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ABSTRACT

Multimodal Large Language Models (MLLMs) hold promise in tackling challeng-
ing multimodal tasks, but may generate seemingly plausible but erroneous output,
making them hard to trust and deploy in real-life settings. Generating accurate un-
certainty metrics quickly for each MLLM response during inference could enable
interventions such as escalating queries with uncertain responses to human ex-
perts or larger models for improved performance. However, existing uncertainty
quantification methods require external verifiers, additional training, or high com-
putational resources, and struggle to handle scenarios such as out-of-distribution
(OOD) or adversarial settings. To overcome these limitations, we present an effi-
cient and effective training-free framework to estimate MLLM output uncertainty
at inference time without external tools, by computing metrics based on the di-
versity of the MLLM’s responses that is augmented with internal indicators of
each output’s coherence. We empirically show that our method significantly out-
performs benchmarks in predicting incorrect responses and providing calibrated
uncertainty estimates, including for OOD and adversarial data settings.

1 INTRODUCTION

Building on the impressive capabilities of Large Language Models (LLMs) in handling a wide va-
riety of text-based tasks (OpenAI et al., 2024), Multimodal Large Language Models (MLLMs) are
LLM-based models that can process the input of different modalities such as images and text, allow-
ing them to perform important downstream multimodal tasks involving both visual comprehension
and language abilities such as visual question answering (Liu et al., 2023c; Hartsock & Rasool).

However, the synthesis of multiple modalities introduces additional challenges in managing uncer-
tainty and mitigating errors in the models’ output. MLLMs need to handle not only the ambiguity
of visual input, but also understand text-based questions, extract relevant visual features, and incor-
porate these features along with any additional text-based information to generate a response. All
these sub-tasks are potential sources of ambiguity and error that may accumulate in the final gener-
ated response, leading to problems such as object hallucination (Bai et al., 2024) or erroneous scene
interpretation. While there are works that attempt to directly mitigate such errors or hallucinations
during model training by adjusting characteristics of the training data (Liu et al., 2023b; Yu et al.,
2024; Wang et al., 2024; Yue et al., 2024), model architecture (Liu et al., 2024; Tong et al., 2024;
Zhai et al., 2023), or training process (Jiang et al., 2024; Yue et al., 2024), these errors cannot be
completely eliminated in practical settings, given real-world data that is noisy and ambiguous.

A complementary approach to such training-based approaches would be to use inference-time meth-
ods to detect potential errors of MLLMs. For a given MLLM, such error detection methods could
indicate when an output is more likely to contain errors, allowing users to treat these output dif-
ferently, for e.g., passing these output to a larger model or human expert to verify its accuracy.
However, a typical MLLM output would not contain any accompanying indication of uncertainty in
its accuracy. Such lack of error detection and uncertainty estimation becomes a major bottleneck
in MLLMs’ deployment in practical applications (e.g., medical imaging analysis (Liu et al., 2023a;
Tian et al., 2024; Lee et al., 2025)), where the reliability of the models’ output is critical. A few
recent works have proposed methods to detect and fix MLLM hallucinations, but have mainly relied
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on either external verifiers (Liu et al., 2023b; Sun et al., 2023) or methods that involve relatively
expensive computation (Zhang et al.; Khan & Fu, 2024) to do so, which may not be practical in
many settings with resource limitations.

In our work, we present UMPIRE, a training-free inference-time method to approximate the uncer-
tainty associated with MLLM output and detect errors. UMPIRE uses a simple but effective method
to compute a metric indicative of how likely an output may contain an error, taking into account
both the uncertainty indicated by the diversity of possible output for a given query, and the quality
of the output reflected by its self-assessment. In summary, we (1) proposed a set of clear desider-
ata that MLLM unlearning metrics should satisfy (section 2.2) and analyzed challenges associated
with existing approaches such as entropy-based methods (section 3.1), (2) proposed a novel MLLM
uncertainty method and metric (section 3), and (4) empirical show how UMPIRE consistently out-
performs all benchmarks with less computational time (section 4).

2 PROBLEM FORMULATION AND DESIDERATA

2.1 PROBLEM FORMULATION

We consider the setting where we have an open-source MLLM M that takes in image I and text
q input1, and produce text output y = [wi]

N
i=1 that are sequences of tokens w from the MLLM

decoder’s vocabulary space. While MLLMs can be implemented with various types of model archi-
tectures, in general we can represent them as conditional probability distributions pM of text output
y over multi-modal input queries (I, q) generated autoregressively, i.e., M(I, q) := pM(y|I, q) =
pM(w1|I, q)pM(w2|I, q, w1) . . . pM(wn|I, q, w1:n−1).

We can apply the MLLM to multi-modal tasks T with task instances t ∈ T , where t := (It, qt)
represents the input query containing both an image portion It and text portion qt, and for clarity
we explicitly denote t∗ := (t; y∗t ) as task instances with known text ground truth output y∗t . The
MLLMs’ response ŷt to the task can then be sampled autoregressively from M(It, qt), and its
performance on the task instance can be evaluated by whether the response matches the ground truth,
i.e. a(M, t∗) := I{ŷt = y∗t }, where I is an appropriate binary indicator that evaluates whether two
responses match in the context of answering task T . The overall MLLM performance on the task T
can be computed as the expected performance over its constituent task instances, i.e., a(M, T ) :=
Et∈T a(M, t), where we overload notation for simplicity.

Given a task T , the goal is to develop a framework that computes a task instance-specific uncertainty
metric u(M; t) for any t ∈ T at inference time that is highly indicative of the expected accuracy
a(M, t∗). Note that for our purposes we are looking for a metric for overall uncertainty, rather
than sub-characterization of either aleatoric or epistemic uncertainty. Such a metric can be used to
assess whether the model output should be trusted or discarded, and have challenging task instances
deferred to a human or more capable MLLM model instead.

2.2 DESIDERATA

Given the above setting, an appropriate uncertainty metric u should satisfy several key desiderata.
First, the metric should be effective in approximating the uncertainty associated with each response.
We assess this on two aspects:

R1 Classification. The metric should be able to distinguish between task instances that the MLLM
will get correct versus the wrong ones. Specifically, for randomly sampled pairs of task instances
that the model will get correct {tc ∈ T | a(M, t∗c) = 1} , and wrong {tw ∈ T |a(M, t∗w) = 0},

P[u(M, tw) > u(M, tc)] ≈ 1 (1)

where the goal is for eq. (1) to be as close to 1 as possible, implying that the metric can clas-
sify with high probability whether the model will get task instances wrong, using just M and
instance input t.

1While we focus on image and text input in the paper, our method can be extended to other modalities in
future works as it does not make use of modality-specific features.
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R2 Calibration. If provided a small dev set of labeled task instances Dv = {t∗}, the metric u could
be easily scaled to ũ ∈ [0, 1] (e.g., using min-max scaling) such that it is well calibrated (Guo
et al.), i.e.,

P(a(M, t∗) = 1 | ũ(M, t) = p) ≈ p, ∀p ∈ [0, 1]. (2)

Metrics satisfying this desiderata will reflect the extent of how uncertain a model is for a given
task response, rather than just provide a binary classification given a threshold based on R1.

In addition, we consider design desiderata that reflects practical considerations for the deployment
of the metric in realistic applications:

R3 Focus on semantics. The metric should depend on diversity in the semantic meaning of the
responses, rather than just lexical variations (e.g., paraphrases of a response with the same
meaning). This is because for many MLLM tasks (e.g., visual question-answering), we are less
concerned about lexical variations (e.g. “the cat hid the rat” and “the rat was hidden by the cat”)
compared to semantically different responses (“the dog sat on the mat”).

R4 Multi-scale variations. The metric should be capable of quantifying and comparing across
a wide range of semantic variation scales. Depending on the task and specific task instances,
sampled MLLM responses could differ only in small nuances or convey very different meanings,
and the metric would need to compare across them.

R5 Response coherence. In addition, the metric should also consider the coherence of each sam-
pled response with respect to the multimodal task instance query (e.g. images and text), rather
than take into account only a single modality.

R6 Computational Efficiency. The metric should be able to be efficiency computed, for it to be
practically deployed. This includes (a) fast computational runtime, and (b) no requirements for
other external pre-trained models or separately trained reward models as they incur additional
costs and may not be feasible for some inference pipelines.

3 METHOD

3.1 CHALLENGES FACED BY EXISTING METHODS

MLLM-specific methods. Although MLLMs’ hallucination and miscalibration problems are well
known (Chen et al.; Rohrbach et al., 2018; Bai et al., 2024), research on task instance-specific
uncertainty quantification for MLLMs is relatively underdeveloped. Most of the existing methods
will violate several of the desiderata in section 2.2, such as those that rely on the use of external
reference/entailment models (Zhang et al.; Sun et al., 2023; Liu et al., 2023b) or supervised training
of classifiers (Li et al., 2024), (violating R6). A common approach is to rely on perturbing input
queries and testing for the consistency of model responses as an indicator, with works proposing
different perturbation approaches (Khan & Fu, 2024; Zhang et al.). However, such approaches tend
to require a large number of perturbed samples to perform well. Even with a relaxation of the design
desiderata by allowing them access to external models or more computation time, these methods
underperform compared to our proposed method, UMPIRE (e.g., see empirical results in section 4),
and may also not be well-calibrated (violating R2).

LLM uncertainty methods. While not originally developed for MLLMs, existing uncertainty quan-
tification methods for LLMs could possibly be extended to the MLLM setting. In this work, we
found that by adapting versions of these approaches to MLLMs, we could sometime achieve even
better effectiveness (e.g., for R1 on classifying task instances) compared to MLLM-specific meth-
ods (see section 4). However, these approaches still do not satisfy the desiderata in section 2.2 and
underperform UMPIRE. For instance, these methods typically do not consider the coherence of the
response with the multimodal input, and hence does not satisfy R5, resulting in poorer effectiveness.

Problems with entropy-based approaches. For both MLLM and LLM-specific existing works,
a majority of these methods rely on computing some form of entropy measure. However, these
approaches face several key challenges. First, entropy values are difficult to compare when they have
different support sets (e.g., distributions defined on 2 discrete classes cannot be readily compared
with those defined on 5 classes). This makes it hard to define entropy metrics that can be used to
compare uncertainty across different task instances (violating R4) without assumptions that may not
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hold in practice (e.g., assumptions that responses follow a Gaussian distribution in high dimensional
semantic space and that such differential entropy can be reliably estimated(Chen et al., 2024)2).
Furthermore, while there are works satisfying R3 by computing some version of entropy in semantic
space Farquhar et al. (2024); Nikitin et al. (2024); Zhang et al., these methods are typically sensitive
to how the sampled responses are clustered (e.g., the number of clusters, model or algorithm for
clustering) and may not consider the magnitude of the semantic differences among responses within
clusters, hence violating R4. In addition, they typically involve external models to establish pairwise
entailment relationships, which incurs significant computational costs and violates R6.

3.2 OVERVIEW OF UMPIRE

To meet these design considerations, our proposed framework and metric draws inspiration from
quantum physics and active learning research that have modeled systems of negative correlations
and characterized sample diversity with determinantal point processes (DPP) (Kulesza, 2012).

Semantic volume. In our context, we posit that MLLMs, in the absence of strong anchor queries
that they have a certain response to, will tend to generate a diverse set of responses when sampled.
Hence, intuitively, given the input query of a task instance (I, q), the more diverse the set of re-
sponses that the MLLM produces when sampled, the more uncertain the MLLM is in its response
to that task instance. We quantify this by computing the semantic volume enclosed by the response
samples mapped on the model’s embedding space. This explicitly takes into account the meaning-
ful coverage and diversity of the model’s responses (R4), while focusing on semantic dissimilarity
rather than lexical variations (e.g., paraphrasing of the same response) which provides a better in-
dication of model confidence for most tasks (R3), and avoids problems on semantic entropy-based
techniques which we will elaborate on in section 3.3.

Implicit incoherence scores. In addition, during the generation process, the MLLM produces
useful information on how coherent it assesses its individual responses are, conditional on the mul-
timodal image and text queries (R5). While not a calibrated metric on its own, the aggregated logits
of each MLLM response contains such information, and we use them to compute our proposed
incoherence scores for each sampled MLLM response. These incoherence scores will be used to
adjust the semantic volume term, similar to how sample quality metrics are used in DPP works, as
we elaborate in section 3.4.

Computation framework. Putting everything together, our UMPIRE framework, which is sur-
prisingly simple but effective, provides an uncertainty indicator for a given task with just a single
batched inference forward pass without additional training (R6), via the following key steps:

1. We generate several responses from the MLLM via stochastic sampling. This process can
be done efficiently via accelerated batch inference methods (Kwon et al., 2023a).

2. For each response we extract (a) the embedding of the response, represented by the last
hidden layer vector of the last response token (before the EOS token), and (b) the associated
incoherence score of that response, computed from product of the probabilities associated
with the generation, from the model.

3. We can then compute our incoherence-adjusted semantic volume metric, which can be used
as an indicator of how uncertain a model is when providing an answer to the task.

We summarize its implementation in algorithm 1, and provide elaboration in the following sections.

3.3 SEMANTIC VOLUME

To compute the semantic volume for a set of MLLM responses, we first map each response to a
normalized continuous vector s ∈ Rp in a p-dimensional semantic embedding space. While this

2Coincidentally, following this assumption leads to a metric that shares a similar form to one of the terms
in our UMPIRE metric (unadjusted semantic volume). However, as explained in section 3.4, our framework
naturally points to the need for the incoherence scores component, that completes the UMPIRE metric and
allowing it to outperform these methods as shown in section 4.
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mapping can be done with external embedding models Reimers & Gurevych (2019), the MLLM re-
sponse generation process itself already computes such a representation, making it computationally
efficient to extract. For a given response ŷi, we use the last hidden layer vector of the last response
token (before the EOS token) as its embedding representation si, which captures the overall seman-
tic meaning of both the preceding input query (It, qt) and the response to it ŷi. Hence, given a
sampled set of n MLLM responses Yn

t = {ŷi}ni=1 for a given task instance t, we can represent it
as an n × p embedding matrix R = [s1, . . . , sn], where si is a 1 × p row vector representing each
MLLM response ŷi.

Algorithm 1 UMPIRE algorithm
1: Input: MLLM model M, task query t = (I, q),

number of response samples n, hyperparam α
2: Output: Uncertainty metric Ṽ
3: Sample a set of n model responses {ŷ}, where

each response ŷi consists of its embedding repre-
sentation si (section 3.3) and incoherence score ci
(eq. (4)).

4: Compute coherence-adjusted semantic volume Ṽ
in eq. (6).

5: return Ṽ

In this embedding space, we can define a
kernel k(si, sj) that characterizes the sim-
ilarity between any two response embed-
dings si and sj . Given the set of sam-
pled MLLM responses Yn

t , we can then
compute the n × n Gram matrix KY ,
where each element KY(i, j) = k(si, sj)
describes the similarity between two re-
sponses. A simple but effective choice
for the kernel is the linear or cosine sim-
ilarity kernel K(si, sj) = si · sTj , which
is commonly used for semantic similarity
computation using LLM embedding mod-
els (Reimers & Gurevych, 2019) where the
embeddings are typically normalized and
most semantic information is contained directionally.

This allows us to compute the semantic volume metric for the set of sampled responses by taking
the logarithm (for numerical stability) of the associated Gram matrix determinant3:

V = log detK = log detRRT . (3)

Intuitively, the larger the semantic volume enclosed by the set of responses, the larger the variation
in semantic content that the MLLM response spans and hence the more uncertain it is in providing
a single response to the query in the task instance.

3.4 IMPLICIT INCOHERENCE SCORES

However, the semantic volume alone defined in eq. (3) alone does not fully capture all available
information regarding the model’s uncertainty. A key consideration is also how coherent the MLLM
considers each response to be with the task instance query. Through the stochastic response sampling
process, the MLLM may generate responses with varying levels of coherence, and it is not optimal
to consider all these responses equally when computing an uncertainty metric.

To quantify the coherence of the multi-modal task instance query and the text responses of the
MLLM, we first compute the model-generated probability scores for each augmented MLLM re-
sponse ỹi, i.e., pi = exp(

∑N
j li,j), where li,j is the log probability of token j of the augmented

response ỹi Note that these model-generated scores are not well-calibrated probabilities – they do
not reflect the probabilities of whether each sequence is correct or will occur in texts, Hence, we do
not use these values directly. As our goal is to compute an uncertainty indicator (the larger the score,
the more uncertain), we define the incoherence score as

ci = expα(1− pi), (4)
where α is a scaling hyperparameter that is fixed across instances of a given task, and as explained in
section 3.5 could be heuristically set even without calibration in cases where there is no development
set Dv and still yield good performance. The incoherence score intuitively captures how uncertain
or the degree of incoherence of each response. For example, if the MLLM is very certain of the
answer, there will only be one possible sample with pi = 1, leading to ci = 1 which is the smallest
possible value. On the other hand, if the MLLM is very uncertain and has a large number of low
probability responses, each of its sampled response will likely have a large value of ci.

3We omit a constant factor of 2 for simplicity which does not affect the metric. For our setting, we also have
n < p as the semantic embedding space is usually high dimensional.
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3.5 INCOHERENCE-ADJUSTED SEMANTIC VOLUME

Given the response-specific incoherence scores and aggregated response set-level semantic volume
metric, a natural way to combine these into a single metric would be to scale the response embed-
dings by the incoherence scores – responses that are rated more incoherent by the MLLM based
on eq. (4) are scaled to larger magnitude and will have more influence over the adjusted semantic
volume score. Specifically, each response embedding si could be scaled by its incoherence score,
i.e., s̃i = expα(1− pi)si, to generate an incoherence-adjusted embedding matrix,

R̃ := diag [expα(1− p)]R. (5)

The corresponding Gram matrix and semantic volume score in eq. (3) will then be computed based
on this adjusted embedding matrix. In the case of the linear kernel we can compute the incoherence-
adjusted semantic volume, which surprisingly can be simplified into an easily interpretable form:

Ṽ := log det R̃R̃T = V + α̃E[1− p], (6)

where the first term is the unadjusted semantic volume metric, and the expectation in the second
term is computed empirically by Monte Carlo sampling of the MLLM responses (see appendix A.2
for derivation). The hyperparameter α̃ = 2nα, where n is the number of sampled responses, can be
interpreted as balancing the contribution between the two terms, and in practice could be roughly
set such that the two terms have the same order of magnitude to avoid the need for fine-tuning while
still producing good performance. For a given task T and a fixed number n of sampled responses,
a task instance t ∈ T that results in very diverse sampled responses (high semantic volume), and
a high expected incoherence score (high average 1 − pi values for each response i) will result in a
high metric score indicating high uncertainty.

4 EXPERIMENTS

Experiment settings. We adapt the experimental set-up of Kuhn et al. (2023) for the multi-
modality setting. For datasets, we use a range of general visual question-answering benchmark
datasets such as VQAv2 (Goyal et al., 2017), OKVQA (Marino et al., 2019) and AdVQA (Li et al.,
2021) that include various scenarios such as out-of-distribution and adversarial settings. We use
Llava-v1.5-13b (Liu et al., 2023c) as the MLLM for our main experimental results, but show
that our results are robust to different model sizes and model families in appendix A.5. To bench-
mark our UMPIRE framework, we considered not only methods from past works on MLLM uncer-
tainty quantification, (1) Neighborhood Consistency (Khan & Fu, 2024), but also extended methods
developed for LLM uncertainty quantification to the MLLM setting, which sometimes have even
better performance than recent MLLM-focused methods: (2) LN-Entropy (Malinin & Gales, 2021),
(3) Semantic Entropy (Kuhn et al., 2023), and EigenScore (Chen et al., 2024). More details on
benchmarks are in appendix A.1, and additional ablation results are in appendix A.4.

4.1 CLASSIFICATION OF UNCERTAIN RESPONSES

We first consider the performance of UMPIRE and the benchmark algorithms in R1 , i.e., pre-
dicting whether the MLLM M will generate the right response for a specific task instance t, i.e.,
a(M, t∗) = 1. Note that the lefthand side of eq. (1) corresponds to the definition of the AUROC
of whether the metric u can classify between tc and tw. An AUROC score of 1 indicates that the
metric can perfectly distinguish the correct and incorrect predictions, while 0.5 would correspond to
the expected performance of a random baseline. Fig. 1 shows the AUROC evaluated over the test
dataset for UMPIRE and the benchmarks on the VQAv2, OKVQA and AdVQA datasets. We see
that UMPIRE consistently outperforms all other benchmarks, especially the multi-modal specific
Neighborhood Consistency method, which faces significant difficulty in the OKVQA dataset that
covers out-of-distribution scenarios and the AdVQA that covers adversarial scenarios.

In practice, users will need to set thresholds based on their use cases to target some minimum require-
ments such as False Positive Rates (FPR). In table 1, we also show how our UMPIRE framework’s
better AUROC performance for R1 translates to consistently higher True Positive Rates (TPR) given
various FPR requirements.
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Figure 1: Performance comparison of different uncertainty quantification methods across VQA
tasks. The metrics include AUROC (higher is better), CPC (higher is better), and ECE (lower is
better). UMPIRE consistently surpasses existing approaches across all datasets.

TPR at 0.1 FPR TPR at 0.01 FPR
VQAv2 OKVQA AdVQA VQAv2 OKVQA AdVQA

Neighborhood Consistency 0.362 0.095 0.189 0.049 0.008 0.019
LN-Entropy 0.282 0.244 0.168 0.057 0.030 0.066
Semantic Entropy 0.574 0.321 0.420 0.177 0.068 0.124
EigenScore 0.601 0.340 0.466 0.215 0.075 0.172
Ours 0.629 0.368 0.477 0.230 0.091 0.185

Table 1: UMPIRE outperforms all the benchmarks at different FPR levels across all datasets.

4.2 UNCERTAINTY CALIBRATION

Next, we assess whether UMPIRE and benchmarks satisfy R2. Similar to past uncertainty cali-
bration works (Guo et al.), we first sort the task instances in a given task t ∈ T by the computed
uncertainty metric u(M, t), and then bin the task instances with each equally-sized bin bj associated
with its highest metric value uj . We can then compute the expected accuracy of the responses in
each bin, āj =

∑
tj∈bj

a(M, tj)/|bj | as an estimation of the expected accuracy of responses in that
bin. Given this, we can assess how well-calibrated the various metrics are, (1) as-is by computing
the calibration pearson correlation (CPC), and (2) after scaling with the help of a small dev set Dv

by computing the expected calibration error (ECE).

Calibration Pearson Correlation. We define the calibration Pearson correlation (CPC) score as
the correlation between uj and aj across all bins. The higher the CPC, the more linearly correlated
the metric is to the estimated probability that the MLLM’s answer is accurate. As can be seen
in fig. 1, UMPIRE consistently performs significantly better than benchmarks across all settings,
achieving a CPC of 0.987, 0.949, and 0.983 on VQAv2, OKVQA, and AdVQA, respectively.

Expected Calibration Error. The strong linear relationship indicated by UMPIRE’s CPC score
suggests that a simple scaling process would be sufficient to make the UMPIRE metric well-
calibrated and satisfy R2. We can evaluate the expected calibration error (ECE)(Guo et al.) of
all metrics by first using a development set of task instances (5% of the dataset) to perform min-max
scaling before computing the ECE. As can be seen in fig. 1, UMPIRE achieves a very low ECE
of around 0.04 on all datasets, and is significantly lower than benchmarks especially for the more
challenging OKVQA (out-of-distribution) and AdVQA (adversarial) datasets.

4.3 SELECTIVE ANSWERING

We also consider a realistic scenario where a provider deploying an MLLM for question answering
may benefit from selectively abstaining from responding to uncertain queries. An effective uncer-
tainty metric should allow the model to prioritize answering only when it is confident (have low
uncertainty), improving overall accuracy.
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VQAv2 OKVQA AdVQA
Neighborhood Consistency 0.886 0.629 0.683
LN-Entropy 0.899 0.741 0.705
Semantic Entropy 0.902 0.734 0.742
EigenScore 0.913 0.753 0.753
Ours 0.916 0.761 0.761

Table 2: Comparison of Area under the rejection-accuracy curve (AURAC) across VQAv2,
OKVQA, and AdVQA datasets for different uncertainty quantification methods. Our proposed
method achieves the highest performance on all datasets

Running time (s)
Neighborhood Consistency 30.349
LN-Entropy 21.351
Semantic Entropy 30.406
EigenScore 21.353
Ours 21.351

Table 3: Comparison of running times (in seconds) per query for different uncertainty quantification
methods, averaged on 3000 samples of VQAv2 dataset. UMPIRE achieves the lowest running time,
matching the most efficient baseline methods. *Note that Neighborhood Consistency costs extra
time to train the VQG model on VQAv2 train split, which we did not include here. All experiments
are conducted on a single L40 GPU.

To evaluate this capability, we follow past works Hüllermeier & Waegeman; Farquhar et al. (2024)
by analying the Rejection-Accuracy curve, which measures the accuracy of the model on the most-
confident X% of task instances, as determined by the uncertainty method under evaluation. A well-
performing uncertainty method should yield higher accuracy on the confident subset compared to the
excluded subset, with rejection accuracy improving as more uncertain inputs are rejected. Similar to
Farquhar et al. (2024), we calculate the Area Under the Rejection-Accuracy Curve (AURAC), which
quantifies the total improvement in accuracy across all rejection thresholds X%. The AURAC score
approaches 1 as an uncertainty method becomes more precise at detecting likely incorrect responses.

As shown in table 2, our proposed method consistently achieves the highest AURAC for all datasets,
VQAv2 (0.916), OKVQA (0.761), and AdVQA (0.761). These results demonstrate that our ap-
proach provides a more reliable uncertainty estimate, allowing for better decision-making in selec-
tive answering scenarios. By effectively identifying uncertain responses, our method enables the
provider to optimize answer acceptance rates while maintaining high accuracy.

4.4 COMPUTATIONAL EFFICIENCY

Finally, we assess the computational efficiency of the benchmarks, i.e., R6. A major advantage of
our proposed UMPIRE framework is its computationally efficiency, on top of its consistently better
empirical performance as described in the above sections. We can see in table 3 that UMPIRE
takes almost 30% less time at 21.35s per query, compared to Semantic Entropy which takes 30.41s.
This process can also be further sped up given recent advances in accelerated parallel LLM batch
inference (Kwon et al., 2023b; Zhu et al., 2024; Gim et al., 2024).

5 CONCLUSION

In our work, we present UMPIRE, a novel training-free inference-time method and metric that can
be used to approximate the uncertainty associated with MLLM output for each task instance. We
proposed a set of clear desiderata that MLLM unlearning metrics should satisfy, analyzed chal-
lenges associated with existing approaches such as entropy-based methods, and empirical show how
UMPIRE consistently outperforms all benchmarks with less computational time.
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A APPENDIX

A.1 BENCHMARKS

Datasets For our experiments, we utilize a diverse set of general visual question-answering benchmark
datasets to ensure a comprehensive evaluation across different scenarios. Specifically, we use VQAv2 (Goyal
et al., 2017), OKVQA (Marino et al., 2019), and AdVQA (Li et al., 2021), which include challenging cases
such as out-of-distribution and adversarial settings. We evaluate our method using the first 15,000 samples
from the validation split of VQAv2, along with the full validation sets of OKVQA (5,000 samples) and AdVQA
(10,000 samples). These datasets provide a robust test bed for assessing the effectiveness of our approach across
different types of VQA tasks.

Baselines The details of each baseline are as follows.

• Neighborhood Consistency (Khan & Fu, 2024). This method tries to examine the reliability of the
model via the consistency of the model’s responses over the visual rephrased questions generated by a
small proxy Visual Question Generation (VQG) model. We try to implement this method by training
BLIP (Li et al., 2022) as the VQG model with its default setting. To ensure a fair comparison, we
use Llava-v1.5-13b as the VQA model, aligning with the model used in our experiments.

• Length-normalized Entropy (LN-Entropy) Malinin & Gales (2021). This approach normalizes
the joint log-probability of each sequence by dividing it by the sequence length and is proposed by
Malinin & Gales (2021) for uncertainty quantification in LLM. Following Kuhn et al. (2023), we also
apply multinomial sampling instead of using an ensemble of models.

• Semantic Entropy Kuhn et al. (2023). This method introduces a concept of semantic entropy, which
measures the uncertainty over different meanings. Following their algorithms, we try to cluster the
generated sequences by Deberta as the text entailment model and then compute the entropy based
on these clusters.

• EigenScore Chen et al. (2024) We follow their default settings and compute the log determinant of
the covariance matrix by Eigenvalues via Singular Value Decomposition (SVD). Unlike us using the
Gram matrix, they use the covariance matrix to show the correlation between samples. This leads to
very small values of the covariance matrix, however, in their default settings, they use 1e − 3 jitter
term, which is significantly large, compared to the values of the matrix. Therefore, we apply a smaller
jitter term of 1e− 8 to improve their performance as well as a fairer comparison.

Other experimental settings In this work, we primarily use LLaVA-v1.5-13B as our MLLM, with
further analysis on other models provided in appendix A.5. Following past work Kuhn et al. (2023), for each
image-question pair t, the MLLM generates the most-likely answer using a low-temperature setting (T = 0.1)
and we use this answer ŷt to evaluate the correctness of the model when answering this pair. We use ROUGE-L
and exact match as the evaluation functions a(M, t∗), given the model answer ŷt and ground truth answer y∗

t , to
assess the model performance. In the main paper, we report results using exact match, while additional results
with ROUGE-L with varying parameters can be found in appendix A.4. For the computation of the various
uncertainty metrics that require multiple samples, we apply Monte Carlo sampling to generate n samples from
the MLLM using T = 1 and top p = 0.9. In the main paper, we use the number of generated samples n = 50,
and ablation results on the impact of this hyperparameter are presented and discussed in appendix A.3.

A.2 INCOHERENCE-ADJUSTED SEMANTIC VOLUME METRIC

In this section, we provide the explicit derivation of how our incoherence-adjusted semantic volume metric can
be simplified to a weighted sum of two terms in eq. (6), an easily interpretable form.

Ṽ = log det(R̃R̃T ) (7)

= log det (exp(α diag(1− p))R) (exp(α diag(1− p))R)T (8)

= log
[
det (exp(α diag(1− p))) det

(
RRT

)
det

(
exp(α diag(1− p))T

)]
(9)

= log det(RRT ) + 2 log det (exp(α diag(1− p)) (10)

=V + 2 log
∏
i

exp(α(1− pi)) (11)

=V + α̃E[1− p] (12)
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Figure 2: Ablation study on the (a) number of generations and (b) different evaluation functions
a(M, t∗) for our method. (a) shows the AUROC performance as the number of generations in-
creases, demonstrating the impact of additional generations. (b) compares AUROC across various
correctness evaluation metrics a(M, t∗), including multiple levels of ROUGE-L and exact match.
Our method consistently outperforms other baselines across different settings.

where eq. (8) follows from the definition of R̃ in eq. (5), eq. (9) uses the identity det(AB) = det(A) det(B),
eq. (10) the identity log(AB) = log(A) + log(B), eq. (11) the definition of semantic volume in eq. (3), and
eq. (12) noting that the sum is over a Monte-carlo sampling of model responses, with α̃ = 2nα redefined to
absorb constants including n which is the number of sampled responses.

A.3 NUMBER OF GENERATIONS ANALYSIS

To analyze the impact of the number of generations on evaluation performance, we conduct an ablation study
by varying the number of generated outputs on the subset of the validation set of VQAv2. As shown in fig. 2 (a),
while increasing the number of generations generally improves AUROC across all methods, UMPIRE achieves
higher performance with significantly fewer generations compared to baselines. This indicates that our method
is more efficient, requiring fewer samples to reach strong performance, whereas other methods continue to rely
on additional generations for improvement. The results highlight the robustness of our approach in capturing
correctness signals effectively, even with a limited number of generations.

A.4 EVALUATION FUNCTIONS a(M, t∗) ANALYSIS

Following the setting in Kuhn et al. (2023), we further evaluate the performance of our method and baselines un-
der various levels of the ROUGE-L. Fig.2(b) presents the AUROC scores across different evaluation functions
a(M, t∗) on a subset of the VQAv2 validation set, demonstrating that our method consistently outperforms
baseline approaches regardless of the chosen evaluation functions. These results highlight the versatility and
robustness of our approach across different correctness evaluation criteria.

A.5 MODEL SIZES AND FAMILIES ANALYSIS

We analyze the impact of model size and architecture family on evaluation performance by comparing different
models across various sizes and families on a subset of the VQAv2 validation set. As shown in fig. 3, we observe
a slight increase in AUROC as the model size increases within the same family. This suggests that larger models
tend to generate more informative and reliable outputs. Additionally, our method consistently outperforms
baselines across all tested models, demonstrating its robustness regardless of model size or architecture. These
findings highlight that while larger models can enhance performance, our approach remains effective across
different model scales and families.

A.6 PROMPTS

Following Liu et al. (2023c), we use the following prompt for the VQA tasks:

<image>. Answer this question in a word or a phrase. {question}
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Figure 3: Ablation study across different models, evaluating AUROC performance for LN-Entropy,
EigenScore, and UMPIRE. The results indicate that UMPIRE consistently achieves higher AUROC
across various models, including LLaVA-7B, LLaVA-13B, Mllama-11B, Mllama-90B,
and CogVLM2-19B. This highlights the robustness and effectiveness of our approach across differ-
ent model architectures.
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