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Abstract
Event cameras are bio-inspired vision sensors
that encode visual information with high dynamic
range, high temporal resolution, and low latency.
Current state-of-the-art event stream processing
methods rely on end-to-end deep learning tech-
niques. However, these models are heavily de-
pendent on data structures, limiting their stabil-
ity and generalization capabilities across tasks,
thereby hindering their deployment in real-world
scenarios. To address this issue, we propose a
chaotic dynamics event signal processing frame-
work inspired by the dorsal visual pathway of
the brain. Specifically, we utilize Continuous-
coupled Neural Network (CCNN) to encode the
event stream. CCNN encodes polarity-invariant
event sequences as periodic signals and polarity-
changing event sequences as chaotic signals. We
then use continuous wavelet transforms to ana-
lyze the dynamical states of CCNN neurons and
establish the high-order mappings of the event
stream. The effectiveness of our method is vali-
dated through integration with conventional classi-
fication networks, achieving state-of-the-art clas-
sification accuracy on the N-Caltech101 and N-
CARS datasets, with results of 84.3% and 99.9%,
respectively. Our method improves the accuracy
of event camera-based object classification while
significantly enhancing the generalization and sta-
bility of event representation. Our code is avail-
able in https://github.com/chenyu0193/ACDF.
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1. Introduction
Event cameras, inspired by the three-layer structure of the
peripheral retina in primates, are neuromorphic sensors de-
signed for silicon-based vision. Each pixel of the event
sensor operates independently and continuously to detect
changes in light intensity within a scene. When the change
exceeds a preset threshold, an event signal is triggered. The
event signal encodes spatiotemporal information, including
a timestamp, spatial coordinates, and polarity. The unique
sampling mechanism enables event stream data with the
advantages of high temporal resolution, low redundancy, a
wide dynamic range, and minimal latency. However, frame-
based vision algorithms designed for image sequences are
not directly applicable to event data (Gallego et al., 2020).

To address this challenge, event streams are compressed
event into frames, producing 2D event frame images via fre-
quency accumulation methods (Gallego et al., 2018; Stoffre-
gen & Kleeman, 2019; Gallego et al., 2019; Almatrafi et al.,
2020; Brebion et al., 2021; Hagenaars et al., 2021; Paredes-
Vallés & De Croon, 2021; Shiba et al., 2022b). Similarly,
a timestamp-based event representation method, known as
event surfaces (Mueggler et al., 2017; Lagorce et al., 2017;
Sironi et al., 2018), updates the latest timestamp information
to capture motion changes in the spatial positions of objects.
To more effectively leverage the spatiotemporal informa-
tion within event streams, a spatiotemporal histogram-based
representation was proposed, called voxel grids (Zhu et al.,
2018; Deng et al., 2022; Xie et al., 2022; Baldwin et al.,
2022). This method discretizes the time domain and em-
ploys linearly weighted accumulation to allocate events into
corresponding voxels.

With advancements in deep learning and large-scale com-
putation, data-driven, end-to-end neural networks (Gehrig
et al., 2019; Sekikawa et al., 2019; Wang et al., 2019; Bi
et al., 2019; Cannici et al., 2020; Yang et al., 2019; Bi et al.,
2020; Deng et al., 2021; Schaefer et al., 2022; Sabater et al.,
2022; Wang et al., 2022) have gained increasing popularity.
These methods efficiently exploit the asynchronous spa-
tiotemporal characteristics of event streams. Additionally,
bio-inspired spiking neural networks (Fang et al., 2021; Li
et al., 2022; Shen et al., 2023; Wang et al., 2024) simulate
biological spike signal processing mechanisms, integrat-
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Figure 1. The architecture and performance of the proposed
framework. (a) The chaotic dynamic framework, where event
stream data are input into CCNN neurons in the form of coor-
dinates. The dynamic characteristics of neurons are analyzed
using CWT, and the event representation is subsequently obtained
through LPF. (b) Comparative evaluation of the model’s classifi-
cation performance on multiple datasets. The proposed method
achieves superior classification accuracy across diverse datasets,
demonstrating its strong generalization capability and robust adapt-
ability in processing event-based data.

ing pulse signals and sampling events based on their firing
times once a predefined threshold is exceeded. These event
representation methods are shown in Figure 2.

However, the above event representation methods exhibit
significant limitations in terms of generalization and sta-
bility, particularly in their inconsistent performance across
datasets, lack of robustness, and strong dependency on spe-
cific representational structures. Specifically, these methods
often struggle with scenarios involving sparse data or high
dynamic range, highlighting their lack of robustness and
adaptability. Moreover, most event representation meth-
ods are designed to specific representational frameworks,
such as spatiotemporal voxel grids or local features, making
them less adaptable to diverse event data. These obstacles
hinder the widespread applicability of existing methods in
real-world scenarios.

Drawing inspiration from the mechanisms of the brain
for processing visual information offers a promising ap-
proach to overcoming current obstacles. Recent experimen-
tal studies have demonstrated that neural responses in visual
processing exhibit consistent patterns, even while adapt-

ing to diverse stimuli and experimental conditions (Groen
et al., 2022; Gong et al., 2023). The experimental evidence
strongly supports the brain’s remarkable ability to maintain
stable and generalizable visual processing across different
datasets and conditions. By effectively harnessing the neu-
ral processing mechanisms of the visual cortex, we can
advance the development of event representation methods
with improved generalization and stability.

In this work, we introduce a continuous-coupled neuron
network (CCNN) inspired by the primary visual cortex (Liu
et al., 2022). The CCNN exhibits electrophysiological prop-
erties similar to those of mammalian neuron clusters, gen-
erating periodic sequence outputs in response to constant
input signals and chaotic sequence outputs in response to
varying signals. This input-output behavior enables the
network to effectively distinguish between stable events,
characterized by constant polarity patterns, and dynamic
events, characterized by varying polarity patterns. Lever-
aging the unique characteristics of the CCNN, we separate
constant-polarity events from varying-polarity events within
the same sampling period. The separated event sequences
are then processed using continuous wavelet transforms
(CWT) to extract spatiotemporal information, establishing a
high-order mapping from the event stream to event frames.
The overall architecture and performance of the framework
are shown in Figure 1. To further enhance the accuracy of
motion extraction, the framework integrates a deep neural
network to achieve precise localization and recognition of
moving objects, as shown in Figure 3.

The main contributions of this work are summarized as
follows:

• We propose an event stream processing framework
inspired by the brain’s dorsal visual pathway. We intro-
duce the spatial-temporal information encoding mech-
anism of the brain’s dorsal pathway, also known as the
”where” pathway, into the event stream data process-
ing framework, effectively establishing a high-order
mapping from event streams to event frames.

• This framework utilizes CCNN to encode constant-
polarity event sequences as periodic signals and
varying-polarity event sequences as chaotic signals, ef-
fectively achieving robust event representation. When
combined with traditional deep neural networks, the
framework successfully performs object classification
for event cameras.

• The proposed framework is evaluated on multiple
datasets, achieving state-of-the-art accuracy on specific
benchmarks. It also demonstrates competitive perfor-
mance across a variety of datasets. The results demon-
strate the framework’s strong generalization across dif-
ferent data structures.
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Figure 2. The review of representation of asynchronous events.
Existing methods can be classified into three categories:
mathematical-based methods, end-to-end processing models based
on ANNs, and brain-inspired networks.

2.1. The Frequency Accumulation Methods

Prior event representations were primarily task-specific
methods based on mathematical models. For instance, the
surface of active events (SAE) encodes three-dimensional
event streams into frame images based on timestamps to
capture event motion trajectories, demonstrating promising
results in corner detection (Mueggler et al., 2017). Simi-
larly, the concept of the “distance surface” was introduced,
where pixel intensities are derived as proxies based on the
distances of event points to motion edges, and applied to
optical flow estimation (Almatrafi et al., 2020). Building
on the “distance surface,” inverse exponential calculations
were incorporated, resulting in a novel dense “inverse ex-
ponential distance surface” representation that addresses
noise sensitivity and unbounded influence regions (Brebion
et al., 2021). However, these event representations typically
adopt a frequency accumulation approach, often resulting in
blurred event edges. Therefore, event alignment is required
during the process of converting event streams into event
frames.

2.2. The Contrast Maximization Methods

Contrast maximization serves as an effective method to ad-
dress image blurring. It maximizes an evaluation function
to assess the alignment of event edges caused by object mo-
tion, resulting in clear event frame images through motion
estimation. Based on this, a unifying contrast maximiza-
tion framework is proposed for motion, depth, and optical
flow estimation with event cameras. (Gallego et al., 2018).
Subsequently, researchers classified and investigated reward

functions affecting event alignment, exploring the impact
of different evaluation methods on recovering sharp event
frames and their performance across various applications
(Gallego et al., 2019) (Stoffregen & Kleeman, 2019). Be-
yond generating aligned event images, contrast maximiza-
tion has also been employed in deep learning as a form of
supervision. For instance, The contrast maximization-based
self-supervised learning framework has achieved competi-
tive results in optical flow estimation (Hagenaars et al., 2021;
Paredes-Vallés & De Croon, 2021; Shiba et al., 2022b).
However, the contrast objective (variance) may overfit the
events, which can push the events to accumulate in too few
pixels (event collapse (Shiba et al., 2022a)).

2.3. The Deep Learning-based Methods

With the increase in computility, deep learning has rapidly
become the dominant approach in asynchronous event data
representation. The Event Spike Tensor (EST) is the first
data-driven, end-to-end event representation method. It uti-
lizes a multilayer perceptron (MLP) to learn the optimal
mapping function, thereby maximizing task performance
(Gehrig et al., 2019). Matrix-LSTM replaces the MLP with
an LSTM, leveraging temporally accumulated pixel informa-
tion to construct a 2D event representation, thereby further
optimizing the learning framework (Cannici et al., 2020).
To fully leverage the sparsity and asynchronicity of event
data, graph-based representation methods utilizing graph
neural networks have been proposed (Xu et al., 2018; Bi
et al., 2020; Schaefer et al., 2022; Deng et al., 2022; Wang
et al., 2024). These methods process event data in the form
of a temporally evolving graph, efficiently maintaining both
sparsity and high temporal resolution. Dense event repre-
sentations based on convolutional neural networks (CNNs)
achieve superior task performance; however, they are com-
putationally intensive, which limits their practical deploy-
ment. In contrast, sparse event representations leveraging
graph neural networks (GNNs) enhance efficiency by ex-
ploiting the spatiotemporal characteristics of asynchronous
events, although they typically exhibit lower accuracy and
are constrained in terms of application scope.

3. Methods
3.1. Event Field

The event streams generated by event cameras can be con-
sidered as point sets in three-dimensional space, where each
event point is represented as four-dimensional data. The
event point consists of spatial coordinates x and y, polarity,
and timestamps. Inspired by (Gehrig et al., 2019), this point
set is represented by the following equation:

E(x, y, p, t)=
∑
en∈ε

δ(x−xn, y−yn, p−pn)δ(t−tn). (1)
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Figure 3. The human brain’s visual cortex recognizes moving objects through the dorsal and ventral pathways. Event cameras
mimic the three-layer structure of the peripheral retina in humans, encoding moving objects into event stream data. We utilize a chaotic
dynamics framework, based on CCNN, to map the event stream data into event representations inspired by the dorsal stream. Subsequently,
the event representations are sent from the MT area to the IT area, where recognition of moving objects is achieved through multiple
layers of neural networks.

The event point set is continuously represented by the func-
tion E(x, y, p, t). Each event point in the event stream is
represented by δ(·) to capture its spatiotemporal informa-
tion and polarity. In three-dimensional space ε, an event
point en = (xn, yn, pn, tn) generates a Dirac impulse when
its spatiotemporal information and polarity match. This
indicates the occurrence of the event.

3.2. Dorsal Pathway-Inspired Event Representation

Sampling. When processing three-dimensional event
stream data, sampling is the primary step and can gener-
ally be categorized into two categories: fixed sampling and
adaptive sampling. The sampled event bins are expressed as
follows:

E [xi, yj , pk, tl] =
∑
ek∈ε

δ(xi − xn, yj − yn, pk − pn)

δ(tl − tn), (2)

where xi ∈ {0, 1, 2, · · ·X} , yj ∈ {0, 1, 2, · · ·Y } represent
the resolution of the event frame, pk ∈ {−1, 1} denotes
the polarity of the event. tk ∈ {t0 +N(η ·∆t)}, where
t0 is the starting time, N is the number of event bins, ∆t
is the time interval, and η is the adjustment factor. For
the fixed sampling method, η remains constant, whereas
for adaptive sampling, η is adjusted dynamically based on
specific requirements.

Each event point in the event stream data contains the po-
sition coordinates (x, y) of the moving object, a timestamp
t, and polarity p. In this work, the coordinate information
is designated as the key, while the polarity sequence corre-
sponding to the same coordinate serves as the value. After
aligning all values, they are uniformly input into the CCNN.
Different polarity variation sequences result in different
types of output signals.

V (en) = F ((xi, yj), ε)

= {(pk, tl)|E [xi, yj , pk, tl] ∈ ε}, (3)

where F (·) represents the mapping function, (xi, yj) de-

4



A Chaotic Dynamics Framework Inspired by Dorsal Stream for Event Signal Processing

notes the spatial coordinates used as keys, and V (ek) repre-
sents the polarity timestamp sequence corresponding to the
coordinates, used as values.
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Figure 4. The input-output characteristics of the CCNN. (a)
When stimulated by event signals with changing polarity, the
CCNN generates chaotic sequences as output. (b) When stim-
ulated by event signals with constant polarity, the CCNN produces
periodic sequences as output.

Continuous-coupled Neural Network. When inputting
all mapped polarity sequences within the same sampling
period into the CCNN, a non-coupled CCNN is chosen for
simplicity. Its mathematical model is described as shown in
the following equation:

U(k) = e−αfU(k − 1) + V (ek)

Y(k) =
1

1 + e−(U(k)−E(k))
(4)

E(k) = e−αeE(k − 1) + VEY (k − 1),

where U is an independent variable influenced solely by
the external input V , which in this work corresponds to the
polarity sequence at a specific coordinate.

When the polarity varies uniformly, the general term equa-
tion of U(k) is expressed as:

U(k) = V · 1− e−kαf

1− e−αf
. (5)

Through derivation, the expression for period k is obtained
as:

k=1+
1

αf
ln

V

V −(1− e−αf )(E(0)−ln ( VE

(1−e−αe )E(0)−1))
.

(6)

Thus, CCNN neurons output a periodic sequence Y (k) un-
der constant stimulation, with the frequency of the period
determined by the intensity of the input stimulus.

When the polarity varies periodically, V (ek) =

{0, 1, 0, 1, · · · 0, 1} = − ik+(−i)k

2 = sin (k·π2 ). The general
term equation for U(k) is given as:

U(k) =
e−kαf sin

(
k·π
2

)
− αfe

−kαf cos (k·π2 )

1 + α2
f

. (7)

(a) (b) (c)

(d) (e) (f)

Figure 5. Waveform and phase space plot of CCNN neuron. (a)
Waveform of U. (b) Waveform of E. (c) Waveform of Y. (d) Phase
space plot of U-E plane. (e) Phase space plot of U-Y plane. (f)
Phase space plot of E-Y plane.

According to equation (4), each update of E(k) is influ-
enced by Y (k), making it impossible to represent using a
general mathematical equation. Consequently, the stimula-
tion of periodic signals induces unique dynamic behavior
in the CCNN model. Figure 5 illustrates the waveforms
and phase space plots of the CCNN neuron under square
wave signal stimulation, demonstrating its complex dynamic
characteristics.

Nonlinear analysis methods are subsequently utilized to
investigate the dynamic behavior of the CCNN, with the
equilibrium point of the model defined as follows:

E(k + 1) = E(k) =⇒

E(k)
(
1 + e−(U(k)−E(k))

)
=

VE
1− e−αe

. (8)

Using the Taylor series expansion of ex, the above equation
is simplified, resulting in the following simplified equation
(9):

E(k)2 − (U(k)− 2)E(k)− VE
1− e−αe

= 0. (9)

Since VE > 0, αe > 0, and 4VE(1 − e−αe) > 0, the
discriminant ∆ = (U(k) − 2)2 + 4VE(1 − e−αe) >
0. In this case, E(k) can be expressed as:E(k) =
U(k)−2±

√
(U(k)−2)2+4VE(1−e−αe )

2 . Since U(k) is an inde-
pendent variable, equation (4) represents a two-dimensional
discrete dynamic system. Using nonlinear analytical meth-
ods, it is derived that the system has two equilibrium points,
which can be expressed as:

U(k) =
e−kαf sin

(
k·π
2

)
− αfe

−kαf cos (k·π2 )

1 + α2
f

E(k)=
U(k)−2±

√
(U(k)−2)2 + 4VE(1−e−αe)

2
(10)

Y (k) =
1

1 + e−(U(k)−E(k))
.
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Therefore, the CCNN neuron generates a chaotic sequence
Y (k) under periodic stimulation. While the processing of
event signals by the CCNN is illustrated as Figure 4.

Continuous Wavelet Transform. In the CWT, after
extensive experimentation, the Gaussian wavelet is chosen
as the basis function. It is derived from the translation and
scaling of the Gaussian function, as shown in equation (11):

ψa,b(t) =
1√
a
ψ

(
t− b

a

)
, (11)

where ψ(·) is the Gaussian function, t is the input signal, and
σ is the standard deviation controlling the function’s width.
ψa,b(t) denotes the Gaussian wavelet, with a as the scale
parameter and b as the translation parameter determining its
position.
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Figure 6. The heatmap of the real part of the CWT matrix. (a)
The real part of the CWT matrix corresponding to the chaotic
sequence. (b) The real part of the CWT matrix corresponding to
the periodic sequence.

In the selection of the scale parameter for wavelet transform,
we monotonically increased the scale parameter starting
from 1, and ultimately chose a scale range of 10.

CWT (a, b) = Y (t)⊛ ψa,b(t)

=
1√
2πaσ

∫ k

0

Y (t)e−
(t−b)2

2a2σ2 dt, (12)

where Y (t) represents the output of the event polarity se-
quence processed by the CCNN, ⊛ represents the convolu-
tion operation.

An empirical analysis reveals that for periodic sequences,
the real parts of the wavelet coefficients are predominantly
negative, whereas for chaotic sequences, they exhibit the
opposite trend. The results, shown in Figure 6, demon-
strate that summing the real parts of all wavelet coefficients
effectively distinguishes between sequences with polarity
changes and those without.

Sij =

10∑
i=1

k∑
j=1

Re(cwt(ai, bj)), (13)

where Sij represents the sum of the real parts of all elements
in the coefficient matrix.

Low-pass Filter. The constant polarity sequence and
the changing polarity sequence are processed through the
CCNN and CWT, resulting in values distributed on either
side of the zero point. To accurately reflect the position of
the moving object, a linear low-pass filter is used to extract
effective event points as the pixel points of the event frame.
Its expression is given by the following equation:

H(f) =

{
255, f < 0

0, f > 0.
(14)

We set the coordinate points less than zero to 255 and those
greater than zero to 0. This processing approach not only
filters out irrelevant information but also preserves the most
critical dynamic changes in the event stream, resulting in a
clearer and more accurate event frame F (x, y):

F (x, y) =

M∑
i=1

N∑
j=1

Sij ·H(f). (15)

4. Experiment
Dataset. We validate the stability and generalization of
the proposed event representation method on four object
classification datasets: N-MNIST (Orchard et al., 2015),
N-Caltech101 (Orchard et al., 2015), N-CARS (Sironi et al.,
2018), and ASL-DVS (Bi et al., 2019). Among these,
N-MNIST dataset, a spiking version of the frame-based
MNIST, contains 60000 training and 10000 testing sam-
ples (28×28 pixels). It was generated by capturing event
streams with an ATIS sensor mounted on a motorized pan-
tilt unit. N-Caltech101 dataset, derived from Caltech101,
includes 8677 samples across 101 categories, with each cat-
egory containing 40∼800 samples (approximately 300×200
pixels). N-CARS dataset is a real-world event-based car
classification dataset with 12336 cars and 11693 non-car
samples, recorded using an ATIS camera capturing 100 ms
events. ASL-DVS dataset comprises 100800 samples across
24 ASL letters (excluding J), with each 100 ms sample
recorded using a DAVIS240c event camera in a controlled
office environment.

Experimental Details. For each dataset, we employed a
ResNet-34 architecture pre-trained on the ImageNet dataset.
The data was split into training, validation, and test sets in a
ratio of 3:1:1, with the random seed set to 2024. The model
was trained for five epochs with a batch size of 16. During
optimization, we used the cross-entropy loss function and
the Adam optimizer with an initial learning rate of 1e− 4.
To mitigate overfitting, we introduced a dropout layer before
the fully connected layer and incorporated an early stopping
mechanism during training. When the validation loss ceased
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(a) (b)

Figure 7. Semantic distance map. (a) Semantic 2D vector distribution of N-MNIST. (b) Semantic 2D vector distribution of ASL-DVS.

Table 1. Classification accuracy on various datasets. ♣ Spike-
based, ♦ Voxel-based, ♥ Frame-based, ★ Ours.

Method N-M N-Cal N-Cars ASL

♣ NDA (Li et al.) – 78.2 90.1 –
♣ VPT-STS (Shen et al.) – 79.2 95.8 –
♦ GIN (Xu et al.) 75.4 47.6 84.6 51.4
♦ EventNet (Sekikawa et al.) 75.2 42.5 75.9 83.3
♦ RG-CNNs (Bi et al.) 99.0 65.7 91.4 90.1
♦ EV-VGCNN (Deng et al.) 99.4 74.8 95.3 98.3
♦ VMV-GCN (Xie et al.) 99.5 77.8 93.2 98.9
♦ TORE (Baldwin et al.) 99.4 79.8 94.5 99.9
♥ HATS (Sironi et al.) 99.1 64.2 90.2 –
♥ EST (Gehrig et al.) 99.0 75.3 91.9 97.9
♥ AMAE (Deng et al.) 98.3 69.4 93.6 98.4
♥ M-LSTM (Cannici et al.) 98.6 73.8 92.7 98.0
♥ MVF-Net (Deng et al.) 98.1 68.7 92.7 97.1
♥ EvT (Sabater et al.) 98.3 61.3 89.6 99.9
♥ DVS-ViT (Wang et al.) 98.1 63.3 90.7 96.9
♥ TOKEN (Jiang et al.) 99.9 81.6 95.4 99.9
★ Ours 97.4 84.4 99.9 99.2

to decrease, training was terminated early to ensure robust
model performance.

Results. As listed in Table 1, our framework outper-
formed all competing methods on the N-Caltech101 and
N-CARS datasets and achieved competitive results on the
N-MNIST and ASL-DVS datasets. On the N-CARS dataset,
our framework achieved a near-perfect accuracy of 99.9%,
surpassing the current best-performing TOKEN method by
4.5% and TORE by 5.4%. Even advanced approaches such
as EST and MVF-Net showed inferior performance com-
pared to our framework. This underscores our framework’s
ability to effectively leverage temporal and polarity infor-
mation. On the N-Caltech101 dataset, our framework’s
accuracy exceeded HATS by 17.5% and EST by 9.05%,

Table 2. Model complexity of different methods on object clas-
sification. Here, we report average inference time on N-Cars.

Method Params(M) MACs(G) Time(ms)

♦ PointNet++ (Qi et al.) 1.8 4.0 103.9
♦ RG-CNNs (Bi et al.) 19.5 0.8 –
♦ EV-VGCNN (Deng et al.) 0.8 0.7 7.1
♦ VMV-GCN (Xie et al.) 0.8 1.3 6.3
♥ EST (Gehrig et al.) 21.4 4.3 6.4
♥ M-LSTM (Cannici et al.) 21.4 4.3 6.4
♥ MVF-Net (Deng et al.) 33.6 5.6 10.1
★ Ours 21.9 3.7 2.1

demonstrating its capability to handle complex datasets
with high intra-class variation. In contrast, handcrafted
representations performed poorly on such datasets due to
their inability to fully exploit temporal and spatial features.
On the N-MNIST dataset, our framework achieved an accu-
racy of 97.4%, comparable to the state-of-the-art methods,
EST and HATS. This indicates our framework’s robustness
even on datasets with lower complexity. For the ASL-DVS
dataset, TORE achieved the highest accuracy of 99.9%. Our
framework achieved a comparable performance with an ac-
curacy of 99.2%, demonstrating its effectiveness in handling
complex gesture recognition tasks. The semantic 2D vector
distribution maps of N-MNIST and ASL-DVS are shown in
Figure 7.

Complexity Analysis. Table 2 lists the model complexity
of different methods of object classification. We evalu-
ate the model complexity comprehensively by three met-
rics: the number of trainable parameters, the number of
multiply–accumulate operations (MACs), and average in-
ference time. Our framework achieves superior accuracy
on N-Caltech101 while keeping the moderate model com-
plexity(3.67G MACs), demonstrating the efficiency of our
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Time Surface LIF OursEvent CountRGB Frame

Figure 8. Visualization of different event representation methods on the N-Caltech101 dataset. Green boxes are ground truth, while
red boxes are the minimum enclosing rectangle.

framework in event-based representation learning. We fur-
ther measure the average inference time of our framework
on N-Cars using a workstation (CPU: Intel Core i9, GPU:
NVIDIA RTX 4060, RAM: 16GB). Our framework takes
2.12 ms to recognize a sample equivalent to a throughput of
472 samples per second, showing the practical potential in
high-speed scenarios.

Table 3. IoU of different event representations on the N-
Caltech101 dataset.

Event
Representation

IoU
(30000)

IoU
(50000)

IoU
(70000)

IoU
(100000)

Event Count (Miao et al.) 0.4276 0.5640 0.5896 0.5937
Time Surface (Miao et al.) 0.4845 0.5976 0.6089 0.6198
LIF (Miao et al.) 0.2056 0.2162 0.3722 0.4022
Ours 0.4879 0.6087 0.6357 0.6450

IoU Comparison. The experimental results on the N-
Caltech101 dataset shows the Intersection over Union (IoU)
performance of our framework and other methods. The
methods were evaluated under different numbers of events
(30000, 50000, 70000, and 100000). As listed in Table 3,
our framework shows superior performances than all other
methods at each event count. Starting with an IoU of 0.4879

at 30000 events, our framework showed substantial improve-
ment as the number of events increased, reaching an IoU
of 0.6450 at 100000 events. These results suggest that our
framework is more effective in extracting and utilizing spa-
tiotemporal information from event streams, particularly as
higher event counts enhance object shapes and features. The
observed improvement further underscores the robustness
of the model and highlights the superiority of the proposed
approach. The visualization of different event representation
methods on the N-Caltech101 dataset is shown in Figure 8.

5. Conclusion
In this work, we propose a chaotic dynamics framework
inspired by the dorsal stream for event signal processing,
which generates generalized and stable event representa-
tions. Then the framework is integrated with image-based
algorithms for event-based object classification, achieving
high accuracy across multiple datasets. Furthermore, our
framework demonstrates significant efficiency in sample
inference, processing 472 samples per second. In sum-
mary, we propose a method for event cameras, combining
robustness with computational efficiency, and demonstrating
promising application potential in real environments.
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