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Abstract

Instruction tuning enhances the capability of Large Language Models (LLMs)
to interact with humans. Furthermore, recent instruction-following datasets in-
clude images as visual input, collecting responses for image-based instructions.
However, current visual instruction-tuned models cannot comprehend textual de-
tails within images well. This work enhances the current visual instruction tuning
pipeline with text-rich images (e.g., movie posters, book covers, etc.). Specifically,
we first used publicly available OCR tools to collect results on 422K text-rich im-
ages from the LAION dataset. Furthermore, we prompt text-only GPT-4 with rec-
ognized text and image captions to generate 16K conversations, each containing
question-answer pairs for text-rich images. By combining our collected data with
previous multimodal instruction-following data, our model, LLaVAR, substan-
tially improves the capability of the LLaVA model on text-based VQA datasets
(up to 20% accuracy improvement). The GPT-4-based instruction-following eval-
uation also demonstrates the improvement of our model on both natural images
and text-rich images. Through qualitative analysis, LLaVAR shows promising in-
teraction skills ( e.g., reasoning, writing, and elaboration) with humans based on
the latest real-world online content that combines text and images. We make our
code/data/models publicly available 2.

1 Introduction

Instruction tuning [1, 2] improves generalization to unseen tasks by formulating various tasks into
instructions. Such open-ended question-answering capability fosters the recent chatbot boom since
ChatGPT. Recently, visual instruction-tuned models [3–5] further augment conversation agents with
visual encoders such as CLIP-ViT [6, 7], enabling human-agent interaction based on images. How-
ever, possibly due to the dominance of natural images in training data (e.g., Conceptual Captions
[8] and COCO [9]), they struggle with understanding texts within images [10]. However, textual
understanding is integral to visual perception in everyday life.

Fortunately, tools such as Optical Character Recognition (OCR, 11) allow us to recognize text in
images. One naive way to utilize this is to add recognized texts to the input of visual instruction-
tuned models [12]. However, such approach significantly increases the computation (longer context
lengths), and might not fully leverage the encoding capability of visual encoders. To this end,
we propose to enhance the end-to-end visual instruction-tuned model by collecting instruction-
following data that require understanding texts within images.

∗Collaborations through Adobe University Gift Program.
2https://llavar.github.io/
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Figure 1: The process of collecting high-quality instruction-following data.

Specifically, we first collect 422K noisy instruction-following data using text-rich3 images by com-
bining manually written instructions (e.g., “Identify any text visible in the provided image.”) and
the OCR results. Such large-scale noisy-aligned data effectively improve feature alignment between
visual features and the language decoder. Furthermore, we prompt text-only GPT-4 [13] with OCR
results and image captions to generate 16K conversations, where each conversation can be multi-
ple turns of question & answer pairs, as high-quality instruction-following examples. This process
requires GPT-4 to de-noise the OCR results and develop specific questions to create complex in-
structions based on the input (Figure 1).

To evaluate the effectiveness of the collected data, we use noisy and high-quality examples to
augment the pretraining and fine-tuning stages of LLaVA [3] accordingly. We name our model
LLaVAR, signifying the LLaVA (Large Language and Vision Assistant) that can Read. Compared
to the original LLaVA, we also conducted experiments scaling the input resolution from 2242 to
3362 to better encode small textual details. Empirically, we report the results on four text-based
VQA datasets following the evaluation protocol from Liu et al. [10]. Moreover, we apply GPT-
4-based instruction-following evaluation to 30 natural images from COCO [9, 3] and 50 text-rich
images from LAION [14]. We also provide qualitative analysis (e.g., on posters, website screen-
shots, and tweets) to test more complex instruction-following skills.

To sum up, our contributions are as follows:

• We collect 422K noisy instruction-following data and 16K high-quality instruction-
following data. Both are shown to be effective in augmenting visual instruction tuning.

• Our model, LLaVAR, significantly enhances text understanding within images while
slightly improving the model’s performance on natural images.

• The enhanced capability enables our model to provide end-to-end interactions based on
various forms of online content that combine text and images.

• We open source the training and evaluation data together with the model checkpoints.

2 Related Work

Instruction Tuning Following natural language instructions is the key capability for an agent to
interact with real-world users. Instruction tuning starts from collecting human-preferred feedback
for human written instructions [1] or formulating multi-task training in a multi-task instruction-
following manner [2, 15]. However, large, capable instruction-tuned models are usually closed-
sourced and serve as commercial APIs only. Recently, Alpaca [16, 17], Vicuna [18], and Baize [19]
start the trend of generating high-quality instruction-following data based on LLMs such as GPT-3.5

3In this work, we use the phrase “text-rich images” to describe images with text in them, such as posters
and book covers. In contrast, we refer to images without text as “natural images”.
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/ ChatGPT / GPT-4 and finetuning the open source LLaMA model [20]. However, evaluating the
ability to follow instructions remains a challenge. While GPT-4 has demonstrated superior eval-
uation capabilities [21], there are still a number of concerns, such as bias toward response length
[19] and lack of robustness to the order of examples [22]. Following Chiang et al. [18], Liu et al.
[3], Dubois et al. [23], we use GPT-4-based instruction-following evaluation in this work.

Multimodal Instruction Tuning Recently, instruction tuning has been expanded to the multi-
modal setting, including image, video [24, 25], and audio [26, 27]. For image-based instruction
tuning, MiniGPT-4 [28] employs ChatGPT to curate and improve detailed captions for high-quality
instruction-following data. LLaVA [3] generates multimodal instruction-following data by prompt-
ing text-only GPT-4 with captions and object’s bounding boxes. LLaMA-Adapter [29, 12] uses
COCO data for text-image feature alignment and utilizes textual data only for instruction tuning.
mPLUG-owl [30] combines more than 1000M image-text pairs for pretraining and a 400K mixture
of text-only/multimodal instruction-following data for finetuning. However, according to Liu et al.
[10], most of these models struggle to accomplish tasks requiring OCR capability. InstructBLIP [31]
transforms 13 vision-language tasks (including OCR-VQA [32]) into the instruction-following for-
mat for instruction tuning. Cream [33] applies multi-task learning that includes predicting masked
texts in images. A more comprehensive survey can be found in Li et al. [34]. In this work, we select
LLaVA as our baseline, which is the most data-efficient and powerful model, and demonstrate the
effectiveness of our proposed pipeline.

3 Data Collection

Starting from the LAION-5B [14] dataset 4, our goal is only to keep images that are text-rich.
Considering that documents usually contain plenty of text, we first obtained a binary classifica-
tion dataset by combining natural images and document data. Subsequently, we trained an im-
age classifier using a DiT [35]-base backbone, which was fine-tuned on the RVL-CDIP dataset
[36]. Hopefully, such a classifier can predict whether an image contains text or not. We first
build a subset by selecting images with a predicted probability greater than 0.8 while also sat-
isfying p(watermark) < 0.8 and p(unsafe) < 0.5 5. The derived subset is noisy due to
the limitation of the classifier. To further clean up the data and incorporate human judgment,

Figure 2: CLIP-based categorization of our collected im-
ages. The left refers to images used to collect noisy data,
and the right refers to images used in the GPT-4 prompting.
Both pie charts are based on 10K sampled images from the
corresponding datasets.

we randomly sampled 50K images
and clustered them into 100 clusters
based on CLIP-ViT-B/32 visual fea-
tures. After inspecting the clustering
results, we carefully select 14 clus-
ters (see Figure 10 in the Appendix
for examples) containing diverse text-
rich images ranging from posters, cov-
ers, advertisements, infographics, ed-
ucational materials, and logos. The
cluster model is then used as the fil-
ter to collect images for construct-
ing our instruction-following exam-
ples. As a reference, we provide
a CLIP [7]-based categorization (see
Appendix A for details.) to illustrate
the distribution of images for both two
types of data we collected in Figure 2.
We summarize our collected data and
LLaVA’s data in Table 1.

Noisy Instruction-following Data Using the clustering model as a filter, we collect 422K dedu-
plicated images that belong to the 14 preferred clusters. To balance the examples from different
categories, we keep at most 52K examples for one cluster. We run all images through PaddleOCR

4https://huggingface.co/datasets/laion/laion-high-resolution
5Both probabilities are from the LAION dataset’s metadata.
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Data Image Instruction # Conv Avg Ins Len Avg Res Len
LLaVA pretraining CC3M CC3M 595K 15.9 15.4
Rpretraining (Ours) LAION PaddleOCR 422K 17.2 48.8
LLaVA finetuning COCO GPT-4 158K 15.9 93.1
Rfinetuning (Ours) LAION GPT-4 16K 15.1 40.5

Table 1: Summary of data statistics. Rpretraining and Rfinetuning denote the additional pre-training
/ finetuning data we collected. The average instruction and response length are calculated after
LLaMA tokenization.

6. Note that running OCR at the original resolution (e.g.,10242) might recognize small fonts that are
not visible by visual encoders like CLIP ViT (6, 7, resolution up to 3362). To ensure the recognition
of visible fonts while maintaining OCR accuracy, we perform OCR on the image after downsam-
pling (the short edge is resized to 384 pixels if longer than that.) to extract the text. Then, based on
the geometric relationships between the recognized words, we merge them into paragraphs before
concatenating them. As a robust instruction-following model should react similarly to instructions
with similar meanings, we reword “Identify any text visible in the provided image.” into ten distinct
instructions (Table 6 in Appendix). We then create a single-turn conversation for a given image
by (i) randomly sampling an input instruction and (ii) using recognized texts as the desired output
response. Such instruction-following data is noisy because of the relatively limited performance of
OCR tools on diverse fonts and colorful backgrounds.

GPT-4-based Instruction-following Data Compared to high-quality instruction-following data,
there are mainly two issues for the noisy data collected above. (i) Responses should contain orga-
nized sentences instead of raw OCR results with missing words and grammar errors. (ii) Instructions
should be diverse, suitable and specific to the given image instead of monotonously asking for all
visible texts. To address these issues, we follow Liu et al. [3] to generate instruction-following data
by prompting text-only GPT-4 [13] with OCR results and captions.

It is challenging to prompt GPT-4 with fragmented OCR results in a few words to generate non-
trivial instructions. To this end, we carefully select 4 of the 14 previously mentioned clusters (the
3rd, 4th, 6th and 9th clusters in Figure 10) to collect images with enough visible and coherent
sentences. As shown in Figure 2, such filtering dramatically increases the percentage of book covers
and quote images. We randomly selected 4K examples from each cluster (no overlap with images
used for noisy instruction-following data), yielding a total of 16K images. Following prior work
[16, 17, 3], we provide the visualization of verb-noun pairs for instructions generated by GPT-4 in
Appendix Figure 11. For those instructions without a verb-noun pair, we demonstrate the frequency
of objects being asked in Appendix Figure 12.

Furthermore, based on the system message and two in-context few-shot examples (shown in Ap-
pendix B), we ask GPT-4 to generate conversational data based on OCR results and image captions
(Figure 1). The generated questions are used as input instructions, and answers are used as output
responses. Concretely, for a given image, we first provide two OCR results from EasyOCR and
PaddleOCR, which can complement each other. To illustrate visual elements other than texts within
the image, we also provide the result of BLIP-2 image captioning [37]. To prevent the caption from
focusing on the text, we use OCR bounding boxes to mask the text and then use the inpainting [38]
to refill the mask before using generation captions. Note that captioning models might suffer from
hallucinations [39]. We mention this unreliability in our system message and ask GPT-4 only to
generate questions with sure answers. We leave the generation of more detailed captions [40, 41]
for future work.

4 Model Architecture and Training

Architecture In most of our study, we use the same model architecture as LLaVA. For the vi-
sual encoder V , we use CLIP-ViT-L/14 for 2242 resolution and CLIP-ViT-L/14-336 for 3362
resolution. The grid features before the last transformer layer are then transformed into the word

6https://github.com/PaddlePaddle/PaddleOCR
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Figure 3: The model training process for the visual encoder V , projection matrix W , and language
decoder D. Blue blocks denote frozen modules and yellow blocks denote trainable modules. The
training input is image tokens (<img>) and instruction tokens (<ins>), while the target is response
tokens (<res>).

embedding space of the language decoder through a trainable projection matrix W . We use Vicuna-
13B [18], a LLaMA-based [20] instruction-tuned language model, as the language decoder D except
the ablation study in Table 4.

In Section 5.1, we extend the current architecture by adding an extra high-resolution (high-res)
visual encoder (Pix2Struct-base, Lee et al. 42). Such a high-res encoder outputs up to 2048 patch
features, which means that the transformed features, together with instruction tokens, cannot fit in
the context length of the language decoder. To this end, we propose to add cross-attention modules
to the decoder, which attends to key-value pairs transformed from the high-res patch features. For
more technical details, please refer to Appendix E.

Training We follow the two-stage training design of LLaVA (Figure 3). The training objectives
of both stages are the same: generate output responses (<res>) for the input instructions (<ins>).
The transformed image tokens (<img>) are added before or after the first input instruction. (i)
During the first pre-training stage, only the projection matrix W is trained for feature alignment.
Since the decoder D is frozen, training tolerates noisy data. In the pre-training stage, we combine
the 595K pre-training data from LLaVA with our 422K noisy instruction-following data. (ii) Both
the projection matrix W and the language decoder D are trained during the finetuning stage, where
we merge our 16K instruction-following data into the 158K instruction-following data from LLaVA
as the training set. Note that the visual encoder is frozen throughout the training period, which might
restrict text recognition performance, as CLIP is trained for general-purpose text-image alignment.
Better choices of the visual encoder [43] or CLIP-ViT finetuning [30] may further benefit the visual
understanding capability, which we leave for future work.

5 Experiments

We use the same training hyperparameters as LLaVA7, except that (i) We set the maximum sequence
length to 1024 during pre-training. (ii) We first pad any given image to a square shape before resizing
it to the desired input size, preventing some image content from cropping during preprocessing. For
both resolutions (2242, 3362), we reproduce the original LLaVA for a fair comparison. The GPT-4
model used in this work refers to the gpt-4-0314 version, while the cost to collect finetuning data
is around $300. The temperature of GPT-4 is set to 1.0 for the generation of training data, 0.7 for the
generation of evaluation data, and 0.2 for the evaluation based on GPT-4. All experiments are run
on NVIDIA A100 80GB GPUs. During the evaluation, the temperature of our model is set at 0.9 for
text-based VQA, 0.7 for GPT-4-based instruction-following evaluation, and 0.2 for other qualitative
demonstrations.

5.1 Quantitative Analysis

Text-based VQA Following the evaluation protocol in Liu et al. [10], we evaluate the performance
of LLaVAR on four text-based VQA datasets: ST-VQA [45], OCR-VQA [32], TextVQA [46], and

7https://github.com/haotian-liu/LLaVA
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Res. ST-VQA OCR-VQA TextVQA DocVQA

BLIP-2 [2023] †

2242

21.7 30.7 32.2 4.9
OpenFlamingo [2023] † 19.3 27.8 29.1 5.1
MiniGPT4 [2023] † 14.0 11.5 18.7 3.0
LLaVA [2023] † 22.1 11.4 28.9 4.5
mPLUG-Owl [2023] † 29.3 28.6 40.3 6.9

LLaVA ‡
2242

24.3 10.8 31.0 5.2
LLaVAR 30.2 (+5.9) 23.4 (+12.6) 39.5 (+8.5) 6.2 (+1.0)

LLaVA ‡
3362

28.9 11.0 36.7 6.9
LLaVAR 39.2 (+10.3) 23.8 (+12.8) 48.5 (+11.8) 11.6 (+4.7)

Table 2: Results (accuracy %) on text-based VQA. We use † to refer to the results obtained from
Liu et al. [10] and ‡ to refer to our reproduced results. The accuracy metric used by Liu et al. [10]
only counts for whether the ground truth appears in the response.

ST-VQA OCR-VQA TextVQA DocVQA
(1) LLaVA 28.9 11.0 36.7 6.9

(2) LLaVA + Rpretraining 36.7 26.1 46.5 9.6
(3) LLaVA + Rfinetuning 34.1 21.6 43.6 9.5

(4) LLaVA + Cpretraining 35.4 27.0 45.6 9.2
(5) LLaVA + Nfinetuning 34.1 25.9 43.3 10.2

(6) LLaVAR 39.2 23.8 48.5 11.6

Table 3: Ablation Study on pretraining/finetuning data. All results are from 3362-based models.
Rpretraining and Rfinetuning denote the extra pretraining/finetuning data we collected. Cpretraining refers
to using captions instead of OCR results as responses during pretraining. Nfinetuning refers to using
written questions + raw OCR results instead of GPT-generated QA for finetuning.

DocVQA [47], representing various domains (see Appendix C for more details). We present the re-
sults of the baseline models and our models in Table 2. Note that InstructBLIP includes OCR-VQA
in its training sets, making it incomparable with our settings. In both resolution settings and all four
datasets, LLaVAR substantially improves the LLaVA baseline, demonstrating that our collected data
can bring about a robust improvement. Furthermore, the improvement is more significant in 3362

resolution compared to 2242, indicating that the collected data might bring a greater improvement
at even higher resolutions. Our best model, 3362-based LLaVAR, performs best in 3 out of 4 eval-
uated datasets. Note that this is not a fair comparison. Some key different factors include different
language decoders, different resolutions, and different magnitudes of text-image training data.

Ablation Study on pretraining/finetuning data We report the result in Table 3 and Figure 4.
(i) Based on variants (2) and (3), we find that the collected data can benefit the pretraining stage
(Rpretraining) and finetuning stage (Rfinetuning) separately while being complementary to each other in
most cases 8. More importantly, enhancing the pretraining stage alone achieves the second-best over-
all performance, indicating the potential to boost textual detail understanding without dependence on
GPT-4-generated high-quality data. (ii) Using pretraining images, we obtain Cpretraining by replacing
the pretraining instructions with questions & captions, the same pattern as LLaVA. As variant (4) is
not as good as (2), we can conclude that OCR is more advantageous than captions. (iii) We further
validate the value of GPT-4 generated data by generating noisy finetuning data (Nfinetuning), similar
to pretraining data. Variant (5) achieves comparable accuracy as variant (3). However, as shown in
Figure 4, such noisy finetuning data hurts the instruction-following capability: (5) responds with all
recognized texts while ignoring the questions.

8Since the metric only consider the recall, it might favor variant (2)(4)(5) due to their longer outputs.
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CLIP Res. Extra Enc. Rpretraining ST-VQA OCR-VQA TextVQA DocVQA

(a) 2242 ✗ Low 28.9 25.6 37.8 6.2
(b) 3362 ✗ Low 37.4 31.0 45.7 11.4
(c) 2242 ✗ High 28.9 24.9 35.8 6.2
(d) 3362 ✗ High 36.9 30.6 46.5 11.7
(e) 2242 ✓ Low 31.8 30.9 41.2 8.1
(f) 2242 ✓ High 33.5 29.8 42.2 10.2
(g) 2242 ✓ High (2×) 35.8 30.7 45.6 15.3

Table 4: Ablation Study on encoders and image resolution. “Extra Enc.” refers to whether we
use Pix2Struct-base [42] as an extra high-res visual encoder. “Rpretraining” refers to images used
for pretraining (before preprocessing) and the collection of OCR results, where “Low” refers to the
resized images (the same as the rest of this paper), “High” refers to the original high-res images, and
“2×” means doubling the number of examples using the same criteria. All results from this table
use Vicuna-7B, as adding the extra encoder requires more computation and memory.

Question: Who wrote this book?

GT Sandra Boynton
(1) The book was written by Sandra Boynton.
(2) The book was written by Sandra Boyton. It is a children’s book

that features a family calendar with an accompanying activity
guide. The book provides information (...) The cover of the
book displays a picture of the family from the calendar, which
helps to visually represent the topic of the book.

(3) The book is written by Sandra Byington.
(4) The book was written by Sandra Boynton.
(5) With 500+ Nity StickerS &aSwEllMagnetic Phone List! Moms

291573016171800 FAMII (Pocket) Calendar (...) 2016 SAN-
DRA BOYNTON

(6) The book was written by Sandra Boynton.

Figure 4: Ablation study based an example from OCR-VQA. GT refers to ground truth, and (1) -
(6) are different model variants from Table 3. We replace the excessively long response with (...).

Ablation Study on encoders/image resolution While keeping finetuning data the same, we report
the quantitative results of adding an extra visual encoder and varying the pretraining data in Table
4. (i) We find that adding an extra high-res visual encoder with cross-attention indeed improves
the performance ((g) vs. (a)), especially achieving the best zero-shot performance on DocVQA
(15.3% accuracy). The performance gain on other datasets is relatively limited, probably due to the
extra encoder we use being pretrained on web pages instead of natural images. On the other hand,
the performance of (e) and (f) remains poor, without doubling the number of high-res examples
in Rpretraining. Given the larger number of parameters initialized in the cross-attention module, it is
possible that they are underfitting when trained on the same data as the projection matrix W (e.g.,
(e) vs. (b)), similar to the finding in Zeng et al. [48]. (ii) Considering (c) vs. (a) and (d) vs. (b), while
the images are resized to the same size after preprocessing, high-res OCR results turn out to be not
necessarily better than the low-resolution version, suggesting the capability of the visual encoder
is almost saturated in (a) and (b). In summary, resizing images before collecting OCR results does
not hurt the performance of CLIP-based models, while introducing high-res encoders with cross-
attention can achieve better results at the cost of data efficiency and computation efficiency.

GPT-4-based instruction-following evaluation We also report the GPT-4 evaluation results on
instruction-following questions in Table 5. (i) Natural Images: 90 questions based on 30 COCO
validation images from Liu et al. [3], including three aspects: conversation, detail description, and
complex reasoning. This aims to test whether our collected data will hurt, maintain, or improve the
model’s performance on natural images. First of all, using a higher resolution brings improvement
(+2.9) in the performance of detail description, which is intuitive. Furthermore, LLaVAR achieves a
better trade-off and increases the performance of all three aspects (+1.6 on average). (ii) Text-Rich
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Res Conversation Detail Complex Read

LLaVA (Original) 2242 83.1 75.3 96.5 -
LLaVA 3362 83.9 78.2 95.3 87.9
LLaVAR 3362 84.5 78.9 96.5 91.7

Table 5: Relative scores (w.r.t. text-only GPT-4) for instruction-following questions, where the
first three dimensions are based on natural images, the last dimension (“Read”) is based on text-rich
images. In the first row, we show the original results (2242-based) fetched from Liu et al. [3]. We
report our reproduced LLaVA on 3362 resolution for a fair comparison.

H: When will this movie be released?
L: The movie ”The Call of the Ottoman” starring Daniel Craig is
expected to be released on February 14th, 2023.
R: The movie will be released on January 13.
H: Who starred in the movie?
L: The movie stars Tom Cruise and Cobie Smulders.
R: Tom Hanks starred in the movie.
H: What is this movie about?
L: The movie ”A Man Called Ove” is a comedy-drama film directed
by Hannes Holm. (...)
R: The movie is about Tom Hanks, who is called Ottol, and it is an
international bestseller based on a true story. (...)
H: Can you describe the given image?
L: The image is a movie poster featuring a man and a cat. The man,
who appears to be a character from the movie “The Ugly Truth,” (...)
R: The image features a man standing in front of a house with a cat
beside him.
H: Who directed the film?
L: The film was directed by Florian Henckel von Donnersmarck.
R: The film was directed by Tom Hanks, who made his directorial
debut with this movie.

Figure 5: Qualitative Comparison. We color the human inputs (H) in blue, LLaVA’s responses
(L) in pink, and LLaVAR’s responses (R) in green. Both are 3362-based models. We replace the
excessively long response with (...).

Images: Similar to collecting the finetuning data, we leverage 50 text-rich images from LAION
to collect instruction-following questions based on OCR results and human-annotated captions. We
then collect responses from our trained model and use GPT-4 to calculate the relative score w.r.t GPT-
4 responses. We add this as an extra dimension “Read” to Table 5, where our model demonstrates a
significant (+3.8) improvement. The Appendix provides an example in Table 8.

5.2 Qualitative Analysis

We use a recent movie poster 9 to demonstrate the difference between LLaVA and LLaVAR when
interacting with humans based on text-rich images. LLaVA, without augmenting textual understand-
ing within images, suffers from hallucination when answering these questions. Some mentioned
movies, like “A Man Called Ove” and “The Ugly Truth”, are real movies, suggesting that the lan-
guage decoder is hallucinating its internal knowledge, while the visual encoder cannot encode help-
ful information. Alternatively, LLaVAR can correctly answer many of the provided questions with
faithful information, which is clearly grounded in the image. However, some limitations remain,
such as the spelling error “ottol”. Also, the final question asks for information that is not observable
from the given poster, where an expected response should express such uncertainty instead of giving
concrete answers. Nevertheless, neither model correctly answers the question.

9https://www.imdb.com/title/tt7405458/
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Figure 6: Case study of the recognizable font size, in which the x-axis refers to the height of ground
truth answers in the image and the y-axis stands for the answer accuracy of models. We plot the
results for the 3362-based models on the left and the 2242-based models on the right.

5.3 Case Study: Recognizable Font Size

By scaling the poster in Figure 5, we provide a case study of the recognizable font size at the top
of the question, “When will this movie be released?”. We calculate the number of vertical pixels
for the ground truth “January 13th” in the scaled posters and estimate the accuracy for each scale
based on ten trials (Fig 6). (i) For the baseline model LLaVA, surprisingly, it achieves a certain level
of correctness while the ground truth is between 8 and 10 pixels with poor performance on larger
scales (e.g., 14 pixels). This suggests that LLaVA, without specific training in recognizing texts, still
recognizes texts at specific scales with particular contexts. However, the lack of robustness prevents
it from performing better in understanding text-rich images. (ii) Our model LLaVAR, on the other
hand, provides much better robustness, as it works consistently well for any scale greater than 6
pixels (especially for the 3362-based version). All tested models fail to provide accurate responses
while the answer is smaller than 6 pixels, which may be related to the patch size (14 pixels).

5.4 Transferred Instruction-following Capability

According to the dataset statistics (Table 1) and the visualization (Figure 11), our collected
instruction-following data is not as diverse and substantial as LLaVA. This can be attributed to
the relatively limited information given GPT-4 compared to five different human-written captions
used in LLaVA. The content of text-rich images is also less diverse than that of natural images.
While using more complex in-context examples can definitely stimulate generating more compli-
cated instruction-following examples, it can also multiply the cost. In Appendix Figure 9, we
demonstrate the transferred instruction-following capability of LLaVA, potentially from both the
LLaVA data and the Vicuna backbone. While the extra data we add mainly focuses on understand-
ing the visible texts within images, LLaVAR manages to build its reasoning, writing, and elaboration
skills based on the top of its text recognition capability in an end-to-end manner. This allows users
to interact with various online content based on simple screenshots.

6 Conclusion

In this work, we enhance visual instruction-tuned models in terms of their capability to read texts
in images. Using text-rich images from the LAION dataset, we collect 422K noisy instruction-
following examples using OCR results only and 16K high-quality instruction-following data based
on text-only GPT-4. These two sets of data are leveraged to augment the pretraining stage and
finetuning stage of LLaVA accordingly. Our model, LLaVAR, demonstrates superior performance
in understanding texts within images and following human instructions on both prior benchmarks
and real-world online content. Moreover, our analysis shows that the same augmented data is more
effective with higher resolution. Additionally, using noisy instruction-following examples to aug-
ment pretraining essentially boosts the model performance without prompting GPT-4. We hope
our findings can provide hints to the open-source community on building multimodal models with
advanced OCR capability like GPT-4V. While there is evidence that OCR capability can emerge
through training on massive raw text-image pairs [10, 37], our conclusion suggests that delicately
collecting OCR data on images can be more effective and data-efficient. For future work, we encour-
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age the exploration of (i) better image selection criteria or domain reweighting strategy [49] and (ii)
more data-efficient and computation-efficient ways to augment instruction-following models with
multimodal capability, especially in the high-res scenario.
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Instructions
Identify any text visible in the image provided.
List all the text you can see in the given image.
Enumerate the words or sentences visible in the picture.
Describe any readable text present in the image.
Report any discernible text you see in the image.
Share any legible words or sentences visible in the picture.
Provide a list of texts observed in the provided image.
Note down any readable words or phrases shown in the photo.
Report on any text that can be clearly read in the image.
Mention any discernable and legible text present in the given picture.

Table 6: Ten instructions asking for OCR results.
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A

CLIP-based categorization Based on the observation of selected clusters, we divide the images
used into 8 categories. For each category, we use one or multiple words as labels.

• Quote & Meme: “quote”, “internet meme”.
• Poster: “movie poster”, “podcast poster”, “TV show poster”, “event poster”, “poster”,
• Book Cover: “book cover”, “magazine cover”.
• Game Cover: “game cover”.
• Ad & Product Packaging: “ad”, “advertisement”, “food packaging”, “product packag-

ing”.
• Infographic: “chart”, “bar chart”, “pie chart”, “scatter plot”.
• Educational Material: “exam paper”, “quiz”, “certificate”, “book page”.
• Logo: “logo”.

For each word, we use the following templates to achieve embedding-space ensembling [7]:

• “a photo of a {}.”
• “a blurry photo of a {}.”
• “a black and white photo of a {}.”
• “a low contrast photo of a {}.”
• “a high contrast photo of a {}.”
• “a bad photo of a {}.”
• “a good photo of a {}.”
• “a photo of a small {}.”
• “a photo of a big {}.”

For each image, we calculate the similarity between the image and all words mentioned above using
CLIP-ViT-L/14. If the highest similarity is less than 0.15, we then classify the image into Other,
otherwise we classify into the “super class” (e.g., Poster) of the word (e.g., “movie poster”) with
the highest similarity.

B

System Message adapted from Liu et al. [3].

You are an AI visual assistant, and you are seeing a single image. What you see is pro-
vided with two OCR results and one image caption describing the information within
the same image you are looking at. Image captions might include hallucinations, while
OCR results are more accurate. Answer all questions with definite answers as you are
seeing the image.
Design a conversation between you and a person asking about this photo. The answers
should be in a tone that a visual AI assistant is seeing the image and answering the
question. Ask diverse questions and give corresponding answers.
Include questions asking about the visual content of the image (e.g., the man, the sunset,
the ocean.) and the texts contained in the image. Only include questions that have
definite answers:
(1) one can see the content in the image that the question asks about and can answer
confidently;
(2) one can determine confidently from the image that it is not in the image. Do not ask
any questions that cannot be answered confidently;
(3) DO NOT mention OCR or image caption in your questions and answers;
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(4) DO NOT ask about information from captions while it looks unrelated to or contra-
dicts OCR results.
Also include complex questions that are relevant to the content in the image, for ex-
ample, asking about background knowledge of the texts in the image, asking to discuss
about the design of the image, etc. Again, do not ask about uncertain details. Pro-
vide detailed answers when answering complex questions. For example, give detailed
examples or reasoning steps to make the content more convincing and well-organized.
You can include multiple paragraphs if necessary.

Few-shot Examples

Human:
WHAT F YOUR BLESSINGS COME THROUGH RAINDROPS PDf Induded LAURAS-
TOR Y DEVOHONAL BASED ON THE GRAAAMY VARD WIN ISONG mAT HAS IN-
SEIRED MILLION
WHATIFYOUR BLESSINGS COMETHROUGHRAINDROPS PDF Included
LAURASTORY A DEVOTIONAL BASEDON THE GRAMMY AWARD WINNI
PISONGTHATHASINSPIREDMILLIONSE
a girl is standing in a field with a rainbow
GPT:
Question: What is the name of the devotional mentioned in the image?
Answer: The devotional is called “What If Your Blessings Come Through Raindrops”
by Laura Story.
Question: What is special about the song mentioned in the image?
Answer: The song is special because it’s a Grammy Award-winning song that has
inspired millions of people.”

Human:
One of the hardest things in life to accept is a called third strike Robert Frost te
One of the hardest things in life to accept is a called third strike Robert Frost quotefancy
a close up of a baseball glove
GPT:
Question: Why is the third strike hard to accept? Explain the quote to me.
Answer: The quote Öne of the hardest things in life to accept is a called third
strikeättributed to Robert Frost is a metaphor for life situations. In baseball, a called
third strike is when the umpire determines that a pitch was a strike, but the batter did
not swing. This can be frustrating for the batter because they missed an opportunity to
hit the ball due to either a lack of confidence or misjudgment.
In life, this metaphor refers to difficult moments where we might miss opportunities or
face setbacks because of our own inaction or hesitation. The quote suggests that it is
hard to accept these missed opportunities or challenges, especially when they result
from our own choices or lack of action.

C

Details of evaluation dataset:

• ST-VQA [45] contains 31791 questions that require understanding the scene text, based on
images from COCO [9], Visual Genome [53], ImageNet [54], etc.

• TextVQA [46] contains 45,336 questions that need reading and reasoning about the text in
images to answer, based on images from OpenImages [55].

• OCR-VQA [32] contains more than 1 million questions asking about information from
book cover images [56].

• DocVQA [47] contains 50000 questions based on document images.
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Method Subject Context Modality Grade AverageNAT SOC LAN TXT IMG NO G1-6 G7-12

Human [2022] 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40
GPT-3.5 [2022] 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97
GPT-3.5 w/ CoT [2022] 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17
LLaMA-Adapter [2023] 84.37 88.30 84.36 83.72 80.32 86.90 85.83 84.05 85.19
MM-CoTBase [2023] 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91
MM-CoTLarge [2023] 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68
LLaVA [2023] 90.36 95.95 88.00 89.49 88.00 90.66 90.93 90.90 90.92
LLaVA+GPT-4 [2023] 91.56 96.74 91.09 90.62 88.99 93.52 92.73 92.16 92.53
Chameleon (GPT-4) [2023] 89.83 74.13 89.82 88.27 77.64 92.13 88.03 83.72 86.54

LLaVAR 91.79 93.81 88.73 90.57 88.70 91.57 91.30 91.63 91.42

Table 7: Results (accuracy %) on Science QA dataset. All baseline results are from Liu et al. [3], Lu
et al. [52]. The categories are denoted as NAT: natural science, SOC: social science, LAN: language
science, TXT: text context, IMG: image context, NO: no context, G1-6: grades 1-6, G7-12: grades
7-12.

D

ScienceQA Results Starting from our pretrained LLaVAR (3362-based, without finetuning), we
also report the results of further finetuning on the ScienceQA dataset [50] in Table 7, which is a
multimodal multi-choice QA dataset covering diverse domains. Our motivation is that some images
in this dataset contain text descriptions and tables that require textual understanding within images.
The LLaVAR model finetuned on ScienceQA achieves an average accuracy of 91.42%, better than
LLaVA (90.92%), while the most considerable improvement comes from natural science questions
(+1.43%).

Figure 7: Illustration of the dual visual encoder system.

E

The original version of LLaVAR only supports up to 3362 resolution, while our case study has
also shown the threshold for the recognizable font size. Both suggest the difficulty of processing
real-world high-res images without scaling and cutting. To this end, we test a dual visual encoder
system for the high-res variant of LLaVAR, where a high-res visual encoder is added to work with
the standard one. Ideally, the standard visual encoder extracts general, high-level information, while
the high-res one specifically helps with detailed information.
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Architecture A high-res visual encoder usually outputs thousands of visual features. Simply fol-
lowing LLaVA to feed the transformed visual features into the context of the language decoder is
impractical, as the maximum sequence length of the language decoder is usually 2048/4096. To this
end, we propose to handle high-res visual features by cross-attention module and standard visual
features by feature transformation. We depict the proposed system in Figure 7

Specifically, given a standard visual encoder V1, the extracted features are transformed into the
word embedding space of the language decoder through a trainable projection matrix W . These
transformed features are then concatenated with the word embeddings to build the input embeddings
of the language decoder D.

emb(⟨img1⟩), · · · , emb(⟨imgm⟩) = WV1(I)

input emb = concat([emb(⟨img1⟩), · · · , emb(⟨imgm⟩), emb(⟨ins1⟩), · · · , emb(⟨insn⟩)])
(1)

where I is the input image, V1 denotes extracting the grid features before the last transformer layer.

At the same time, we use the high-res visual encoder V2 to extract high-res visual features, which are
then transformed into keys/values as the inputs of the cross-attention module in transformer layers.
Given hj as the hidden state before the cross-attention module in layer j,

CrossAttention(h, V2, I) = softmax(
Qjhj(KjV2(I))

T

√
d

)V jV2(I) (2)

where Qj ,Kj , V j denotes the query/key/value projection matrix in the j-th transformers layer. In
practice, there is a pre-attention LayerNorm before calculating the attention and another output
projection matrix Oj to project the aggregated values back to the hidden space. Previously, high-
res encoders usually focused on document image understanding, such as Donut [57] and Pix2Struct
[42]. We select a lightweight Pix2Struct-base as our V2, which is pretrained on decoding web
pages into the HTML format.

As the pretrained language decoder D might only have self-attention modules, we manually add
another cross-attention module after the original self-attention module in every transformer layer.
Considering the random initialization of cross-attention modules might hurt the original language
generation capability, we initialize the value projection matrix V j as a zero matrix and the output
projection matrix Oj as an identity matrix.

Training Only cross-attention modules and the projection matrix W are trained during pretraining,
while visual encoders and the language decoder are frozen. Cross-attention modules, the projection
matrix W , and the language decoder D are trained during finetuning.

Data To fully unlock the potential of the augmented visual encoder, we also double the number of
pretraining examples using the same criteria mentioned in Section 3. This corresponds to the variant
(g) in Table 4.
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Question: Based on the title and the image on the cover, what can be inferred about
the content of ”Bo’s Lasting Lessons” and its potential target audience?

Relative
Score

GPT-4
(Text-Only)

From the title and image, it can be inferred that ”Bo’s Lasting
Lessons” is a book about leadership lessons taught by a legendary
coach, likely in the context of sports. The image of men running sug-
gests that the book might be focused on a specific sport, such as foot-
ball or track and field. The target audience could be individuals in-
terested in coaching, sports, or leadership in general, looking to learn
from the experiences and teachings of a successful coach.

-

LLaVA

The book ”Bo’s Lasting Lessons: The Timeless Teachings of Bo
Schembechler” is written by Bo Schembechler and Jim Harshaw.
Given the title and the image on the cover, which shows a football
coach running across the field with his players in pursuit, it can be
inferred that the content of the book is likely focused on football and
the strategies, techniques, or principles that can help players improve
their performance and achieve success in the sport. The potential tar-
get audience for this book could be football players, coaches, and fans
who are interested in learning more about the game and the experi-
ences and insights of a seasoned coach like Bo Schembechler.

75%

LLaVAR

”Bo’s Lasting Lessons” appears to be a book that shares the legacy
coach Bo Schembechler’s teachings on leadership and timeless funda-
mentals. The image on the cover, featuring a football coach leading
his team, further supports this inference. The book might be targeted
towards sports enthusiasts, particularly fans of football, and people
interested in learning about leadership principles and fundamentals
from a renowned coach’s perspective. The audiobook, read by John H.
Mayer and featuring a foreword and conversation with John U. Bacon,
suggests that it could also appeal to audiences who prefer listening to
books or want to gain more insights from the author and other experts.

129%

Table 8: An example for our collected evaluation data, corresponding to the “Read” dimension of
GPT-4-based instruction-following evaluation. The corresponding image is Figure 8 in Appendix.
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Figure 8: An example for the Read dimension of GPT-4-based instruction-following evaluation.
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Figure 9: Transferred instruction-following capability of LLaVAR.
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Figure 10: All 14 clusters we selected as text-rich images. Each row corresponds to one cluster,
where we show ten randomly sampled examples before de-duplication.

21



Figure 11: Visualization of collected instructions.
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Figure 12: Visualization of collected instructions.
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