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Abstract

Interaction between caregivers and children001
plays a critical role in human language acquisi-002
tion and development. Given this observation,003
it is remarkable that explicit interaction plays004
little to no role in artificial language modeling—005
which also targets the acquisition of human006
language, yet by artificial models. Moreover,007
an interactive approach to language modeling008
has the potential to make language models sub-009
stantially more versatile and to considerably010
impact downstream applications. Motivated by011
these considerations, we pioneer the space of012
interactive language modeling. First we present013
a road map in which we detail the steps that014
need to be taken towards interactive language015
modeling. We then lead by example and take016
the first steps on this road map, showing the017
initial feasibility of our approach. As such, this018
work aims to be the start of a larger research019
agenda on interactive language modeling.020

1 Introduction021

Interaction between children and more advanced022

language interlocutors (such as caregivers) plays023

an important role in many theories and studies on024

human language acquisition (e.g., Bruner, 1985;025

Clark, 2018). For example, although culturally de-026

pendent (Shneidman and Goldin-Meadow, 2012)027

and with the precise effects still up for discus-028

sion (Cristia et al., 2019), caregivers can communi-029

cate with their children in Child Directed Speech.030

In turn, children can for example experiment with031

the meaning of words, to elicit a response from032

their caregivers (Gillis and Schaerlaekens, 2000).033

Despite the importance of interaction in human034

language acquisition, interaction plays little to no035

role in artificial language modeling. This is remark-036

able, as language modeling also has the objective to037

learn human language, albeit with artificial models.038

Instead, current state-of-the-art language models039

(LMs) take large amounts of text as input, and are040

tasked to predict the next or masked words (e.g.,041
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Figure 1: Teacher-Student setup for interactive language
modeling.

Devlin et al., 2018; Brown et al., 2020). The learn- 042

ing signal only comes from a cross-entropy loss 043

that indicates whether a prediction was correct. Al- 044

though this setup has shown to be effective, from 045

the perspective of human language acquisition it 046

appears very unnatural. This gives rise to the moti- 047

vation to investigate other, more natural approaches 048

to language modeling, such as the interactive per- 049

spective that we propose in this paper. 050

Specifically, we structure our proposal according 051

to a teacher-student setup. Figure 1 depicts a high 052

level overview. In this setup we distinguish four 053

main parts: the teacher, whose role is inspired by 054

the caregiver in the human language acquisition, 055

the student, who resembles the child, the interac- 056

tion between the teacher and the student and the 057

environment that they both share (such as the lan- 058

guage that needs to be learned by the student). We 059

motivate and detail our setup further in Section 3. 060

An interactive approach to language modeling 061

is not only interesting from the perspective of hu- 062

man language acquisition. Explicitly allowing for 063

interaction also has the potential to make language 064

modeling more efficient and versatile. For example, 065

a teacher can adapt its input to a student based on 066

the specific feedback signals it receives from the 067

student, and a teacher that is fluent in one domain 068

can teach the specifics of that domain to a student 069

trained on another domain, and vice versa. More- 070
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over, an interactive approach to language modeling071

has the potential to impact downstream applica-072

tions, for example for foreign language teaching073

apps where a student can be replaced by a human.074

In this paper we pioneer the space of interactive075

language modeling. Specifically, we contribute:076

C1 We define the objective of interactive language077

modeling;078

C2 We present a road map that details the steps079

that need to be taken towards this objective;080

C3 We take the first steps on this road map, which081

show the initial feasibility of our approach.082

By doing so we aim to start a larger research083

agenda on interactive language modeling.084

2 Related Work085

Over the years many different types of learning086

strategies have been proposed for artificial model-087

ing. Below we describe a number of them that are088

particularly related to the current work.089

2.1 Interactive Language Learning in NLP090

Recently, a number of studies have focused on091

interactive language learning. Stein et al. (2021)092

learn logical semantic representations in an inter-093

active way. Nikolaus and Fourtassi (2021) propose094

a proof of concept to model perception and pro-095

duction based learning of semantic knowledge ac-096

quisition in children. Kiseleva et al. (2021) take097

an interactive approach to language understand-098

ing in a recent NeurIPS challenge. To the best of099

our knowledge, none of the existing works have100

focused specifically on language modeling.101

2.2 Curriculum Learning102

Curriculum Learning (CL) (Bengio et al., 2009) is103

an approach to learning in which data samples are104

presented in a meaningful order—typically in order105

of complexity—motivated by the idea that humans106

learn in a similar way. Bengio et al. show the107

effectiveness of CL on a number of tasks, among108

which a classical approach to language modeling.109

More recently, a number of studies have shown110

the effectiveness of CL for (fine-tuning) LMs (Xu111

et al., 2020; Zhang et al., 2021), although other112

studies have shown that not all intuitive curricula113

are also effective (Liu et al., 2019). Matiisen et al.114

(2019) propose a teacher-student framework for115

automatic CL for the addition of decimal numbers116

and navigation in Minecraft.117

2.3 Active Learning 118

Active Learning (AL) (Cohn et al., 1996) is an ap- 119

proach in which a learner (the model to be trained) 120

actively selects which data it can most effectively 121

be trained on. That is, where CL is often more 122

associated with choosing a teaching strategy, AL 123

is rather focused on the student side. AL is of- 124

ten used to efficiently label data in a low resource 125

setting (e.g., Reichart et al., 2008; Dor et al., 2020). 126

2.4 Continual Learning 127

In Continual Learning, or life-long learning, the 128

aim is to train a model in an online fashion, i.e., on 129

a continuous stream of data, whilst avoiding catas- 130

trophic forgetting (McCloskey and Cohen, 1989; 131

French, 1999). This makes models versatile to 132

an ever changing world. Some recent work has 133

focused on types of Continual Learning for large 134

LMs (e.g., Lazaridou et al., 2021; Jin et al., 2021). 135

We envision interactive language modeling to play 136

an important role in life-long learning in the future. 137

3 A Road Map towards Interactive 138

Language Modeling 139

In this section we present a general road map to- 140

wards interactive language modeling. 141

Our objective is to build an automated teacher- 142

student loop for language modeling that attains 143

good performance in the student for a fixed (low) 144

number of bits transmitted in the interactions. 145

We propose a teacher-student loop as this format 146

closely resembles caregiver-child interactions. In 147

Section 1 and Figure 1 we already introduced a 148

high level overview of this setup and its four main 149

components: (1) the teacher, (2) the student, (3) the 150

interaction and (4) the environment. Generally, in 151

this setup teachers transmit language data to their 152

students, according to a certain budget (“a (low) 153

fixed number of bits”). Having this budget forces 154

the teacher to actively choose a learning strategy, as 155

just sending all data that is available to the teacher 156

would not be allowed. Students have the objective 157

to learn the language and they send a signal back 158

that informs their teacher of their performance, e.g., 159

a score on an exam. This interaction takes place in 160

an environment, e.g., a common language. 161

In Table 1 we present the road map that we envi- 162

sion towards interactive language modeling. This 163

road map works as follows. For each of the four 164

aforementioned components we detail steps that 165
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need to be taken. We also add a fifth component:166

the evaluation of the setup. Each component has167

different aspects (bold-faced in Table 1). For ex-168

ample, for the teacher we can focus on how it can169

access the data that it can transmit to the student,170

which we call “ways of speaking” in Table 1. An-171

other aspect of the teacher side focuses on what172

we call the “degree of awareness”, which entails173

different ways in which the teacher can remember174

different aspects of the teaching loop. In a similar175

fashion we fill in the remaining components in the176

table. We focus on text as a single modality and177

acknowledge grounded interactive language mod-178

eling as an interesting future research direction.179

On our road map there are multiple ways to reach180

the destination. For example, one can focus on tak-181

ing a few steps for each of the components, or to182

take many steps for only one or a few of the com-183

ponents. Moreover, although mostly structured in184

increasing degree of complexity, this does not al-185

ways hold for all individual steps in the table. For186

example, zooming in on the “degrees of awareness”187

for the teacher again, one could imagine an ex-188

ample where a teacher does not have an explicit189

memory buffer of what it sent to the student before,190

but does have an explicit way of remembering what191

the student’s fine-grained capabilities are, as well192

as the other way around.193

In the remainder of this work we take the first194

steps on the road map. We focus on the teacher195

side, i.e., learning the correct didactic approach.196

4 Taking the First Steps on the Road Map197

Figure 2 shows how we adapt the general setup198

from Figure 1 to take the first steps on the road199

map. Here we describe each modification per com-200

ponent: the teacher, the student, the interaction, the201

environment and the exam that the student takes.202

4.1 The Teacher203

In this work we focus on the teacher side. The role204

of the teacher is to transmit language data that will205

optimally help the student to learn the language.206

Figure 2 shows that we train the teacher to do this207

in a number of time steps. At each of these steps a208

teacher samples data from a larger language data209

set according to a fixed budget. We discuss the210

specifics of the sampling function below. To re-211

duce the variance in the teacher’s learning process212

we repeat this process for multiple students, i.e., a213

teacher selects N “lessons” for N students. Due214

Teacher Student

Interaction

Data

Exam

Tim
e

x N

Figure 2: Teacher-student loop as used in this work.

to the stochasticity of the sampling process, each 215

student has the potential to be trained on a slightly 216

different part of the data. Because we use a multi- 217

processing setup we can train multiple students on 218

a single GPU. Hence, using multiple students does 219

not drastically increase the computational cost. 220

4.1.1 Knowing the Language 221

The teacher is modeled as a native speaker of the 222

language that it needs to teach. We represent the 223

teacher’s language understanding with a pretrained 224

causal Transformer LM (Vaswani et al., 2017). We 225

pretrain this model on a different subset of the data 226

than the teacher can select from for the students, 227

and thus we ensure that we measure whether a 228

teacher can teach a language as a whole, and not 229

only a particular subset that it was trained on itself. 230

4.1.2 Selecting the Data 231

We use REINFORCE (Williams, 1992) with en- 232

tropy regularization (Mnih et al., 2016) to learn 233

the teacher’s didactic approach.1 We want to op- 234

timize the teacher’s policy such that it learns to 235

select the optimal data to train the student on, given 236

a predefined budget. The policy is a one-layer feed 237

forward neural network, that outputs a score for 238

each sentence, i.e., the teacher’s policy network 239

takes a sentence embedding as input, based on the 240

pretrained Transformer LM that we use to represent 241

the teacher’s language understanding. An action is 242

modeled as selecting k sentences from the larger 243

data set, where k is a predefined teacher budget. 244

We use the GumbelTopK trick (Vieira, 2014; Kool 245

et al., 2019) to sample k sentences without replace- 246

ment, based on the teacher policy’s output scores. 247

We compute the log probabilities (needed to com- 248

pute the loss) for each sample by adding the log 249

1We also experimented with gradient-free optimization ap-
proaches such as the ones implemented in Nevergrad (Rapin
and Teytaud, 2018), but found REINFORCE to be more flexi-
ble in our case and therefore a better fit for our needs.
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Teacher Student

Ways of speaking
• Select data from bin;
• Generate data with own language model.

Degrees of awareness
• (No) memory buffer of what has been sent to the

student and being able to act on it (see Interac-
tion cell);

• (No) explicit way of remembering what the stu-
dent’s fine-grained capabilities are and being
able to act on it (see Interaction cell).

Ways of speaking
• Generate language data in a standard LM fash-

ion;
• Actively experiment with language generation

to elicit direct feedback from the teacher (see
also Interaction cell).

Degrees of using the teacher data
• Use all data received from the teacher;
• Actively select data that is useful;
• Actively know when to stop training (for exam-

ple to avoid overfitting).

Interaction Environment

Teacher side
• Send all data at once;
• Send data in batches, based on student feedback

(see below). Batches can be as small as sin-
gle utterances, after which the student sends an
utterance back, like in real human-to-human in-
teraction (see below);

• Send (mid-term) exams.

Student side
• Send a single average exam score back to the

teacher;
• Send a fine-grained exam score back, e.g.,

– score per item on the exam set;
– (average) scores of different components

(tasks) of the exam(s)
• Ask for feedback, for example by actively exper-

iment with language generation for the teacher
to judge (‘generate own exam’).

Language
• Artificial languages, in increasing level of diffi-

culty in terms of complexity, e.g.,
– random language;
– different types of structures;
– different vocabulary sizes;

• Subset of human language, e.g., in terms of
– semantics (e.g., different domains)
– syntax (e.g., different grammatical structures)
– pragmatics

• Unrestricted human language.

Task
• Teacher: Learn to select or generate the optimal

data such that the student performs well on the
exam set (see cell below);

• Teacher: Learn to adapt to different types of
students, e.g.,
– architectural differences
– different prior knowledge (be aware of catas-

trophic forgetting in neural networks)
• Student: Learn to adapt to different types of

teachers (didactic strategies).

Evaluation / Exam

Teacher
• Accuracy in selecting the optimal teaching protocol

Student (Exam / Feedback for teacher)
• General performance, measured in perplexity;
• Performance on specific tasks, such as

– Subset of the data known to the teacher (e.g., specific domain or (grammatical) structure)
– BLIMP (Warstadt et al., 2020);
– BIG-Bench (https://github.com/google/BIG-bench).

• Scores either as an average of more fine-grained (see Interaction cell).

Table 1: Road map to interactive language modeling.
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probabilities of each element in the sample. We250

explain the rationale behind this in Appendix A.251

4.2 The Student252

As the teacher is the main focus of our work, we253

choose to keep the student side simple. We repre-254

sent the student as a causal Transformer LM, that255

we train on the data that it receives from the teacher.256

4.3 The Interaction257

Following Table 1, the teacher sends all selected258

data to the student at once. The student uses this259

data to train its LM and takes an exam after a prede-260

fined number of updates. The average exam score261

is sent back to the teacher as feedback. We use262

the student’s last model checkpoint to compute the263

scores (as opposed to the best checkpoint on a vali-264

dation set), to ensure that the learning signal for the265

teacher is restricted to the student’s performance266

on the exam set, i.e., we do not expect teachers to267

reverse the learning process of the students (just268

like caregivers cannot do this for their children).269

4.4 The Environment270

Following Table 1, we design a number of artifi-271

cial languages to test our approach on (see Sec-272

tion 5 for details). Using artificial languages is a273

well-tested approach to study the behavior of neu-274

ral networks (e.g., Batali, 1994; Wiles and Elman,275

1995; Rodriguez et al., 1999; Gers and Schmidhu-276

ber, 2001; Rodriguez, 2001; Hupkes et al., 2018;277

Lake and Baroni, 2018; Saxton et al., 2019; Hupkes278

et al., 2020; Rodríguez Luna et al., 2020; van der279

Wal et al., 2020; Chaabouni et al., 2021; Dagan280

et al., 2021). Using artificial languages gives us the281

control we need to design our experiments in such282

a way that we can correctly interpret the results.283

4.5 The Exam284

The exam is a held-out set over which we compute285

the student’s perplexity. The details of the exam286

are task dependent and we discuss these next.287

5 Experiments288

We test our proposed setup on a number of settings289

and tasks, that we describe in this section.290

5.1 Task 1 – Teaching Different Domains291

For this task we design a language consisting of292

two strictly separated vocabularies, loosely repre-293

senting two different domains in natural language.294

Specifically, V1 = {a, b, c, d, e, f, g, h, i, j}, and295

V2 = {k, l,m, n, o, p, q, r, s, t}. We construct sen- 296

tences by randomly sampling from these sets. Sen- 297

tences consist either of tokens only from V1 or 298

of tokens only from V2. Sentences have an equal 299

length of 10 tokens each. Half of the data set that 300

the teacher can choose from consists of V1 sen- 301

tences, the other half consists of V2 sentences. The 302

teacher’s LM is trained on a similarly constructed 303

data set, yet consisting of different sentences. The 304

student’s exam set consists of sentences from only 305

one of the vocabularies, V1 in our case. These are 306

different sentences than in the training set, i.e., the 307

teacher cannot simply sample the exam set to train 308

the student. Hence, the optimal teaching strategy 309

is to present the student with sentences from the 310

exam vocabulary. We confirm this in our baseline 311

experiments that we present in Section 5.4. 312

5.2 Task 2 – Teaching Different Structures 313

For this task we do not use different vocabularies, 314

but different sentence structures. All our sentences 315

are constructed with V1 and are between 2 and 10 316

tokens long. We use two different structures: single 317

repetitions and double repetitions. In the case of 318

the single repetitions two identical tokens never 319

occur next to each other, whereas in the case of 320

double repetitions tokens are sampled in pairs: 321

Structure 1 - Single repetitions: (xy)n 322

Structure 2 - Double repetitions: (xx) or (xxyy)n 323

The data set that the teacher can sample from con- 324

sists for 20% of sentences with Structure 1 and for 325

80% of sentences of Structure 2. The exam set 326

consists of sentences with Structure 1. We opt for 327

this way of splitting the data, as we found that a 328

student performs quite well when trained on data 329

consisting half of Structure 1 and half of Structure 330

2. Having an unequal split thus allows us to make 331

sure that we can appropriately distinguish a learned 332

didactic approach from a random one. For this task 333

the optimal teaching strategy is to select sentences 334

with the exam structure, as we confirm with our 335

baseline experiments that we present in Section 5.4. 336

5.3 Training Details 337

The teacher LM is trained on 100 unique sentences 338

till convergence. The dataset the teacher can sam- 339

ple from for the student consists of 100 different 340

unique sentences. The exam consists of 10 unique 341

sentences and we set the teacher budget to 10 as 342

well. We run our experiments with five different 343

random seeds and report the averages and standard 344

deviations. We use the negative perplexity of the 345
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student on the exam as reward for the teacher. We346

experiment with two different sentence embeddings347

for the teacher: average word embeddings and the348

average of the last hidden layer. We train students349

for a predefined number of steps that we determine350

by inspecting the loss and perplexity curves of train-351

ing an LM once before the actual experiments. We352

base the threshold on when a student LM starts353

to overfit, so that a teacher can get clear feedback354

signals. We set this value to 400 for Task 1 and 300355

for Task 2. Automatically determining when the356

students stops training is an important avenue for357

future work (Table 1). We use Fairseq’s (Ott et al.,358

2019) transformer_lm2 for the implementa-359

tion of the Transformer LMs. We use up to four360

GPUs with 32 GB RAM per experiment. The ex-361

act number depends on the number of students per362

teacher, as we can fit up to 6 students on a single363

GPU due to our multiprocessing implementation.364

5.4 Baseline experiments365

We run three baseline experiments with three dif-366

ferent didactic strategies: an oracle, random, and367

worst case strategy. We run the baselines for five368

different random seeds. In each experiment, we369

randomly select data according to the teacher bud-370

get. We do this five times and each time train a371

student LM with the selected data. The difference372

between baselines is the type of data that can be373

selected. For the oracle baseline we only select sen-374

tences that consist of the exam vocabulary (Task 1)375

or structure (Task 2). For the random baseline we376

randomly select sentences. For the worst case base-377

line all sentences that we select are from a different378

vocabulary or structure than the exam sentences.379

6 Results380

6.1 Task 1 – Different Domains381

6.1.1 Baseline Results382

In Table 2 we present the results for the baseline383

experiments for Task 1. We report the averages and384

standard deviations of the perplexity on the exam385

set and the fraction of training sentences that con-386

sisted of the exam vocabulary. For space reasons,387

we report the results for two seeds per baseline:388

the seed with the best average perplexity and the389

worst. The results for all fives seeds are given in390

Appendix B. There we also present scores for the391

n-gram overlap between the selected training set392

2https://fairseq.readthedocs.io/en/
latest/command_line_tools.html

Type Seed Avg Avg train
Perplexity from test

Rand. B 160.9± 217.7 0.54± 0.16
W 742.5± 159.8 0.50± 0.17

Orac. B 14.99± 5.364 1.00± 0.00
W 68.95± 87.49 1.00± 0.00

Worst B 4.78e4± 2.67e4 0.00± 0.00
case W 8.46e4± 4.69e4 0.00± 0.00

Table 2: Baseline results Task 1. Averages and standard
deviations reported based on five runs per seed. Rand is
Random, Orac is Oracle, B is Best and W is Worst.

and the exam set. The results are as expected. The 393

oracle baseline gives the best results, followed by 394

the random and worst case baseline respectively. 395

6.2 Results of Training the Teacher 396

In Figure 3 we present the results for Task 1 397

for different numbers of students per teacher.3 398

The teacher’s didactic strategy correctly converges 399

to the oracle baseline. There is a clear differ- 400

ence between different sentence embeddings (Sec- 401

tion 4.1.1). Both embedding types are converg- 402

ing, but the average hidden layer embeddings are 403

clearly superior. We investigate this further by plot- 404

ting the t-SNE embeddings (Van der Maaten and 405

Hinton, 2008) of the different sentence embeddings 406

in Figure 4. To prepare for Task 2, we also plot 407

the embeddings of Task 2. The hidden layer sen- 408

tence embeddings result in the clearest separation 409

between sentences from different vocabularies or 410

structures. Especially for Task 2, where we use the 411

same vocabulary, this is unsurprising. From now 412

on we opt for these sentence embeddings. Based 413

on the results for Task 1 we opt for 12 students per 414

teacher as a good trade-off between computational 415

cost and convergence stability for Task 2. 416

6.3 Task 2 – Different Structures 417

6.3.1 Baseline Results 418

We present the results for the baseline results for 419

Task 2 in Table 3. Again we report the results 420

for the best and the worst seed. Full results are 421

available in Appendix C. Similarly to the results 422

for Task 1, we confirm that the oracle baseline 423

performs strongest, followed by the random and 424

worst case baseline respectively. 425

3We present plots for the n-gram overlap in Appendix D.
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(a) Perplexity of the student on the exam data over
different episodes. Average word embedding as
input to the teacher’s policy.
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(b) Fraction training data with the exam vocabulary
over different episodes. Average word embedding
as input to the teacher’s policy.
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(c) Perplexity of the student on the exam data over
different episodes. Average last hidden layer as
input to the teacher’s policy.
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(d) Fraction training data with the exam vocabulary
over different episodes. Average last hidden layer
as input to the teacher’s policy.

Figure 3: Results Task 1 – Different domains. Plots for different numbers of students per teacher. Results per setting
reported as average and standard deviation over five random seeds. x-axis of lower plots bound to 40 as the teacher
had already converged by then.

(a) Task 1 - Different vocabu-
laries. Sentence embedding is
average word embeddings.

(b) Task1 - Different vocabu-
laries. Sentence embedding is
average last hidden layer.

(c) Task 2 - Different structures.
Sentence embedding is average
word embeddings.

(d) Task 2 - Different struc-
tures. Sentence embedding is
average last hidden layer.

Figure 4: T-SNE plots for different sentence representations for different tasks.
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(b) Fraction training data with the exam structure
over different episodes.

Figure 5: Results Task 2 – Plots for 12 students per teacher. Results per setting reported as average and standard
deviation over five random seeds.
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Type Seed Avg Avg train
Perplexity from test

Rand. B 119.0± 56.48 0.18± 0.04
W 342.1± 241.4 0.12± 0.08

Orac. B 6.821± 0.619 1.00± 0.00
W 9.431± 3.057 1.00± 0.00

Worst B 299.6± 124.2 0.00± 0.00
Case W 595.3± 297.9 0.00± 0.00

Table 3: Baseline results Task 2. Averages and standard
deviations reported based on five runs per seed. Rand is
Random, Orac is Oracle, B is Best and W is Worst.

6.3.2 Results of Training the Teacher426

In Figure 5 we present the results for Task 2.4427

Again we see that the teacher learns to gradually428

converge to the oracle teaching strategy, although429

convergence is less fast than for Task 1; we do not430

achieve full convergence in the number of training431

episodes that we run these experiments for. We pos-432

tulate that this can be explained by the differences433

we found in Figure 4. The differences in sentence434

embeddings between the two different structures435

are clearly less apparent than between the sentences436

from two vocabularies. This indicates the impor-437

tance of good sentence embeddings in future work.438

Moreover, as stated in Section 6.3, we found that439

transmitting roughly 50% of Structure 1 and 50%440

of Structure 2 also already leads to good perfor-441

mance. Therefore, the teacher likely needs to learn442

from a less distinct learning signal than in Task 1.443

7 Implications and Outlook444

We successfully took the first steps on our proposed445

road map. Here we want to share our learnings446

and the limitations of the current setup to help fu-447

ture research to take the next steps on the road map.448

449

The importance of designing experiments with450

interpretable outcomes. We designed our experi-451

ments such that we knew the teacher’s oracle strat-452

egy, which allowed us to properly test our setup.453

However, in designing our experiments we found454

that finding such settings is non-trivial. For exam-455

ple, in a task that contains a language with multiple456

structures, a student might unexpectedly learn infor-457

mation from structure 1 that also proves useful for458

structure 2. This might be acceptable if one’s only459

objective is to obtain a good performance. How-460

4We present plots for the n-gram overlap in Appendix E.

ever, in our case it is critical to be able to know 461

that a teacher is “right for the right reasons”, which 462

motivated our choices for the tasks and languages. 463

The teacher’s budget. Following our objective, 464

we designed our experiments in such a way that the 465

teacher was given a budget that limits the amount 466

of data it can send to the student. As mentioned in 467

Section 5.3, we confirmed that the student’s learn- 468

ing converges with this budget. In follow up work 469

we plan to investigate the importance of different 470

budgets in more detail. One interesting direction is 471

to give the teacher a flexible budget, i.e., such that 472

a teacher could decide to stop training if it deems 473

it no longer necessary for the student. 474

Computational complexity. Apart from the mul- 475

tiprocessing setup that allows us to train multiple 476

students on a single GPU, we did not yet focus on 477

the computational complexity of our approach. In 478

the current setup many student language models 479

need to be trained for a single teacher. In our case 480

we deem this justifiable as we are just at the start 481

of the road map. Moreover, once a teacher model 482

is trained, it can be used for many different pur- 483

poses. However, in future work we hope to focus 484

on decreasing the computational complexity of our 485

approach. One promising avenue to do this is by 486

optimizing the learning process of the student. 487

8 Conclusion 488

In this paper we pioneered the space of interactive 489

language modeling, motivated by the observation 490

that current state-of-the-art LMs are trained in a 491

very unnatural way, from the perspective of human 492

language acquisition. Moreover, an interactive ap- 493

proach has the potential to make LMs more effi- 494

cient and adaptable. Specifically, we proposed a 495

teacher-student loop, in which the teacher is in- 496

spired by the caregiver and the student resembles 497

the child in the human language acquisition. We 498

presented a road map that details the steps towards 499

interactive language modeling for each of the com- 500

ponents of the teacher-student loop. We led by 501

example and took the first steps on this road map, 502

leading to a tangible proof of concept of our pro- 503

posal. As such, we structured the space of interac- 504

tive language modeling and aim to inspire a larger 505

research agenda on interactive language modeling. 506

9 Ethical Impact Statement 507

At this point we use artificial language data only, 508

for which we do not see any direct negative impli- 509
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cations. As we move towards using real data sets,510

it is necessary to be aware of potential biases with511

these data sets. One needs to ensure that the data is512

not biased towards any (protected) group to avoid513

any harm. Currently, much of the NLP research514

focuses on English as its language of interest. Our515

approach is not bound to any language in particular516

and can even be used to improve language learn-517

ing in a low resource setting. Once the models518

achieve human like performance and are used for519

downstream tasks and applications it is necessary520

to explicitly state that language is produced by an521

artificial language model. However, as with all lan-522

guage models, misuse can still happen and it is our523

responsibility as a research community, amongst524

others, to spend effort on making users aware of525

these possibilities.526
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A Computing the Probability of a Top-K739

Sample740

Our objective is to find the (log) probability of741

sampling the subset (i1, ...iK) from {1, ..., N}742

without replacement from the categorical probabil-743

ity (p1, ..., pN ).744

745

Let us first consider sampling K elements from the746

{1, ..., N} with replacement. In that case747

p(i1, ..., iK) =

K∏
k=1

pik . (1)748

If we allow for all possible permutations of observ-749

ing (i1, ..., iK) we get750

p(i1, ..., iK) = C
K∏
k=1

pik , (2)751

where C = K!.752

753

To go from sampling with replacement, to sampling754

without replacement, we consider event A =755

“all sampled elements (i1, ..., iK) are unique”.756

Then757

pw/o replacement(i1, ..., iK) =

pw/ replacement(i1, ..., iK |A).
(3)758

Applying Bayes Rule gives us:759

pw/o replacement(i1, ..., iK) =

pw/ replacement(A|i1, ..., iK)pw/ replacement(i1, ..., iK)

pw/ replacement(A)
.

(4)

760

As in our case all samples in (i1, ..., iK) are unique 761

we know that 762

pw/ replacement(A|i1, ..., iK) = 1. (5) 763

Combining this with Equation 2 gives us 764

pw/o replacement(i1, ..., iK) =
C
∏K

k=1 pik
p(A)

, (6) 765

and thus 766

pw/o replacement(i1, ..., iK) ∝
K∏
k=1

pik , (7) 767

and 768

log pw/o replacement(i1, ..., iK) =
K∑
k=1

log pik . (8) 769

From an implementation perspective this this boils 770

down to the following steps: 771

1. We compute the scores per sentence. 772

2. We sample K sentences without replacement, 773

using the GumbelTopK trick. 774

3. We compute the log probabilities for each score: 775

log softmax(scores). 776

4. We compute the log probability of our sample 777

by adding the log probabilities of the elements 778

in our sample, according to Equation 8. 779

A.1 Comparison to Prior Work 780

Our problem of sampling K sentences as a sin- 781

gle action is similar to the problem formulation 782

of using Reinforcement Learning for extractive 783

summarization to optimize for Rouge (Lin, 2004) 784

directly. In this setting K sentences need to be 785

selected from a document. This results in a very 786

large search space. Narayan et al. (2018) limit the 787

search space by first selecting n sentences that have 788

a high Rouge score. Then all possible summaries 789

are made with these n sentences. These summaries 790

are ranked according to their Rouge scores and the 791

top K sentences are taken as action. This approach 792
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has the disadvantage that it limits the search space793

heuristically, which does not guarantee that the best794

summary is found. Dong et al. (2018) frame the795

problem as a contextual bandit problem, which al-796

lows them to sample from the true action space.797

We choose our approach as it is intuitive, simple798

and effective.799
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B Additional Results Baseline Experiments Task 1 800

In Table 4 we present the results for our baseline runs on all five seeds. 801

Baseline Seed Avg Avg train Avg unigram Avg bigram Avg trigram
Perplexity from test overlap overlap overlap

Random 6639 193.9± 100.3 0.46± 0.14 0.46± 0.14 0.278± 0.07 0.023± 0.009
7519 683.1± 634.3 0.52± 0.15 0.52± 0.15 0.291± 0.10 0.030± 0.010
1007 742.5± 159.8 0.50± 0.17 0.50± 0.17 0.298± 0.10 0.035± 0.014
4520 160.9± 217.7 0.54± 0.16 0.54± 0.16 0.327± 0.09 0.035± 0.025
4527 307.1± 295.1 0.58± 0.17 0.58± 0.17 0.349± 0.10 0.035± 0.014

Oracle 6639 14.99± 5.364 1.00± 0.00 1.00± 0.00 0.551± 0.06 0.072± 0.029
7519 44.37± 58.94 1.00± 0.00 1.00± 0.00 0.611± 0.02 0.085± 0.017
1007 68.95± 87.49 1.00± 0.00 1.00± 0.00 0.598± 0.02 0.077± 0.025
4520 15.65± 4.616 1.00± 0.00 1.00± 0.00 0.578± 0.02 0.087± 0.028
4527 23.66± 21.44 1.00± 0.00 1.00± 0.00 0.624± 0.02 0.095± 0.019

Worst case 6639 8.46e4± 4.69e4 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
7519 7.03e4± 3.73e4 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
1007 8.17e4± 4.26e4 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
4520 4.78e4± 2.67e4 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00
4527 6.69e4± 1.98e4 0.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

Table 4: Baseline results for Task 1. Different domains. Averages and standard deviations reported based on five
runs per seed.

C Additional Results Baseline Experiments Task 2 802

In Table 5 we present the results for our baseline runs on all five seeds. 803

D Additional Results Task 1 804

In this section we present the plots for the n-gram overlap for Task 1 in Figures 6 and 7. 805

E Additional Results Task 2 806

In this section we present the plots for the n-gram overlap for Task 2 in Figure 8. 807
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Baseline Seed Avg Avg train Avg unigram Avg bigram Avg trigram
Perplexity from test overlap overlap overlap

Random 6639 119.0± 56.48 0.18± 0.04 1.00± 0.00 0.401± 0.033 0.030± 0.020
7519 162.8± 201.9 0.24± 0.05 1.00± 0.00 0.408± 0.044 0.035± 0.038
1007 234.1± 192.0 0.24± 0.12 1.00± 0.00 0.414± 0.034 0.034± 0.020
4520 161.7± 190.6 0.22± 0.04 1.00± 0.00 0.410± 0.023 0.038± 0.033
4527 342.1± 241.4 0.12± 0.08 1.00± 0.00 0.348± 0.024 0.013± 0.017

Oracle 6639 6.973± 1.534 1.00± 0.00 1.00± 0.00 0.720± 0.044 0.151± 0.022
7519 7.626± 2.298 1.00± 0.00 1.00± 0.00 0.682± 0.056 0.177± 0.033
1007 7.895± 1.106 1.00± 0.00 1.00± 0.00 0.726± 0.045 0.207± 0.025
4520 6.821± 0.619 1.00± 0.00 1.00± 0.00 0.740± 0.073 0.197± 0.054
4527 9.431± 3.057 1.00± 0.00 1.00± 0.00 0.700± 0.056 0.174± 0.017

Worst case 6639 595.3± 297.9 0.00± 0.00 1.00± 0.00 0.326± 0.026 0.00± 0.00
7519 317.2± 235.8 0.00± 0.00 1.00± 0.00 0.311± 0.018 0.00± 0.00
1007 508.1± 155.7 0.00± 0.00 1.00± 0.00 0.345± 0.017 0.00± 0.00
4520 299.6± 124.2 0.00± 0.00 1.00± 0.00 0.310± 0.027 0.00± 0.00
4527 432.8± 72.05 0.00± 0.00 1.00± 0.00 0.330± 0.035 0.00± 0.00

Table 5: Baseline results for Task 2. Different structures. Averages and standard deviations reported based on five
runs per seed.
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(b) Bigram overlap between train and test data.
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(c) Trigram overlap between train and test data.

Figure 6: Additional results Task 1 – Different domains. Plots for different numbers of students per teacher. Results
per setting reported as average and standard deviation over five random seeds. Average word embedding as sentence
embeddings.
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(a) Unigram overlap between train and test data.
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(c) Trigram overlap between train and test data.

Figure 7: Additional results Task 1 – Different domains. Plots for different numbers of students per teacher. Results
per setting reported as average and standard deviation over five random seeds. Average hidden layer embedding as
sentence embeddings.
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(a) Unigram overlap between train and test data.
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(b) Bigram overlap between train and test data.
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(c) Trigram overlap between train and test data.

Figure 8: Additional results Task 2 – Different structures. Results per setting reported as average and standard
deviation over five random seeds.
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