
Learning to Rank for Non Independent and Identically
Distributed Datasets

Anonymous Author(s)
ABSTRACT
With the growing data privacy concerns, federated machine learn-
ing algorithms capable of preserving the confidentiality of sensitive
information while enabling collaborative model training across
decentralized data sources are attracting increasing interest. In this
paper, we address the problem of collaboratively learning effective
ranking models from non-independently and identically distributed
(non-IID) training data owned by distinct search clients. We assume
that the learning agents cannot access each other’s data, and that
the models learned from local datasets might be biased or underper-
forming due to a skewed distribution of certain document features
or query topics in the learning-to-rank training data. Thus, we
aim to instill in the local ranking model learned from local data
the knowledge from other models to obtain a more robust ranker
capable of effectively handling documents and queries underrepre-
sented in the local collection. To achieve this, we explore different
methods for merging the ranking models, thus obtaining in each
client a model that excels in ranking documents from the local data
distribution but also performs well on queries retrieving documents
having distributions typical of a partner’s node. In particular, our
findings suggest that by relying on a linear combination of the local
models, we can improve IR models effectiveness by up to +17.92%
in NDCG@10 metric (moving from 0.619 to 0.730), and by up to
+19.64% in MAP metric (moving from 0.713 to 0.853).

CCS CONCEPTS
• Information systems→ Combination, fusion and federated
search.

KEYWORDS
Learning to Rank, Non-IID, Distributed Search

ACM Reference Format:
Anonymous Author(s). 2024. Learning to Rank for Non Independent and
Identically Distributed Datasets. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Modern Information Retrieval (IR) systems commonly handle cor-
pora that surpass the capacity of a single machine. Consequently,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

they employ a distributed architecture where the document col-
lection is partitioned, and each partition is assigned to a separate
machine and indexed separately. In a complementary way, data
protection legislation, such as the EU GDPR, increasingly regulate
contexts where documents or user interaction data are private and
cannot be shared with external entities/organizations.

In both the previous scenarios, search is performed over document-
partitioned indexes where each partial index, or shard, manages
a distinct subset of documents [7, 16, 21]. The allocation of docu-
ments to the various shards may be naturally established by data
ownership reasons, i.e., the data is private and has to be managed
exclusively according to the rules of the owner organization. Alter-
natively, it may focus on reducing the latency of interactive search
by querying in parallel equally-balanced shards, or on globally re-
ducing the computational cost by searching only a few shards for
each query (selective search) without sacrificing search accuracy
[2, 16].

Recent works have investigated federated learning techniques
in the IR context by proposing federated Learning-to-Rank (LTR)
algorithms [17] aimed at building a single global ranking model for
all the shards without sharing data [30]. While in traditional LTR,
the data to train a ranking model is centralized, in federated LTR,
the model is trained collaboratively across the clients participating
in the federation. Each client locally computes model updates using
its own data and sends the model updates (not the raw data) to a
central server. The central server aggregates the updates received
and redistributes the improved model to the participating clients.
Suchmodel update process is repeated until convergence or another
stopping criterion is reached.

A factor influencing the performance of federated learning sys-
tems, also in federated LTR scenarios, is the presence of skews or
biases in data distribution among clients [31]. This bias can mani-
fest in various forms, such as disproportionate representation of
certain demographics or preferences within local datasets. For in-
stance, some clients may contribute more data pertaining to specific
query types, topics, or user behaviors, skewing the learning pro-
cess towards those particular patterns and potentially hindering
the overall model’s ability to generalize effectively. An interesting
analysis of this almost unexplored research area of IR is presented
in [26], where the authors perform a comprehensive analysis of
the impact of non-independently and identically distributed (non-
IID) data on federated Learning-to-Rank and observe that models
trained federatively on non-IID data exhibit significantly lower
effectiveness, and may experience difficulties to converge.

Addressing and mitigating non-IID data biases is thus crucial for
ensuring the learning of fair and accurate ranking models across
the federated clients. This paper follows one of the research direc-
tions for LTR on non-IID data outlined in [26]. Unlike the standard
federated learning scenario where a single global model is finally
obtained, we aim to preserve the peculiarities of the local models
that fit the specific data distribution in the clients. Our technique

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Anon.

learns independently and separately on each client different ranking
models on the local and private data. Still, it exploits the outcomes
of the other clients to make the local model more robust and effec-
tive. Referring to the taxonomy presented in [26, 31], we address
non-IID data that are both of Type 1 and 4, where Type 1 is when the
conditional probability of observing a label given the same instance
changes across clients, while Type 4 refers to the cases where the
number of training data varies significantly across different clients.

Generation of non-IID LTR data LTR on non-IID data Merging of the ranking models

Figure 1: Scenario under investigation

The scenario we investigate is visually represented in Figure 1. In
this context, we consider 𝑛 distinct non-IID LTR training datasets,
each one employed to train independently a local LTR model. We
aim tomerge these independently trained LTRmodels into a distinct
and more robust LTR model for each client, capable of handling
queries from diverse dataset distributions. Regression tree forests
have become a popular choice in Learning to Rank (LTR) due to
their ability to model complex relationships between features and
rankings. By combining multiple regression trees, these forests can
reduce overfitting and improve the overall ranking performance. In
our study, we use regression tree forests as the local LTR models,
which are merged to create a distinct, more robust, and effective
model for each client. Our investigation poses an additional chal-
lenge: given the absence of publicly available non-IID LTR dataset,
we have first to identify sound strategies for splitting a monolithic
LTR dataset into distinct subsets, ensuring the controlled creation
of non-IID data of Type 1 and 4.

In light of these challenges, this study aims to address the fol-
lowing research questions:

• RQ1: what strategies can be used to partition a large-scale
LTR dataset into Type 1 non-IID data?

• RQ2: In LTR models that use regression tree forests and are
trained on non-IID datasets, what methods can be employed
to merge these models and enhance the overall predictive
power of the final model?

Our experimental results show that the merged models gener-
ally surpass the baseline models in performance. Our results on the
Istella-S LETOR dataset show that by introducing a linear combina-
tion approach, the effectiveness of the IR systems is increased by
up to +17.92% in NDCG@10 metric (moving from 0.619 to 0.730),
and by up to +19.64% in MAP metric (moving from 0.713 to 0.853).
When using a model stacking approach, the effectiveness of the IR
systems is increased by up to +16.79% in NDCG@10metric (moving
from 0.619 to 0.723), and by up to +17.39% in MAP metric (moving
from 0.713 to 0.837). The rest of the paper is structured as follows. In
Section 2 we provide an overview of related work. In Section 3 we
introduce the problem of creating non-IID LTR datasets. In Section

4 we discuss the various strategies for the model combination task.
Section 5 details the datasets used and the experimental settings.
Additionally, we describe the results of the experiments conducted
to answer our research questions. Finally, Section 6 summarizes
the work and suggests potential future research.

2 RELATEDWORK
Learning-to-Rank is a vast research area where several machine
learning techniques have been proposed to rank the documents
matching a query as established by a large supervised training
set [17]. Most of these approaches solve the problem starting from
query-document representations based on handcrafted features.
More recently, new neural approaches have also shown to be effec-
tive in solving the task. In contrast with the older ones, some of these
techniques exploit the text of both the query and the document
directly to extract meaningful features and compute the relevance
of the query w.r.t. to a document, e.g., pre-trained transformers
[10]. In the following, we present a brief overview of traditional
LTR methods based on handcrafted features and then survey the
literature on federated LTR.

RankNet [4] leverages a probabilistic ranking framework based
on a pairwise approach to train a neural network. The difference
between the predicted scores of two different documents is mapped
to a probability by mean of the sigmoid function. Hence, using the
cross-entropy loss this probability is compared with the ground
truth labels, and Stochastic Gradient Descent (SGD) is used to mini-
mize this loss. FRank [25] exploits a generative additive model and
substitutes the cross-entropy loss with the fidelity loss, a distance
metric adopted in physics, superior to cross-entropy when applied
on top of the aforementioned probabilistic framework since 1) has
minimum in zero, 2) is bounded in [0, 1]. Neither RankNet or FRank
directly optimize a ranking metric, e.g., NDCG, and this discrep-
ancy weakens the power of the model. Since ranking metrics are
flat and discontinuous, their optimization within the loss function
is troublesome. To overcome this issue, LambdaRank [6] heuristi-
cally corrects the RankNet gradients by exploiting the rank position
of the document in the overall sorting: it multiplies the RankNet
gradient with a term that measure the increase in NDCG when
switching the terms, generating the so called 𝜆-gradients. State-
of-the-art LtR models include those based on additive ensembles
of regression trees learned by Multiple Additive Regression Trees
(MART) [11] and LambdaMart [5, 28] gradient boosting algorithms.
LambdaMart [5] combines the successful training methodology pro-
vided by 𝜆-gradients with MART. Currently, ensemble of regression
trees are the most effective solution among LTR techniques when
dealing with handcrafted features. Since such ranking models are
made of hundreds of additive regression trees, the tight constraints
on query response time require to trade-off between efficiency and
ranking quality [8, 12, 20].

Federated learning is a machine learning technique that enables
training models across multiple decentralized clients holding lo-
cal data samples, without exchanging them. Federated learning
has been recently explored in LTR scenarios. When the data is
horizontally partitioned, indicating that datasets share the same
feature space but differ in samples, standard federated learning
techniques can be adapted to LTR. For example, the Party-Adaptive

Learning to Rank for Non Independent and Identically Distributed Datasets Conference’17, July 2017, Washington, DC, USA

XGBoost (PAX) approach proposed in [24] introduces a gradient
boosting algorithm that employs a party-adaptive histogram ag-
gregation method. The method involves constructing a surrogate
representation of the data distribution to determine decision tree
splits. Similarly, LightGBM1, a popular gradient boosting frame-
work, offers various distributed learning algorithms suitable for
both horizontal and vertical partitions of the training data. These
algorithms reduce communication costs and exploit the two-stage
voting mechanism proposed in [23] to further enhance efficiency.
Looking beyond traditional horizontal and vertical federated learn-
ing approaches, [27] introduces a novel framework called Cross-Silo
Federated Learning-to-Rank. The training data in this framework
is cross-partitioned. Each party collaborates with others to generate
training instances, while the documents and queries of each party
remain locally stored to ensure privacy protection. To enhance effi-
ciency and protect privacy, data exchange between parties employs
a sketching algorithm [13, 22], to compress data in a manner that
facilitates query answering. Finally, in [15] a federated version of
an online LTR technique is proposed which learns a ranking model
from implicit feedback collected from user interactions directly
stored on the users’ individual devices.

In typical federated learning, models are trained synchronously,
exchanging data with a central server to update a global model at
each iteration. In contrast, our scenario involves the independent
training of models on separate datasets, with aggregation only oc-
curring afterward. To our knowledge, no studies have assessed the
effectiveness of LTR models based on forests of decision trees in a
non-IID data scenario. While some methods have been proposed
to optimally combine two or more rankers, such as the one pre-
sented in [29], these methods have not focused on non-IID training
datasets.

3 GENERATION OF NON-IID LTR DATA
Publicly available LTR datasets are independently and identically
distributed (IID) and we need to transform them into non-IID for
our experiments. In [26] the authors proposes practical strategies
for generating non-IID LTR data of Type 1, 2, 3 and 4 to test their
online federated learning solution. They also highlight that Type 1
non-IID data (together with specific cases of Type 2 data) has the
most severe effect on the effectiveness of the tested LTR solution. By
relying on this result, we also consider Type 1 non-IID data where
the conditional probability of observing a label given the same
instance changes across clients. For generating Type 1 non-IID data,
the authors of [26] consider the search intent simulated for TREC
Web Track 2009 to 2012 queries as detailed in [32]. Unfortunately
we cannot rely on the same non-IID data due to the small size of
these collections, i.e., about 200 queries in total, which does not
allow to experiment state-of-the-art LTR solutions requiring many
more annotated queries [9, 17].

We thus resort to Istella-S2, a publicly available large-scale LTR
dataset providing among the featuresmodelling each query-document
pair the topic-based category of the labelled web document [19].
This dataset comprises 33𝑘 queries and uses 220 features to rep-
resent each one of the 388𝑘 query-document pairs. The dataset’s

1https://lightgbm.readthedocs.io/en/latest/Parallel-Learning-Guide.html
2https://istella.ai/data/letor-dataset/

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Categories

0

5000

10000

15000

20000

25000

30000

35000

40000

(a) Document distribution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Categories

0

500

1000

1500

2000

2500

3000

3500

(b) Query distribution

Figure 2: Category distributions for relevant documents and
queries in the Istella training set.

features are categorized into four main groups: query features, doc-
ument features, query-document features, and proximity-based
features. The dataset is pre-divided into training, validation, and
test sets according to a 60%-20%-20% scheme. The feature vectors
are encoded in SVM-Rank format3. In the dataset, each line repre-
sents a query-document pair, featuring the relevance label as the
first field (ranging from 0 for not relevant to 4 for perfectly relevant).
The second field denotes the query identifier (qid), followed by the
features described in the format index:value. LTR models are usu-
ally trained list-wise at the query level, and in training datasets, we
usually have more relevant and irrelevant documents annotated for
the same query. To simulate our distributed LTR non-IID scenario
where clients manage documents and answer queries belonging to
different topics, we thus need a topic-based category for queries,
not documents. In the following we discuss how topic-based labels
are assigned to LTR queries of Istella, and how we can exploit these
labels to generate Type 1 non-IID partitions of the LTR dataset.

3.1 Assigning topic-based labels to LTR queries
We propagate the topic-based label from documents to queries by
considering the relevance labels of query-document pairs in the
Istella dataset. Given a query 𝑞 and the set 𝑅𝑞 of documents labeled
as relevant for 𝑞, we assign 𝑞 to the most frequent category among
documents in 𝑅𝑞 . In case of a tie, the selection is based on the cate-
gory with the highest sum of relevance scores. If there is a further
tie, the preference is given to the category containing the document
with the highest relevance label. In the unlikely event of an addi-
tional tie, the category is assigned randomly from the candidate
categories. Figure 2a and 2b plot the distribution of categories for
relevant documents and queries in the Istella training set, respec-
tively. The similarity between the two distributions highlights the
effectiveness of the proposed category assignment method.

3.2 Generating Type 1 splits of the LTR dataset
For the purposes of this work we generate two distinct splits of
the Istella dataset of Type 1 non-IID partitions by exploiting the
query topic-based categories previously discussed. Specifically, we
consider the two most popular categories in the dataset, namely
categories 11 and 14 (see Figure 2b). Either the dataset-splitting
approach or the methods discussed below for combining the knowl-
edge coming from the local models can be trivially extended to
3https://www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

Conference’17, July 2017, Washington, DC, USA Anon.

a greater number of clients. The splits are computed as follows:
given a dataset 𝐷𝑆 and a query category 𝑐 , 𝐷𝑆1 contains all the
training queries belonging to 𝑐 , while 𝐷𝑆2 incorporates the remain-
ing queries. We expect the LTR process to obtain two models,𝑀1
trained on 𝐷𝑆1 and𝑀2 trained on 𝐷𝑆2, with the following proper-
ties:𝑀1 performswell on data alignedwith the category distribution
of𝐷𝑆1, but shows a decrease in effectiveness on data corresponding
to the category distribution of 𝐷𝑆2, and vice versa for 𝑀2. Given
the unbalanced distribution of training queries in 𝐷𝑆1 and 𝐷𝑆2, the
non-IID LTR data generated with our procedure are both of Type 1
and Type 4 [26].

4 MODEL COMBINATION
We explore two methodologies for merging the models trained
independently on each client into an improved local ranking model
as illustrated in Figure 1. To this end, we perform the merging
of the local ranking models on each client by exploiting a small
number of labeled queries from the validation set that are the most
dissimilar from the typical distribution observed on the specific
client. Hereinafter we will call this dataset used for optimizing the
merging 𝐷𝑚𝑒𝑟𝑔𝑒 . The first merging method involves computing a
linear combination of the scores computed by the various models,
while the second solution requires the learning of a simple stacking
model.

Linear combination of the scores. The first method, similar to
that proposed in [29], linearly combines the scores from multiple
rankers such that the resulting score achieves the highest Normal-
ized Discounted Cumulative Gain (NDCG).

Assuming 𝑠𝑖 (𝑞, 𝑑) represents the output score of local model𝑀𝑖

for query-document pair (𝑞, 𝑑), then the output score 𝑠 (𝑞, 𝑑) of the
the model𝑀 combining the output of all the 𝑛 local models can be
written as:

𝑠 (𝑞, 𝑑) =
∑︁

𝑖=1,...,𝑛
𝛼𝑖 · 𝑠𝑖 (𝑞, 𝑑)

where weights 𝛼𝑖 ≥ 0 and
∑
𝑖=1,...,𝑛 𝛼𝑖 = 1, are optimized on

𝐷𝑚𝑒𝑟𝑔𝑒 using a grid search procedure.

Model Stacking. Model stacking involves training a new model
by learning from the predictions of the local models. The idea is to
leverage the diverse predictions to improve the overall performance.

In our case, the output scores of local models𝑀𝑖 are used as input
features for learning a new model 𝑀 , possibly different for each
client. In the LTR setting, each document-query pair is represented
by a feature vector 𝑥 , comprising |𝑥 | features. Leveraging the 𝑛 al-
ready trained models𝑀𝑖 , we first predict the query-document score
with the local models. Subsequently, we add those predictions as ad-
ditional features. Specifically, the output score 𝑠𝑖 from𝑀𝑖 is added
to the features describing query-document pair as feature 𝑓 |𝑥 |+𝑖 .
Finally, a new simple model is trained on this score-augmented
version of 𝐷𝑚𝑒𝑟𝑔𝑒 .

5 EXPERIMENTAL EVALUATION
This section introduces the experimental settings and our experi-
mental findings regarding both the dataset splitting and the model
combination. While our proposed approach can be applied to any

Table 1: nDCG@10 obtained by the models trained on the
initial split

DS1 DS2 DS
M1 0.761 0.728 0.741
M2 0.747 0.771 0.786
M𝑓 𝑢𝑙𝑙 0.767 0.775 0.789

number of non-IID datasets, in our experiments, we considered a
simplified scenario with two non-IID datasets, for ease of evaluation
and demonstration purposes. Despite this simplification, our exper-
iments still provide valuable insights into the effectiveness of our
approach in handling non-IID data and its potential for real-world
applications.

5.1 Experimental Setting
All the experiments leverage the LambdaMART implementation
available in the LightGBM gradient boosting library4 [14]. Notewor-
thy optimizations in LightGBM include the use of histogram-based
algorithms that bin continuous feature values for accelerated train-
ing and reduced memory consumption [13, 22].

Hyper-parameter tuning is performed using the Optuna library5
[1], which uses the Tree-structured Parzen Estimator (TPE) algo-
rithm [3]. On each trial, for each parameter, TPE fits one Gaussian
Mixture Model (GMM) 𝑙 (𝑥) to the set of parameter values asso-
ciated with the best objective values, and another GMM 𝑔(𝑥) to
the remaining parameter values. It chooses the parameter value
𝑥 that maximizes the ratio 𝑙 (𝑥)/𝑔(𝑥). We optimized four learning
parameters: learning_rate in [0.0001, 0.0005, 0.001, 0.005, 0.01,
0.05, 0.1, 0.2, 0.3], num_leaves in 15,255, min_data_in_leaf in
10,500, with a step size of 5, and min_sum_hessian_in_leaf in
1,100. The hyper-parameters of the models are tuned on the vali-
dation set based on the NDCG@10 metric. We train a maximum
of 3000 trees and implement early stopping to prevent overfitting.
Specifically, the training process halts if there is no improvement
on the validation set for 100 consecutive iterations.

We evaluate the performance of the methods using nDCG@10,
MRR@10 and MAP@10.

5.2 Experimental Results
We now report and discuss the results obtained in our experiments.

Dataset Splitting. Looking at Figure 2b, we notice that the most
frequent query category is category 11, representing queries related
to "Lifestyle". We thus assign all queries associated with category
11 to split 𝐷𝑆1 and move the remaining queries to 𝐷𝑆2. The model
trained on the full Istella-S dataset is denoted as 𝑀𝑓 𝑢𝑙𝑙 , whereas
𝑀1 is the model trained on 𝐷𝑆1, and 𝑀2 is the model trained on
𝐷𝑆2. Subsequently, we test the three models on the test sets of 𝐷𝑆 ,
𝐷𝑆1, and 𝐷𝑆2, obtaining the results illustrated in Table 1. From
the numbers reported in the table, we can see that, as expected,
𝑀1 performs well on the test set with the same category distribu-
tion and worse on the one with 𝐷𝑆2’s category distribution and
4https://github.com/microsoft/LightGBM
5https://github.com/optuna/optuna

Learning to Rank for Non Independent and Identically Distributed Datasets Conference’17, July 2017, Washington, DC, USA

Table 2: Statistics of the various dataset splits

Partitioning without tie-breaking Exclusive partitioning
Category 11 Category 14 Category 11 Category 14

DS DS1 DS′2 DS1 DS′2 DS1 DS′2 DS1 DS′2

Train
Set

Queries 19, 245 3, 385 1, 351 3, 243 1, 148 270 1, 351 239 1, 148
Relevant Documents 230, 676 44, 547 13, 723 40, 655 11, 600 3, 287 13, 723 3, 002 11, 600
Query-Document Pairs 2, 043, 304 399, 487 88, 169 333, 947 78, 025 28, 166 88, 169 23, 642 78, 025

Validation
Set

Queries 7, 211 1, 031 589 1, 307 555 65 589 64 555
Relevant Documents 80, 592 13, 063 5, 219 14, 592 5, 120 756 5, 219 732 5, 120
Query-Document Pairs 684, 076 116, 642 32, 649 115, 036 34, 234 6, 742 32, 649 5, 591 34, 234

Test Set
Queries 6, 562 531 211 612 201 25 211 26 205
Relevant Documents 76, 956 6, 831 2, 098 8, 141 1, 981 176 2, 098 248 2, 022
Query-Document Pairs 681, 250 59, 632 15, 961 64, 816 16, 722 2, 057 15, 961 2, 594 17, 043

vice versa 𝑀2. Taking 𝑀𝑓 𝑢𝑙𝑙 as the baseline, we observe that 𝑀1
experiences some loss in performance, especially on the test sets
of 𝐷𝑆 and 𝐷𝑆2, but still generalizes well, while 𝑀2 is nearly as
good as 𝑀𝑓 𝑢𝑙𝑙 . This is likely a consequence of how the splits are
computed: even if 𝑀1 only encounters queries categorized as 11,
these queries likely retrieve documents, both relevant and irrele-
vant, belonging to other categories. Let us consider the training
set, which comprises 19, 245 queries. Only for 1, 939 queries (7%)
all relevant documents belonged to the dominant category. There
was a tie in 2, 372 queries (12%), with at least two categories having
the same number of relevant documents. Moreover, we found that
8, 579 queries (45%) displayed a difference equal to or lower than 3
between the number of relevant documents belonging to the domi-
nant category and the next one. On the other hand, 6, 885 queries
(36%) had a difference greater than 3 in this regard.

We explored two additional splitting methods for 𝐷𝑆1 to ad-
dress this matter. In our initial splitting approach we employed
a tie-breaking logic for queries featuring two or more dominant
categories. Our first alternative method, partitioning without tie-
breaking, eliminates this tie-breaking logic. Specifically, 𝐷𝑆1 only
contains queries where the count of relevant documents associ-
ated with category 11 exceeds that of other categories. The second
method, which we call exclusive partitioning, takes a more extreme
approach. In this case, we select the queries whose relevant doc-
uments all belong to category 11, and we allocate them to 𝐷𝑆1.
Therefore, 𝐷𝑆1 does not contain relevant documents belonging to
the other categories.

However, as we allocate less data to 𝐷𝑆1, a greater volume of
data samples flows into 𝐷𝑆2, most likely enhancing its predictive
capabilities. Our goal is to artificially worsen the results of𝑀2 so
that the two models trained on the non-IID subsets perform well
on queries containing documents belonging to the categories they
were trained on, but demonstrate lower performance on others. This
approach enables us to leverage the strengths of each model during
the model merging phase, ultimately achieving optimal results on
every query. Therefore, for each 𝐷𝑆1 partitioning strategy adopted,
we create 𝐷𝑆′2, a filtered variant of 𝐷𝑆2 obtained by excluding
from 𝐷𝑆2 all the documents belonging to category 11. We achieve

this by eliminating all queries of 𝐷𝑆2 containing those specific
query-document pairs. It is noteworthy that 𝐷𝑆′2 is identical across
each 𝐷𝑆1 partitioning method previously introduced. The reason
is quite straightforward. Each 𝐷𝑆1 partitioning produces a distinct
𝐷𝑆2 version. These differ only for queries containing at least one
relevant document belonging to category 11, which are all removed
from 𝐷𝑆 ′2.

We execute these operations on the twomost frequent categories,
11 (Lifestyle) and 14 (News), providing a more comprehensive un-
derstanding of the effectiveness of the splitting method. This ap-
proach will undoubtedly contribute to a more robust evaluation
during the merging phase, as methods will be tested on various split
types and categories. Table 2 shows the statistics of the produced
splits. When comparing the original dataset (DS) to the partitioned
datasets (DS1 and DS′2), we observe a significant reduction in the
number of queries, relevant documents, and query-document pairs.
For instance, in the train set, the number of queries decreases from
19,245 (DS) to around 3,385 (DS1) and 1,351 (DS′2) for partitioning
without tie-breaking, and to 270 (DS1) and 1,351 (DS′2) for exclu-
sive partitioning. This decrease is also seen in the validation and
test sets. This reduction in dataset size is expected, as partitioning
involves dividing the original dataset into smaller, more focused
subsets. When comparing the two partitioning approaches, we see
that exclusive partitioning results in even smaller datasets com-
pared to partitioning without tie-breaking. This is evident for both
categories (11 and 14). Exclusive partitioning is a more restrictive
approach, where each relevant document can only belong to one
category. This leads to a more drastic reduction in dataset size, as
some queries or documents may be excluded from the partitioned
datasets altogether. In contrast, partitioning without tie-breaking
allows for some overlap between categories, resulting in larger
partitioned datasets. For example, in the train set, the number of
queries in Category 11 is 3,385 for partitioning without tie-breaking,
but only 270 for exclusive partitioning. Similarly, the number of
query-document pairs in Category 14 is 88,169 for partitioning
without tie-breaking but only 28,166 for exclusive partitioning.

We present the results of our experiments in Table 3. Specifi-
cally, we compare the performance of three models: 𝑀1, trained

Conference’17, July 2017, Washington, DC, USA Anon.

Table 3: nDCG@10 results obtained by the models trained on the alternative splits

Partitioning without tie-breaking
Category 11 Category 14

DS1 DS′2 DS DS1 DS′2 DS
M1 0.764 0.730 0.740 0.737 0.733 0.745
M′

2 0.698 0.765 0.722 0.670 0.754 0.717
M𝑓 𝑢𝑙𝑙 0.765 0.801 0.786 0.760 0.791 0.786

Exclusive partitioning
M1 0.741 0.604 0.543 0.747 0.296 0.334
M′

2 0.718 0.765 0.722 0.720 0.754 0.717
M𝑓 𝑢𝑙𝑙 0.753 0.801 0.786 0.779 0.792 0.786

on the 𝐷𝑆1 partition; 𝑀′
2, trained on the 𝐷𝑆 ′2 variant of 𝐷𝑆2; and

𝑀𝑓 𝑢𝑙𝑙 , the baseline model trained on the full Istella dataset 𝐷𝑆 .
We omit the results of the model trained on 𝐷𝑆2 as they are ex-
pected to be similar to those of the baseline model𝑀𝑓 𝑢𝑙𝑙 . Each of
these models is evaluated on three test sets: the test set of 𝐷𝑆1, the
test set of 𝐷𝑆′2, and the test set of the original Istella dataset 𝐷𝑆 .
Beginning with category 11, we observe that, in the partitioning
without tie-breaking approach, the local models exhibit the desired
characteristics. Specifically, both 𝑀1 and 𝑀′

2 demonstrate strong
performance on their respective test sets, but experience a slight
decline in performance on test sets drawn from other category
distributions. Notably, their performance on the Istella test set is
fairly similar, suggesting that while each model may specialize in
certain types of queries, their overall performance is not signifi-
cantly different. The results for the exclusive partitioning approach
show a similar pattern. However,𝑀1 appears to underperform on
both 𝐷𝑆 ′2 and 𝐷𝑆 , likely due to the lower number of queries it was
trained on. This could potentially lead to suboptimal results dur-
ing the merging phase. Regarding category 14, the results for the
partitioning without tie-breaking approach are similar to the same
approach for category 11. However, the worst results are seen for
the exclusive partitioning of category 14. Given the lower frequency
of Category 14 in 𝐷𝑆 compared to Category 11, the number of
queries exclusively containing relevant documents of Category 14
is very limited. This is evident in the performance of 𝑀1 on the
test sets belonging to other category distributions. As a result, this
partitioning approach was discarded.

Based on these results, we choose three split combinations to
employ in our experiments. This selection allows us to test our
merging algorithms on multiple instances, providing a comprehen-
sive understanding of the strengths and weaknesses of our methods.
In each split, for the sake of simplicity in notations,𝐷𝑆2 corresponds
to the alternative version 𝐷𝑆′2. We define the first split as 𝑆𝑝𝑙𝑖𝑡1,
where 𝐷𝑆1 is obtained using the exclusive partitioning method with
category 11. To obtain the Non-IID partitioning, we started with the
Istella dataset 𝐷𝑆 and selected all the queries where all the relevant
documents belonged to Category 11. These queries were assigned
to 𝐷𝑆1. The remaining queries were then assigned to 𝐷𝑆2, but only
if they did not contain any relevant documents of category 11. The
other remaining queries were used for the creation of the datasets
used to locally merge the models. These datasets are denoted as

𝐷𝑚𝑒𝑟𝑔𝑒 . The main goal was to obtain a combined model on each
client, using data samples with a different category distribution
than the one the local model was trained on. To achieve this, we
sorted all the remaining queries by the number of relevant docu-
ments of category 11. For Client1, model 𝑀1 was trained on |𝑄1 |
queries with many relevant documents of category 11. Therefore,
we selected the |𝑄1 |

2 queries with the lowest number of relevant
documents belonging to category 11 from the sorted list, and used
those as 𝐷𝑚𝑒𝑟𝑔𝑒 to merge𝑀1 and𝑀2 on Client1. As for Client2, we
chose the |𝑄2 |

2 queries with the most relevant documents belonging
to category 11 from the sorted list, and used them as 𝐷𝑚𝑒𝑟𝑔𝑒 to
combine the models locally.

The second split, denoted as 𝑆𝑝𝑙𝑖𝑡2, was obtained in a similar
manner. The key difference is that 𝐷𝑆1, in this case, corresponds to
the split created using the partitioning without tie-breaking method
with category 11. The rest of the process remained the same as for
the first split. Finally, the last split is 𝑆𝑝𝑙𝑖𝑡3, where 𝐷𝑆1 is the parti-
tioning created using the partitioning without tie-breaking method
with category 14. The obtained splits align with our expectations
performance-wise and also demonstrate Non-IID characteristics.

Optimally Combining Two Rankers. Our next step involves test-
ing themergingmethods on the three splits obtained in the previous
Section. All experiments are assessed using three evaluation mea-
sures: nDCG@10, MAP and MRR@10. As previously mentioned,
we have two clients, each training a local model on its private data.
Our goal is to combine the two models on each node, in order to
improve the robustness of the locally trained models. We adopt the
following notation:

• 𝑀1 denotes the model trained locally on 𝐷𝑆1, the private
dataset of Client1.

• 𝑀2 denotes the model trained locally on 𝐷𝑆2, the private
dataset of Client2.

• 𝑀12𝛼 (𝑀21𝛼) represents the model obtained by merging the
two local models by exploiting the private data samples
in 𝐷𝑚𝑒𝑟𝑔𝑒 of Client1 (Client2). Note that this model varies
depending on the specific split and client.

The baseline for this experiment is established by evaluating
models𝑀1 and𝑀2 on the Istella-S test set. Essentially, the merged
models must outperform𝑀1 and𝑀2 for the merging approach to be

Learning to Rank for Non Independent and Identically Distributed Datasets Conference’17, July 2017, Washington, DC, USA

Table 4: Results obtained using the linear combination method. Superscripts a, b denote statistical significance differences w.r.t.
the specified baseline model(s).

Split1 Split2 Split3
nDCG@10 MAP MRR@10 nDCG@10 MAP MRR@10 nDCG@10 MAP MRR@10

M1 (a) 0.619 0.713 0.897 0.742 0.862 0.962 0.748 0.870 0.967
M2 (b) 0.727 0.854 0.968 0.727 0.854 0.967 0.717 0.834 0.961
M12𝛼 0.730𝑎𝑏 0.853𝑎𝑏 0.966𝑎𝑏 0.752𝑎𝑏 0.875𝑎𝑏 0.972𝑎𝑏 0.750𝑎𝑏 0.870𝑏 0.969𝑏

M21𝛼 0.719𝑎𝑏 0.833𝑎𝑏 0.955𝑎𝑏 0.749𝑎𝑏 0.869𝑎𝑏 0.967𝑎 0.751𝑎𝑏 0.873𝑎𝑏 0.968𝑏

considered effective. As value for 𝛼 we sweep from 0 to 1 with a step
size of 0.01, and select the value that yields the highest nDCG@10
on the validation set. This fine-tuned hyperparameter will then be
employed for ranking the test sets. Note that the higher the 𝛼 , the
more weight𝑀2 has in the merged score computation, the lower
the 𝛼 , the more weight𝑀1 has.

Table 4 shows the results obtained for each split. Starting with
𝑆𝑝𝑙𝑖𝑡1, we analyze the results obtained on Client1. The linear com-
bination algorithm yields an optimal 𝛼 value of 0.79. The results
demonstrate that𝑀𝛼 achieves superior performance compared to
all baseline models in terms of the nDCG@10 metric. Notably, this
is accomplished despite the significant performance gap between
𝑀1 and𝑀2, which can be attributed to the smaller training set of
𝑀1. Moving on to Client2, the optimal 𝛼 value is 0.46. Interestingly,
the combined model underperforms compared to 𝑀2 in this sce-
nario. This phenomenon can be attributed to the bias in the data
used to optimize 𝛼 , which contains queries with many relevant
documents from category 11. As a result, the optimization process
assigns more importance to𝑀1, which underperforms compared
to𝑀2 on the original test set.

Regarding Split2, on Client1 the optimal 𝛼 value is 0.47. The
merged model𝑀𝛼 outperforms all the baseline models in terms of
the nDCG@10 metric. On Client2, with an optimal 𝛼 of 0.15, model
𝑀𝛼 outperforms all the baselines.

As for the last split, on Client1, the merged model outperforms
all the baselines with an optimal 𝛼 of 0.57. Finally, for Client2, with
an optimal 𝛼 of 0.14, the merged model 𝑀𝛼 outperforms all the
baselines.

In summary, this method proves effective, especially in scenarios
where both𝑀1 and𝑀2 demonstrate decent performance. However,
it’s essential to note that the overall results would probably be better
if data samples with the same category distribution of Istella’s test
set were used to compute the optimal 𝛼 .

Model Stacking. The baseline for this experiment is established by
evaluating models𝑀1 and𝑀2 on the Istella test set. We denote the
meta-model trained on the scores of𝑀1 and𝑀2 on Client1 as𝑀12𝑆
and the one trained on Client2 as𝑀21𝑆 . The results obtained using
model stacking are presented in Table 5. We begin our analysis with
𝑆𝑝𝑙𝑖𝑡1 on Client1, where we perform hyper-parameter tuning on
𝑀𝑆 . The optimal configuration consists of 60 trees, a learning rate
of 0.2, a minimum data in leaf of 285, 143 leaves, and a minimum
sum Hessian in leaf of 21. Notably, 𝑀𝑆 outperforms 𝑀1, but not
𝑀2, likely due to𝑀1’s underperformance compared to𝑀2 on the
test set. Moving on to Client2, the optimal𝑀𝑆 is configured with

321 trees, a learning rate of 0.05, a minimum data in leaf of 355,
185 leaves, and a minimum sum Hessian in leaf of 3. Although𝑀𝑆

performs slightly better, it is still outperformed by𝑀2.
Continuing with 𝑆𝑝𝑙𝑖𝑡2 on Client1, we perform hyper-parameter

tuning for𝑀𝑆 . The optimized configuration consists of 424 trees, a
learning rate of 0.1, a minimum data in leaf of 405, 65 leaves and a
minimum sum hessian in leaf of 66. In a scenario where both 𝑀1
and 𝑀2 exhibit similar performances on the test set, this method
improves the result of all the baseline models in every metric. The
same results are found on Client2, where the optimal𝑀𝑆 has 132
trees, a learning rate of 0.2, a minimum data in leaf of 190, 93 leaves
and a minimum sum hessian in leaf of 90.

Concluding with 𝑆𝑝𝑙𝑖𝑡3, on Client1 the tuned model 𝑀𝑆 com-
prises 473 trees, with a learning rate set at 0.05. The optimization
process resulted in a minimum data in leaf of 70, 57 leaves, and a
minimum sum hessian in leaf of 26. Unfortunately, while beating
𝑀2,𝑀𝑆 underperforms with respect to𝑀1. This can be attributed to
the higher difference in performance between𝑀1 and𝑀2. However,
on Client2, the new model outperforms even𝑀1. The optimal𝑀𝑆

has 139 trees, a learning rate of 0.1, 117 leaves, a minimum data in
leaf of 100, and a minimum sum of Hessian in leaf of 40.

Figure 3 presents a feature importance plot for themodels trained
using the model stacking approach. This plot is a crucial visualiza-
tion tool in machine learning, as it helps understand the relative
contribution of each feature to the predictive power of the model.
In the context of model stacking, the features used as input to the
meta-model are the output scores of the local models,𝑀1 and𝑀2.
These output scores are encoded as features 221 and 222, respec-
tively. The feature importance plot reveals that, across all models,
the most important features are indeed those containing the output
scores of the local models (features 221 and 222). This suggests that
the meta-model is heavily reliant on the predictions made by the
local models,𝑀1 and𝑀2. This is a desirable outcome, as it indicates
that the model stacking approach is effectively incorporating the
knowledge and strengths of the individual models into its learning
process. In a Non-IID scenario, the data distribution varies across
different domains or partitions, making it challenging for mod-
els to generalize well. Despite this challenge, the model stacking
approach is able to effectively combine the strengths of the local
models, suggesting its robustness in handling Non-IID data.

In summary, our experiments demonstrate that model stacking
is an effective approach to improve the performance of base models
when their individual performances are comparable. By leverag-
ing the strengths of 𝑀1 and 𝑀2, which were trained on non-IID

Conference’17, July 2017, Washington, DC, USA Anon.

Table 5: Results obtained using model stacking. Superscripts a, b indicate statistical significance w.r.t. the specified baseline
model(s).

Split1 Split2 Split3
nDCG@10 MAP MRR@10 nDCG@10 MAP MRR@10 nDCG@10 MAP MRR@10

M1 (a) 0.619 0.713 0.897 0.742 0.862 0.962 0.748 0.870 0.967
M2 (b) 0.727 0.854 0.968 0.727 0.854 0.967 0.717 0.834 0.961
M12𝑆 0.714𝑎𝑏 0.837𝑎𝑏 0.958𝑎𝑏 0.746𝑎𝑏 0.864𝑎𝑏 0.967𝑎 0.743𝑏 0.851𝑎𝑏 0.964𝑏

M21𝑆 0.723𝑎𝑏 0.833𝑎𝑏 0.954𝑎𝑏 0.746𝑎𝑏 0.859𝑎𝑏 0.962𝑏 0.749𝑏 0.868𝑎𝑏 0.968𝑏

0 10 20 30 40 50 60 70
Importance

177

2

141

221

222

Fe
at

ur
es

8

9

10

21

72

(a) Split1, Client1

0 200 400 600 800 1000 1200
Importance

6

4

2

222

221
Fe

at
ur

es

671

684

726

1063

1172

(b) Split1, Client2

0 100 200 300 400
Importance

6

2

193

222

221

Fe
at

ur
es

198

252

268

371

430

(c) Split2, Client1

0 20 40 60 80 100 120 140
Importance

212

1

193

222

221

Fe
at

ur
es

15

16

25

40

139

(d) Split2, Client2

0 200 400 600 800
Importance

1

202

2

222

221

Fe
at

ur
es

513

560

567

722

906

(e) Split3, Client1

0 50 100 150 200 250 300 350
Importance

213

1

2

222

221

Fe
at

ur
es

33

37

41

85

337

(f) Split3, Client2

Figure 3: Feature importance plots for the models trained using the model stacking approach

datasets, the stacked model exploits their specializations in different
aspects of the data, enhancing its effectiveness and generalization
capabilities. The feature importance plots in Figure 3 provide an
objective means to evaluate the meta-model’s ability to effectively
utilize the scores of the base models. However, a key limitation of
this approach is that the dataset used to train the meta-model is
not drawn from the same distribution as the test set, which may
impact its generalization capabilities.

Experiment repeatability. To ensure repeatability of our experi-
ment, in Table 6 we provide the hyper-parameters of the models
trained on the local clients. The experimental setting is described
in Subsection 5.1.

6 CONCLUSION AND FUTUREWORK
This study has explored strategies for addressing non-IID charac-
teristics in Learning to Rank datasets. It has investigated effective
strategies for partitioning a Learning to Rank dataset into two
non-IID subsets and has examined methodologies for merging re-
gression tree forests trained on the same non-IID datasets, aiming
to enhance the overall predictive power of the final model. The
findings indicate that leveraging dataset features for partitioning
an LTR dataset into non-IID subsets can be effective, although, in
real-world scenarios, pre-existing data partitioning may make this
step unnecessary. In such cases, the focus shifts to the methods for
combining LTR models. Results highlight that, particularly when
a small amount of data is available for the merging task, the effec-
tiveness of the combined model typically surpasses the baseline,
improving overall predictive capability.

Learning to Rank for Non Independent and Identically Distributed Datasets Conference’17, July 2017, Washington, DC, USA

Table 6: Hyperparameters of the models trained on the local
clients

M1 M2

Split1

Learning rate 0.05 0.05
Number of leaves 170 237
Min data in leaf 375 65
Min sum of Hessian in leaf 1 1

Split2

Learning rate 0.05 0.05
Number of leaves 193 150
Min data in leaf 20 40
Min sum of Hessian in leaf 1 1

Split3

Learning rate 0.05 0.05
Number of leaves 225 77
Min data in leaf 60 170
Min sum of Hessian in leaf 1 5

However, this study has certain limitations. It was tested only
on one LTR dataset, and while many others are available, they may
require different partitioning strategies. The absence of feature de-
tails in certain datasets, like the Yahoo! Learning to Rank Challenge
dataset6, poses challenges for our approach. The Microsoft LTR
datasets7 [18], in contrast, lack a document category feature. Con-
sequently, exploring alternative features becomes necessary before
attempting dataset partitioning. For instance, PageRank could serve
as a viable option, given that documents with low PageRank values
may prioritize lexical features. However, it’s important to note that
an ideal scenario would involve the availability of a LTR dataset
already pre-partitioned into non-IID subsets.

Another limitation lies in the approach that selects which ranker
to use at runtime. The selection phase needs improvement. A po-
tential solution involves training a binary classifier to choose the
ranker based on input features and selecting the model that ob-
tains the highest NDCG@10 for the specific query. However, this
approach would necessitate new data for training, altering the sce-
nario of the original approach.

Future research directions include applying the methods to real-
world scenarios and extending the LTR model merging to frame-
works beyond that of Gradient Boosted Regression Trees, such as
Neural Networks. These advancements could further enhance the
effectiveness of the proposed strategies.

REFERENCES
[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori

Koyama. 2019. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. arXiv:1907.10902 [cs.LG]

[2] Ricardo Baeza-Yates, Aristides Gionis, Flavio Junqueira, Vassilis Plachouras, and
Luca Telloli. 2009. On the feasibility of multi-site web search engines. In Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Management
(Hong Kong, China) (CIKM ’09). Association for Computing Machinery, New
York, NY, USA, 425–434. https://doi.org/10.1145/1645953.1646009

[3] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. 2011. Algorithms
for Hyper-Parameter Optimization. In Advances in Neural Information Processing
Systems, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger

6https://webscope.sandbox.yahoo.com/catalog.php?datatype=c
7https://www.microsoft.com/en-us/research/project/mslr/

(Eds.), Vol. 24. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf

[4] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,
and Greg Hullender. 2005. Learning to Rank using Gradient Descent. In Proc.
ICML.

[5] Christopher JC Burges. 2010. From RankNet to LambdaRank to LambdaMart: An
overview. Learning (2010).

[6] Christopher J Burges, Robert Ragno, and Quoc V Le. 2007. Learning to Rank with
Nonsmooth Cost Functions. In Proc. NIPS.

[7] B. Barla Cambazoglu, Enver Kayaaslan, Simon Jonassen, and Cevdet Aykanat.
2013. A term-based inverted index partitioning model for efficient distributed
query processing. ACM Trans. Web 7, 3, Article 15 (2013), 23 pages. https:
//doi.org/10.1145/2516633.2516637

[8] Gabriele Capannini, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,
Raffaele Perego, and Nicola Tonellotto. 2016. Quality versus Efficiency in Docu-
ment Scoring with Learning-to-rank Models. Inf. Proc. Man. 52, 6 (2016), 1161–
1177.

[9] Domenico Dato, Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, and
Nicola Tonellotto. 2022. The Istella22 Dataset: Bridging Traditional and Neural
Learning to Rank Evaluation. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (, Madrid, Spain,)
(SIGIR ’22). Association for ComputingMachinery, NewYork, NY, USA, 3099–3107.
https://doi.org/10.1145/3477495.3531740

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
ArXiv abs/1810.04805 (2019).

[11] J. H. Friedman. 2000. Greedy Function Approximation: A Gradient Boosting
Machine. Annals of Statistics 29 (2000), 1189–1232.

[12] Andrea Gigli, Claudio Lucchese, Franco Maria Nardini, and Raffaele Perego. 2016.
Fast Feature Selection for Learning to Rank. In Proc. SIGIR. 167–170.

[13] Michael Greenwald and Sanjeev Khanna. 2001. Space-Efficient Online Com-
putation of Quantile Summaries. SIGMOD Rec. 30, 2 (2001), 58–66. https:
//doi.org/10.1145/376284.375670

[14] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, I. Guyon,
U. Von Luxburg, S. Bengio, H.Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper_
files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[15] Eugene Kharitonov. 2019. Federated Online Learning to Rank with Evolution
Strategies. In Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining (Melbourne VIC, Australia) (WSDM ’19). Association for
Computing Machinery, New York, NY, USA, 249–257. https://doi.org/10.1145/
3289600.3290968

[16] Anagha Kulkarni and Jamie Callan. 2010. Document allocation policies for selec-
tive searching of distributed indexes. In Proceedings of the 19th ACM International
Conference on Information and Knowledge Management (Toronto, ON, Canada)
(CIKM ’10). Association for Computing Machinery, New York, NY, USA, 449–458.
https://doi.org/10.1145/1871437.1871497

[17] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Found. Trends Inf.
Retr. 3, 3 (2009), 225–331. https://doi.org/10.1561/1500000016

[18] Tie-Yan Liu, Jun Xu, Tao Qin, Wen-Ying Xiong, and Hang Li. 2007. LETOR:
Benchmark Dataset for Research on Learning to Rank for Information Retrieval.
https://api.semanticscholar.org/CorpusID:14596754

[19] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Fabrizio Silvestri, and Salvatore Trani. 2016. Post-Learning Optimization of Tree
Ensembles for Efficient Ranking. In Proceedings of the 39th International ACM
SIGIR Conference on Research and Development in Information Retrieval (Pisa,
Italy) (SIGIR ’16). Association for Computing Machinery, New York, NY, USA,
949–952. https://doi.org/10.1145/2911451.2914763

[20] Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando, Raffaele Perego,
Nicola Tonellotto, and Rossano Venturini. 2015. QuickScorer: A Fast Algorithm
to Rank Documents with Additive Ensembles of Regression Trees. In Proc. SIGIR.

[21] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio Silvestri. 2007.
Mining query logs to optimize index partitioning in parallel web search engines.
In Proceedings of the 2nd International Conference on Scalable Information Systems
(, Suzhou, China,) (InfoScale ’07). ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), Brussels, BEL, Article 43,
9 pages.

[22] Charles Masson, Jee E. Rim, and Homin K. Lee. 2019. DDSketch: a fast and
fully-mergeable quantile sketch with relative-error guarantees. Proceedings of
the VLDB Endowment 12, 12 (Aug. 2019), 2195–2205. https://doi.org/10.14778/
3352063.3352135

[23] Qi Meng, Guolin Ke, Taifeng Wang, Wei Chen, Qiwei Ye, Zhi-Ming Ma, and
Tie-Yan Liu. 2016. A Communication-Efficient Parallel Algorithm for De-
cision Tree. In Advances in Neural Information Processing Systems, D. Lee,
M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (Eds.), Vol. 29. Curran
Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2016/file/

https://arxiv.org/abs/1907.10902
https://doi.org/10.1145/1645953.1646009
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/86e8f7ab32cfd12577bc2619bc635690-Paper.pdf
https://doi.org/10.1145/2516633.2516637
https://doi.org/10.1145/2516633.2516637
https://doi.org/10.1145/3477495.3531740
https://doi.org/10.1145/376284.375670
https://doi.org/10.1145/376284.375670
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1145/3289600.3290968
https://doi.org/10.1145/3289600.3290968
https://doi.org/10.1145/1871437.1871497
https://doi.org/10.1561/1500000016
https://api.semanticscholar.org/CorpusID:14596754
https://doi.org/10.1145/2911451.2914763
https://doi.org/10.14778/3352063.3352135
https://doi.org/10.14778/3352063.3352135
https://proceedings.neurips.cc/paper_files/paper/2016/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf

Conference’17, July 2017, Washington, DC, USA Anon.

10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
[24] Yuya Jeremy Ong, Yi Zhou, Nathalie Baracaldo, and Heiko Ludwig. 2020.

Adaptive Histogram-Based Gradient Boosted Trees for Federated Learning.
arXiv:2012.06670 [cs.LG]

[25] Ming-Feng Tsai, Tie-Yan Liu, Tao Qin, Hsin-Hsi Chen, and Wei-Ying Ma. 2007.
FRank: a Ranking Method with Fidelity Loss. In Proc. SIGIR.

[26] Shuyi Wang and Guido Zuccon. 2022. Is Non-IID Data a Threat in Federated
Online Learning to Rank?. In Proceedings of the 45th International ACM SIGIR
Conference on Research and Development in Information Retrieval (, Madrid, Spain,)
(SIGIR ’22). Association for ComputingMachinery, NewYork, NY, USA, 2801–2813.
https://doi.org/10.1145/3477495.3531709

[27] Yansheng Wang, Yongxin Tong, Dingyuan Shi, and Ke Xu. 2021. An Efficient
Approach for Cross-Silo Federated Learning to Rank. In 2021 IEEE 37th Inter-
national Conference on Data Engineering (ICDE). 1128–1139. https://doi.org/10.
1109/ICDE51399.2021.00102

[28] Q. Wu, C.J.C. Burges, K.M. Svore, and J. Gao. 2010. Adapting Boosting for
Information Retrieval Measures. Information Retrieval (2010).

[29] Qiang Wu, Christopher Burges, Krysta Svore, and Jianfeng Gao. 2010. Adapting
boosting for information retrieval measures. Inf. Retr. 13 (06 2010), 254–270.
https://doi.org/10.1007/s10791-009-9112-1

[30] Chen Zhang, Yu Xie, Hang Bai, Bin Yu, Weihong Li, and Yuan Gao. 2021. A
survey on federated learning. Knowledge-Based Systems 216 (2021), 106775.
https://doi.org/10.1016/j.knosys.2021.106775

[31] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. 2021. Federated learning on
non-IID data: A survey. Neurocomputing 465 (2021), 371–390. https://doi.org/10.
1016/j.neucom.2021.07.098

[32] Shengyao Zhuang and Guido Zuccon. 2021. How do Online Learning to Rank
Methods Adapt to Changes of Intent?. In Proceedings of the 44th International
ACM SIGIR Conference on Research and Development in Information Retrieval (,
Virtual Event, Canada,) (SIGIR ’21). Association for Computing Machinery, New
York, NY, USA, 911–920. https://doi.org/10.1145/3404835.3462937

https://proceedings.neurips.cc/paper_files/paper/2016/file/10a5ab2db37feedfdeaab192ead4ac0e-Paper.pdf
https://arxiv.org/abs/2012.06670
https://doi.org/10.1145/3477495.3531709
https://doi.org/10.1109/ICDE51399.2021.00102
https://doi.org/10.1109/ICDE51399.2021.00102
https://doi.org/10.1007/s10791-009-9112-1
https://doi.org/10.1016/j.knosys.2021.106775
https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1016/j.neucom.2021.07.098
https://doi.org/10.1145/3404835.3462937

	Abstract
	1 Introduction
	2 Related work
	3 Generation of non-IID LTR data
	3.1 Assigning topic-based labels to LTR queries
	3.2 Generating Type 1 splits of the LTR dataset

	4 Model Combination
	5 Experimental evaluation
	5.1 Experimental Setting
	5.2 Experimental Results

	6 Conclusion and future work
	References

