→vk,1

C1

)
for ak,q = 1, |Υ(t)

k,p→p| = O
(Φ(t)

p→vk,1

P

)
;

d. |Υ(t)
k,p→q| = O

(Φ(t)
p→vk,1

P

)
for ak,q ̸= 1.

We also have the following lemmas to control the gradient updates for attention correlations.

Lemma J.2. If Induction Hypothesis G.1 (or Induction Hypothesis G.2) and Induction Hypothesis J.1 hold for Tc,1 + 1 ≤
t ≤ T ϵ

c,1, then we have

α(t)
p→vk,1

≥ Ω (ϵ) , |α(t)
p→vk,m

| ≤ O
(α(t)

p→vk,1

P 1−κs

)
for all m ̸= 1 (31a)

β
(t)
k,p→q = Θ

(α(t)
p→vk,1

C1

)
, for ak,q = 1,q ̸= p (31b)

|β(t)
k,p→p|, |β

(t)
k,p→q| = O

(α(t)
p→vk,1

P

)
for all ak,q > 1. (31c)

Induction Hypothesis J.2 can be directly proved by Lemma J.2. Furthermore, at the end of this stage, we will have:

Lemma J.3. Suppose polylog(P ) ≫ log( 1ϵ ), then Induction Hypothesis J.2 holds for all Tc,1 < t ≤ T ϵ
c,1 = Tc,1 +

O
(

log(Pϵ−1)
ηϵ

)
, and at iteration t = T ϵ

c,1 + 1, we have
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1. L̃k,p(Q
T ϵ
c,1+1) < ϵ

2K ;

2. If M ∈ Ek,1 , we have
(
1−Attn

(T ϵ
c,1+1)

p→Pk,1

)2
≤ O(ϵ).

K Proof of Main Theorems
K.1 Proof of Induction Hypotheses
We are now ready to show Induction Hypothesis G.1 (resp. Induction Hypothesis G.2) holds through the learning process.

Theorem K.1 (Positive Information Gap). For sufficiently large P > 0, η ≪ log(P ), Ω(1) ≤ ∆ < 1, Induction

Hypothesis G.1 holds for all iterations t = 0, 1, · · · , T = O
(

epolylog(P )

η

)
.

Theorem K.2 (Negative Information Gap). For sufficiently large P > 0, η ≪ log(P ), −0.5 < ∆ ≤ −Ω(1), Induction

Hypothesis G.2 holds for all iterations t = 0, 1, · · · , T = O
(

epolylog(P )

η

)
.

Proof of Theorem K.1. It is easy to verify Induction Hypothesis G.1 holds at iteration t = 0 due to the initialization
Q(0) = 0d×d. At iteration t > 0:

• Induction Hypothesis G.1a. can be proven by Induction Hypothesis H.1-H.4 a and Induction Hypothesis J.1-J.2 a,
combining with the fact that log(1/ϵ) ≪ polylog(P ).

• Induction Hypothesis G.1b. can be obtained by invoking Induction Hypothesis H.1-H.4 b.

• Induction Hypothesis G.1c. can be obtained by invoking Induction Hypothesis H.1-H.4 c and Induction Hypothesis J.1-
J.2 b.

• To prove Induction Hypothesis G.1d., for q ̸= p, Υ(t)
p→q =

∑K
k=1 Υ

(t)
k,p→q. By item d-f in Induction Hypothesis H.1-

H.4 and item c-d in Induction Hypothesis J.1-J.2, we can conclude that no matter the relative areas q and p belong to
for a specific cluster, for all k ∈ [K], throughout the entire learning process, the following upper bound always holds:

Υ
(t)
k,p→q ≤ max

t∈[T ]
(|Φ(t)

p→vk,n
|+ |Φ(t)

p→vk,1
|)max

{
O
( 1

C1

)
, O
( 1

Cn

)
, O
( 1

P

)}
≤ Õ

( 1

Cn

)
.

Moreover, since K = Θ(1), we then have Υ
(t)
p→q = Õ( 1

Cn
), which completes the proof.

• The proof for Induction Hypothesis G.1d. is similar as before, by noticing that Υ(t)
k,p→p = Õ( 1

P ) for each k ∈ [K],
which is due to Induction Hypothesis H.1-H.4 d and Induction Hypothesis J.1-J.2 c.

The proof of Theorem K.2 mirrors that of Theorem K.1, with the only difference being the substitution of relevant sections
with Induction Hypothesis G.2. For the sake of brevity, this part of the proof is not reiterated here.

K.2 Proof of Theorem 3.1 and Theorem 3.2 with Positive Information Gap

Theorem K.3. Suppose Ω(1) ≤ ∆ ≤ 1. For any 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). We apply GD to train the loss
function given in (2) with η ≪ poly(P ). Then for each p ∈ P , we have

1. The loss converges: after T ⋆ = O
(

log(P )Pmax{2(U
L

−1),1}(1−κs)

η + log(Pϵ−1)
ηϵ

)
iterations, Lp(Q

(T⋆))− L∗
p ≤ ϵ, where

L⋆
p is the global minimum of patch-level construction loss in (7).

2. Attention score concentrates: given cluster k ∈ [K], if Xp is masked, then the one-layer transformer nearly “pays all

attention" to all unmasked patches in the same area Pk,ak,p
, i.e.,

(
1−Attn

(T⋆)
p→Pk,ak,p

)2
≤ O(ϵ).

3. Local area learning feature attention correlation through two-phase: given k ∈ [K], if ak,p > 1, then we have

(a) Φ
(t)
p→vk,1 first quickly decrease with all other Φ(t)

p→vk,m , Υ(t)
p→q not changing much;
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(b) after some point, the increase of Φ(t)
p→vk,ak,p

takes dominance. Such Φ
(t)
p→vk,ak,p

will keep growing until conver-
gence with all other feature and positional attention correlations nearly unchanged.

4. Global area learning feature attention correlation through one-phase: given k ∈ [K], if ak,p = 1, throughout the
training, the increase of Φ(t)

p→vk,1 dominates, whereas all A(t)
1,m with m ̸= 1 and position attention correlations remain

close to 0.

Proof. The first statement is obtained by letting T ⋆ = max{T ϵ
2 , T

ϵ
c,1}+ 1 in Lemma H.30 and Lemma J.3, combining wth

Lemma F.9 and Lemma F.10, which lead to

Lp(Q
(T⋆))− L∗

p ≤ Lp(Q
(T⋆))− Llow

p

≤ L̃p(Q
T⋆

) +O
(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

≤ K · ϵ

2K
+O

(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

< ϵ.

The second statement follows from Lemma H.30 and Lemma J.3. The third and fourth statements directly follow from the
learning process described in Appendix H and Appendix J when Induction Hypothesis G.1 holds.

K.3 Proof of Theorem 3.1 and Theorem 3.2 with Negative Information Gap

Theorem K.4. Suppose −0.5 ≤ ∆ ≤ Ω(1). For any 0 < ϵ < 1, suppose polylog(P ) ≫ log( 1ϵ ). We apply GD to train the
loss function given in (2) with η ≪ poly(P ). Then for each p ∈ P , we have

1. The loss converges: after T ⋆ = O
(

log(P )Pmax{2(U
L

−1),1}(1−κs)

η + log(Pϵ−1)
ηϵ

)
iterations, Lp(Q

(T⋆))− L∗
p ≤ ϵ, where

L⋆
p is the global minimum of patch-level construction loss in (7).

2. Attention score concentrates: given cluster k ∈ [K], if Xp is masked, then the one-layer transformer nearly “pays all

attention" to all unmasked patches in the same area Pk,ak,p
, i.e.,

(
1−Attn

(T⋆)
p→Pk,ak,p

)2
≤ O(ϵ).

3. All areas learning feature attention correlation through one-phase: given k ∈ [K], throughout the training, the
increase of Φ(t)

p→vk,ak,p
dominates, whereas all Φ(t)

p→vk,m with m ̸= 1 and position attention correlations Υ(t)
p→q remain

close to 0.

Proof. The first statement is obtained by letting T ⋆ = max{T ϵ
neg,1, T

ϵ
c,1}+ 1 in Lemma I.3 and Lemma J.3, combining wth

Lemma F.9 and Lemma F.10, which lead to

Lp(Q
(T⋆))− L∗

p ≤ Lp(Q
(T⋆))− Llow

p

≤ L̃p(Q
T⋆

) +O
(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

≤ K · ϵ

2K
+O

(
exp

(
−
(
c3P

κc + 1
{
1 ̸∈ ∪k∈[K]{ak,p}

}
c4P

κs
)))

< ϵ.

The second statement follows from Lemma I.3 and Lemma J.3. The third and fourth statements directly follow from the
learning process described in Appendix I and Appendix J when Induction Hypothesis G.2 holds.
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