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Abstract

Memory-augmented Large Language Models
(LLMs) can recall and reason on recalled past
contexts (named recall-reason step). However,
multiple recall-reason steps may produce bi-
ased thoughts, i.e., inconsistent reasoning paths
over the same recalled results. Motivated by
that humans only memorize the metacognition
thoughts in mind rather than event details, we
propose a novel memory-augmented frame-
work called Think-in-Memory (TiM) to flex-
ibly utilize the historical context. Concretely,
we formulate a self-organizing memory mecha-
nism equipped with a metacognition space and
stationary operation actions, leveraging role-
playing LLM agents to achieve thought gen-
erator, retriever, and organizer. Supported by
such multi-agent self-organization, TiM can im-
itate human-level metacognition to memorize
and update history context as metacognition
thoughts without suffering from reasoning in-
consistency. TiM can process ultra-long his-
tory context in a plug-and-play paradigm to
benefit downstream interactions. To conduct
evaluations under more complex tasks, clinical
diagnosis is adopted as the evaluation task: (1)
we formulate a role-play simulator to simulate
long-term interactions between the doctor and
patient. (2) we collect a multi-turn medical
consultations dataset from the real-world hos-
pitals. Besides, two daily conversation datasets
are also involved. Experiments demonstrate
that our method achieves remarkable improve-
ments on memory-augmented long-term dia-
logues about both daily and medical topics.

1 Introduction

Impressive advancements in Large Language Mod-
els (LLMs) have revolutionized the interaction be-
tween human and intelligence systems, as demon-
strated by ChatGPT (OpenAl, 2022) and GPT-4
(OpenAl, 2023). These advancements have particu-
larly showcased superior performance from finance
(Yang et al., 2023) and healthcare (Zhang et al.,

2023c¢) to business and customer service (Eloun-
dou et al., 2023). Nevertheless, it is well-known
that existing LLMs suffer from the inability to pro-
cess long-form inputs (Liu et al., 2022), preventing
them from generalizing to real-world scenarios be-
yond fix-sized inputs (Wang et al., 2024).

Contextual information is particularly critical
in LLM-based interactions, e.g., medical Al assis-
tants (Zhang et al., 2023¢) may struggle to provide
accurate clinical diagnosis due to forgetting cru-
cial medical information of the long-term history.
Various studies are conducted to improve the capa-
bilities of LLMs to handle long-term inputs, which
can be roughly divided into two types:

A Internal Memory aims to reduce the com-
putational costs of self-attention for expanding the
sequence length (Fournier et al., 2023). To accom-
modate longer input texts, special positional encod-
ing should be exploited to learn relative positions.
For example, (Phang et al., 2022) explored a block-
local Transformer with global encoder tokens, com-
bined with additional long input pre-training.

A External Memory generally utilizes a phys-
ical space as a memory cache to store historical
information. Then relevant history can be read
from the memory cache to augment LLMs without
forgetting. In particular, both token and raw text
can be maintained as history in the memory. For
instance, (Borgeaud et al., 2022) demonstrated a
significant performance improvement by augment-
ing LLMs with an external memory cache contain-
ing trillions of tokens assisted by BERT embed-
dings (Kenton and Toutanova, 2019). Token-based
memory mechanism requires to adjust the LLM’s
architecture for adaption with additional costs.

By accessing an external memory cache, the aug-
mented LLMs have achieved new state-of-the-art
records in various language modeling benchmarks
(Wang et al., 2024), generally outperforming in-
ternal memory. Therefore, this work focuses on
designing an external memory mechanism to en-
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Figure 1: Illustration of Inconsistent Reasoning Path. (Left): Existing memory mechanisms mainly save raw text
of previous turns, which require repeated reasoning over the same history. This easily leads to the inconsistent
reasoning path (i.e., left red part) with wrong response. (Right): The proposed TiM stores the thoughts of LLMs for
previous turns, which can avoid such inconsistency without repeated reasoning (i.e., right red part).

hanced the memorization capacity of LLMs.

Unfortunately, although external memory based
methods afford the advantage to processing long
inputs, their applications are still hindered by the
potential biases emerged during recall-reason step.
First one is about inconsistent reasoning paths. As
illustrated in Figure 1, taking long-term conver-
sation as an example, the same history context is
recalled twice. The LLM may produce two dif-
ferent reasoning results and generate a wrong re-
sponse. Such phenomena is also demonstrated by
recent studies (Adiwardana et al., 2020; Wang et al.,
2022). Second one is for overlooking crucial infor-
mation of recalled raw text due to the noisy context,
as indicated by (Barnett et al., 2024). Both issues
could easily lead to a performance bottleneck in
real-world LLM applications.

To address these concerns, we would like to learn
from the typical process of metacognition (Dun-
losky and Metcalfe, 2008), where the brain only
perceives post-processed thoughts rather than the
full details of events. Motivated by this, we pro-
pose a Think-in-Memory (TiM) framework to
utilize long-term history context in the form of
thoughts. This framework enables language mod-
els to memorize long-term past context into an ex-
ternal memory bank, then model self-organization
to mitigate the issue of inconsistent reasoning.
To achieve a self-organizing memory mechanism,
we design a metacognition space in conjunction
with role-playing LLM agents with stationary ac-

tions, encompassing 3 critical capabilities: (i)
Thoughts Generator: utilize a post-think step to
extract metacognition thoughts from the mem-
ory bank. (ii) Thoughts Organizer: conduct self-
organization operations (insert, merge, and forget)
to simplify the metacognition space. (iii) Thoughts
Retriever: quickly retrieval relevant thoughts from
the metacognition space. To further facilitate the
self-organization of the metacognition space, we
introduce Locality-Sensitive Hashing to afford effi-
ciency for the metacognition space. Through self-
organization evolution to memorize pure and in-
decomposable thoughts, the memory-augmented
LLM can effectively leverage long-term past mem-
ory for improving downstream interactions. The
key contributions are summarized as follows:

(i) We propose a novel TiM framework to memo-
rize past context as metacognition thoughts, where
a self-organizing memory mechanism is designed
to mitigate the issue of inconsistent reasoning. TiM
can process ultra-long history context in a plug-and-
play paradigm to benefit long-term interactions.

(ii) We design a metacognition space in conjunc-
tion with role-playing LLM agents with stationary
actions, which can formulate self-organization with
thoughts generator, organizer, and retriever. Self-
organization evolution of the metacognition space
can maintain pure and indecomposable thoughts
for improving downstream interactions.

(iii) We develop a simulated environment for
clinical consultations to evaluate the effectiveness



of the proposed method. Also, extensive experi-
ments are conducted on extensive multi-turn dialog
datasets. The results indicate that TiM can substan-
tially enhance LLM’s performance across various
dimensions: (1) It enables diverse topics ranging
from open to specific domains; (2) It supports bilin-
gual languages in both Chinese and English; (3) It
improves response correctness and coherence.

2 Related Work

Large Language Models. LL.Ms have attracted
significant attention for their superior performance
on diverse NLP tasks (Zhang et al., 2023a,b; Guo
et al., 2023). Existing LLMs can roughly divided
into two types: (1) Closed-source LLMs, e.g.,
PalLM (Chowdhery et al., 2022), GPT-4 (OpenAl,
2023), and ChatGPT (OpenAl, 2022); (2) Open-
source LLMs, e.g., LLLaMa (Touvron et al., 2023),
ChatGLM (Zeng et al., 2022), and Alpaca (Taori
et al., 2023). Recent developments of LLMs cover
a broad range of topics, including model architec-
ture (Zeng et al., 2022), training methods (Korbak
etal., 2023), fine-tuning strategies (Hu et al., 2021),
as well as ethical considerations (Chowdhery et al.,
2022). All these methods aim to enhance the under-
standing capabilities of LLMs for real-world appli-
cations. However, these powerful LLM models still
have some shortcomings. One notable limitation
of LL.Ms is their lack of a strong long-term mem-
ory, which hinders their ability to process lengthy
context and retrieve relevant historical information.

Long-term Memory. Numerous efforts are
conducted to enhance the memory capabilities of
LLMs. For example, one approach is memory-
augmented networks (MANNSs) (Meng and Huang,
2018) with an external memory cache, which can
well handle tasks of long-term period by interact-
ing with memory. Recently, many studies focused
on long-term conversations (Xu et al., 2021, 2022;
Zhong et al., 2023; Liang et al., 2023). For exam-
ple, Xu et al. (Xu et al., 2021) introduced a new
English dataset consisting of multi-session human-
human crowdworker chats for long-term conversa-
tions. Zhong et al. (Zhong et al., 2023) proposed a
MemoryBank mechanism inspired by Ebbinghaus’
forgetting curve theory. However, these methods
still face some great challenges to achieve a reli-
able and adaptable long-term memory mechanism
for Language and Learning Models (LLMs). Con-
cretely, these methods only considered storing the
raw dialogue text, requiring repeated reasoning of

the LLM agent over the same history. Besides,
these models need to calculate pairwise similarity
for recalling relevant information, which is time-
consuming for long-term interactions.

3 Methodology

In this section, we first formulate the problem of
memory-augmented language modeling. Then, we
introduce the architecture of our self-organizing
mechanism with a metacognition space. Next,
we provide the designed workflow of role-playing
LLM agents to generate, organize, and retrieve the
metacognition thoughts in the metacognition space.

3.1 Metacognition-Augmented LLMs

Problem Formulation. Given the wide explo-
ration of pretrained LLMs, our TiM framework
is built on a LLLM backbone f parameterized by
f. Each round of the interaction consists of two
parts, i.e., auser’s query Q and the LLM’s response
R. Specifically, in the ¢-th round of interaction,
given the inquiry Q;, the LLM generates a response
R; = {r(()z),rgz), e ,7“'(;%‘} based on the interac-
tion history in an autoregressive manner:

| Rl

po (R | Qi, My,) = Hpe (T;(f) | Qi,Mb) ,
k=1
(1
where My = Qg.;—1,Ro;_1 is to cache his-

tory contexts for memory augmentations. How-
ever, with gradually increasing round number
or with the very lengthy history context, i.e. 7 or
| Rye[0,i—1)|> only the partial segment of the his-
tory sequence can be normally processed due to
the limitation of fix-sized inputs for most existing
LLMs. Thus, existing memory-augmented mech-
anisms mainly focus on recalling relevant history
contexts for augmentations instead of full history:

| Rl

po(Ri | Qi My) ~ [T o (7 | Qi F(Qi ML)
k=1
(@)

where F(+) is a metric function to retrieve relevant
history contents. For k£ € [0,7 — 1], when some
history (Qg, Ry) is recalled twice or more, LLMs
may produce different reasoning paths (e.g., dif-
ferent CoT prompts (Wei et al., 2022)), inevitably
resulting in unexpected responses.

Metacognition Augmentation. To address the
above issue, text-embedding pairs of previous in-
puts are stored in Memory Bank M, which are se-



Table 1: Comparisons of memory mechanisms. KG denotes the knowledge graph and Q-R is question-response pair.

Method Content LLM-agnostic Insert Forget Merge
SCM (Liang et al., 2023) QR v v X X
RelationLM (Liu et al., 2022) KG X v X X
LongMem (Wang et al., 2024) Token X v X X
MemoryBank (Zhong et al., 2023) QR v v v X
v v v v

Ours (TiM)

Q-R, Thoughts

quentially transformed as thoughts in the metacog-
nition space M. Embeddings of the raw text
are retained for retrieval. Given the current in-
put, top relevant previous thoughts are recalled to
augment the language modeling for response gener-
ation. The metacognition space can be viewed as a
self-organizing system (i.e., like a human brain) to
organize historical thoughts. The overall language
modeling can be denoted as:

| 724
Do (R’L|Q15Mb) ~ HPG T](;)|Qi>F(Qi)MS) 3
k=1 0
TiM
3)
where My = {T, As} and F(+) is to retrieve rele-
vant thoughts of Q;. T is the thought set and A
is the self-organizing action set. Here we provide
explicit definitions for Metacognition and Thought.

Definition 1 Metacognition is originally defined
to as the knowledge about and regulation of one’s
cognitive activities in learning processes (Flavell,
1979). One metacognition space Mg consists
of metacognition thoughts T¢ and a set of self-
organizing actions Ag.

Definition 2 Thought is defined as the minimum
unit in the metacognition space. One thought
can be basiclly represented as a relation triple
(E}, R, Et), where E}, is head entity connected
with tail entity E; via the relation R.

Framework Architecture. Here, we implement
the proposed framework based on a multi-agent sys-
tem. As illustrated in Figure 3, our framework com-
prises the following components, working together
to provide more accurate and coherent responses
for long-term interaction: (1) Agent Core, which is
a pre-trained LLM backbone fy to facilitate dy-
namic interactions, such as ChatGPT (OpenAl,
2022) and ChatGLM (Zeng et al., 2022). (2) Cache
Module, which contains continually growing M,
and M as memory cache. (3) Self-organization

Module, which imitates the human brain to orga-
nize the thoughts in the metacognition space ac-
cording to certain rules.

3.2 Memory Cache

TiM’s memory cache aims to store the history
contexts of the long-term interactions. The mem-
ory cache consists of a Memory Bank M, and a
Metacognition Space M.

Memory Bank. M, is utilized to preserve the
raw texts from the interactions. Each data instance
of M is in the format of the text-embedding pair
(UR, Us™), where U denotes the raw text of
(Qk, Ri) and US™ denotes the sentence-level em-
bedding of U} from the LLM backbone fj. Here,
the memory bank is a long-term cache to store fixed
text-embedding pairs without any modifies.

Metacognition Space. M is designed to save
high-level thoughts (Definition 2). Similarly, each
data instance of M is in the format of the thought-
embedding pair (T, TS™), where T denotes
the thoughts from the (Qy, Ry). Different with the
memory bank, the metacognition space is a short-
term cache, where thought-embedding pairs would
be evolved via self-organizing behaviors.

Notice that human can conduct association
among the relevant memories. Following this rule,
the semantically similar pairs should be cached in
the same group for both memory bank and metacog-
nition space. Their cache structures are the same
due to shared embeddings, increasing the cache
efficiency. To achieve this, we adopt a hash-based
structure for TiM’s memory cache, where simi-
lar pairs are assigned with the same hash index.
Given a newly coming memory pair, we propose
to quickly search its nearest thoughts in a high-
dimensional embedding space, which can be solved
by the locality-sensitive hashing (LSH) method.
The hashing scheme of LSH is to assign each d-
dimension embedding vector z € R? to a hash
index H(x), where nearby vectors get the same



hash index with higher probability. We achieve this
by exploiting a random projection as follows:

H(z) = argmax ([zR; —xR]), )

where R is a random matrix of size (d, b/2) and b is
the number of groups in the memory. [u; v] denotes
the concatenation of two vectors. This implemen-
tation is a well known LSH scheme (Andoni et al.,
2015). In particular, the embedding U™ of raw
texts is used to construct the hash index for these
two cache types, which cam enhance the structural
consistency between them,

3.3 Think-in-Memory: Self-organized Agents

In this section, we design role-playing LLM
agents to implement a self-organizing metacogni-
tion space, which achieve the actions of thought
generator, retriever, and organizer.

Thought Generator. The main challenge is to
generate high-quality sentences matching relation
triples. Here we provide two kinds of solutions to
generate thoughts: (1) pre-trained model for open
information extraction, such as OpenlE (Angeli
et al., 2015); (2) In-context learning with few-shot
prompts based on LLM. In this work, we utilize a
LLM agent to serve as a thought generator. Given a
query Q and a corresponding response R, we ask a
frozen LLM to work as a thought generator, which
derives the thoughts T for the (Q, R) following
the specialized prompt:

Teen = Agent ((Q, R), Rolegen, Promptgen) .

&)
LLM backbone fjy first provides a response R. for
Q according to Eq. 3, then generates the thoughts
upon the Q-R pair. Thus, this thought generator
stage is termed as Post-Think. Finally, (Q, R) and
the generated Ty, are stored into M, and Mj
according to Eq. 4, respectively.

Thought Organizer. With the above-discussed
generator, the long-term memory capability of
LLMs can be well enhanced via self-organization.
Motivated by the human brain, there needs some
organization actions for dynamic evolution of the
metacognition space, which can make the memory
mechanism more natural and applicable. Three
basic self-organizing actions are formulated, i.e.,
Action,g = {Insert, Forget, Merge}. Insert action
is performed by Eq. 4. Assuming that new thought
is inserted into the group G, thought organizer per-
forms the self-organizing actions to organize the

thoughts of G:

G= Agent (G, Rolegrg, Actiongrg, Promptorg) ,
) (©)
where G denotes the newly evolved thought group.
Intuitively, Forget action is to remove unnecessary
thoughts such as contradictory thoughts. Merge
action is to combine similar thoughts together, such
as thoughts with the same head entity.

Thought Retriever. Built on the cache mod-
ule, we implement a thought retriever F(-) based
on Retrieval-Augmented Generation (RAG), which
operates a two-stage retrieval task to search the
most relevant thoughts, i.e., LSH-based retrieval
followed by similarity-based retrieval. Stage-1:
LSH-based Retrieval. For a new query Q, we first
obtain its embedding vector x based on LLM back-
bone fy. Then LSH function (i.e., Eq. 4) can pro-
vide the hash index of (), which indicates the its
nearest thought group in M according to the prop-
erty of LSH. Stage-2: Similarity-based Retrieval.
Within the nearest group, we calculate the pair-
wise similarity between the query and each piece
of thought in the group. Then top-k thoughts are
recalled as the relevant history for accurately an-
swering the query. It should be noticed that pair-
wise similarity is only calculated within a group
rather than the whole memory space, which can
achieve more efficient retrieval than previous mem-
ory mechanisms. Besides, the two-stage retrieval is
only performed within the metacognition space. If
without relevant thoughts, similarity-based retrieval
will be executed in the memory bank.

Once the top-k relevant thoughts T, =
{Ty, Ty, -, Ty} are returned, we ask a frozen
LLM to work as a retrieval-augmented generator,
which integrates the thoughts T'¢ with the original
Q following the specialized prompt:

Tret = Agent (Q, Thet, Roleyer, Prompt,; ) ,

) ™)
where Tt denotes the final retrieval result. Thus,
thought retriever can recall relevant history con-
texts and integrate them according to the require-
ments of the long-term interactions.

3.4 Long-term Environment Simulation

In this section, we implement a role-playing frame-
work to simulate the environment for long-term
medical consultations, which targets to evaluate
the effectiveness of TiM for the medical scenario.
Patient Simulator. One LLM with in-context in-
struction prompt is utilized to imitate the behavior



Table 2: Comparison Results on Three Datasets. Top-5 thoughts are recalled from the memory cache.

Dataset LLM Topic Memory | Retrieval Accuracy | Response Correctness | Contextual Coherence
Open-EN Silicon 0.809 0.438 0.680
GVD | ChatGLM Ours 0.820 0.450 0.735
Oven.CN | Silicon 0.840 0.418 0.428
pen- Ours 0.850 0.605 0.665
. X - 0.657 0.923
Film-CN Ours 0.920 0.827 0.943
X - 0.666 0.910
ChatGLM ic- : :
a Music-CN | 511 0.970 0.826 0.926
X - 0.735 0.906
Kdconv Travel- CN O;I(I'S 0.940 0.766 0.912
. 0.360 0.413
Film-CN Ours 0.913 0.743 0.870
) X - 0.253 0.283
Baichuan2 - : :
aichuanz |- Music-CN-| - o 0.900 0.710 0.780
X - 0.207 0.280
Travel-CN | ) 0.833 0.757 0.807
. X - 0.806 0.893
ChatGLM | Medical-CN | () | o 0.900 0.843 0.943
RMD X 0.506 0.538
Baichuan2 | Medical-CN'| ) o 0.873 0.538 0.663

of patients for clinical consultations. The patient
LLM could provide accurate medical information
such as descriptions. The data source of patients’
medical information is from the realistic medical
records, as shown in Appendix. Similar to real-
world patients, the patient LLM is to provide medi-
cal information in a lazy mode. These requirements
are achieved via a specially designed prompt:

R,.t = Agent (Qdoc, Rolepat, Promptpat) ,
®)
where Qgoc denotes the query from the doctor and
Rt is the response of the patient.

Doctor Simulator. Another LLM is utilized to
act as a doctor for clinical consultations. At the
beginning, the doctor LLM should ask questions
about key medical information based on the pa-
tient’s basic situation. Then, the doctor LLM needs
to provide accurate diagnosis and treatment results
according to the historical medical information of
the patient. The doctor LLM is also achieved via a
specially designed prompt:

Qdoc / END =

Agent (Rpat, Tred, Rolegoc, Prompty,,.) ,
©))
where T',.q denotes the retrieved relevant history
information from the memory. END denotes the

conversation end with final diagnosis results.
Retrieval-Augmented Module (RAM). RAM
performs a connection between doctor and patient.

The data base is a pool of patients’ medical records.
(1) Given a query from the doctor, the patient sim-
ulator firstly understand the intent of the doctor.
Based on the intent, RAM aims to retrieve relevant
medical information as the candidate responses
for the patient. Then, the retrieved results are in-
tegrated into the original query as an augmented
query Qgoc in Eq. 8. (2) For each patient, when
the doctor gives the final diagnosis and treatment
results, RAM can achieve automatic evaluation by
retrieving the ground-truth from the pool.

4 Experiment

4.1 Multi-turn Dialogue

Datasets. Three datasets are used to demonstrate
the effectiveness of TiM. KdConv: KdConv is a
Chinese multi-domain knowledge-driven conversa-
tion benchmark (Zhou et al., 2020) grounding the
topics to knowledge graphs, which involves 4.5K
conversations and 86K utterances from three do-
mains (film, music, and travel). The average turn
number is 19. Generated Virtual Dataset (GVD):
GVD is a long-term conversation dataset (Zhong
et al., 2023) involving 15 virtual users (ChatGPT)
over 10 days. Conversations are synthesized using
pre-defined topics, including both English and Chi-
nese languages. For the test set, (Zhong et al., 2023)
manually constructed 194 query questions (97 in
English and 97 in Chinese) to evaluate whether the
LLM could accurately recall the memory and pro-



Table 3: Performance for the Simulated Medical Consultation.

e
Q

Accuracy | Memory HuatuoGPT | Baichuan2 | Chatglm2 | Chatglm3 | GPT3.5 | GPT4
1I-13B chat-13B 6B 6B Turbo -
No 18.18 20.45 15.91 2.27 18.18 0.0
Diagnosis Raw 25.00 20.45 22.72 20.45 2273 | 50.00
TiM 27.27 22.27 22.72 20.45 22.73 | 50.00
No 2.27 2.27 0 2.27 4.55 0.0
Treatment Raw 4.54 2.27 0 9.10 6.82 6.82
TiM 6.82 4.54 2.27 9.10 6.82 6.82
L successfully recalled (labels: {O: no; 1: yes}). Re-
09 ] /0-914/0 N sponse Correctness: Response correctness evalu-
g /0_833/0'867/0'88 ates if correctly answering the probing question (la-
g 3/0.767/"'8 bels: {0: wrong; 0.5: partial; 1 : correct}). Contex-
E o™ tual Coherence: Contextual coherence evaluates
&
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Figure 2: Top-k Retrieval accuracy.

Table 4: Comparisons of Retrieval Time. Baseline di-
rectly calculates pairwise similarity.

Method Retrieval Time (ms)
Baseline 0.6287
Ours (TiM) 0.5305

duce the appropriate answers. Real-world Medi-
cal Dataset (RMD): To evaluate the effectiveness
of the proposed memory mechanism in the real-
world scenarios, we manually collect and construct
a dataset containing 1,800 conversations for med-
ical healthcare consumer. For the test set, 80 con-
versations are used to evaluate whether the LLM
could provide the accurate diagnosis.

Evaluation Settings. One baseline is to answer
questions without using any memory mechanism.
Another baseline is SiliconFriend (Zhong et al.,
2023), a classical memory mechanism, which can
store the raw text into the memory and support
reading operation. To be fair, during evaluation,
the prediction results of all LLMs are firstly shuf-
fled, ensuring the human evaluator does not know
which LLM the results come from. Then the final
evaluation results are obtained by the human eval-
uation. Following (Zhong et al., 2023), three met-
rics are adopted to evaluate the performance of the
proposed method. Retrieval Accuracy: Retrieval
accuracy evaluates whether the relevant memory is

whether the response is naturally and coherently
generated, e.g., connecting the dialogue context
and retrieved memory (labels: {0: not coherent;
0.5: partially coherent; 1: coherent}).

Comparison Results. The main results on three
datasets are summarized in Table 2. The follow-
ing insights are observed: (1) Our method sig-
nificantly outperforms the considered baselines
on these datasets. Compared with SiliconFriend
(Zhong et al., 2023), our method exhibits superior
performance for all metric, especially for the con-
textual coherence, indicating the effectiveness of
TiM mechanism. (2) TiM delivers better results
on both languages and various topics. The per-
formance improvement on Chinese is larger than
English, which may be attributed to the abilities of
the LLMs. We evaluate 2 different LLMs with TiM
over different topics (film, music, and travel) and
our method can obtain best results across all topics.
Our method can achieve high retrieval accuracy to
recall the relevant thoughts. (3) TiM can help to
improve the contextual coherence of the response.
RMD dataset contains the realistic conversations
between the doctors and patients. Our method can
improve the overall response performance for the
real-world medical conversations. In detail, using
TiM, both ChatGLM and Baichuan?2 can improve
their capability for long-term conversations, i.e.,
significant improvements on the response correct-
ness and the contextual coherence.

4.2 Medical Consultation

Medical consultations generally require under-
standing the patient’s entire health conditions to
make accurate diagnoses and treatment decisions,
while conventional methods easily suffer from the



Table 5: Examples of Case Study. The red color denotes the mistake. 1-th column is the history context before ¢-th
dialog. 3th column shows varying i-th dialog generations of different memory methods. P is patient and D is doctor.

History Context

Memory i-th Dialog

P: I last came in due to a urinary tract infection.

D: Have you felt any improvement since your last visit?

P: I'm not sure. I’ve had a urine analysis done recently.

D: The results of the urine analysis?

P: The white blood cell count in the urinary sediment is 3623.20/ pul.

D: That’s a relatively high value. Are you experiencing frequent urination?

P: Yes, it’s been quite noticeable recently.

Forget and Repeat Question
No D: Have you had a urine analysis done recently?
P: Yes, you just asked me.

Inconsistent Reasoning Result
D: Okay, combined with reasonable white blood
cell count and frequent urination, everything is fine.

Raw Text

(patient, have, urine analysis)

(white blood cell count, is, 3623.20/ 1)
(3623.20/pul, is, a relatively high value)
(patient, have, frequent urination)

D: Okay, combined with relatively higher white
TiM blood cell count and frequent urination, you may
catch an acute urinary tract infection.

forgetting of the history context. With the proposed
metacognition-augmented memory, TiM allows the
LLM to remember and retrieve specific past details
about a patient’s medical history, test results, treat-
ments, allergies, and other crucial information that
could influence the current consultation.
Evaluation Settings. Based on the simulated
framework in Section A.2, three memory schemes
are achieved as the baselines: (1) Without any mem-
ory mechanisms (No); (2) Raw Dialog Context
as the memory (RaW); (3) The proposed method
(TiM). Both diagnosis and treatment accuracy re-
sults are adopted as the evaluation protocols.
Simulation Results. Table 3 reports the compar-
ison results on the simulated medical environment
for the interactions between doctor and patient. As
shown in Table 3, our method can perform better
than baseline memory methods for all LLMs. In de-
tail, both diagnosis and treatment accuracy would
be increased by TiM (e.g., HuatuoGPT, Baichuan2,
and Chatglm2). For GPT3.5 and GPT4 with strong
capabilities, the probability of reasoning inconsis-
tency is relatively low, thus there is no obvious
performance gap between TiM and raw text.

4.3 Ablation Studies

Retrieval Time. We report the comparison results
of retrieval time. The baseline is to calculate pair-
wise similarity between the question and the whole
memory, which is utilized as the default retrieval
way for most previous mechanisms. For both base-
line and our method, the memory length is as 140
and the memory context is fixed. Table 2 shows
the time cost for making a single retrieval. It is
observed that our method can reduce about 0.1 ms
retrieval time compared with baseline method.

Top-k Retrieval. The retrieval accuracy with dif-
ferent k& values are summarized in Figure 2. Our
method achieves gradually improved retrieval ac-

curacy along with increasing k. Meanwhile, top-1
retrieval accuracy is higher than 0.7 and top-10 can
achieve 0.973 retrieval accuracy. Besides, as shown
in Table 2, the overall model performance is also
improved with increasing value of k. For example,
when k = 5, our method can significantly improve
the performance of existing LLMs for long-term
conversations. As shown in Table 3, our method
can still outperform the comparison baselines (Raw
and No) for medical scenarios.

Case Study Table 5 exhibits a patient case, where
doctor LLMs are augmented by different memory
mechanisms, respectively. As indicated by the first
row, the doctor LLM may forget the previous in-
formation with repeatedly asking the similar query
about “urine analysis”. When storing the raw text
as the memory, the doctor LLM would conduct
multiple reason steps over the same medical infor-
mation of 3623.20/yl, but results in the inconsis-
tent reasoning paths, i.e., higher VS. reasonable
white blood cell count. TiM can store the mini-
mum unit thoughts in the memory, which can avoid
excessive reasoning and generation. Therefore, our
method can finish the task of medical consultation
and provide correct diagnosis results, i.e., acute
urinary tract infection.

5 Conclusion

In this work, we propose a TiM framework
with a novel self-organizing metacognition space.
TiM leverages role-playing LLM agents with pre-
defined stationary actions for thought generator,
retriever, and organizer, which can imitate human-
level metacognition to manage history context. Ad-
ditionally, TiM can process ultra-long history con-
text in a plug-and-play paradigm to benefit down-
stream interactions. Experiments demonstrate that
our method achieves remarkable improvements on
memory-augmented long-term dialogues.



6 Limitations

TiM incorporates external memory components to
enhance LLMs’ capacity to handle long-term de-
pendencies in a dialog system, providing a mecha-
nism to store and retrieve information effectively
across extended contexts. However, such memory-
augmented LL.Ms also have certain limitations
about interpretability. Understanding why and how
the LLMs use the memory is important for debug-
ging, improving, and trusting the dialog system.
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A Appendix

A.1 Parameter-efficient Tuning

We adopt a computation-efficient fine-tuning ap-
proach called Low-Rank Adaptation (LoRA) (Hu
et al., 2021) for the scenarios with limited compu-
tational resources. LoRA (Hu et al., 2021) opti-
mizes pairs of rank-decomposition matrices while
keeping the original weights frozen, which can
effectively reduce the number of trainable param-
eters. Specifically, considering a linear layer de-
fined as y = Wz, LoRA fine-tunes it according to
y = Wz + BAx, where W € Rk B e RIx",
A € R™*, and r < min(d; k). Essentially, this
fine-tuning stage can adapt LLMs to multi-turn
conversations, providing appropriately and effec-
tively response to users. For all experiments, we
set LoRA rank r as 16 and train the LLM models
for 10 epochs.

A.2 Evaluation Simulation

In this section, we implement a multi-agent frame-
work to simulate the long-term medical consulta-
tions, which targets to evaluate the effectiveness of
TiM for the medical scenario.

Patient Simulator. One LLM with in-context in-
struction prompt is utilized to imitate the behavior
of patients for clinical consultations. The patient
LLM could provide accurate medical information
such as descriptions. To be in line with real-world
patients, the patient LLM is to provide medical in-
formation in a lazy mode. These requirements are
achieved via a specially designed prompt:

Rp.t = Agent (Qdoc, Rolepat, Promptpat) ,
(10)
where Qg0 denotes the query from the doctor and
Rt is the response of the patient.

Doctor Simulator. Another LLM is utilized to
act as a doctor for clinical consultations. At the
beginning, the doctor LLM should ask questions
about key medical information based on the pa-
tient’s basic situation. Then, the doctor LLM needs
to provide accurate diagnosis and treatment results
according to the historical medical information of
the patient. The doctor LLM is also achieved via a
specially designed prompt:

Three memory schemes are achieved based on such
simulation: (1) Without any memory mechanisms;
(2) Raw Dialog as the memory; (3) Our TiM.

A.3 Insightful Discussion

Here we make a summary for previous memory
mechanisms and our method in Table 1, including
memory content, LLM-agnostic, and organization
operations. There are several important observa-
tions from Table 1: (1) Previous memory mecha-
nisms only save raw conversation text (Q-R pairs)
as the memory, which requires repeated reasoning
over the history. Our method maintains thoughts
in the memory cache and can directly recall them
without repeated reasoning. (2) Previous memory
mechanisms only support simple read and write (in-
sert) operations, while our method provides more
manipulate way for the memory. (3) Some previ-
ous memory mechanisms store the tokens in the
memory, which requires adjusting LLLM architec-
ture (LLM-aware) for applications. Our method is
deigned as a LLM-agnostic module, which can be
easily combined with other LLMs.

A.4 More Illustrations

Figure 3 illustrates the workflow of the proposed
TiM, where post-think denotes the operation con-
ducted by thought generator.

Figure 4 shows an real-world application, which
equips LLM models with the proposed TiM.

Table 6 exhibits an example used for long-term
environment simulation, which involves complete
medical information of a virtual patient.

Figure 5, 7, 6 are three examples for the prompt
templates used by role-play agents, respectively.

Qaoc/END = Agent (Rpat, Tred; Rolegoc, Prompty,.) ,

1D
where T4 denotes the retrieved relevant history
information of the patients. END denotes the end
of the conversations with final diagnosis results.



Recalling and Post-thinki

Long-term Memory

User: You recommended a movie before, how Index Inductive Thoughts
about it?
‘ o Recommend book is “The Little Prince”.
Conversation History Recalling LSH “The Little Prince” is interesting.
User: Do you have any book recommendations for me? l 1 R e : 5
. . . . ecommend movie is “The Wandering Earth”.
Agent: I recommend “The Little Prince”. For the current user’s question: {Query}, you begin b e
to recall past conversations and the most relevant 2 Recommend song is “Listen to Mom”.
User: Thank you. How about this book? [memory] is: {Related_memory}.
Agent: This book is very interesting and full of emotions. According to the [memory], please answer the
: question:
User: Do you have any movie recommendations for me? {Query}. | Insert, Forget, Merge
Agent: You can go see “The Wandering Earth”. 7
: Response @
User: Do you have any song recommendations for me? 1 Index Inductive Thoughts
Agent: I recommend “Listen to Mom”. . : s L.
Agent: It is “The Wandering Earth”. This movie is Recommend book is “The Little Prince™
User: You recommended a movie before, how about it? A T VAT 0 “The Little Prince” is i _
Agent: It is “The Wandering Earth”. This movie is with i Little Prince” is interesting.
stunning visuals. Post-thinking @ LSH Recommend movie is “The Wandering Earth”.
1

] f

(The Wandering Earth, have, stunning visuals)
“The Wandering Earth” is with stunning visuals.

“The Wandering Earth” is with stunning visuals.

2 Recommend song is “Listen to Mom™.

Figure 3: The overview of TiM framework. LLMs firstly recall history and give response for the question. Then
new thoughts can be generated via the post-thinking step. These thoughts are saved as the memory to avoid repeated
reasoning on the history.

Background for TiM-LLM Application User Interface

Insert, Forget, Merge Operations TiM-LLM Application
User consults symptoms. 1 Hello! I'm here to consult about my symptoms. 9
Example: ! | —
Merge two thoughts I Agent analyzes symptoms. [ (Q) Hello! Please describe your symptoms in detail. T will
. ) 1 analyze and diagnose your condition, and provide
| Agent provides treatments and suggestions | reasonable treatment plans or suggestions for you!
Hash Index Thoughts I Background Process: Post-thinking!
1 |_Us_er consults s;m];m;s._ ———————==A -I I am feeling uncom'fongble. 1 ha\{e red spots on 9
my tongue and a tingling sensation. There are
1 ! Agent analyzes symptoms. ! many grain-like white spots on my gums and
1 | throat. What is this disease?
1 I Agent provides suggestions. 1
[ﬁ Background Process: Recalling!
1 1 A_gcit p_rov_id«ﬁ tr_catmcn_ts. __________ L1
o mm mm mm mm e em mm e e e e e e e ey - Based on your symptom description, there may be
2 | Symptom includes red spots on the tongue. 1 ' inﬂammatior)lj of thg ofal mucosa. Il) suggest you goyto a
2 1 Symptom includes a tingling sensation. 1 specialized oral clinic for an examination and inform the
1 doctor about your symptoms and severity so that the doctor
) I Symptom includes grain-like white spots on gums and | can make a correct diagnosis.
] throat. 1
3 : Diagnosis is inflammation of the oral mucosa. :[ Background Process: Post-thinking!
4 Sugggstiqn is to go to a specialized oral clinic for : Multiple rounds
examination. .
Background Process: Recalling!
4 Suggestion is to inform the doctor for an accurate
diagnosis. Is oral mucosal inflammation the only reason for 9
. . these symptoms? I have used cefuroxime before,
: : would it affect the current symptoms?
Oral mucosal inflammation may be Oral mucosal inflammation is not the only cause of
one of the causes of these symptoms. (@) these symptoms. Other factors such as fungal
However, I cannot be certain if it is the infections, bacterial infections, allergies may also
sole cause, as further examinations are cause these symptoms. If cefuroxime was used for a
needed to make an accurate diagnosis. bacterial infection, it may provide some assistance in
Incomplete response . . . . . . .
without TiM. Regarding your use of cefuroxnfne, it treatment, but it can also{ disrupt the beneﬁqna] bactenal
generally does not have a direct impact flora in the oral cavity. It is best to seek examination from
on oral mucosal inflammation. a professional doctor to obtain an accurate diagnosis.

Figure 4: The application of TiM. The left is the background of TiM-LLM application and the right is user interface.
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Table 6: An example of the medical record of a patient.

1-st Category 2-nd Category Report Result Constraints
Initial Query After my mom peed, the toilet felt like
there was blood in it.
Patient’s Intent Prefer conservative treatment
Expected Rounds 7 Rounds
Age Female
Gender 84 Years Old
Diagnosis Core Diagnosis Bladder Cancer
Key Elements and Correct Order of Questions for Confirming the Diagnosis
Symptom Gross Hematuria Consistent blood in urine, color is
pink.
Symptom Urgency None
Symptom Fever None
Symptom Difficulty Urinating None
Test Urinalysis Urine color is brownish red, specific | 7 Days Ago
gravity 1.016, pH 6.0.
Test Urinary NMP22 Positive 7 Days Ago
Examination Urinary Ultrasound Normal size and shape, clear capsule | 7 Days Ago
contour.
Examination Bladder Enhanced MRI Multiple occupying lesions on the left | 7 Days Ago
side.
Examination CT Urography Posterior wall of the bladder. Left kid- | 7 Days Ago
ney cyst.
Correct Order Urinary Ultrasound > Enhanced MRI
= CT Urography
Treatment TURBT
Key Elements of Treatment Plan
Surgical History None
Medication History None
General Condition Sleep is fairly good, no unusual diet,
no significant weight change.
Medical History Hypertension Blood pressure controlled around
140/90
Medical History Diabetes Mellitus Negative
Medical History Coronary Heart Disease Negative
Marital & Childbearing Married with Child
Menstrual History Menopause
Preoperative Test Complete Blood Count White blood cell count 4.69x109/L. 1 Day Ago
Preoperative Test Liver Function Total bilirubin 12.9 pmol/L, direct | 1 Day Ago
bilirubin 3.2 pmol/L.
Preoperative Test Renal Function Urea 5.60mmol/L, creatinine 48.0 | 1 Day Ago
pmol/L.
Preoperative Test Fasting Blood Glucose Fasting blood glucose 6.56mmol/L. 1 Day Ago
Preoperative Test Coagulation Function Prothrombin time 11.80 seconds. 1 Day Ago
Preoperative Test B-type Natriuretic Peptide | B-type natriuretic peptide 70.0pg/mL; | 1 Day Ago
Preoperative Test Cardiac Infarction Markers | Troponin I 0.01ng/ml, Myoglobin 1 day ago
15.80ng/ml.
Preoperative Test Hepatitis B Hepeatitis B surface antigen 0.45COI. 1 day ago
Preoperative Test Hepatitis C Hepatitis C antibody (C) 0.04S/CO, 1 day ago
Preoperative Test HIV HIV Ag/Ab 0.05COI 1 day ago
Preoperative Test Syphilis Confirmatory test for syphilis negative 1 day ago
Preoperative Test Chest CT Scan Scattered tiny nodules in both lungs. 1 day ago
Preoperative Test Echocardiography No obvious abnormalities. 1 day ago
Preoperative Test Electrocardiogram Sinus rhythm, low flat T waves. 1 day ago
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Prompt for Forgetting Thoughts

Given the following thoughts, please remove the
counterfactual thoughts or contradictory thoughts:

Example 1.

Input:

The capital of China is Beijing.

The capital of China is Shanghai.

The capital of the United States is Washington.
The capital of the United States is New York.
Output:

The capital of China is Beijing.

The capital of the United States is Washington.

Example 2.

Input:

Michael likes to play football.
Michael does not like to play football.
James likes to swim.

Mary likes to read books.

Output:

James likes to swim.

Mary likes to read books.

Input:
[A group of thoughts]
Output:

Figure 5: An example of prompts for forgetting merging
thoughts.

Prompt for Merging Thoughts

Given the following thoughts, please merge the similar
thoughts with the same entity:

Example 1.

Input:

John works as an actor.

John works as a director.

John works as a writer.

Mike works as a teacher.

Output:

John works as an actor, a director, and a writer.
Mike works as a teacher.

Example 2.

Input:

Michael likes to play football.

Michael likes to play basketball.

James likes to swim.

Mary likes to read books.

Output:

Michael likes to play football and basketball.
James likes to swim.

Mary likes to read books.

Input:
[A group of thoughts]
Output:

Figure 6: An example of prompts for merging thoughts.
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Prompt for Generating Thoughts

Given the following question and response pairs, please
extract the relation (subject, relation, object) with
corresponding text:

Example 1.

Input:

Question: Do you have any company recommendations for me?
Response: I recommend Google.

Output:

(Company, Recommended, Google).

Recommended company is Google.

Example 2.

Input:

Question: Which City is the capital of China?
Response: Beijing.

Output:

(China, Capital, Beijing).

The capital of China is Beijing.

Input:

Question: Do you have any book recommendations for me?
Response: I recommend “The Little Prince”.

Output:

Figure 7: An example of prompts for generating

thoughts.
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