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Abstract

Interaction between caregivers and children
plays a critical role in human language acquisi-
tion and development. Given this observation,
it is remarkable that explicit interaction plays
little to no role in artificial language modeling—
which also targets the acquisition of human
language, yet by artificial models. Moreover,
an interactive approach to language modeling
has the potential to make language models sub-
stantially more versatile and to considerably
impact downstream applications. Motivated by
these considerations, we pioneer the space of
interactive language modeling. First we present
a road map in which we detail the steps that
need to be taken towards interactive language
modeling. We then lead by example and take
the first steps on this road map, showing the
initial feasibility of our approach. As such, this
work aims to be the start of a larger research
agenda on interactive language modeling.

1 Introduction

Interaction between children and more advanced
language interlocutors (such as caregivers) plays
an important role in many theories and studies on
human language acquisition (e.g., Bruner, 1985;
Clark, 2018). For example, although culturally de-
pendent (Shneidman and Goldin-Meadow, 2012)
and with the precise effects still up for discus-
sion (Cristia et al., 2019), caregivers can communi-
cate with their children in Child Directed Speech.
In turn, children can for example experiment with
the meaning of words, to elicit a response from
their caregivers (Gillis and Schaerlaekens, 2000).
Despite the importance of interaction in human
language acquisition, interaction plays little to no
role in artificial language modeling. This is remark-
able, as language modeling also has the objective to
learn human language, albeit with artificial models.
Instead, current state-of-the-art language models
(LMs) take large amounts of text as input, and are
tasked to predict the next or masked words (e.g.,

Figure 1: Teacher-Student setup for interactive language
modeling.

Devlin et al., 2018; Brown et al., 2020). The learn-
ing signal only comes from a cross-entropy loss
that indicates whether a prediction was correct. Al-
though this setup has shown to be effective, from
the perspective of human language acquisition it
appears very unnatural. This gives rise to the moti-
vation to investigate other, more natural approaches
to language modeling, such as the interactive per-
spective that we propose in this paper.
Specifically, we structure our proposal according
to a teacher-student setup. Figure 1 depicts a high
level overview. In this setup we distinguish four
main parts: the teacher, whose role is inspired by
the caregiver in the human language acquisition,
the student, who resembles the child, the interac-
tion between the teacher and the student and the
environment that they both share (such as the lan-
guage that needs to be learned by the student). We
motivate and detail our setup further in Section 3.

An interactive approach to language modeling
is not only interesting from the perspective of hu-
man language acquisition. Explicitly allowing for
interaction also has the potential to make language
modeling more efficient and versatile. For example,
a teacher can adapt its input to a student based on
the specific feedback signals it receives from the
student, and a teacher that is fluent in one domain
can teach the specifics of that domain to a student
trained on another domain, and vice versa. More-



over, an interactive approach to language modeling
has the potential to impact downstream applica-
tions, for example for foreign language teaching
apps where a student can be replaced by a human.
In this paper we pioneer the space of interactive
language modeling. Specifically, we contribute:
C1 We define the objective of interactive language
modeling;
C2 We present a road map that details the steps
that need to be taken towards this objective;
C3 We take the first steps on this road map, which
show the initial feasibility of our approach.
By doing so we aim to start a larger research
agenda on interactive language modeling.

2 Related Work

Over the years many different types of learning
strategies have been proposed for artificial model-
ing. Below we describe a number of them that are
particularly related to the current work.

2.1 Interactive Language Learning in NLP

Recently, a number of studies have focused on
interactive language learning. Stein et al. (2021)
learn logical semantic representations in an inter-
active way. Nikolaus and Fourtassi (2021) propose
a proof of concept to model perception and pro-
duction based learning of semantic knowledge ac-
quisition in children. Kiseleva et al. (2021) take
an interactive approach to language understand-
ing in a recent NeurIPS challenge. To the best of
our knowledge, none of the existing works have
focused specifically on language modeling.

2.2 Curriculum Learning

Curriculum Learning (CL) (Bengio et al., 2009) is
an approach to learning in which data samples are
presented in a meaningful order—typically in order
of complexity—motivated by the idea that humans
learn in a similar way. Bengio et al. show the
effectiveness of CL on a number of tasks, among
which a classical approach to language modeling.
More recently, a number of studies have shown
the effectiveness of CL for (fine-tuning) LMs (Xu
et al., 2020; Zhang et al., 2021), although other
studies have shown that not all intuitive curricula
are also effective (Liu et al., 2019). Matiisen et al.
(2019) propose a teacher-student framework for
automatic CL for the addition of decimal numbers
and navigation in Minecraft.

2.3 Active Learning

Active Learning (AL) (Cohn et al., 1996) is an ap-
proach in which a learner (the model to be trained)
actively selects which data it can most effectively
be trained on. That is, where CL is often more
associated with choosing a teaching strategy, AL
is rather focused on the student side. AL is of-
ten used to efficiently label data in a low resource
setting (e.g., Reichart et al., 2008; Dor et al., 2020).

2.4 Continual Learning

In Continual Learning, or life-long learning, the
aim 1is to train a model in an online fashion, i.e., on
a continuous stream of data, whilst avoiding catas-
trophic forgetting (McCloskey and Cohen, 1989;
French, 1999). This makes models versatile to
an ever changing world. Some recent work has
focused on types of Continual Learning for large
LMs (e.g., Lazaridou et al., 2021; Jin et al., 2021).
We envision interactive language modeling to play
an important role in life-long learning in the future.

3 A Road Map towards Interactive
Language Modeling

In this section we present a general road map to-
wards interactive language modeling.

Our objective is to build an automated teacher-
student loop for language modeling that attains
good performance in the student for a fixed (low)
number of bits transmitted in the interactions.

We propose a teacher-student loop as this format
closely resembles caregiver-child interactions. In
Section 1 and Figure 1 we already introduced a
high level overview of this setup and its four main
components: (1) the teacher, (2) the student, (3) the
interaction and (4) the environment. Generally, in
this setup teachers transmit language data to their
students, according to a certain budget (“a (low)
fixed number of bits”’). Having this budget forces
the teacher to actively choose a learning strategy, as
just sending all data that is available to the teacher
would not be allowed. Students have the objective
to learn the language and they send a signal back
that informs their teacher of their performance, e.g.,
a score on an exam. This interaction takes place in
an environment, e.g., a common language.

In Table 1 we present the road map that we envi-
sion towards interactive language modeling. This
road map works as follows. For each of the four
aforementioned components we detail steps that



need to be taken. We also add a fifth component:
the evaluation of the setup. Each component has
different aspects (bold-faced in Table 1). For ex-
ample, for the feacher we can focus on how it can
access the data that it can transmit to the student,
which we call “ways of speaking” in Table 1. An-
other aspect of the teacher side focuses on what
we call the “degree of awareness”, which entails
different ways in which the teacher can remember
different aspects of the teaching loop. In a similar
fashion we fill in the remaining components in the
table. We focus on text as a single modality and
acknowledge grounded interactive language mod-
eling as an interesting future research direction.

On our road map there are multiple ways to reach
the destination. For example, one can focus on tak-
ing a few steps for each of the components, or to
take many steps for only one or a few of the com-
ponents. Moreover, although mostly structured in
increasing degree of complexity, this does not al-
ways hold for all individual steps in the table. For
example, zooming in on the “degrees of awareness”
for the teacher again, one could imagine an ex-
ample where a teacher does not have an explicit
memory buffer of what it sent to the student before,
but does have an explicit way of remembering what
the student’s fine-grained capabilities are, as well
as the other way around.

In the remainder of this work we take the first
steps on the road map. We focus on the teacher
side, i.e., learning the correct didactic approach.

4 Taking the First Steps on the Road Map

Figure 2 shows how we adapt the general setup
from Figure 1 to take the first steps on the road
map. Here we describe each modification per com-
ponent: the teacher, the student, the interaction, the
environment and the exam that the student takes.

4.1 The Teacher

In this work we focus on the teacher side. The role
of the teacher is to transmit language data that will
optimally help the student to learn the language.
Figure 2 shows that we train the teacher to do this
in a number of time steps. At each of these steps a
teacher samples data from a larger language data
set according to a fixed budget. We discuss the
specifics of the sampling function below. To re-
duce the variance in the teacher’s learning process
we repeat this process for multiple students, i.e., a
teacher selects NV “lessons” for N students. Due

Figure 2: Teacher-student loop as used in this work.

to the stochasticity of the sampling process, each
student has the potential to be trained on a slightly
different part of the data. Because we use a multi-
processing setup we can train multiple students on
a single GPU. Hence, using multiple students does
not drastically increase the computational cost.

4.1.1 Knowing the Language

The teacher is modeled as a native speaker of the
language that it needs to teach. We represent the
teacher’s language understanding with a pretrained
causal Transformer LM (Vaswani et al., 2017). We
pretrain this model on a different subset of the data
than the teacher can select from for the students,
and thus we ensure that we measure whether a
teacher can teach a language as a whole, and not
only a particular subset that it was trained on itself.

4.1.2 Selecting the Data

We use REINFORCE (Williams, 1992) with en-
tropy regularization (Mnih et al., 2016) to learn
the teacher’s didactic approach.! We want to op-
timize the teacher’s policy such that it learns to
select the optimal data to train the student on, given
a predefined budget. The policy is a one-layer feed
forward neural network, that outputs a score for
each sentence, i.e., the teacher’s policy network
takes a sentence embedding as input, based on the
pretrained Transformer LM that we use to represent
the teacher’s language understanding. An action is
modeled as selecting k£ sentences from the larger
data set, where k is a predefined teacher budget.
We use the GumbelTopK trick (Vieira, 2014; Kool
et al., 2019) to sample k sentences without replace-
ment, based on the teacher policy’s output scores.
We compute the log probabilities (needed to com-
pute the loss) for each sample by adding the log

"We also experimented with gradient-free optimization ap-
proaches such as the ones implemented in Nevergrad (Rapin
and Teytaud, 2018), but found REINFORCE to be more flexi-
ble in our case and therefore a better fit for our needs.



Teacher

Student

Ways of speaking
¢ Select data from bin;
* Generate data with own language model.

Degrees of awareness

* (No) memory buffer of what has been sent to the
student and being able to act on it (see Interac-
tion cell);

* (No) explicit way of remembering what the stu-
dent’s fine-grained capabilities are and being
able to act on it (see Interaction cell).

Ways of speaking

* Generate language data in a standard LM fash-
ion;

* Actively experiment with language generation
to elicit direct feedback from the teacher (see
also Interaction cell).

Degrees of using the teacher data

» Use all data received from the teacher;

* Actively select data that is useful;

* Actively know when to stop training (for exam-
ple to avoid overfitting).

Interaction

Environment

Teacher side

¢ Send all data at once;

¢ Send data in batches, based on student feedback
(see below). Batches can be as small as sin-
gle utterances, after which the student sends an
utterance back, like in real human-to-human in-
teraction (see below);

¢ Send (mid-term) exams.

Student side

* Send a single average exam score back to the
teacher;

* Send a fine-grained exam score back, e.g.,
— score per item on the exam set;
— (average) scores of different components

(tasks) of the exam(s)

 Ask for feedback, for example by actively exper-
iment with language generation for the teacher
to judge (‘generate own exam’).

Language
* Artificial languages, in increasing level of diffi-
culty in terms of complexity, e.g.,
— random language;
— different types of structures;
— different vocabulary sizes;
* Subset of human language, e.g., in terms of
— semantics (e.g., different domains)
— syntax (e.g., different grammatical structures)
— pragmatics
* Unrestricted human language.

Task

* Teacher: Learn to select or generate the optimal
data such that the student performs well on the
exam set (see cell below);

* Teacher: Learn to adapt to different types of
students, e.g.,
— architectural differences
— different prior knowledge (be aware of catas-

trophic forgetting in neural networks)

* Student: Learn to adapt to different types of

teachers (didactic strategies).

Evaluation / Exam

Teacher

* Accuracy in selecting the optimal teaching protocol

Student (Exam / Feedback for teacher)
* General performance, measured in perplexity;
» Performance on specific tasks, such as

— Subset of the data known to the teacher (e.g., specific domain or (grammatical) structure)

— BLIMP (Warstadt et al., 2020);

— BIG-Bench (https://github.com/google/BIG-bench).
 Scores either as an average of more fine-grained (see Interaction cell).

Table 1: Road map to interactive language modeling.


https://github.com/google/BIG-bench

probabilities of each element in the sample. We
explain the rationale behind this in Appendix A.

4.2 The Student

As the teacher is the main focus of our work, we
choose to keep the student side simple. We repre-
sent the student as a causal Transformer LM, that
we train on the data that it receives from the teacher.

4.3 The Interaction

Following Table 1, the teacher sends all selected
data to the student at once. The student uses this
data to train its LM and takes an exam after a prede-
fined number of updates. The average exam score
is sent back to the teacher as feedback. We use
the student’s last model checkpoint to compute the
scores (as opposed to the best checkpoint on a vali-
dation set), to ensure that the learning signal for the
teacher is restricted to the student’s performance
on the exam set, i.e., we do not expect teachers to
reverse the learning process of the students (just
like caregivers cannot do this for their children).

4.4 The Environment

Following Table 1, we design a number of artifi-
cial languages to test our approach on (see Sec-
tion 5 for details). Using artificial languages is a
well-tested approach to study the behavior of neu-
ral networks (e.g., Batali, 1994; Wiles and Elman,
1995; Rodriguez et al., 1999; Gers and Schmidhu-
ber, 2001; Rodriguez, 2001; Hupkes et al., 2018;
Lake and Baroni, 2018; Saxton et al., 2019; Hupkes
et al., 2020; Rodriguez Luna et al., 2020; van der
Wal et al., 2020; Chaabouni et al., 2021; Dagan
et al., 2021). Using artificial languages gives us the
control we need to design our experiments in such
a way that we can correctly interpret the results.

4.5 The Exam

The exam is a held-out set over which we compute
the student’s perplexity. The details of the exam
are task dependent and we discuss these next.

5 Experiments

We test our proposed setup on a number of settings
and tasks, that we describe in this section.

5.1 Task 1 - Teaching Different Domains

For this task we design a language consisting of
two strictly separated vocabularies, loosely repre-
senting two different domains in natural language.
Specifically, Vi = {a,b,c,d,e, f,g,h,i,7}, and

Vo ={k,l,m,n,0,p,q,r,s,t}. We construct sen-
tences by randomly sampling from these sets. Sen-
tences consist either of tokens only from V) or
of tokens only from V5. Sentences have an equal
length of 10 tokens each. Half of the data set that
the teacher can choose from consists of 1] sen-
tences, the other half consists of V5 sentences. The
teacher’s LM is trained on a similarly constructed
data set, yet consisting of different sentences. The
student’s exam set consists of sentences from only
one of the vocabularies, V7 in our case. These are
different sentences than in the training set, i.e., the
teacher cannot simply sample the exam set to train
the student. Hence, the optimal teaching strategy
is to present the student with sentences from the
exam vocabulary. We confirm this in our baseline
experiments that we present in Section 5.4.

5.2 Task 2 - Teaching Different Structures

For this task we do not use different vocabularies,
but different sentence structures. All our sentences
are constructed with V; and are between 2 and 10
tokens long. We use two different structures: single
repetitions and double repetitions. In the case of
the single repetitions two identical tokens never
occur next to each other, whereas in the case of
double repetitions tokens are sampled in pairs:
Structure 1 - Single repetitions: (xy)"

Structure 2 - Double repetitions: (zx) or (zzyy)"
The data set that the teacher can sample from con-
sists for 20% of sentences with Structure 1 and for
80% of sentences of Structure 2. The exam set
consists of sentences with Structure 1. We opt for
this way of splitting the data, as we found that a
student performs quite well when trained on data
consisting half of Structure 1 and half of Structure
2. Having an unequal split thus allows us to make
sure that we can appropriately distinguish a learned
didactic approach from a random one. For this task
the optimal teaching strategy is to select sentences
with the exam structure, as we confirm with our
baseline experiments that we present in Section 5.4.

5.3 Training Details

The teacher LM is trained on 100 unique sentences
till convergence. The dataset the teacher can sam-
ple from for the student consists of 100 different
unique sentences. The exam consists of 10 unique
sentences and we set the teacher budget to 10 as
well. We run our experiments with five different
random seeds and report the averages and standard
deviations. We use the negative perplexity of the



student on the exam as reward for the teacher. We
experiment with two different sentence embeddings
for the teacher: average word embeddings and the
average of the last hidden layer. We train students
for a predefined number of steps that we determine
by inspecting the loss and perplexity curves of train-
ing an LM once before the actual experiments. We
base the threshold on when a student LM starts
to overfit, so that a teacher can get clear feedback
signals. We set this value to 400 for Task 1 and 300
for Task 2. Automatically determining when the
students stops training is an important avenue for
future work (Table 1). We use Fairseq’s (Ott et al.,
2019) transformer_1m? for the implementa-
tion of the Transformer LMs. We use up to four
GPUs with 32 GB RAM per experiment. The ex-
act number depends on the number of students per
teacher, as we can fit up to 6 students on a single
GPU due to our multiprocessing implementation.

5.4 Baseline experiments

We run three baseline experiments with three dif-
ferent didactic strategies: an oracle, random, and
worst case strategy. We run the baselines for five
different random seeds. In each experiment, we
randomly select data according to the teacher bud-
get. We do this five times and each time train a
student LM with the selected data. The difference
between baselines is the type of data that can be
selected. For the oracle baseline we only select sen-
tences that consist of the exam vocabulary (Task 1)
or structure (Task 2). For the random baseline we
randomly select sentences. For the worst case base-
line all sentences that we select are from a different
vocabulary or structure than the exam sentences.

6 Results

6.1 Task 1 - Different Domains
6.1.1 Baseline Results

In Table 2 we present the results for the baseline
experiments for Task 1. We report the averages and
standard deviations of the perplexity on the exam
set and the fraction of training sentences that con-
sisted of the exam vocabulary. For space reasons,
we report the results for two seeds per baseline:
the seed with the best average perplexity and the
worst. The results for all fives seeds are given in
Appendix B. There we also present scores for the
n-gram overlap between the selected training set

https://fairseq.readthedocs.io/en/
latest/command_line_tools.html

Type Seed Avg Avg train
Perplexity from test
Rand. B 160.9 £217.7 0.544+0.16
W 742.5+159.8 0.50 £0.17
Orac. B 14.99 £5.364 1.00 +0.00
W 68.95 +87.49 1.00 £ 0.00
Worst B 4.78e4 +2.67e4 0.00 4 0.00
case W 8.46e4 +4.69e4 0.00 £ 0.00

Table 2: Baseline results Task 1. Averages and standard
deviations reported based on five runs per seed. Rand is
Random, Orac is Oracle, B is Best and W is Worst.

and the exam set. The results are as expected. The
oracle baseline gives the best results, followed by
the random and worst case baseline respectively.

6.2 Results of Training the Teacher

In Figure 3 we present the results for Task 1
for different numbers of students per teacher.’
The teacher’s didactic strategy correctly converges
to the oracle baseline. There is a clear differ-
ence between different sentence embeddings (Sec-
tion 4.1.1). Both embedding types are converg-
ing, but the average hidden layer embeddings are
clearly superior. We investigate this further by plot-
ting the t-SNE embeddings (Van der Maaten and
Hinton, 2008) of the different sentence embeddings
in Figure 4. To prepare for Task 2, we also plot
the embeddings of Task 2. The hidden layer sen-
tence embeddings result in the clearest separation
between sentences from different vocabularies or
structures. Especially for Task 2, where we use the
same vocabulary, this is unsurprising. From now
on we opt for these sentence embeddings. Based
on the results for Task 1 we opt for 12 students per
teacher as a good trade-off between computational
cost and convergence stability for Task 2.

6.3 Task 2 - Different Structures
6.3.1 Baseline Results

We present the results for the baseline results for
Task 2 in Table 3. Again we report the results
for the best and the worst seed. Full results are
available in Appendix C. Similarly to the results
for Task 1, we confirm that the oracle baseline
performs strongest, followed by the random and
worst case baseline respectively.

3We present plots for the n-gram overlap in Appendix D.
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Type Seed Avg Avg train
Perplexity from test
Rand. B 119.0£56.48 0.18+£0.04
W 3421+£241.4 0.1240.08
Orac B 6.821£0.619 1.00=£0.00
W 9.431£3.057 1.00=£0.00
Worst B 299.6£124.2 0.00£0.00
Case W 595.3+£297.9 0.00=£0.00

Table 3: Baseline results Task 2. Averages and standard
deviations reported based on five runs per seed. Rand is
Random, Orac is Oracle, B is Best and W is Worst.

6.3.2 Results of Training the Teacher

In Figure 5 we present the results for Task 2.4
Again we see that the teacher learns to gradually
converge to the oracle teaching strategy, although
convergence is less fast than for Task 1; we do not
achieve full convergence in the number of training
episodes that we run these experiments for. We pos-
tulate that this can be explained by the differences
we found in Figure 4. The differences in sentence
embeddings between the two different structures
are clearly less apparent than between the sentences
from two vocabularies. This indicates the impor-
tance of good sentence embeddings in future work.
Moreover, as stated in Section 6.3, we found that
transmitting roughly 50% of Structure 1 and 50%
of Structure 2 also already leads to good perfor-
mance. Therefore, the teacher likely needs to learn
from a less distinct learning signal than in Task 1.

7 Implications and Outlook

We successfully took the first steps on our proposed
road map. Here we want to share our learnings
and the limitations of the current setup to help fu-
ture research to take the next steps on the road map.

The importance of designing experiments with
interpretable outcomes. We designed our experi-
ments such that we knew the teacher’s oracle strat-
egy, which allowed us to properly test our setup.
However, in designing our experiments we found
that finding such settings is non-trivial. For exam-
ple, in a task that contains a language with multiple
structures, a student might unexpectedly learn infor-
mation from structure 1 that also proves useful for
structure 2. This might be acceptable if one’s only
objective is to obtain a good performance. How-

*We present plots for the n-gram overlap in Appendix E.

ever, in our case it is critical to be able to know
that a teacher is “right for the right reasons”, which
motivated our choices for the tasks and languages.
The teacher’s budget. Following our objective,
we designed our experiments in such a way that the
teacher was given a budget that limits the amount
of data it can send to the student. As mentioned in
Section 5.3, we confirmed that the student’s learn-
ing converges with this budget. In follow up work
we plan to investigate the importance of different
budgets in more detail. One interesting direction is
to give the teacher a flexible budget, i.e., such that
a teacher could decide to stop training if it deems
it no longer necessary for the student.
Computational complexity. Apart from the mul-
tiprocessing setup that allows us to train multiple
students on a single GPU, we did not yet focus on
the computational complexity of our approach. In
the current setup many student language models
need to be trained for a single teacher. In our case
we deem this justifiable as we are just at the start
of the road map. Moreover, once a teacher model
is trained, it can be used for many different pur-
poses. However, in future work we hope to focus
on decreasing the computational complexity of our
approach. One promising avenue to do this is by
optimizing the learning process of the student.

8 Conclusion

In this paper we pioneered the space of interactive
language modeling, motivated by the observation
that current state-of-the-art LMs are trained in a
very unnatural way, from the perspective of human
language acquisition. Moreover, an interactive ap-
proach has the potential to make LMs more effi-
cient and adaptable. Specifically, we proposed a
teacher-student loop, in which the teacher is in-
spired by the caregiver and the student resembles
the child in the human language acquisition. We
presented a road map that details the steps towards
interactive language modeling for each of the com-
ponents of the teacher-student loop. We led by
example and took the first steps on this road map,
leading to a tangible proof of concept of our pro-
posal. As such, we structured the space of interac-
tive language modeling and aim to inspire a larger
research agenda on interactive language modeling.

9 Ethical Impact Statement

At this point we use artificial language data only,
for which we do not see any direct negative impli-



cations. As we move towards using real data sets,
it is necessary to be aware of potential biases with
these data sets. One needs to ensure that the data is
not biased towards any (protected) group to avoid
any harm. Currently, much of the NLP research
focuses on English as its language of interest. Our
approach is not bound to any language in particular
and can even be used to improve language learn-
ing in a low resource setting. Once the models
achieve human like performance and are used for
downstream tasks and applications it is necessary
to explicitly state that language is produced by an
artificial language model. However, as with all lan-
guage models, misuse can still happen and it is our
responsibility as a research community, amongst
others, to spend effort on making users aware of
these possibilities.
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A Computing the Probability of a Top-K
Sample

Our objective is to find the (log) probability of
sampling the subset (iy,...ix) from {1,...,N}
without replacement from the categorical probabil-
ity (p1, ..., PN)-

Let us first consider sampling K elements from the
{1, ..., N} with replacement. In that case

K

plir, ig) = [ pi-

k=1

(D

If we allow for all possible permutations of observ-
ing (i1, ..., ix) we get

K
plir, -wwvir) = C [ | v )
k=1

where C = K.

To go from sampling with replacement, to sampling
without replacement, we consider event A
“all sampled elements (i1, ..., i) are unique”.
Then

Pwilo replacement(ih ooy Z‘K) ==
(3)

Pwi replacement(ilv e ZK‘A)

Applying Bayes Rule gives us:

11

DPwilo replacement(ih ceey Z'K) =

Pwr replacement(A‘ila (R3] iK)]?w/ replacemem(ila ceey ZK)

Pw/ replacement (A)

“

As in our case all samples in (i1, ...
we know that

, 15 ) are unique

Dwi/ replacement(AHla ceey ZK) =1 ©)
Combining this with Equation 2 gives us
. Cllipi
Pwio replacement(ll, ey ZK) = 1;{](6;11)%7 (6)
and thus
K
DPwio replacement(ila ceey ZK) X H Diy» @)
k=1
and
K
log Pwlo replacement(ilv ceey ZK) = Z 1Og Diy, - (8)
k=1

From an implementation perspective this this boils

down to the following steps:

1. We compute the scores per sentence.

2. We sample K sentences without replacement,
using the GumbelTopK trick.

. We compute the log probabilities for each score:

log softmax(scores).

We compute the log probability of our sample

by adding the log probabilities of the elements

in our sample, according to Equation 8.

A.1 Comparison to Prior Work

Our problem of sampling K sentences as a sin-
gle action is similar to the problem formulation
of using Reinforcement Learning for extractive
summarization to optimize for Rouge (Lin, 2004)
directly. In this setting K sentences need to be
selected from a document. This results in a very
large search space. Narayan et al. (2018) limit the
search space by first selecting n sentences that have
a high Rouge score. Then all possible summaries
are made with these n sentences. These summaries
are ranked according to their Rouge scores and the
top K sentences are taken as action. This approach



has the disadvantage that it limits the search space
heuristically, which does not guarantee that the best
summary is found. Dong et al. (2018) frame the
problem as a contextual bandit problem, which al-
lows them to sample from the true action space.
We choose our approach as it is intuitive, simple
and effective.
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B Additional Results Baseline Experiments Task 1

In Table 4 we present the results for our baseline runs on all five seeds.

Baseline Seed Avg Avg train  Avg unigram Avg bigram  Avg trigram
Perplexity from test overlap overlap overlap
Random 6639 193.9+100.3 0.46 £0.14 0.46 £0.14 0.278 £0.07 0.023 £ 0.009
7519 683.1 £634.3 0.52£0.15 0.52+0.15 0.291£0.10 0.030 £ 0.010
1007 742.5 £159.8 0.50 £0.17 0.50 £0.17 0.298£0.10 0.035=£0.014
4520 160.9 +217.7 0.54+£0.16 0.54+0.16 0.327£0.09 0.035=£0.025
4527 307.1£295.1 0.58+0.17 0.58 £0.17 0.349£0.10 0.035=£0.014
Oracle 6639 14.99 +5.364 1.00 £ 0.00 1.00 £0.00 0.551+0.06 0.07240.029
7519 44.37 +£58.94 1.00 &+ 0.00 1.00 £0.00 0.6114+0.02 0.085+0.017
1007 68.95 £87.49 1.00 £ 0.00 1.00 £0.00 0.598 £0.02 0.077 £ 0.025
4520 15.65 +4.616 1.00 £ 0.00 1.00 £0.00 0.578 £0.02 0.087 +0.028
4527 23.66 £21.44 1.00£0.00 1.00 £0.00 0.6244+0.02 0.095 £+ 0.019
Worst case 6639 8.46e4 +4.69e4  0.00 & 0.00 0.00£0.00 0.00=£0.00 0.00 £ 0.00
7519 7.03e4 £3.73e4 0.00 £ 0.00 0.00£0.00 0.00+£0.00 0.00 £ 0.00
1007  8.17e4 +4.26e4 0.00 £ 0.00 0.00£0.00 0.00=£0.00 0.00 £ 0.00
4520 4.78e4 +2.67e4  0.00 &+ 0.00 0.00£0.00 0.00=£0.00 0.00 £ 0.00
4527  6.69e4 +1.98¢4  0.00 = 0.00 0.00£0.00 0.00=£0.00 0.00 £ 0.00

Table 4: Baseline results for Task 1. Different domains. Averages and standard deviations reported based on five

runs per seed.

C Additional Results Baseline Experiments Task 2

In Table 5 we present the results for our baseline runs on all five seeds.

D Additional Results Task 1

In this section we present the plots for the n-gram overlap for Task 1 in Figures 6 and 7.

E Additional Results Task 2

In this section we present the plots for the n-gram overlap for Task 2 in Figure 8.
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Baseline Seed Avg Avg train  Avg unigram  Avg bigram Avg trigram
Perplexity from test overlap overlap overlap
Random 6639 119.0£56.48 0.18 £0.04 1.00 £0.00 0.401 £0.033 0.030 £ 0.020
7519 162.8 £201.9 0.24+0.05 1.00 £0.00 0.408 £0.044 0.035 £ 0.038
1007 234.1+£192.0 0.244+0.12 1.00+0.00 0.4144+0.034 0.034 4+ 0.020
4520 161.7+190.6 0.224+0.04 1.00 £0.00 0.410+0.023 0.038 £ 0.033
4527 342.1+241.4 0.1240.08 1.00+0.00 0.348 £0.024 0.013 £0.017
Oracle 6639 6.973+£1.534 1.00=£0.00 1.00+0.00 0.720 +£0.044 0.151 +0.022
7519 7.626 £2.298 1.00 £ 0.00 1.00 £0.00 0.682+0.056 0.177 £ 0.033
1007 7.895+1.106 1.00=+£0.00 1.00 £0.00 0.726 +£0.045 0.207 £ 0.025
4520 6.821+0.619 1.00 £ 0.00 1.00 £0.00 0.740£0.073 0.197 £ 0.054
4527  9.431 +£3.057 1.00 &+ 0.00 1.00 £0.00 0.700 £0.056 0.174+0.017
Worst case 6639 595.3 +297.9 0.00+£ 0.00 1.00 £0.00 0.326 +0.026 0.00 £ 0.00
7519 317.2+£235.8 0.00=£0.00 1.00 £0.00 0.311 £0.018 0.00 £ 0.00
1007 508.1 +155.7 0.00 &£ 0.00 1.00 £0.00 0.345+0.017 0.00 £ 0.00
4520  299.6 +124.2 0.00 £ 0.00 1.00 £0.00 0.310 £ 0.027 0.00 £ 0.00
4527 432.8 £72.05 0.00 &+ 0.00 1.00 £0.00 0.330 £ 0.035 0.00 £ 0.00

Table 5: Baseline results for Task 2. Different structures. Averages and standard deviations reported based on five

runs per seed.
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Figure 6: Additional results Task 1 — Different domains. Plots for different numbers of students per teacher. Results
per setting reported as average and standard deviation over five random seeds. Average word embedding as sentence
embeddings.
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Figure 7: Additional results Task 1 — Different domains. Plots for different numbers of students per teacher. Results
per setting reported as average and standard deviation over five random seeds. Average hidden layer embedding as

sentence embeddings.
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Figure 8: Additional results Task 2 — Different structures. Results per setting reported as average and standard

deviation over five random seeds.
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