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Figure 1: Fair Diffusion Balancing Demographic Representation in Text-to-Image Models.
Our approach minimally adjusts parameters during training to eliminate demographic biases in pre-
trained text-to-image models, resulting in more equitable image generation. Here, Stable Diffusion
(top row) runs the risk of lacking diversity in its output, e.g., only male-appearing persons gener-
ation as computer programmer and confident). In contrast, Fair Diffusion (our method) allows the
creation of a more equitable and unbiased representation of visual content.

ABSTRACT

In this paper, we address the limitations of existing text-to-image diffusion mod-
els in generating demographically fair results when given human-related descrip-
tions. These models often struggle to disentangle the target language context from
sociocultural biases, resulting in biased image generation. To overcome this chal-
lenge, we propose Fair Mapping, a general, model-agnostic, and lightweight ap-
proach that modifies a pre-trained text-to-image model by controlling the prompt
to achieve fair image generation. One key advantage of our approach is its high
efficiency. The training process only requires updating a small number of param-
eters in an additional linear mapping network. This not only reduces the compu-
tational cost but also accelerates the optimization process. We first demonstrate
the issue of bias in generated results caused by language biases in text-guided
diffusion models. By developing a mapping network that projects language em-
beddings into an unbiased space, we enable the generation of relatively balanced
demographic results based on a keyword specified in the prompt. With compre-
hensive experiments on face image generation, we show that our method signifi-
cantly improves image generation performance when prompted with descriptions
related to human faces. By effectively addressing the issue of bias, we produce
more fair and diverse image outputs. This work contributes to the field of text-
to-image generation by enhancing the ability to generate images that accurately
reflect the intended demographic characteristics specified in the text.
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1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2021) have achieved remarkable performance in
various applications, including image synthesis, video generation, and molecule design (Dhariwal
& Nichol, 2021; Wu et al., 2022; Ceylan et al., 2023; Blattmann et al., 2023; Poole et al., 2023;
Tevet et al., 2023). This innovation involves the deliberate incorporation of conditional elements
(Ho & Salimans, 2022) into the iterative diffusion process, enabling a new dimension of control
and flexibility in generative modelling. However, as diffusion models are increasingly used in real-
world applications, addressing bias (Ouyang et al., 2022; Friedrich et al., 2023) becomes crucial
as exemplified in Figure 1. Especially, for human-related description, fair face generation with
diversity across demographic groups is essential to avoid perpetuating inequalities and biases (Ning
et al., 2023; Kärkkäinen & Joo, 2021; Schramowski et al., 2023; Bansal et al., 2022).

Text-guided diffusion models tend to rely on linguistic bias, limiting their comprehensive under-
standing of visual and textual dimensions (Dehouche, 2021; Wang et al., 2022). When training on a
dataset that includes images and accompanying texts (Schuhmann et al., 2022; 2021), text-generated
diffusion models face challenges in achieving robust generalization. This challenge emerges when
the model strongly associates biased contextual information present in both images and text prompts
within the training data (Goyal et al., 2019). As illustrated in Figure 1, images generated by “An
image of a computer programmer” and “An image of a confident person” predominantly depict male-
related individuals, even if there is no explicit biased information in our input prompts. Moreover,
as shown in Figure 2, both linguistic bias and generated outputs in diffusion models exhibit incli-
nations towards males, indicating a tendency to generate male-associated content (Gaucher et al.,
2011; Friedrich et al., 2023) (see Section B in Appendix for details). In fact, such a phenomenon is
ubiquitous for variants of text-to-image diffusion models (see Figure 4 for other diffusion models),
especially when we want to generate human face-related images. These bias issues in the diffusion
model can arise from various factors, including training data, system design, and parameter settings.

Figure 2: Language Bias and Generative Bias Visualization. We conduct a bias analysis of the
language characteristics and the generated outcomes during the diffusion process. Left: Examples
of language prejudice. Right: Linguistic bias and diffusion generative bias in occupational data.
Each point represents a profession.

Addressing language bias in text-guided diffusion models can involve enhancing training data
through annotations or data augmentation (Wang et al., 2022; Dehouche, 2021). However, building
a large-scale, high-quality dataset that ensures equitable representation across diverse populations is
a challenging task in practice (Schuhmann et al., 2022; Struppek et al., 2022). Real-world data is
often biased and incomplete, reflecting inherent stereotypes in human perceptions (Makady et al.,
2017; Bansal et al., 2022). Consequently, the pressing question remains: How can unbiased infer-
ences be made in the face of training data that is inherently biased? While some efforts have started
to address fairness concerns in generating face images using diffusion models, such as the study by
Friedrich et al. (2023), shifting bias by human instruction. However, these endeavors are limited
in manually modifying, lacking a robust framework for measuring bias in outcomes, which under-
mines trust and confidence in the fairness of the results. This highlights the need for comprehensive
strategies to tackle the overarching challenge of fairness in diffusion models (Zhang et al., 2023).

In this paper, we conduct a comprehensive investigation into the influence of linguistic biases within
text-guided diffusion models and their subsequent impact on the generated outcomes. We propose
a novel post-processing, model-agnostic, and lightweight method namely Fair Mapping. Briefly
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speaking, there are two additional components compared to vanilla diffusion models: The first one is
a linear mapping network which is strategically designed to rectify the implicit bias in representation
vectors given by the text encoder in text-to-image diffusion models. It addresses the disentangle-
ment of the target language context from additional language biases by introducing a fair penalty
mechanism. This mechanism fosters a harmonious representation of sensitive information within
word embeddings via a linear network with only a modest addition of new parameters. At the infer-
ence stage, Fair Mapping introduces a detector to identify whether the user’s input prompt contains
implicit target information and explicit sensitive attributes on its expected generated images.

This paper makes several significant contributions and highlights key findings: 1. In-depth Analysis
of Bias in text-guided diffusion models: Our work comprehensively explores and explains the bias
issue in generated results caused by language biases within text-guided diffusion models, shedding
light on the contributing dynamics. 2. Innovative Fair Mapping Module: Our novel fair mapping
module optimizes minimal parameters for training, enabling seamless integration into classifier-free
guided text-based generative models. Importantly, it achieves fairness in generative outputs without
modifying the model’s original structure, presenting a significant advancement in the field. 3. Pro-
posed Fairness Evaluation Metric: Alongside our innovative fair mapping module, we introduce the
first evaluation metric designed to assess the fairness of diffusion models in generating text-guided
human-related images. This metric provides a systematic and objective measure for quantifying the
reduction of bias in the generative process, enabling more precise evaluation of fairness outcomes.

2 RELATED WORK

Text-guided Diffusion Models: Text-guided diffusion models merge textual descriptions with vi-
sual content to create high-resolution, realistic images that align with the semantic guidance pro-
vided by the accompanying text prompts (Ramesh et al., 2022; Saharia et al., 2022; El-Nouby et al.,
2018; Kim et al., 2023; Avrahami et al., 2023; Balaji et al., 2022; Feng et al., 2023b; He et al.,
2023). However, this fusion of modalities also brings to the forefront issues related to bias and fair-
ness (Struppek et al., 2022; Bansal et al., 2022), which have prompted extensive research efforts to
ensure that the generated outputs do not perpetuate societal inequalities or reinforce existing biases.
In this paper, we delve into these challenges and the state-of-the-art solutions aimed at enhancing
the fairness and equity of text-guided diffusion models.

Fairness and Bias in Diffusion Models: Fair data generation is crucial for generative modelling to
ensure discrimination-free and unbiased data. While large internet datasets are commonly used in
data-driven generative models, they often contain biased and degenerate human behavior (Birhane
et al., 2021; Schuhmann et al., 2022; 2021). Existing research on widely bias and discrimination in
generative models is limited. Notably, Xu et al. (2018) proposed fairness-aware generative adversar-
ial networks to generate fair data with high utility, while Schramowski et al. (2023) developed a test
platform to evaluate and mitigate undesired effects from unfiltered and imbalanced training datasets.
Friedrich et al. (2023); Muñoz et al. (2023) emphasize post-processing methods, adjusting outputs
after deployment to mitigate bias by human instruction. However, these approaches primarily ad-
dress manipulation, overlooking the role of language representation in bias mitigation. This paper
seeks to bridge this gap by addressing linguistic biases within text-guided diffusion models, thereby
contributing to a more comprehensive understanding and mitigation of biases in generative data.

Bias in Language Models: The issue of bias in language models (LMs) has raised concerns about
their potential to generate biased, racist, sexist, or toxic language. Ensuring fairness in these models
has been extensively studied and validated, especially in the context of large-scale models (Gehman
et al., 2020; Abid et al., 2021; Bender et al., 2021; Zhang et al., 2022; Radford et al., 2021; Tian
et al., 2018; Ding et al., 2022). Efforts have been made to address these biases, with approaches
introduced by Wang et al. (2022); Dehouche (2021) aiming to mitigate the impact of bias. In our
work, we explore the intersection of bias mitigation efforts in both language models and generative
models, which is a critical juncture in the pursuit of fairness and ethics in artificial intelligence.

3 METHOD

In this section, we introduce our Fair Diffusion model framework, outlining its key components and
novel features designed to address biases in text-to-image generation. Our objective is to improve
the ability of text-to-image models to produce equitable results when generating faces from human-
related descriptions. This enhancement is achieved through small fraction parameter optimizations
during the training process.
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Figure 3: The figure illustrates our proposed method during both the training and inference
stages. In the training stage, the parameters of the language model are frozen, and we assign weights
to loss terms, Ltext and Lfair to update Fair Mapping. da denotes the distance between va and v.

To begin with, we introduce the following definitions: c denotes the human-related keyword in the
dataset, A represents the sensitive group like Gender and Race, and a ∈ A represents a particular
sensitive term within the group A. Formally, our conditioning is defined as a set of carefully designed
prompts prompt(a, c) = “an image of a a c.” with keywords c extracted from an occupational
dataset.

The training and inference procedure of Fair Mapping is elucidated in Figure 3. This framework
leverages a linear mapping network architecture, drawing inspiration from StyleGan (Karras et al.,
2018) and MixFairFace (Wang et al., 2023), albeit with a unique layer size configuration. While
the language model assumes the responsibility of furnishing conditional representations based on
the provided text prompt, Fair Mapping operates in tandem by determining suitable offsets within
the embedding space. This enables the correction of native language semantic features, ultimately
leading to their debiasing and alignment with the balanced embedding space.

3.1 DEBIASING TRAINING

In our framework, we construct two distinct types of prompts based on the keyword c. The first
type constitutes the original input prompt, denoted as prompt(‘’, c), where we explicitly exclude
any sensitive attributes (represented as ‘’). It does not prioritize explicit sensitive attribute infor-
mation during training or inference. In contrast, the second type, prompt(aj , c), where aj ∈ A,
incorporates sensitive words. These prompts are designed to quantitatively explore the language
relationship between sensitive attributes and keywords. By explicitly introducing sensitive attributes
into the prompts, we aim to probe how the model’s behavior aligns with different aspects of fairness.

We extract language embeddings f and fj from prompt(‘’, c) and prompt(aj , c) using the language
model. These embeddings are essential in conventional text-guided diffusion models for generating
coherent and contextually relevant text samples. To enhance the fairness aspect of our approach,
we introduce a novel architecture called Fair Mapping (M ). This architecture consists of linear
stacking networks that collaborate with the existing model components. We apply the Fair Mapping
architecture to transform the original embeddings, producing new representations denoted as:

v = M(f), vj = M(fj).

In this transformation process, our goal is to generate fair, unbiased embeddings with equitable
treatment across sensitive attributes. During training, the objectives of v and vj are two-fold: 1)
They should maintain semantic consistency akin to f and fj , serving as contextual information. 2)
Importantly, v should equalize the representation of different demographic groups and prevent the
encoding of societal biases that may be present in the original embeddings. Therefore, we employ
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bias-aware objectives and regularization techniques to guide the model in generating embeddings
that are free from sensitive information, promoting fairness in data representation.

Text Consistence: Our approach is designed to maintain consistency and semantic coherence be-
tween the original embeddings and mapped embeddings. To achieve this crucial objective, we
employ a strategy geared towards minimizing the disparity between pre-transformed and post-
transformed features in the embedding space. Specifically, we adopt the mean squared error (MSE)
as a metric to measure the reconstruction error, drawing inspiration from the reconstruction rule
proposed in decoder architecture (Kingma & Welling, 2014). By applying this metric, we compute
a semantic consistency loss for each keyword:

Ltext =
1

|A|+ 1

||v − f ||2 +
∑
aj∈A

||vj − fj ||2
 (1)

Through the minimization of this loss, we strive to ensure that the mapped embeddings preserve
the crucial information and semantic attributes inherent in the original embeddings. This process
safeguards the fidelity and integrity of the data throughout the mapping transformation.

Fair Distance Penalty: Proximity of embeddings to groups with sensitive attributes can inadver-
tently encode demographic-related information. For example, if the word ”doctor” is closer to males
and farther from females in the language model, it may inherently convey gender bias (Chen et al.,
2020). To mitigate this issue, we employ a debiasing method that entails the adjustment of associa-
tions between sensitive attributes and words during the training process using mapping offsets. The
primary objective is to diminish the expression of these associations within word vectors, thereby
reducing the potential for biased representations. Through the application of mapping offsets, we
seek to counteract the influence of sensitive attributes on word embeddings, fostering a more neutral
and unbiased representation.

To equalize the representations of attributes, the objective is to ensure that these adjusted embeddings
have similar distances from the native embeddings, thereby reducing the associations related to sen-
sitive attributes in semantic space. The visualization in Figure 3 illustrates this process. In the case
where the size of the sensitive group A is 2, we can minimize the difference in distance between
the native embeddings, expressed as |d(v, v1) − d(v, v2)|. Here, d(·, ·) represents the Euclidean
distance (Dokmanic et al., 2015) between embeddings. However, to address the computational
complexity when dealing with a large attribute set A containing multiple sensitive characteristics,
we can optimize representation bias by focusing on reducing the variance in the distance between
the embeddings. Instead of calculating the difference in distance for each pair of sensitive attribute
embeddings, we can consider minimizing the variance in the distance with respect to the average dis-
tance between the native embedding and the sensitive embeddings. The fairness loss term, denoted
as Lfair, can be formulated as follows:

Lfair =

√√√√ 1

|A|
∑
aj∈A

(
d(v, vj)− d(v, ·)

)2
(2)

Here, d(v, vi) represents the Euclidean distance between the native embedding v and the specific
sensitive attribute embedding vi. d(v, ·) refers to the average distance between the native embedding
v and all the sensitive attribute embeddings vj . By incorporating this fairness loss term into the
training objective, we aim to minimize the variance in the distance between the native embedding
and the sensitive attribute embeddings vj . This helps to promote equalization in representation and
reduce bias associated with sensitive attributes.

To optimize the overall objective, we combine the Text Consistency Loss, denoted as Ltext (from
Equation 1), with the estimated bias difference from the Fair Distance Penalty (from Equation 2).
This results in the following combined loss function:

L = Ltext + λLfair, (3)

where λ is a hyperparameter balancing text consistency and fairness. By minimizing this combined
loss function, we aim to simultaneously ensure text consistency and reduce bias in the representation
of sensitive attributes. To optimize the model, we freeze all parameters except for the additional Fair
Mapping network. This allows us to specifically train and fine-tune the Fair Mapping network to
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Figure 4: Comparison with different text-to-image methods.

promote fairness and mitigate biases while keeping the rest of the model parameters fixed. By
incorporating both the Text Consistency Loss and the Fair Distance Penalty, we aim to achieve a
balance between coherence, relevance, and fairness in the generated text samples.

3.2 INFERENCE

During inference, before generating text, our approach includes a detector that checks if the input
prompt contains predefined sensitive keywords. This detector helps identify if the prompt is related
to sensitive attributes. If sensitive keywords like occupation and emotion are detected, we apply the
Fair Mapping mechanism to address potential bias in the input prompt. By integrating the detector
and Fair Mapping during inference, our approach aims to reduce the generation of biased or sen-
sitive text. This ensures that the model’s outputs maintain fairness by avoiding the promotion or
reinforcement of biased information in the generated text. See Section C in Appendix for details.

4 EXPERIMENTS
Given the limited research and open-source code addressing fairness in diffusion models, there is
a scarcity of comparisons with state-of-the-art approaches in this domain. Our evaluations primar-
ily focus on comparing our approach with the prevalent baseline diffusion model, Stable Diffusion
(Rombach et al., 2022). We also extend our comparisons to include two text-guided diffusion mod-
els: Structured Diffusion (Feng et al., 2023a) and Composable Diffusion (Tang et al., 2023). In
this section, we report the performance of our models in three aspects: 1) Our fair mapping method
outperforms baselines in fairness evaluation. 2) Fair mapping ensures images prioritize people,
showcasing human-related descriptions effectively. 3) Our method matches human preferences in
image quality and text alignment of the state-of-the-art text-to-image diffusion method.

4.1 EXPERIMENTAL SETUP

Datasets: We select a total of 150 occupations and 20 emotions as target keywords for fair gen-
eration following (Ning et al., 2023). For sensitive groups, we choose gender groups (male and
female) and racial groups (Black, Asian, White, Indian) provided from (Kärkkäinen & Joo, 2021).
We provide a comprehensive list of keywords in Appendix D.1.

Implementation Details: In our experiments, we use Stable Diffusion (Rombach et al., 2022)
trained on the LAION-5B (Schuhmann et al., 2022) dataset and implement 50 DDIM denoising
steps. Specifically, we utilize the pre-trained stable diffusion model (SD-1.5). All of our training
experiments are conducted on an Nvidia A100 GPU. We maintain a uniform learning rate of 1e-2
and keep the number of training epochs consistent at 500. For each specific occupation and emotion,
we set λ to 0.1. We set the number of layers to eight for linear mapping structure in Fair Mapping.

Evaluation Metrics: We systematically evaluate each method based on two criteria: fairness of text
embedding and generative results and quantitative evaluation of generative images using human-
related descriptions in the diffusion model. We assess language fairness by incorporating semantic
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similarity calculation (Chen et al., 2020; Mikolov et al., 2013) between keywords and sensitive
groups. See Appendix D.2.1 for details. Furthermore, we propose a novel evaluation metric rooted
in Individual Fairness to robustly assess fairness in generative results of diffusion models across
diverse groups. This metric captures variations in generated outcomes among demographic factors
(Hardt et al., 2016), such as gender and race, and quantifies fairness by evaluating equilibrium. Our
study adopts a highly specific and constrained definition of fairness in the evaluation process. In
detail, given any keyword ck in the dataset D with its possible sensitive attributes Sk, the diffusion
model is absolutely fair if it satisfies

P (A = si|c = ck) = P (A = sj |c = ck), for all si, sj ∈ Sk, (4)

where A represents the sensitive attribute random variable, c is conditional prompt used to guide
generative images, P (A = si|c = ck) represents the probability of the sensitive attribute A of
generative images expressing si given the specific conditional prompt c = ck. Thus, based on
equation 4, for a keyword ck, our fair evaluation metric on the diffusion bias is designed as follows:

FairScore(ck) =

√√√√√ 1

| Sk |
∑

si∈Sk

P (A = si | c = ck)−
1

| Sk |
∑

sj∈Sk

P (A = sj | c = ck)

2

. (5)

Thus, for a dataset D that contains keywords, our fair evaluation metric on the diffusion bias is
1

|D|
∑

ck∈D FairScore(ck). A smaller value of the metric indicates that the method is more fair.

We present a quantitative evaluation of the image quality generated by the models after applying
Fair Mapping to different sensitive groups. To measure the alignment between generated images
and human-related content, we calculate the CLIP-Score Hessel et al. (2021), which measures the
distance between input textual features and generated image features. Due to the limitation (Otani
et al., 2023) of capturing the specific nuances of human-related textual generation, we introduce
the Human-CLIP metric, which focuses specifically on evaluating the CLIP-score related to human
appearance for effective assessment of the alignment between the generated images and the human-
related content. For diversity, intra-class average distance (Le & Odobez, 2018) is aimed to evaluate
the diversity of generative results. More details are included in Appendix D.2.2 and D.2.3

4.2 FAIRNESS EVALUATION

Figure 5: Left: The comparison results between our method and Stable Diffusion for some key-
word examples. It showcases the disparity between our optimized results and the original results.
Right: The comparison results between our method and Stable Diffusion regarding language
bias and diffusion bias on two datasets. Each point in the figure represents a keyword.

Notably, existing methods exhibit a pronounced lack of female representations in the generated
engineer images in Figure 4. This disparity can be attributed to the societal gender stereotypes
associating engineers with males. Consequently, the cognitive bias inherent in language prompts
the model to generate male engineers more frequently while underrepresenting female engineers.
In contrast, our method, when compared to existing text-guided diffusion approaches, demonstrates
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an enhanced capacity for generating diverse sensitive attributes while upholding the stability of the
generated results. Our generated outcomes exhibit a more substantial representation of marginalized
groups, including women and dark-skinned individuals. This highlights the potential of our approach
in advancing fairness, inclusivity, and representation in human-related description generation tasks.

Language bias: Our investigation affirms the mitigation of bias in the text embedding space. Figure
5 provides a comparative analysis of gender bias in text prompts between our method and Stable Dif-
fusion. Within the occupation dataset, our method notably exhibits significantly reduced language
bias compared to Stable Diffusion, indicating a reduced bias toward specific keywords. Likewise,
our method surpasses Stable Diffusion in reducing language bias within the emotion dataset.

Fair Face Generation: Figure 5 illustrates the comparative results of bias detection on selected
keywords between our method and the stable diffusion method. Positive values indicate a male
gender bias in the generated image results. While these may still be influenced by factors such as
the diffusion process or decoder-related biases, efforts have been made to mitigate these effects. We
conduct a comprehensive comparison of our experiment with baselines in sensitive group Gender
and Race, evaluating their performance in terms of our proposed diffusion fairness metrics. Table
1 presents a summary of the results in Gender and Race, respectively. We observe that our method
consistently outperforms other methods and achieves a higher fairness performance, indicating a
more equitable and unbiased outcome compared to the alternative approaches tested. These results
highlight the effectiveness of our method in promoting fairness and mitigating bias.

Table 1: Fair evaluation results of sensitive group gender and race. O denotes the Occupation dataset
and E denotes the Emotion dataset.

Dataset Models Diffusion Bias (O) Diffusion Bias (E)

Gender
Stable Diffusion 0.4466 0.4652

Structure Diffusion 0.4141 0.4100
Composable Diffusion 0.4027 0.4203
Fair Mapping (Ours) 0.3625 0.2113

Race
Stable Diffusion 0.2599 0.1893

Structure Diffusion 0.2368 0.1824
Composable Diffusion 0.2344 0.1489
Fair Mapping (Ours) 0.2231 0.1178

4.3 QUANTITATIVE ANALYSIS

Table 2: An ablation study on Lfair and
Ltext in the loss function. O denotes the Oc-
cupation dataset and E denotes the Emotion
dataset.

Ltext Lfair Diffusion Bias(O) Diffusion Bias(E)

- - 0.4466 0.4622
- ✓ - -
✓ - 0.4030 0.3862
✓ ✓ 0.3624 0.2113

Alignment: In Table 3, we compare our method
with all baselines for images generated with human-
related descriptions. While our method shows a
slight decline in the CLIP-Score compared to the
baselines, it performs superior performance in terms
of the Human-CLIP metric. Therefore, our method’s
effectiveness in the Human-CLIP metric highlights
its success in capturing human-related characteris-
tics in generated images despite a slightly lower
overall CLIP-Score.

Figure 6: The influence of λ values. (O)
means Occupation dataset and (E) means
Emotion dataset.

Diversity: Diversity refers to the range of image en-
vironments and the degree of variation in the gener-
ated images’ environmental attributes. Our method
achieves favorable improvement in terms of metrics
that evaluate the diversity of generated results com-
pared to Stable Diffusion, which means it excels in
generating diverse and varied results. More visual ex-
amples in F.

Ablation Study: Table 2 shows the results of an ab-
lation study examining the influence of different fac-
tors in the loss terms, Ltext and Lfair, on model per-
formance. We implement our experiments in Group
Gender and dataset occuptation. The table reveals that
Ltext can function independently, as indicated by individual rows representing the method’s perfor-
mance when only one of these criteria is considered. However, it is evident that Lfair alone is not
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Table 3: Evaluation results of image alignment and diversity.

Models Occupation Emotion

CLIP-Score Human-CLIP Diversity CLIP-Score Human-CLIP Diversity

Stable Diffusion 0.2320 0.1339 13.61 0.2026 0.1399 1.39
Structure Diffusion 0.2339 0.1284 13.31 0.1930 0.1103 1.50

Composable Diffusion 0.2299 0.1367 12.82 0.1901 0.1155 1.52
Fair Mapping-Gender 0.2021 0.1494 14.07 0.1809 0.1366 1.47
Fair Mapping-Race 0.2197 0.1522 14.14 0.1848 0.1324 1.41

effective and requires the presence of Ltext to establish an effective semantic space. The combi-
nation of generating diverse sensitive attributes (Ltext) and maintaining fairness in representation
(Lfair) achieves the lowest diffusion bias, indicating superior performance in terms of fairness.

Figure 6 shows how λ influences the quality and fairness. λ parameter to adjust the weight of
fairness loss can balance quality and fairness in image generation tasks. Smaller λ values provide
more emphasis on alignment, producing visuals that are more similar to text descriptions but may
miss fairness. Larger λ values put fairness first and respond to the needs of vulnerable populations,
but they degrade image quality. When λ=0.5, images suffer severe distortion, containing only limited
semantic information, leading to a decline in fairness as well.

4.4 HUMAN PREFERENCE

We conduct a human study about the fidelity and alignment of our method (details are included in
Appendix E.3). Table 4 shows the results of our statistic of human preference scores. For fidelity,
the human preference scores reveal that our method consistently outperforms the other generative
images both for occupation and emotion description. Our method prioritizes fidelity in generating
images when given a simple human-related description. Meanwhile, our method has a slightly lower
alignment between the generated images and the input text features in comparison to other text-to-
image approaches in descriptions of emotion. Our method introduces a trade-off between prioritiz-
ing fairness and maintaining the alignment of facial expressions and textual descriptions. Therefore,
according to our user survey, some participants expressed dissatisfaction with our method’ perfor-
mance in achieving consistency between facial expressions and textual descriptions. Future research
endeavors may focus on enhancing the consistency of the text prompts while balancing the bias.

Table 4: Evaluation Results in Human Preference. The higher the score, the more it aligns with
human preferences. Please refer to the Appendix E.3 for the scoring criteria.

Models Occupation Emotion
Fidelity Alignment Fidelity Alignment

Stable Diffusion 2.7558 3.6760 2.7230 3.4929
Structure Diffusion 2.5399 2.9953 3.3427 3.3615

Composable Diffusion 2.6667 3.0375 1.9718 3.6854
Fair Mapping-Gender 3.0140 3.0760 3.4883 3.2431
Fair Mapping-Race 3.0798 3.3661 3.0140 3.3475

Real Image 3.4694 - 3.5576 -

5 DISCUSSION AND CONCLUSION
In this study, we propose that inherent biases in language contribute to the observed bias in text-
guided diffusion models, underscoring the potential of language models to introduce and amplify
biases during the process of text generation and text-guided diffusion. To combat language biases,
we develop a method that effectively mitigates bias within the text space with minimal additional
training parameters. Furthermore, we introduce new fairness evaluation metrics, demonstrating sub-
stantial improvements when compared to other text-guided diffusion models. Despite our efforts to
address language biases, the complete elimination of generation biases remains challenging, indi-
cating the influence of factors beyond language models, with intertwined information from diverse
modalities within the diffusion model. Looking ahead, our future research endeavors will delve into
the complex issue of bias entanglement across different modalities, aiming for a more comprehen-
sive understanding and mitigation of biases in diffusion models. This research has the potential to
greatly enhance the fairness of generative models in various domains, including social media and
recommender systems, where diffusion models have a significant societal impact.
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A PRELIMINARIES

Diffusion models are generative models that generate images by iteratively applying denoising steps,
starting from a random noise map. The process involves gradually refining the initial noise map to
produce high-quality images. In a diffusion model, the generation process is often represented by
a diffusion equation or a sequence of denoising steps. The initial noise map, denoted as z, serves
as the input. The model then applies a series of denoising steps, progressively reducing the noise
and improving the image quality. A predefined number of denoising steps determines the degree
of noise at each step and a timestep-dependent noise prediction network ϵθ is trained to predict the
noise added to a given input z.

Although earlier models, such as Denoising Diffusion Probabilistic Models (DDPM) (Ho et al.,
2020), are computationally expensive, the non-Markovian diffusion method, Denoising Diffusion
Implicit Models (DDIM) (Song et al., 2021), has improved the inference speed by drastically reduc-
ing the number of denoising steps. In DDIM, the noise prediction network ϵθ is utilized to estimate
the noise added at each denoising step. By reducing the number of denoising steps, DDIM achieves
faster inference without compromising the quality of generated images. This improvement in com-
putational efficiency allows for more practical and scalable implementation of diffusion models in
various applications.

Text-to-image diffusion models involve the utilization of diffusion models in combination with tex-
tual descriptions to generate image samples. The goal of this process is to produce images that
correspond to the given conditional textual information, represented as pt, thereby establishing an
explicit and controllable condition for image generation. According to the sampling process of
DDIM,

xt−1 =
√
αt−1

(
xt −

√
1− αtϵ

(t)
θ (xt | pt)√

αt

)
︸ ︷︷ ︸

predicted x0

+
√

1− αt−1 · ϵ(t)θ (xt | pt)︸ ︷︷ ︸
direction pointing to xt

, (6)

Where xt−1 represents the previous sample at time step t− 1, αt−1 denotes the diffusion parameter
at time step t − 1, xt is the current sample at time step t, ϵ(t)θ (xt | pt) denotes the noise added to
the current sample at time step t, which is parameterized by θ and conditioned on pt. ϵ(t)θ (xt | pt)
holds the key to generate images with conditions. Finally, it aims to learn the conditional generation
probability density function p(xt | pt).

B LANGUAGE BIAS IN TEXT-TO-IMAGE DIFFUSION MODELS

We conduct the following experiment in the occupation keyword set in Appendix D.1: 1) First, we
calculate language bias on every occupation in the keyword dataset over sensitive attribute gender.
2) Then, for each occupation c, we use the following prompt format: “an image of a c” for guiding
stable diffusion model to generate 100 images and measure the diffusion bias. Figure 2 shows the
experimental results.

In the left region of Figure 2, we conduct a language bias analysis on specific occupations and find
that the language used to describe these occupations exhibits gender bias, aligning with societal
stereotypes. As an illustrative instance, our examination of the term aerospace engineer reveals a
pronounced inclination towards males, which is consistent with the gender bias cognition in the real
world towards aerospace engineers.

As illustrated in the left-hand side of Figure 2, we employ a scatter plot representation, where the
y-axis corresponds to diffusion bias and the x-axis represents language bias. Notably, the majority
of the occupations exhibit a discernible language bias favoring males, as evidenced by the clustering
of data points toward positive values on the x-axis. Additionally, there is a pervasive diffusion
bias observed across nearly all occupations, except for those specifically associated with women,
such as “waitress” and “actress”. The majority of data points are concentrated in the region where
both language bias and diffusion bias exhibit male bias. This suggests a mutual reinforcement
between language bias and diffusion bias. When there is male bias present in language, it may
further propagate and influence the results generated by the diffusion model, leading to the formation
of diffusion bias. However, there are a few data points that show bias towards males in diffusion
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bias while having bias towards females in language bias. This indicates that the causes of diffusion
bias may be more complex in these specific cases, potentially involving other factors or mechanisms
such as decoder biases, which contribute to this inconsistency. In summary, language bias is one of
the direct factors leading to diffusion bias. By addressing and mitigating language bias, it is possible
to reduce the impact it has on diffusion bias and promote more equitable and unbiased generative
outcomes.

C DETAILS OF THE INFERENCE STAGE

In the inference stage, Fair Mapping should keep in robustness to meet requirements of possible de-
biasing content. For example, Fair Mapping should be activated whatever the user’s prompt could be
“I want to show an a c figure”, “An image of a c” and other formats containing keyword with implicit
bias. To ensure reliability across diverse descriptions, an additional detector is introduced with the
primary objective of adapting the user’s input prompt to a training prompt that exhibits the closest
semantic similarity. To achieve this, we calculate the similarity distance between the input prompt
and each training prompt of the linear network using a pre-trained text encoder. Subsequently, we
identify the training prompt that exhibits the smallest distance. If the calculated distance falls below
a pre-defined threshold, we transform the input prompt to match the identified training prompt.

However, an additional issue may arise. The linear network aims to debias the implicit bias associ-
ated with the prompt without explicit biased information. It can easily misunderstand explicit biased
information in input text, such as ”An image of a male doctor”, where the use of the linear network
becomes unnecessary. Therefore, it becomes imperative for the detector to identify the presence of
any sensitive attribute in the transformed training prompt. If the closest training prompt lacks sen-
sitive attributes, passing it through the linear network for debiasing becomes necessary. Conversely,
if sensitive attributes are present, skipping the linear network is warranted. The detailed algorithm
for the detector is provided in Algorithm 1.

Algorithm 1: Detector Processing Algorithm
Input: Input textual prompt w, a threshold e > 0, a keyword training set C with sensitive

attribute set A, training prompt set S for C and A
Output: Modified text
for Each prompt s ∈ S do

Calculate similarity distance ds = SimilarityDistance(w, s);
end
id = argmins∈S(ds);
tp=S[id];
if d < e then

if tp does not contain any sensitive attribute word in A then
Return w to the text encoder and skip the linear network;

end
else

Return tp to the text encoder;
end

end
Return w to the text encoder and skip the linear network;

Discussions. We can easily see that there are several strengths of Fair Mapping. Firstly, Fair Map-
ping is model-agnostic, i.e., as it only introduces a linear mapping network and a detector without
modifying the retraining parameters of the diffusion models, we can clearly see that our method can
easily be integrated into any text-to-image diffusion models. Secondly, Fair Mapping is lightweight.
As a post-processing approach, Fair Mapping only introduces an additional linear map that has to
be trained and does not involve any update of the weight parameters in the classical diffusion mod-
els. Moreover, as we will mention in the experiments, an eight-layer linear network is sufficient to
achieve good performance on both utility and fairness. Thus, the linear network training is quite fast
and the additional time cost due to Fair Mapping is extremely small. Finally, our method is quite
flexible. Due to the simplicity of our loss for each keyword, we can see our linear network can be
replaced by any other prompts, loss of semantic consistency, and the loss of fairness.
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D EXPERIMENTAL DETAILS

Table 5: Keywords about Occupations

Accountant Facilities Manager Office Worker
Aerospace Engineer Farmer Painter
Aide Fast Food Worker Paralegal
Air Conditioning Installer File Clerk Payroll Clerk
Architect Financial Advisor Pharmacist
Artist Financial Analyst Pharmacy Technician
Author Financial Manager Photographer
Baker Firefighter Physical Therapist
Bartender Fitness Instructor Pilot
Bus Driver Graphic Designer Plane Mechanic
Butcher Groundskeeper Plumber
Career Counselor Hairdresser Police Officer
Carpenter Head Cook Postal Worker
Carpet Installer Health Technician Printing Press Operator
Cashier Host Producer
CEO Hostess Psychologist
Childcare Worker Industrial Engineer Public Relations Specialist
Civil Engineer Insurance Agent Purchasing Agent
Claims Appraiser Interior Designer Radiologic Technician
Cleaner Interviewer Real Estate Broker
Clergy Inventory Clerk Receptionist
Clerk IT Specialist Repair Worker
Coach Jailer Roofer
Community Manager Janitor Sales Manager
Compliance Officer Laboratory Technician Salesperson
Computer Programmer Language Pathologist School Bus Driver
Computer Support Specialist Lawyer Scientist
Computer Systems Analyst Librarian Security Guard
Construction Worker Logistician Sheet Metal Worker
Cook Machinery Mechanic Singer
Correctional Officer Machinist Social Assistant
Courier Maid Social Worker
Credit Counselor Manager Software Developer
Customer Service Representative Manicurist Stocker
Data Entry Keyer Market Research Analyst Supervisor
Dental Assistant Marketing Manager Taxi Driver
Dental Hygienist Massage Therapist Teacher
Dentist Mechanic Teaching Assistant
Designer Mechanical Engineer Teller
Detective Medical Records Specialist Therapist
Director Mental Health Counselor Tractor Operator
Dishwasher Metal Worker Truck Driver
Dispatcher Mover Tutor
Doctor Musician Underwriter
Drywall Installer Network Administrator Veterinarian
Electrical Engineer Nurse Waiter
Electrician Nursing Assistant Waitress
Engineer Nutritionist Welder
Event Planner Occupational Therapist Wholesale Buyer
Executive Assistant Office Clerk Writer
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Table 6: Keywords about Emotions

ambitious determined pleasant
assertive emotional self-confident
committed gentle sensitive
compassionate honest stubborn
confident intellectual supportive
considerate modest unreasonable
decisive outspoken

D.1 KEYWORD DATASET

In our research, we selected keywords for fair image generation based on a thorough investigation
detailed in (Ning et al., 2023). These chosen keywords cover a variety of job roles (refer to Table 5)
and emotional states (see Table 6). Our experiments involve a total of 150 different occupations and
20 emotional states, ensuring a diverse and comprehensive range for a thorough examination of our
proposed approach.

D.2 MORE DETAILS ON EVALUATION METRICS

D.2.1 LANGUAGE BIAS

We assess language bias by incorporating semantic similarity calculation (Chen et al., 2020; Mikolov
et al., 2013) between keywords and sensitive attributes. Specifically, we use Euclidean distance to
evaluate the distance between native keyword terms and specific sensitive attribute word terms. The
closer distance indicates a potential bias in the language representation towards a specific sensitive
word. We define our language bias evaluation criteria towards attribute ai for keyword ck and our
input prompts as LBiasai(ck):

LBiasai(ck) = −∥fj − f∥2 +
1

|A|
∑
aj∈A

∥fj − f∥2, (7)

where ∥fj − f∥2 represents the Euclidean distance between the prompt generated with the sensitive
term ai and the keyword ck, compared to the prompt generated with no sensitive term.

D.2.2 HUMAN-CLIP

The CLIP (Contrastive Language-Image Pretraining) Score serves as a prominent evaluation metric
utilized for the assessment and comparison of semantic similarity between images and text in the
context of generative models. This metric entails the utilization of pre-trained CLIP models, where
images and text are inputted, and subsequent semantic relatedness is measured based on the simi-
larity scores generated by the model. Higher scores indicate a greater degree of semantic relevance
between the image and text, while lower scores suggest diminished semantic coherence. While CLIP
demonstrates favorable performance across various tasks and domains, it is not exempt from limi-
tations and challenges. Particularly in the case of text pertaining to human-related decriptions, the
intricate and ambiguous nature of language poses difficulties for CLIP in achieving comprehensive
understanding. Instances may arise where CLIP produces high scores for captions or input questions
that exhibit inconsistency with the textual content, as depicted in the provided Figure 7.

Consequently, when confronted with human-authored descriptions, the stable diffusion may en-
counter constraints in its capacity to effectively generate images featuring human faces. We assess
the efficacy about human face generating of diffusion models, as presented in Table 7. In terms
of occupations, the three different diffusion models, namely Stable Diffusion, Structure Diffusion,
and Composable Diffusion, achieved frequencies of 0.5914, 0.5641, and 0.6101, respectively, in
generating facial images related to occupations. On the other hand, for emotions, the frequen-
cies achieved by the Stable Diffusion, Structure Diffusion, and Composable Diffusion models were
0.6904, 0.5850, and 0.6274, respectively. Our approach demonstrates significant proficiency in gen-
erating realistic human facial features within generative images, exhibiting a notable improvement
of over 30% in performance when compared to alternative methods.
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Figure 7: Misalignment between generated images and human-related descriptions in Stable Diffu-
sion.

We propose the Human-CLIP metric as a remedy to the problem of not being able to capture all
the subtleties in human-related textual generation based on the viewpoint presented in the literature
(Otani et al., 2023). The Human-CLIP measure aims to accurately analyze the alignment between
generated images and content that is relevant to humans by concentrating on analyzing the CLIP-
Score related to human appearance, offering a way to gauge the effectiveness of text-to-image pro-
duction and its applicability to humans by using the CLIP model’s scores. It gets over the drawbacks
of earlier metrics and offers academics and practitioners a new tool for evaluating and comparing
the quantitative connection between generated images and human appearance.

Table 7: Evaluation Results in Image Effectiveness for human frequency.

Models Occupation Emotion

Stable Diffusion 0.5914 0.6904
Structure Diffusion 0.5641 0.5850

Composable Diffusion 0.6101 0.6274
Fair Mapping-Gender 0.9229 0.8950
Fair Mapping-Race 0.9318 0.7237

Specifically, we selectively retain the CLIP-Score solely for generative images containing human
subjects. For images lacking human descriptions, we assign a CLIP-Score value of 0:

Human-CLIP(img,t) =
{
CLIP (img, t), if img contains human

0,else
,

Where CLIP (img, t) denotes the CLIP-Score between image img and text t. To assess the overall
performance of our model, we calculate the Human-CLIP score by averaging the Human-CLIP
scores obtained for all generated images. Mathematically, the Human-CLIP score is defined as
1
|I|

∑
img,t∈I Human-CLIP(img, t), where I is the set of image-text pairs (img, t) in the generated

image set. This calculation provides an aggregated measure of the model’s ability to generate images
that align with human perception and understanding, as evaluated through the CLIP model.
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Figure 8: characteristics of repetitive scenes in Stable Diffusion.

D.2.3 DIVERSITY

Stable Diffusion results show similarities to Mode Collapse in GANs, generating repetitive scenes
with consistent backgrounds. As shown in Figure 8, for example, when generating images related
to “air conditioning installer”, the generated images often depict walls and air conditioning units
with repetitive perspectives. We employ the intra-class average distance (ICAD) as a measure to
assess the diversity of visual environments. To compute this metric, we focus on a particular class or
category of generated images, such as “Teacher” or “Pleasant”. By employing the squared Euclidean
distance as the distance metric, we determine the average distance between all pairs of generated
images within the chosen category:

ICAD(c) =
1

|Sc|
∑

ek∈Sc

∥ek − 1

|Sc|
∑
ei∈Sc

ei∥2,

where ek and ei represents an individual generated image within category c, Sc denote an image set
generating controlled by C .

Subsequently, we calculate the average value 1
|D|

∑
c∈D ICAD(c) across all keywords, where D

is a dataset that contains keywords. The average distance calculated within a keyword serves as
a measure of dissimilarity or variability among the images belonging to that category. A smaller
average distance indicates a higher degree of similarity or compactness among the images, suggest-
ing a lower level of diversity within the visual environments they represent. Conversely, a larger
average distance signifies greater variation among the images, indicating a broader range of visual
environments captured by the generated images.

E MORE EXPERIMENTAL RESULTS

E.1 TIME CONSUMPTION

As previously highlighted, our method represents a lightweight framework meticulously designed
to underscore computational efficiency. In this section, we provide an empirical illustration of the
augmented time consumption associated with our approach when juxtaposed with the vanilla Stable
Diffusion Model.

Specifically, during the training phase on a single Nvidia V100 device, our methodology exhibits
remarkable efficiency by completing the entire process in a mere 50 minutes, encompassing 150
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occupations in the sensitive attribute Gender. This notably brief training duration underscores the
efficacy of our approach in expediting the model learning process while maintaining fidelity to
sensitive attributes.

Table 8 offers a comparative examination of the time required to generate 100 images, contrasting the
Fair Mapping and Stable Diffusion. Moreover, in the image generation phase, our method showcases
a commendable performance, generating 100 images for a single occupation within 434 seconds.
This marks a marginal increase of only 10 seconds when compared with the stable diffusion method.
The slight increment in generation time further emphasizes the pragmatic viability of our model, as
it continues to deliver expedited results while incorporating robust measures to address and preserve
sensitive attributes.

E.2 COMPARED WITH DEBIASING METHOD

In this section, our goal is to compare our approach with debiasing methods Fair Diffu-
sion(FD)Friedrich et al. (2023). Given the limited research on text-to-image diffusion models, ex-
isting studies predominantly focus on post-processing techniques. These involve adjusting model
outputs after deployment to alleviate biases arising from human instructions. However, a notable
drawback of such techniques is the potential for manual control over the system to output only
balanced images through manipulation of human instructions. Note that our decision not to com-
pare fairness stems from the acknowledgment that human instruction methods allow for artificial
control over the system to produce exclusively balanced images. This manipulation introduces a
subjective bias into the system, rendering comparisons of fairness meaningless. We argue that such
controlled interventions may distort the system’s natural behavior, making fairness assessments un-
reliable. Consequently, we prioritize other metrics for a more objective evaluation of our model’s
performance, emphasizing comparison with alternative debiasing methods based on criteria time
consumption, image quality, and output diversity.

Figure 9 illustrates visual comparisons between the keywords ’author’ for both fair diffusion and
our proposed method. The findings reveal that editing operations exert a substantial negative impact
on the quality of image generation, notably affecting details such as teeth, which is common in face
manipulation work.

Figure 9: Comparison with different debiasing methods: Author

Table 8 provides a comparative analysis of time consumption for generating 100 images between the
Fair Mapping and Fair Diffusion models. Additionally, the ”Stable Diffusion” baseline is included
for reference. All reported time values are in seconds. Our method exhibits superior efficiency,
accomplishing the generation of 100 images in a significantly reduced time of 434 seconds. Notably,
this represents a substantial time saving of 1029 seconds (approximately 70.3%) compared to the
Fair Diffusion model.
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Table 8: Evaluation Results in time consumption on generation of 100 images.

Models time(seconds)

Stable diffusion 424
Fair Diffusion 1463

Fair Mapping(our method) 434

Table 9 demonstrates alignment and diversity of the results generated by Fair Diffusion in terms of
removing gender and racial biases. In this table, we showcase the generated results by extracting
images under equal representation of various sensitive attribute states. Compared with Fair Diffu-
sion, Fair Mapping outperforms Fair Diffusion in terms of alignment with human-related description
and diversity. For CLIP-Score, Fair Mapping and Fair Diffusion exhibit relatively similar perfor-
mance. Under the sensitiva attributes as gender, for Occupation category, Fair Mapping achieves a
CLIP-Score of 0.2021, slightly lower than Fair Diffusion. However, Fair Mapping attains a higher
Human-CLIP score of 0.1494, surpassing Fair Diffusion’s 0.1348. This indicates that Fair Mapping
demonstrates better alignment with human-related description. Additionally, in the Emotion cate-
gory, Fair Mapping achieves a Diversity score of 1.47, exceeding Fair Diffusion’s 1.43, highlighting
its higher diversity. In the context of addressing race biases, for Occupation category, Fair Mapping
surpasses Fair Diffusion in terms of Human-CLIP score, achieving a significantly higher score of
0.1522 compared to Fair Diffusion’s score of 0.1292. Furthermore, Fair Mapping exhibits better
diversity, scoring 14.14, which is slightly higher than Fair Diffusion’s diversity score of 13.79. The
significant improvement in both Human-CLIP score and diversity is also observed in the context of
addressing race biases for the Emotion category.

Table 9: Evaluation results of image alignment and diversity.

Models Occupation Emotion

CLIP-Score Human-CLIP Diversity CLIP-Score Human-CLIP Diversity

Fair Diffusion-Gender 0.2274 0.1348 13.87 0.1894 0.1298 1.43
Fair Diffusion-Race 0.2239 0.1292 13.79 0.1882 0.1266 1.39

Fair Mapping-Gender 0.2021 0.1494 14.07 0.1809 0.1366 1.47
Fair Mapping-Race 0.2197 0.1522 14.14 0.1848 0.1324 1.41

E.3 RESULTS ON HUMAN PREFERENCE

Figure 10 showcases an example of the survey questions and the corresponding results. The evalu-
ation of image authenticity and alignment with textual descriptions was conducted through a survey
questionnaire. Participants over 200 from different academic backgrounds are presented with a se-
ries of generated images paired with corresponding textual descriptions. They are asked to rate the
degree of fidelity in the images and alignment between the images and the provided descriptions
from 1 to 5. To evaluate generated images, real images are included as a reference for comparison.
For each task, we present users with two sets of 2 images along with the same input conditions for
every method in each dataset. To mitigate potential biases stemming from preconceived notions
of AI-generated images, we employ a data filtering process to exclude low-scoring samples. Sub-
sequently, we compute the average performance of each method across diverse datasets to derive
a comprehensive evaluation. Furthermore, we conducted a short survey to gather feedback on the
reasons behind the scoring provided by the evaluators.

Specifically, we demonstrate our score criteria. In this study, we introduce our preference evaluation
scale to assess the realism of images, using a scoring range from 1 to 5. The scale is as follows:

- 1 Point: The image is likely AI-generated, displaying obvious artificial characteristics.

- 2 Points: The image may be AI-generated with a realistic style, but discernible discrepan-
cies from real imagery are present.

- 3 Points: The image appears somewhat realistic but may have subtle flaws or unnatural
features.
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Figure 10: The example for human preference in fidelity and alignment.

- 4 Points: The image is very close to a real photograph, with details, colors, and lighting
aligning with the real world.

- 5 Points: The image is indistinguishable from real life, perfectly mirroring real-world stan-
dards in every aspect, including details, color, and lighting.

Meanwhile, we employ a scale to evaluate the congruence between images and their corresponding
captions, with a rating system ranging from 1 to 5:

- 1 Point: Complete mismatch, the caption does not relate to the image.
- 2 Points: Major discrepancy, the caption largely deviates from the image content.
- 3 Points: Partial difference, there are noticeable mismatches between the caption and the

image.
- 4 Points: Minor discrepancy, the caption is almost in line with the image but with slight

differences.
- 5 Points: Perfect match, the caption accurately and completely describes the image.

F MORE VISUAL RESULTS

In the appendix, visual representations of the generated results are provided to further illustrate the
research findings. These displays showcase samples of generated images corresponding to various
categories or conditions. Figure 11 and Figure 12 show the images generating from keyword ‘CEO’
and ‘Pleasant’ respectively. Upon examination, it is noticeable that there is diversity in the generated
images across different sensitive attributes. Specifically, Stable Diffusion tends to generate White
male images about keyword ‘CEO’ and ‘Pleasant’. In contrast, our method generating a greater
number of female images and images depicting individuals with darker skin tones.
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Figure 11: Comparison with different text-to-image methods: CEO

Figure 12: Comparison with different text-to-image methods: Pleasant
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