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ABSTRACT
This paper describes a system developed for the GENEA (Genera-
tion and Evaluation of Non-verbal Behaviour for Embodied Agents)
Challenge 2023. Our solution builds on an existing diffusion-based
motion synthesis model. We propose a contrastive speech and mo-
tion pretraining (CSMP) module, which learns a joint embedding
for speech and gesture with the aim to learn a semantic coupling
between these modalities. The output of the CSMP module is used
as a conditioning signal in the diffusion-based gesture synthesis
model in order to achieve semantically-aware co-speech gesture
generation. Our entry achieved highest human-likeness and high-
est speech appropriateness rating among the submitted entries.
This indicates that our system is a promising approach to achieve
human-like co-speech gestures in agents that carry semantic mean-
ing.
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1 INTRODUCTION
Human communication is inherently multimodal involving the in-
tegration of multiple verbal and non-verbal modalities to convey
the information. These modalities work in synergy, collaborating to
create a joint representation of the message the speaker intends to
convey [29]. In addition to complementing verbal communication,
these non-verbal gestures frequently serve as substitutes for words
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[9, 31]. The semantic meaning contribution of gestures is multi-
faceted. Beat gestures primarily emphasize the verbally expressed
content, serving to accentuate the spoken message. On the other
hand, iconic and pointing gestures go beyond emphasizing content;
they directly represent or indicate the referent being discussed.
Deictic pointing gestures, often accompanying deictic words, play a
crucial role in referential communication by providing vital contex-
tual information for reference disambiguation, while iconic gestures
serve to visually represent or symbolize the attributes, actions, or
characteristics associated with the referent.

Co-speech gesture generation in robotics and avatars focuses on
generating gestures that accompany and extend the verbal modal-
ity. However, the generation of audio-driven motion has posed a
significant challenge. This difficulty arises from the fact that such
motion can be accurately predicted by very strong probabilistic
models, since gestures exhibit high individual variability, are inher-
ently non-deterministic [2]. Recent advances in learning arbitrary
probability distributions with diffusion models has offered a way
to tackle this problem. These audio-driven gesture generation mod-
els have proven to be efficient in reproducing the high variability
and expressivity of human gestures, however integrating seman-
tic content into gesture generation by combining audio and text
conditioning is another challenge.

Self-supervised pre-training methods have proven to be an ef-
ficient way to learn useful representations for downstream tasks,
especially in case of limited labeled data. Multi-modal pre-training
methods learn embedding spaces that encode useful relations of
different data modalities. Contrastive Language-Image Pre-Training
(CLIP) [32] is a contrastive multi-modal pre-training method that
learns a joint representation of image and text data by contrasting
positive and negative text-image pair examples in the latent space
during training. This training approach encourage the model to
capture the underlying relationship between the two modalities.

The problem of co-speech gesture generation involves multiple
modalities, with a tight coupling between motion, text and audio.
This work aims at combining the expressivity of diffusion based
motion synthesis [2] with the multi-modal understanding of a CLIP-
like latent embedding space that models the relations between
motion, text and audio in co-speech gestures.
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2 RELATEDWORK
2.1 Co-speech gesture generation
The primary goal of co-speech gesture generation is to synthesise
natural and contextually appropriate gestures. In the early stages
of gesture generation research, various rule-based approaches were
employed [5, 26, 27], where the generation of gestures was triggered
by predefined rules that initiated the playback of pre-recorded
gestures. In recent years, this field has been dominated by the use
of data-driven deep learning based modelling methodologies [31].

Early works on deep learning-based gesture synthesis treated
it as a regression problem and utilised recurrent [14, 36] and con-
volutional [21] neural networks to model the generation process.
Treating gesture synthesis as a regression problem leads to the prob-
lem of under-articulated and over-smoothened gestures because
of averaging over all the possible outcomes for an input signal. To
address the challenge of under-articulated and over-smoothened
synthesis researchers employed various probabilistic modelling
techniques such as VAEs [12], VQ-VAEs [43], Normalising Flows
[1] or adversarial techniques like GANs [41, 42]. These methodolo-
gies aim to enhance the realism and expressiveness of the generated
gestures by learning a distribution over the entire utterances and
sampling different realisations from it or learning powerful transfor-
mations from a simple distribution, usually a Gaussian distribution,
to the output motion distribution.

Diffusion models [15, 34, 35] have emerged as a notable and con-
temporary probabilistic generative modelling methodology. These
models have shown promise in capturing complex data distribu-
tions and have gained attention in various fields, including gesture
generation [2, 3, 30, 45]. Inspired by these works our system uses
Denoising Diffusion Probabilistic Modelling (DDPM) [15] formu-
lation with self-supervised representations to synthesise gestures
conditioned on the input audio.

2.2 Semantic gesture generation
In order to generate contextually appropriate gestures in agents, it
is crucial to take into account gesture semantics. Semantic gestures
have a symbolic representational quality and contribute to the
overall meaning in communication. The generation of semantic
gestures is highly reliant on which input modalities are taken into
account in the modeling process [31].

Audio driven generation can reproduce the coupling between
gesture kinematics and the intonation, stress and rhythm present in
the audio signal. These systems are good at modeling beat gestures,
which can help highlight important points or add emphasis to
certain words or phrases [28],[1],[2]. However, in order to generate
representational gestures (e.g., iconic, deictic pointing), additional
input modalities are needed. Text-based conditioning is essential
to model the relation between semantic and kinematic spaces in
order to generate iconic gestures [44],[22], while the generation of
deictic pointing gestures needs referential target information [10].
In this work we develop a novel approach to jointly model audio
and text conditioning in gesture generation through a contrastive
self-supervised learning approach in order to extend the existing
audio conditioned system with semantic capabilities.

2.3 Using language based pre-training
approaches in motion generation

Recent works approaches have leveraged different pre-training ap-
proaches to learn the semantic coupling between text and motion
spaces. [46] uses a GPT-like module to generate code indices based
on text embeddings which are utilized by a VQ-VAE module in
motion generation, while [17] proposes MotionGPT, which per-
forms language modeling on both motion and text in a unified
manner, treating human motion as a specific language. Previous
work has also leveraged CLIP’s multimodal understanding to gener-
ate meaningful motion. [37] develops an auto-encoder basedmotion
generation model, which learns a motion embedding space aligned
with CLIP’s latent space, which allows for the generation of ex-
pressive and versatile text-based motions. [38] uses CLIP latents as
conditioning information in diffusion based human motion genera-
tion. Similarly, [8] conditions on CLIP latents, but combines latent
space based and diffusion based motion generation. Most similar to
our work is [3], which learns a gesture-text joint embedding using
contrastive learning and a CLIP based style encoding module in a
diffusion based gesture synthesis model.

3 METHOD
3.1 Self-supervised representations of text and

audio
We employ pre-trained self-supervised representations for text and
audio for both the main agent and the interlocutor. Data2vec [4]
which is a framework for self-supervised representation learning
on data of different modalities (text, audio and images), for which
pre-trained models are available 1. Data2vec leverages transformer
architecture in a self-distillation setup to achieve contextual text
embedding, predicting latent representations of the full input data
based on a masked view of the input.

For audio, we use the data2vec-audio-base-960hmodel, which
takes one-channel 16 Khz audio as input. As output we use the last
hidden layer, which gives us a sequence of 768-dimensional embed-
ding vectors at a rate of 50 Hz. The output is then converted to 30
Hz using polyphase resampling (scipy.signal.resample_poly)
in order to match the frame rate of the motion data.

For text, we use the data2vec-text-base model. Input to the
model is a sequence of byte-pair encoded text tokens. Just as for the
audio, we use the last hidden layer of the data2vec model to obtain
a 768-dimensional vector for each input token. We use the word
timed transcriptions provided in the dataset (see [23]) to maintain
a start and end time for each token, then we replicate the output
vector at a rate of 30 Hz for the duration of the token, The result is
a text-embedding sequence that is aligned with, and of the same
length as, the audio and motion data sequences.

3.2 Join representation with Contrastive Speech
and Motion Pretraining (CSMP)

Contrastive pre-training can effectively capture the semantic rela-
tionships between two modalities but usually, it requires a larger
batch size and larger dataset to learn efficient joint representations
[7] which can be challenging especially in this case because of
1huggingface.co

huggingface.co
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dataset-specific properties [23] such as the presence of an interlocu-
tor and the skeletal nodes of the characters. In such a case having
representations which already capture semantic information can be
used as the inputs to the CLIP module. Therefore, we devise a varia-
tion of CLIP and call it Contrastive Speech and Motion Pretraining
(CSMP).

In CSMP, we propose several modifications to the original CLIP
architecturewithin the context ofmultimodal understanding namely:

(1) We replace the vision transformer present in the original
CLIP architecture with a regular transformer architecture,
which effectively eliminates the patching process typically
employed for 2-D image analysis. This modification is moti-
vated by the nature of text and audio.

(2) The input to this modified transformer is derived from con-
catenated representations of the output of the pretrained
data2vec module for text and audio as described in section
3.1 instead of raw tokens for original CLIP.

(3) For the text encoder in CLIP, we modify the input from
discrete text tokens to continuous motion vectors thus elim-
inating the need for an embedding layer. This alteration is
intended to mimic the semantic information contained in the
text and audio representations to the motion representation
in the joint space of CSMP’s representations.

(4) Since the original clip takes discrete and tokenized text as
an input it had a context length of 77 this, in the case of
modalities like the output of data2vec and motion which is
continuous in nature can be insufficient to capture longer-
term dependencies. In order to overcome and increase the
encoder’s field of view we increased the context length to
500 timesteps.

The final architecture of the CSMP module is described in Fig. 1

data2vec (text)

data2vec (audio)

Time aligned input text

Input speech

Text and Audio Encoder

Motion Encoder

Input motion

CLIP loss

Text

CSMP

Figure 1: Architecture of Contrastive SpeechMotion Pretrain-
ing (CSMP) module.

In order to train such an architecture with CLIP loss, we chunked
each input 𝑋𝑖 = [𝑥1, · · · , 𝑥𝑇 ] in a sliding window manner with a
window length of 500 and a hop length of 250 and formed multiple
splits for each utterance.

𝑋𝑖 = [[𝑥1, · · · , 𝑥500], [𝑥250, · · · , 𝑥750], · · · , [𝑥𝑇−500, · · · , 𝑥𝑇 ]]

We hypothesise that this helped in the generalisation despite a fixed
context size because the positional encoding could see the data at
a specific timestep 𝑥𝑡 in different relative positions while training.
The source code is available on GitHub in GestCLIP branch2.

3.3 DDPM for motion synthesis
Diffusion models are a recent class of generative models that have
become popular due to their expressivity and flexible conditioning.
Diffusion models are based on the idea that complex data distribu-
tions can be learned by iteratively transforming a simple known dis-
tribution, such as a Gaussian distribution, through a series of diffu-
sion steps. Unlike VAEs, which incorporate latent variable modeling,
diffusion models directly model the data distribution without explic-
itly introducing latent variables. Diffusion models consist of a for-
ward process and a reverse (denoising) process. The forward process
defines a Markov chain of 𝑁 diffusion steps to gradually add noise
to samples from the data distribution 𝑥0 ∼ 𝑞(𝑧). The noise steps
are assumed to be fixed, zero-mean Gaussian distributions, with-
out learnable parameters, 𝑞(𝑥𝑛 |𝑥𝑛−1) = N(𝑥𝑛 ;

√︁
1 − 𝛽𝑛𝑥𝑛−1, 𝛽𝑛I),

whereN denotes the multivariate Gaussian density function evalu-
ated at 𝑥𝑛 and {𝛽𝑛}𝑁𝑛=1 is the noise schedule. In the reverse process
the model learns to reverse the forward process so that the model is
able to construct desired data samples from the noise. If 𝛽𝑛 is small
enough, the reverse step 𝑝 (𝑥𝑛−1 |𝑥𝑛) is also Gaussian and a neural
network is used to approximate the parameters of the distribution
𝑝𝜃 (𝑥𝑛−1 |𝑥𝑛) = N(𝑥𝑛−1; 𝜇𝜃 (𝑥𝑛, 𝑛), Σ𝜃 (𝑥𝑛, 𝑛)).

The Denoising Diffusion Probabilistic Model (DDPM) [15] sim-
plifies the objective of diffusion model and establishes a connection
to score matching, which is a technique used for estimating the
gradients of the probability distribution of data. These gradients
are then used to generate samples via Langevin dynamics, which is
a stochastic process that simulates the motion of particles in a fluid.
In DDPM the score-matching objective is reformulated as noise
predicting objective, L = E𝑥0,𝑛,𝜖 [𝜅𝑛 ∥𝜖 − 𝜖𝜃 (𝑥𝑛, 𝑛)∥2

2] , where 𝜖𝜃 is
a neural network intended to predict the noise 𝜖 that was added to
𝑥0 and 𝜅𝑛 are weights.

Conditional generation in diffusion models can be achieved
via classifier-guided or classifier-free models. In classifier guided
diffusion models the gradients of a separately trained classifier
𝑓𝜙 (𝑦 |𝑥𝑛) is used to guide the diffusion process ∇x 𝑓𝜙 (𝑦 |𝑥𝑛)[11].
Classifier-free diffusion models combine conditional and uncon-
ditional diffusion in order to guide the diffusion. In the above for-
mulation this means that a conditional network 𝜖𝜃 (𝑥𝑛, 𝑛, 𝑐), with
conditioning input 𝑐 is trained, where the conditioning informa-
tion is randomly discarded during training, so that in the reverse
diffusion process conditional generation can be achieved by the
combination of the input conditioned and unconditioned model
𝜖𝜃 (𝑥𝑛, 𝑛, 𝑐) = 𝜖𝜃 (𝑥𝑛, 𝑛, 𝑐) + 𝛾 (𝜖𝜃 (𝑥𝑛, 𝑛, 𝑐) − 𝜖𝜃 (𝑥𝑛, 𝑛)) [16]. Denois-
ing diffusion based conditional generation has been applied in
various domains. In [33], the CLIP embedding based conditioning
input is randomly set to zero in order to achieve high quality image
synthesis. DiffWave [20] is a denoising diffusion based model for
waveform generation, which uses mel spectograms and speaker ID
as conditioning information. The Listen-Denoise-Act (LDA) model

2https://github.com/shivammehta25/CLIP/tree/GestCLIP
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[2] builds on the DiffWave model and uses mel spectogram in-
formation for human motion synthesis. Audio based conditional
human motion synthesis, such as dancing and co-speech gesture
generation have been a challenge in machine learning, due to the
ambiguity and high versatility required for good performance in
these tasks. The denoising diffusion based LDA model have proven
to be a powerful model to generate versatile and expressive motion
in the fields of dance and co-speech gesture generation. In our work
we use the residual deonising network of LDA with a conditioning
from the CSMP module for semantically-aware co-speech gesture
generation.

The LDA model follows DiffWave in parameterising the denois-
ing network 𝜖𝜃 , but replaces the dilated convolutions in the stacked
residual blocks with a stack of Transformers [39] or Conformers
[13] in order to capture and integrate information over long time
scales. In our experiments we use a stack of 3 translation-invariant
transformers [40] in each of the 15 residual blocks. Themodel learns
a distribution of the form 𝑝 (𝑥1:𝑇 |𝑎1:𝑇 ), where 𝑎1:𝑇 is the acoustic
conditioning and 𝑥1:𝑇 = 𝑥1:𝑇,0 is the output of the diffusion process
and 𝑥𝑡 is a representation of the pose at time step 𝑡 in the motion
sequence. In our case, the mel spectogram based acoustic condition-
ing of LDA is replaced with the joint audio and text based output of
the CSMP module, where the outputs for interlocutor and the main
agent data are concatenated into a conditioning signal of dimen-
sion 𝑐𝑡 ∈ R1024. This is the conditioning input in the classifier-free
diffusion guidance formulation. The outputs of the model are the
same in LDA, poses of skeletal joint rotations parametrised using
an exponential map representation relative to a T-pose, similarly
as in [1].

4 DATA PREPARATION
The challenge dataset is a processed version of the Talking With
Hands dataset[25]. The original dataset is one of the largest con-
versational dataset of motion and voice, incorporating 50 hours of
dyadic interactions, with audio, text and motion modalities. We
only used the data provided by the challenge for gesture synthesis.

4.1 Audio DC-removal and muting of cross-talk
We found that the audio data contained a number of loud transient
clicking noises. On inspection, it was found that they were due to
a significant DC-offset, in combination with the fact that certain
sections of the audio signal had been zeroed out, as part of an
anonymization process. This was easily rectified by subtracting the
mean from all non-zeroed out portions.

Additionally, the data contained a non-negligible amount of
cross-talk between the two speakers in the recording. We used
the time stamps from the time-aligned text transcriptions to mute
all audio falling outside of the intervals marked as speech in the
transcription for each speaker. We used a 200 ms ramp function for
the muting to avoid introducing transients.

4.2 Motion capture data cleaning
We also noticed that some of the motion capture data contained
errors such as joints suddenly popping to unnatural poses. These
errors were predominantly confined to the wrist joints, but also
occurred at the hips. As such problems has an impactmodel training,

and we even found our model reproducing them in synthesis, we
performed some data cleanup. We transformed the data to joint
positions and detected discontinuities in the wrist speeds using a
Hampel filter. This was followed by a manual check of the affected
files. In the end, 17 files were removed from the training set.

5 SYSTEM OVERVIEW
Schematic view of the final system can be seen in Figure 2. The
system was trained on a NVIDIA GeForce RTX 3090 for 387.4𝑘
steps and achieved 0.013 loss on the training and 0.019 loss on the
validation set. No post-processing was applied on the generated
output motions.

6 EVALUATION
The evaluation of the generated motions was carried out by the
GENEA Challenge organisers, details about the evaluation inter-
face and experiment setups can be found in the evaluation paper
[24]. The generated co-speech gesture were evaluated in three sep-
arate perceptual studies: human-likeness, appropriateness to the
agent’s speech and appropriateness to the interlocutor’s motion
and speech. The evaluation included two baseline conditions and
the natural motion taken from the motion-capture recordings. The
monadic baseline (‘BM’) was generated with [6] which uses in-
formation from the main-agent for gesture generation, while the
dyadic baseline (‘BD’) is an adapted version of the former, which
also includes information from the interlocutor in the conversation.
The study participants were recruited through a crowd-sourcing
platform from English-speaking countries and each study incorpo-
rated attention checks. Our system, labeled as ‘SG’ achieved top
performance in the studies of human-likeness and speech appro-
priateness based on the generated motions submitted. However, it
ranked among the lowest in terms of interlocutor appropriateness.

6.0.1 Human-likeness evaluation. The aim of this study was to
evaluate whether the generated motion of the virtual character
looks like the motion of a real human. No audio was used in or-
der to disentangle the human-likeness evaluation from the speech
appropriateness. The evaluation was based on the HEMVIP method-
ology [19], where multiple different motion samples are presented
in parallel and the participant is asked to rate each sample. Par-
ticipant could give their ratings on a scale from 0 (worst) to 100
(best). Results for the evaluation are shown on Figure 3. Our system,
denoted as ‘SG’, achieved best performance from the entries, with
mean rating of 65.6 ± 1.4. Figure 4 also shows that this results is
significantly better than all of the entries, except ‘SF’. Interestingly,
the human-likeness score is very close to mean rating of the natural
condition, which was 68.4 ± 1.4 as seen on Table 1. This indicates
that our system can generate co-speech gestures which resembles
the motion of real humans.

6.0.2 Appropriateness to speech. The aim of this study was to eval-
uate whether the motion if the virtual character is appropriate for
the given speech, controlling the overall human-likeness of the
motion. The participants were presented with a pair of matched
and mismatched videos from the same condition in order to disen-
tangle this study from the motion quality evaluation. Five response
options were given for indicating preference over the 2 videos and
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Figure 2: Architecture of the motion synthesis module
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Figure 3: Box plot visualising the ratings distribution in
the human-likeness study. Red bars are the median rat-
ings (each with a 0.05 confidence interval); yellow dia-
monds are mean ratings (also with a 0.05 confidence inter-
val). Box edges are at 25 and 75 percentiles, whilewhiskers
cover 95% of all ratings for each condition. Conditions
are ordered by descending sample median rating.
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Figure 4: Significance of pairwise differences between
conditions. White means the condition listed on the 𝑦-
axis achieved an MAS significantly above the condition
on the 𝑥-axis, black means the opposite (𝑦 scored below
𝑥), and grey means no statistically significant difference
at level 𝛼 = 0.05 after correction for the false discovery
rate. Conditions use the same order as the corresponding
subfigure in Figure 3

the responses were converted to integer values in the range of
[−2, 2]. Our system achieved a MAS score of 0.39± 0.07 at the level
of 𝛼 = 0.05 and the matched motion was preferred over the mis-
matched in 61.8% of the evaluations. With these results it ranked
highest amongst the generated motions. Figure 5 visualizes the sig-
nificant differences between conditions and shows that our system,
denoted by ‘SG’, was significantly more appropriate to speech than
all of the entries of generated motions. Comparison to other entries
can be found in Table 1.

6.0.3 Appropriateness to interlocutor. The aim of this study was to
evaluate whether the motion of the virtual character is appropriate
for the given interlocutor behavior (speech and motion). In order
to evaluate the mismatched condition, synthetic interactions were

created, where the main agent was the same, but the interlocutor be-
havior was replaced with one from another interaction. Our system
achieved a MAS score of −0.09 ± 0.08 at the level of 𝛼 = 0.05 and
the matched motion was preferred over the mismatched in 46.7%
of the evaluations. With these results it ranked among the lowest.
Figure 6 visualizes the significant differences between conditions
and shows that our system, denoted by ‘SG’, was significantly less
appropriate to interlocutor than all half of the entries of generated
motions and there was no significant difference to the other half.
Comparison to other entries can be found in Table 1.

The MP4-format video stimuli used in the user studies can be
accessed through the following link: https://zenodo.org/record/
8211449. As before, our system is denoted as ‘SG’.

https://zenodo.org/record/8211449
https://zenodo.org/record/8211449
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Figure 5: Appropriateness for agent speech
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Figure 6: Appropriateness for the interlocutor

Figure 7: Significant differences between conditions in the two appropriateness studies. White means the condition listed on
the 𝑦-axis achieved an MAS significantly above the condition on the 𝑥-axis, black means the opposite (𝑦 scored below 𝑥), and
grey means no statistically significant difference at level 𝛼 = 0.05 after correction for the false discovery rate.

Table 1: Summary of results for subjective evaluation studies with confidence intervals for themean appropriateness score (MAS)
at the level 𝛼 = 0.05. “Pref. matched” identifies how often test-takers preferred matched motion in terms of appropriateness,
after splitting ties equally.

Human-likeness Speech appropriateness Interlocutor appropriateness
Condition Median Mean Condition MAS Pref.M. Condition MAS Pref.M.

NA 71 ∈ [70, 71] 68.4±1.0 NA 0.81±0.06 73.6% NA 0.63±0.08 67.9%
SG 69 ∈ [67, 70] 65.6±1.4 SG 0.39±0.07 61.8% SA 0.09±0.06 53.5%
SF 65 ∈ [64, 67] 63.6±1.3 SJ 0.27±0.06 58.4% BD 0.07±0.06 53.0%
SJ 51 ∈ [50, 53] 51.8±1.3 BM 0.20±0.05 56.6% SB 0.07±0.08 51.8%
SL 51 ∈ [50, 51] 50.6±1.3 SF 0.20±0.06 55.8% SL 0.07±0.06 53.4%
SE 50 ∈ [49, 51] 50.9±1.3 SK 0.18±0.06 55.6% SE 0.05±0.07 51.8%
SH 46 ∈ [44, 49] 45.1±1.5 SI 0.16±0.06 55.5% SF 0.04±0.06 50.9%
BD 46 ∈ [43, 47] 45.3±1.4 SE 0.16±0.05 54.9% SI 0.04±0.08 50.9%
SD 45 ∈ [43, 47] 44.7±1.3 BD 0.14±0.06 54.8% SD 0.02±0.07 52.2%
BM 43 ∈ [42, 45] 42.9±1.3 SD 0.14±0.06 55.0% BM -0.01±0.06 49.9%
SI 40 ∈ [39, 43] 41.4±1.4 SB 0.13±0.06 55.0% SJ -0.03±0.05 49.1%
SK 37 ∈ [35, 40] 40.2±1.5 SA 0.11±0.06 53.6% SC -0.03±0.05 49.1%
SA 30 ∈ [29, 31] 32.0±1.3 SH 0.09±0.07 52.9% SK -0.06±0.05 47.4%
SB 24 ∈ [23, 27] 27.4±1.3 SL 0.05±0.05 51.7% SG -0.09±0.08 46.7%
SC 9 ∈ [9, 9] 11.6±0.9 SC -0.02±0.04 49.1% SH -0.21±0.05 44.0%

7 DISCUSSION
The subjective evaluation results have shown that our system is ca-
pable of generating of co-speech gestures that are human-like and
speech appropriate. The high performance on the speech appropri-
ateness shows that the current system is a promising approach to
achieve semantically-aware co-speech gesture generation in virtual
agents.

Our system was top-ranked in the human-likeness and appro-
priateness for agent speech evaluations, while receiving one of the
lowest scores in the appropriateness to interlocutor evaluation. This

might seem a bit counter intuitive, given that we indeed trained
the system to listen to the interlocutor. We believe that there are
multiple factors at play here and will outline them below. First, out
systemwas trained to take in speech information of the interlocutor
as input (in the form of CSMP embeddings), but we chose to not
include interlocutor motion as one of the inputs, due to time con-
straints. Feeding interlocutor motion as input might have rendered
a system capable of mirroring/mimicry, similar to [18] which could
have resulted in a higher rating. Secondly, we would like to discuss
another possible explanation, which stems from the nature of the
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data and how the evaluation was carried out. In the appropriate-
ness evaluations, each system was compared against itself, and the
objective was to see to what degree raters could distinguish motion
that matched the context from mis-matched motion. As mentioned
in section 4.1, there was a certain amount of cross-talk present in
the data, i.e. the interlocutor audio was present in the main agent’s
channel and vice versa. We took extra measures to eliminate such
cross-talk, because not doing so would have resulted in the agent
performing co-speech gestures also while listening, based on the
cross-talk from the interlocutor. Inspecting the evaluation stimuli
based on the output from the different systems in the challenge, it
is clear that this seems to happen in certain systems. We can fur-
ther speculate that such an agent might in fact score favourably in
the match/mismatch paradigm, because the gestures would indeed
be interlocutor aware. Future work on improving the interlocutor
appropriateness could involve conditioning on interlocutor mo-
tion, as mentioned above, or training a separate model for listening
behavior.

Additional evaluations on the semantic gesture generation capa-
bilities of the model could be of interest for future work. In theory,
our model is capable of capturing the semantic relations between
speech and gesture spaces through the CSMP model. However,
the current subjective evaluation is a bit limited in measuring the
semantic gesture generation capabilities of the model, as it is dif-
ficult to disentangle from other aspects, such as speech-gesture
synchrony. Objective evaluation metrics for semantic appropriate-
ness could be helpful in quantifying and improving our system in
this regard.

8 CONCLUSIONS
In this paper we described our entry system to the GENEA Chal-
lenge 2023. We presented a system, which builds on an existing
diffusion based motion synthesis model and proposed a condition-
ing signal, which utilizes audio, text and motion data. For this we
proposed a CLIP-like contrastive pre-training module, contrastive
speech and motion pretraining (CSMP) in order to capture the un-
derlying relations between speech andmotion. Our system achieved
top performance in human-likeness and speech appropriateness
amongst the submitted entries, which proves that our system is
a promising approach to generate human-like co-speech gestures
in agents. Our system ranked relatively low in interlocutor ap-
prorpiateness, which is a focus in future work for improvement.
Human-like, semantic and interlocutor appropriate co-speech ges-
ture generation in virtual agents is still an open problem. Our
systems high performance in the subjective evaluations is encour-
aging and indicates that our submitted model is a promising way
to achieve these goals.
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