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ABSTRACT

Zero-shot imitation learning algorithms hold the promise of reproducing unseen
behavior from as little as a single demonstration at test time. Existing practical
approaches view the expert demonstration as a sequence of goals, enabling imitation
with a high-level goal selector, and a low-level goal-conditioned policy. However,
this framework can suffer from myopic behavior: the agent’s immediate actions
towards achieving individual goals may undermine long-term objectives. We
introduce a novel method that mitigates this issue by directly optimizing the
occupancy matching objective that is intrinsic to imitation learning. We propose to
lift a goal-conditioned value function to a distance between occupancies, which are
in turn approximated via a learned world model. The resulting method can learn
from offline, suboptimal data, and is capable of non-myopic, zero-shot imitation,
as we demonstrate in complex, continuous benchmarks.
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Figure 1: Overview of ZILOT. After learning a world model P̂ and a goal-conditioned value function
V from offline data (left), a zero-order optimizer directly matches the occupancy of rollouts ρ̂π from
the learned world model to the occupancy of a single expert demonstration ρ̂E (center). This is
done by lifting the goal-conditioned value function to a distance between occupancies using Optimal
Transport. The resulting policy displays non-myopic behavior (right).

1 INTRODUCTION

The emergence of zero/few-shot capabilities in language modeling (Brown et al., 2020; Wei et al.,
2022; Kojima et al., 2022) has renewed interest in generalist agents across all fields in machine
learning. Typically, such agents are pretrained with minimal human supervision. At inference, they
are capable of generalization across diverse tasks, without further training, i.e. zero-shot. Such
capabilities have also been a long-standing goal in learning-based control (Duan et al., 2017).
Promising results have been achieved by leveraging the scaling and generalization properties of
supervised learning (Jang et al., 2022; Reed et al., 2022; O’Neill et al., 2023; Ghosh et al., 2024; Kim
et al., 2024), which however rely on large amounts of expert data, usually involving costly human
participation, e.g. teleoperation. A potential solution to this issue can be found in reinforcement
learning approaches, which enable learning from suboptimal data sources (Sutton & Barto, 2018).
Existing methods within this framework ease the burden of learning general policies by limiting the
task class to additive rewards (Laskin et al., 2021; Sancaktar et al., 2022; Frans et al., 2024) or single
goals (Bagatella & Martius, 2023).

This work lifts the restriction of previous approaches, and proposes a method that can reproduce rich
behaviors from offline, suboptimal data sources. In particular, we allow arbitrary tasks to be specified
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through a single demonstration at inference time, conforming to a zero-shot Imitation Learning (IL)
framework. From a practical standpoint, this demonstration may be partial (i.e., lack action labels) and
rough (e.g., only contain a small set of abstract key states to be reached). For example, when tasking a
robot arm with moving an object along a path, it is sufficient to provide the object’s position for a few
“checkpoints” without specifying the exact pose that the arm has when each checkpoint is reached.

In principle, a specified goal sequence can be decomposed into multiple single-goal tasks that can be
accomplished by goal-conditioned policies, as proposed by recent zero-shot IL approaches (Pathak
et al., 2018; Hao et al., 2023). However, we show that this decomposition is prone to myopic behavior.
Continuing the robotic manipulation example from above, let us consider a task described by two
sequential goals, each specifying a certain position that the object should reach. In this case an
optimal goal-conditioned policy would attempt to reach the first goal as fast as possible, and possibly
throw the object towards it. The agent would then relinquish control of the object, leaving it in a
suboptimal—or even unrecoverable—state. In this case, the agent would be unable to move the object
towards the second goal. This myopic behavior is a fundamental issue arising from goal abstraction,
as we formally argue in Section 3, and results in catastrophic failures in hard-to-control environments,
as we demonstrate empirically in Section 5.

In this work we instead provide an holistic solution to zero-shot offline imitation learning by adopting
an occupancy matching formulation. We name our method ZILOT (Zero-shot Offline Imitation
Learning from Optimal Transport). We utilize Optimal Transport (OT) to lift the state-goal distance
inherent to GC-RL to a distance between the expert’s and the policy’s occupancies, where the latter is
approximated by querying a learned world model. Furthermore, we operationalize this distance as an
objective in a standard fixed horizon MPC setting. Minimizing this distance leads to non-myopic
behavior in zero-shot imitation. We verify our claims empirically by comparing our planner to
previous zero-shot IL approaches across multiple robotic simulation environments, down-stream
tasks, and offline datasets. Our code is available on our anonymous website1.

2 PRELIMINARIES

2.1 IMITATION LEARNING

We model an environment as a controllable Markov Chain2 M = (S,A, P, µ0), where S and A are
state and action spaces, P : S ×A → Ω(S)3 is the transition function and µ0 ∈ Ω(S) is the initial
state distribution. In order to allow for partial demonstrations, we additionally define a goal space G
and a surjective function ϕ : S → G which maps each state to its abstract representation. To define
“goal achievement”, we assume the existence of a goal metric h on G that does not need to be known.
We then regard state s ∈ S as having achieved goal g ∈ G if we have h(ϕ(s), g) < ϵ for some fixed
ϵ > 0. For each policy π : S → Ω(A), we can measure the (undiscounted) N -step state and goal
occupancies respectively as

ϱπN (s) =
1

N + 1

N∑
t=0

Pr[s = st] and ρπN (g) =
1

N + 1

N∑
t=0

Pr[g = ϕ(st)], (1)

where s0 ∼ µ0, st+1 ∼ P (st, at) and at ∼ π(st). These quantities are particularly important
in the context of imitation learning. We refer the reader to Liu et al. (2023) for a full overview
over IL settings, and limit this discussion to offline IL. Specifically, we assume access to two
datasets: Dβ = (si0, a

i
0, s

i
1, a

i
1, . . . )

|Dβ |
1 consisting of full state-action trajectories from M and

DE = (gi0, g
i
1, . . . )

|DE |
1 containing demonstrations of an expert in the form of goal sequences, not

necessarily abiding to the dynamic ofM. Note that both datasets do not have reward labels. The
goal is to train a policy π that imitates the expert, which is commonly formulated as matching goal
occupancies

ρπN
D
= ρπE

N . (2)
The only additional constraint imposed by zero-shot offline IL is that DE consists of just one
goal-sequence (g0, . . . , gM ) = g0:M , and is only available at inference time.

1https://sites.google.com/view/zsilot
2or reward-free Markov Decision Process.
3where Ω(S) denotes the set of distributions over S.

2
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Figure 2: An example of Optimal Transport between the discrete approximation µ̂, ν̂ of two Gaussians
µ, ν. The cost matrix C consists of the point-wise costs where the cost here is the Euclidian distance.
A coupling matrix T ∈ U(µ̂, ν̂) (middle) is visualized through lines representing the matching (right).

2.2 OPTIMAL TRANSPORT

In the field of machine learning, it is often of interest to match distributions, i.e. find some probability
measure µ that resembles some other probability measure ν. In recent years there has been an
increased interest in Optimal Transportation (OT) (Amos et al., 2023; Haldar et al., 2022; Bunne
et al., 2023; Pooladian et al., 2024). As illustrated in figure 2, OT does not only compare probability
measures in a point-wise fashion, like f -Divergences such as the Kullbach-Leibler Divergence (DKL),
but also incorporates the geometry of the underlying space. This also makes OT robust to empirical
approximation (sampling) of probability measures (Peyré & Cuturi (2019), p.129).

Formally, OT describes the coupling γ ∈ P(X × Y) of two measures µ ∈ P(X ), ν ∈ P(Y) with
minimal transportation cost w.r.t. some cost function c : X × Y → R. The primal Kantorovich form
is given as the optimization problem

OTc(µ, ν) = inf
γ∈U(µ,ν)

∫
X×Y

c(x1, x2)dγ(x1, x2) (3)

where the optimization is over all joint distributions of µ and ν denoted as γ ∈ U(µ, ν) (couplings).
If X = Y and (X , c) is a metric space then for p ∈ N, W p

p = OTcp is called the Wasserstein-p
distance which was shown to be a metric on the subset of measures on X with finite p-th moments
(Clement & Desch, 2008).

Given samples x1, . . . , xn ∼ µ and y1, . . . , ym ∼ ν the discrete OT problem between the discrete
probability measures µ̂ =

∑n
i=1 aiδxi

and ν̂ =
∑m

j=1 bjδyj
can be written as a discrete version of

equation 3, namely

OTc(µ̂, ν̂) = min
T∈U(a,b)

n∑
i=1

m∑
j=1

c(xi, yj)Tij = min
T∈U(a,b)

⟨C,T ⟩ (4)

with the cost matrix Cij = c(xi, yj). The marginal constraints can now be written as U(a, b) =
{T ∈ Rn×m : T · 1m = b and T⊤ · 1n = a}. This optimization problem can be solved via Linear
Programming. Furthermore, Cuturi (2013) shows that the entropically regularized version, commonly
given as OTc,η(µ̂, ν̂) = minT∈U(a,b)⟨C,T ⟩ − ηDKL(T ,ab

⊤), can be efficiently solved in its dual
form using Sinkhorn’s algorithm (Sinkhorn & Knopp, 1967).

2.3 GOAL-CONDITIONED REINFORCEMENT LEARNING

As techniques from the literature will be recurring in this work, we provide a short introduction to
fundamental ideas in GC-RL. We can introduce this framework by enriching the controllable Markov
ChainM. We condition it on a goal g ∈ G and cast it as an (undiscounted) Markov Decision Process
Mg = (S ∪ {⊥},A, Pg, µ0, Rg, Tmax). Compared to the reward-free setting above, the dynamics
now include a sink-state ⊥ upon goal-reaching and a reward of −1 until this happens:

Pg(s, a) =

{
P (s, a) if h(ϕ(s), g) ≥ ϵ
δ⊥ otherwise

, Rg(s, a) =

{
−1 if h(ϕ(s), g) ≥ ϵ
0 otherwise

(5)

where δx stands for the probability distribution assigning all probability mass to x.

3
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We can now define the goal-conditioned value function as

V π(s0, g) = E
µ0,Pg,π

[
Tmax∑
t=0

Rg(st, at)

]
where s0 ∼ µ0, st+1 ∼ Pg(st, at), at ∼ π(st, g). (6)

The optimal goal-conditioned policy is then π⋆ = argmaxπ Eg∼µG ,s∼µ0
V π(s0; g) for some goal

distribution µG ∈ Ω(G). Intuitively, the value function V π(s, g) corresponds to the negative number
of expected steps that π needs to move from state s to goal g. Thus the distance d = −V ⋆ corresponds
to the expected first hit time. If no goal abstraction is present, i.e. ϕ = idS , then (S, d) is a quasimetric
space (Wang et al., 2023), i.e. d is non-negative and satisfies the triangle inequality. Note, though,
that d does not need be be symmetric.

3 GOAL ABSTRACTION AND MYOPIC PLANNING

The distribution matching objective at the core of IL problems is in general hard to optimize. For
this reason, most4 practical methods for zero-shot IL leverage a hierarchical decomposition into a
sequence of GC-RL problems (Pathak et al., 2018; Hao et al., 2023). We will first describe this
approach, and then show how it potentially introduces myopic behavior and suboptimality.

In the pretraining phase, Pathak et al. (2018) propose to train a goal-conditioned policy πg : S ×G →
A on reaching single goals and a goal-recognizer C : S × G → {0, 1} that detects whether a given
state achieves the given goal. Given an expert demonstration g1:M and an initial state s0, imitating
the expert can then be sequentially decomposed into M goal-reaching problems, and solved with
a hierarchical agent consisting of two policies. On the lower level, πg chooses actions to reach the
current goal; on the higher level, C decides whether the current goal is achieved and πg should target
the next goal in the sequence.

We define the pre-image ϕ−1(g) = {s ∈ S : ϕ(s) = g} as the set of all states that map to
a goal, and formalize the suboptimality of the above method under goal abstraction as follows.

(0, 0)start (1, 0)

(1, 1) (2, 1)

a0

1-p
p a1

a0

a0 a0

ϕ−1(g0)

ϕ−1(g1) ϕ−1(g2)

Figure 3: Controllable Markov Chain
with ϕ : (x, y) 7→ x.

Proposition 1. Let us define the optimal classifier C(s, g) =
1h(ϕ(s),g)<ϵ. Given a set of visited states P ⊆ S , the current
state s ∈ P , and a goal sequence g1:M ∈ GM , let the
optimal hierarchical policy be π⋆

h(s) = π⋆(s, gi+1), where
i is the smallest integer such that there exist a state sp ∈ P
with h(ϕ(sp), gi) < ϵ, and i = 0 otherwise. There exists a
controllable Markov ChainM and a realizable sequence of
goals g0:M such that, under a suitable goal abstraction ϕ(·),
π⋆
h will not reach all goals in the sequence, i.e. ρπ

⋆
h

N (gi) = 0
for some i ∈ [0, . . . ,M ] and all N ∈ N.

Proof. Consider the Markov ChainM depicted in figure 3 with goal abstraction ϕ : (x, y) 7→ x
and p > 0. Now, consider the goal sequence (g0, g1, g2) = (0, 1, 2), which can only be achieved,
by a policy taking action a1 in the initial state s0 = (0, 0). Consider π⋆

h in s0, with P = {s0}. The
smallest integer i such that h(ϕ(s0), gi) < ϵ is i = 0, therefore π⋆

h(s0) = π⋆(s0, g1). We can then
compare the state-action values Q in s0:

Qπ⋆(·,g1)(s0, a1, g1) =

Tmax∑
t=0

−pt = −1 · 1− p
(Tmax+1)

1− p
< −1 = Qπ⋆(·,g1)(s0, a0, g1). (7)

This implies that π⋆
h(s0) = π⋆(s0, 1) = a0. The next state visited by π⋆

h will always be (1, 0), from
which (2, 1) is not reachable, and g2 is not achievable. We thus have ρπ

⋆
h

N (g2) = 0 for all N ∈ N.

We remark that this issue arises in the presence of goal abstraction which plays a vital role in the
partial demonstration setting we consider. Without goal abstraction, i.e., if each goal is fully specified,
there is no leeway in how to achieve it for the policy (assuming ϵ→ 0 as well). Nevertheless, goal
abstraction is ubiquitous in practice (Schaul et al., 2015) and necessary to enable learning in complex
environments (Andrychowicz et al., 2017).

4One exception is FB-IL (Pirotta et al., 2024) which we discuss in detail in appendix B.
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4 OPTIMAL TRANSPORT FOR ZERO-SHOT IL

Armed with recent tools in value estimation, model-based RL and trajectory optimization, we propose
a method for zero-shot offline imitation learning that directly optimizes the occupancy matching
objective, introducing only minimal approximations. As a result, the degree of myopia is greatly
reduced, as we show empirically in section 5.

In particular, we propose to solve the occupancy matching problem in equation 2 by minimizing the
Wasserstein-1 metric W1 with respect to goal metric h on the goal space G, i.e.

W1(ρ
π
N , ρ

E
N ) = OTh(ρ

π
N , ρ

E
N ). (8)

This objective involves two inaccessible quantities: goal occupancies ρπN , ρ
E
N , as well as the goal

metric h. Our key contribution lies in how these quantities can be practically estimated, enabling
optimization of the objective with scalable deep RL techniques.

Occupancy Estimation Since the expert’s and the policy’s occupancy are both inaccessible, we
opt for discrete, sample-based approximations. In the case of the expert occupancy ρEN , the single
trajectory provided at inference (g0, . . . , gM ) represents a valid sample from it, and we use it directly.
For an arbitrary agent policy π, we use a discrete approximation after training a dynamics model
P̂ ≈ P on Dβ , which can be done offline through standard supervised learning. We can then
approximate ρπN by jointly rolling out the learned dynamics model and the policy π. We thus get the
discrete approximations

ρEN ≈ ρ̂EM =
1

M + 1

M∑
j=0

δgj and ρπN ≈ ρ̂πN =
1

N + 1

N∑
t=0

δϕ(st) (9)

where for the latter we sample s0 ∼ µ0, st+1 ∼ P̂ (st, at), at ∼ π(st). Similarly, we can also obtain
an estimate for the state occupancy of π as ϱπN ≈ ϱ̂πN = 1

N+1

∑N
t=0 δst .

Metric Approximation As h may be unavailable or hard to specify in practical settings, we
propose to train a goal-conditioned value function V ⋆ from the offline data Dβ and use the distance
d(s, g) = −V ⋆(s, g) (i.e. the learned first hit time) as a proxy. For a given state-goal pair (s, g),
this corresponds to the approximation d(s, g) ≈ h(ϕ(s), g). It is easy to show that a minimizer of
h(ϕ(·), g) also minimizes d(·, g). Using d also has the benefit of incorporating the dynamics of the
MDP into the cost of the OT problem. The use of this distance has seen some use as the cost function
in Wasserstein metrics between state occupancies in the past (Durugkar et al., 2021). As we show in
section 5.3, d is able to capture potential asymmetries in the MDP, while remaining informative of h.
We note that, while h : G × G → R is a distance in goal-space, d : S × G → R is a distance between
states and goals. Nonetheless, d remains applicable as the policy’s occupancy can also be estimated
in state spaces as ϱ̂πN . Given the above considerations, we can rewrite our objective as the discrete
optimal transport problem

π⋆ = argmin
π

OTd(ϱ̂
π
N , ρ̂

E
M ). (10)

Optimization Having addressed density and metric approximations, we now focus on optimizing
the objective in equation 10. Fortunately, as a discrete OT problem, the objective can be evaluated
efficiently using Sinkhorn’s algorithm when introducing entropic regularization with a factor η (Cuturi,
2013; Peyré & Cuturi, 2019). A non-Markovian, deterministic policy optimizing the objective at state
sk ∈ S can be written as

π(s0:k, g0:m) ≈ argmin
ak

min
ak+1:N−1

OTd,η

 1

N + 1

N∑
i=0

δsi ,
1

M + 1

M∑
j=0

δgj

 (11)

where s0:k are the states visited so far and sk+1:N are rolled out using the learned dynamics model
P̂ and actions ak:N−1. Note that while s0:k are part of the objective, they are constant and are not
actively optimized.

5
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Intuitively, this optimization problem corresponds to finding the first action from a sequence (ak:N−1)
that minimizes the OT costs between the empirical expert goal occupancy, and the induced empirical
policy state occupancy. This type of optimization problem fits naturally into the framework of planning
with zero-order optimizers and learned world models (Chua et al., 2018; Ha & Schmidhuber, 2018);
while these algorithms are traditionally used for additive costs, the flexibility of zero-order optimizers
(Rubinstein & Kroese, 2004; Williams et al., 2015; Pinneri et al., 2020) allows a straightforward
application to our problem. The objective in equation 11 can thus be directly optimized with CEM
variants (Pinneri et al., 2020) or MPPI (Williams et al., 2015), in a model predictive control (MPC)
fashion.

Like for other MPC approaches, we are forced to plan for a finite horizon H , which might be smaller
than N , because of imperfections in the learned dynamics model or computational constraints. This
is referred to as receding horizon control (Datko, 1969). When the policy rollouts used for computing
ϱ̂πN are truncated, it is also necessary to truncate the goal sequence to exclude any goals that cannot
be reached within H steps. To this end, we train an extra value function W that estimates the
number of steps required to go from one goal to the next by regressing onto V , i.e. by minimizing
Es,s′∼Dβ

[(W (ϕ(s);ϕ(s′))−V (s;ϕ(s′)))2]. For i ∈ [0, . . . ,M ], we can then estimate the time when
gi should be reached as

ti ≈ −V (s0; g0)−
i∑

j=1

W (gj−1; gj). (12)

We then simply truncate the online problem to only consider goals relevant to s1, . . . , sk+H , i.e.
g0, . . . , gK whereK = min{j : tj ≥ k+H}. We note that this approximation of the infinite horizon
objective can potentially result in myopic behavior if K < M ; nonetheless, optimal behavior is
recovered as the effective planning horizon increases.

Algorithm 1 shows how the practical OT objective is computed.

Algorithm 1 OT cost computation for ZILOT

Require: Pretrained GC value functions V,W and dynamics model P̂ ; horizon H , solver iterations
r and regularization factor η.

Initialization: State s0 and expert trajectory g1:M , precomputed t0:M according to equation 12
Input: State history and current state s0:k, future actions ak:k+H−1

sk+1:k+H ← rollout(P̂ , sk, ak:k+H−1) ▷ Rollout learned dynamics
K ← min{j : tj ≥ k +H} ▷ Compute which goals are reachable
Cij ← −V (si; gj) for (i, j) ∈ {0, . . . , k +H} × {0, . . . ,K} ▷ Compute cost matrix
a← 1

k+H+11k+H+1, b← 1
K+11K+1 ▷ Compute uniform marginals

T ← sinkhorn(a, b,C, r, ϵ) ▷ Run Sinkhorn Algorithm
return

∑
ij TijCij ▷ Return OT cost

Implementation The method presented relies solely on three learned components: a dynamics
model P̂ , and the state-goal and goal-goal GC value functions V and W . All of them can be learned
offline from the dataset Dβ . In practice, we found that several existing deep reinforcement learning
frameworks can be easily adapted to learn these functions. We adopt TD-MPC2 (Hansen et al.,
2024), a state of the art model-based algorithm that has shown promising results in single- and
multitask online and offline RL. We note that planning takes place in the latent space constructed
by TD-MPC2’s encoders. We adapt the method to allow estimation of goal-conditioned value
functions, as described in appendix C. We follow prior work (Andrychowicz et al., 2017; Bagatella
& Martius, 2023; Tian et al., 2021) and sample goals from the future part of trajectories in Dβ in
order to synthesize rewards without supervision. We note that this goal-sampling method also does
not require any knowledge of h.

6
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5 EXPERIMENTS

This section constitutes an extensive empirical evaluation of ZILOT for zero-shot IL. We first describe
our experimental settings in terms of environment, baselines and metrics, and then present qualitative
and quantitative result, as well as an ablation study. We consider a selection of 30 tasks defined over
5 environments, as summarized below and described in detail in appendix A and C.

fetch (Plappert et al., 2018) is a manipulation suite in which a robot arm either pushes (Push), or
lifts (Pick&Place) a cube towards a goal. We adopt these two environments directly. To illustrate the
failure cases of myopic planning, we also evaluate a variation of Push (i.e. Slide), in which the table
size exceeds the arm’s range, the table’s friction is reduced, and the arm is constrained to be always
touching the table. As a result, the agent cannot fully constrain the cube, e.g. by picking it up, or
pressing on it, and the environment strongly punishes careless manipulation. In all three environments,
tasks consist of moving the cube along trajectories shaped like the letters “S”, “L”, and “U”.

halfcheetah (Wawrzyński, 2009) is a classic Mujoco environment where the agent controls a
cat-like agent in a 2D horizontal plane. As this environment is not goal-conditioned by default, we
choose the x-coordinate and the orientation of the cheetah as a meaninful goal-abstraction. This
allows the definition of tasks involving standing up and hopping on front or back legs, as well as
doing flips.

pointmaze (Fu et al., 2021) involves maneuvering a pointmass through a maze via force control.
Downstream tasks consist of following a series of waypoints through the maze.

Planners The most natural comparison is the framework proposed by Pathak et al. (2018), which
addresses imitation through a hierarchical decomposition, as discussed in section 3. We discuss
FB-IL (Pirotta et al., 2024), a zero-shot IL method that considers a slightly different setting in
detail in appendix B. Both hierarchical components are learned within TD-MPC2: the low-level
goal-conditioned policy is by default part of TD-MPC2, while the goal-classifier (Cls) can be obtained
by thresholding the learned value function V . We privilege this baseline (Policy+Cls) by selecting
the threshold minimizing Wmin per environment among the values [1, 2, . . . , 5]. Moreover, we also
compare to a version of this baseline replacing the low-level policy with zero-order optimization of the
goal-conditioned value function (MPC+Cls), thus ablating any benefits resulting from model-based
components. We remark that all MPC methods use the same zero-order optimizer iCEM (Pinneri
et al., 2020).

Metrics We report two metrics for evaluating planner performance. The first one is the minimal
encountered (empirical) Wasserstein-1 Distance under the goal metric h of the agent’s trajectory and
the given goal sequence. Formally, given trajectory (s0, . . . , sN ) and the goal sequence (g0, . . . , gM )
we define

Wmin(s0:N , g1:M ) := min
k∈{0,...,N}

W1

 1

k + 1

k∑
i=0

δϕ(si),
1

M + 1

M∑
j=0

δgj

 . (13)

This metric takes the minimum over the trajectory length as it is in general hard to estimate the exact
number of steps needed to imitate a goal sequence. We introduce a secondary metric “GoalFraction”
since Wmin does not evaluate the order in which goals are reached. It represents the fraction of goals
that are achieved in the order they were given. Formally, this corresponds to the length of the longest
subsequence of achieved goals that matches the desired order.

5.1 CAN ZILOT EFFECTIVELY IMITATE UNSEEN TRAJECTORIES?

We first set out to qualitatively evaluate whether the method is capable of imitation in complex
environments, despite practical approximations. Figure 4 illustrates how Pi+Cls, MPC+Cls, and
ZILOT imitate an expert sliding a cube across the big table of the fetch slide large 2D
environment. Both myopic baselines struggle to regain control over the cube after moving it towards
the second goal, leading to straight trajectories that leave the manipulation range. In contrast, ZILOT
plans beyond the second goal. As displayed in the middle part of figure 4, the coupling of the OT
problem approximately pairs up each state in the planned trajectory with the appropriate goal. This
leads to closer imitation of the expert, as shown in the renders.
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y

x

Pi+Cls MPC+Cls ZILOT (ours)

All Trajectories Plan Render

Future States (dec)
Past States (dec)

Figure 4: Example tasks in fetch slide large 2D. The left three columns show five trajectories
across five seeds of both myopic methods we evaluate (Pi+Cls, MPC+Cls) and ZILOT (ours). The
trajectories are drawn in the x-y-plane of the goal space and just show the movement of the cube.
ZILOT’s behavior imitates the given goal trajectories more closely. On the right, we visualize the
OT objective at around three quarters of the episode time. It includes both the past and planned
future states, as well as their coupling to the goals. Note that planning occurs in the latent state of
TD-MPC2, and separately trained decoders are used for this visualization.

5.2 HOW DOES ZILOT PERFORM COMPARED TO PRIOR METHODS?

We provide a quantitative evaluation of ZILOT with respect to myopic methods in table 1. For more
details we refer the reader to appendix A. As ZILOT directly optimizes a distribution matching objec-
tive, it generally reproduces expert trajectories more closely, achieving a lower Wasserstein distance to
its distribution. This is especially evident in environments that are very punishing to myopic planning,
such as the Fetch Slide environment shown in figure 4. In most environments, our method also
out-performs the baselines in terms of the fraction of goals reached. In less punishing environments,
ZILOT may sacrifice precision in achieving the next goal exactly for an overall closer match of the
expert trajectory. This is most clearly visible in the pointmaze environment. We note that the per-
formance of the two baselines is comparable to each other’s, suggesting that the performance gap to
ZILOT stems from the change in objective, rather than implementation or model-based components.

5.3 WHAT MATTERS FOR ZILOT?

To validate some of our design choices we finally evaluate the following versions of our method.

• OT+unbalanced, our method with unbalanced OT (Liero et al., 2018; Séjourné et al., 2019),
which turns the hard marginal constraint U (see section 2.2) into a soft constraint. We use
this method to address the fact that a rough expert trajectory may not necessarily yield a
feasible expert occupancy approximation.

• OT+Cls, a version of our method which includes the goal-classifier (Cls), with the same
hyperparameter search performed for the baselines. This method discards all past states
and goals that are recognized as reached, and does not consider them when computing and
matching occupancies.

• OT+h, our method with the goal metric h on G as the cost function in the OT problem,
replacing d.

Our results are summarized in figure 5. First, we see that using unbalanced OT does not yield
significant improvements. Second, using a goal-classifier can have a bad impact on matching
performance. We suspect this is the case because keeping track of the history of states gives a
better, more informative, estimate of which part of the expert occupancy has already been fulfilled.
Finally, we observe that the goal metric h may not be preferable to d, even if it is available. We

8
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Table 1: Performance of Pi+Cls, MPC+Cls and ZILOT (ours) in all environments and tasks. Each
metric is the mean over 20 trials, we then report the mean and standard deviation of those metrics
across 5 seeds. We perform a Welch t-test with p = 0.05 do distinguish the best values and mark
them bold. Values are rounded to 3 and 2 digits respectively.

Task Wmin ↓ GoalFraction ↑
Pi+Cls MPC+Cls ZILOT (ours) Pi+Cls MPC+Cls ZILOT (ours)

fetch pick and place-L-dense 0.089±0.027 0.109±0.024 0.049±0.019 0.65±0.11 0.58±0.07 0.88±0.07
fetch pick and place-L-sparse 0.112±0.014 0.127±0.022 0.092±0.015 0.62±0.05 0.43±0.04 0.65±0.05
fetch pick and place-S-dense 0.113±0.022 0.101±0.022 0.049±0.014 0.41±0.07 0.62±0.08 0.85±0.08
fetch pick and place-S-sparse 0.081±0.017 0.091±0.007 0.067±0.006 0.57±0.06 0.50±0.04 0.70±0.06
fetch pick and place-U-dense 0.127±0.007 0.116±0.015 0.068±0.005 0.47±0.10 0.60±0.03 0.70±0.02
fetch pick and place-U-sparse 0.142±0.005 0.160±0.008 0.098±0.003 0.51±0.02 0.38±0.03 0.55±0.05
fetch pick and place-all 0.111±0.007 0.117±0.012 0.070±0.009 0.54±0.02 0.52±0.02 0.72±0.04
fetch push-L-dense 0.056±0.001 0.085±0.018 0.041±0.015 0.96±0.03 0.72±0.09 0.91±0.06
fetch push-L-sparse 0.101±0.011 0.103±0.010 0.082±0.004 0.65±0.09 0.44±0.04 0.69±0.06
fetch push-S-dense 0.077±0.024 0.104±0.026 0.049±0.010 0.83±0.09 0.70±0.08 0.87±0.08
fetch push-S-sparse 0.062±0.004 0.077±0.004 0.064±0.006 0.90±0.07 0.65±0.04 0.72±0.06
fetch push-U-dense 0.102±0.044 0.091±0.009 0.065±0.004 0.72±0.18 0.67±0.08 0.77±0.02
fetch push-U-sparse 0.106±0.014 0.131±0.012 0.109±0.007 0.70±0.12 0.45±0.05 0.53±0.03

fetch push-all 0.084±0.007 0.098±0.010 0.068±0.005 0.79±0.05 0.61±0.03 0.75±0.03
fetch slide large 2D-L-dense 0.258±0.022 0.217±0.034 0.074±0.011 0.26±0.06 0.40±0.11 0.76±0.03
fetch slide large 2D-L-sparse 0.223±0.014 0.185±0.027 0.120±0.011 0.47±0.10 0.70±0.05 0.73±0.04
fetch slide large 2D-S-dense 0.299±0.006 0.254±0.022 0.111±0.010 0.21±0.10 0.31±0.06 0.51±0.07
fetch slide large 2D-S-sparse 0.266±0.006 0.230±0.021 0.086±0.015 0.31±0.02 0.43±0.02 0.74±0.04
fetch slide large 2D-U-dense 0.214±0.029 0.191±0.045 0.076±0.009 0.30±0.07 0.35±0.10 0.76±0.04
fetch slide large 2D-U-sparse 0.169±0.043 0.150±0.012 0.120±0.005 0.36±0.09 0.53±0.04 0.70±0.06
fetch slide large 2D-all 0.238±0.008 0.205±0.020 0.098±0.007 0.32±0.04 0.45±0.04 0.70±0.02
halfcheetah-backflip 3.089±0.588 4.281±0.371 2.625±0.780 0.28±0.13 0.12±0.12 0.57±0.17
halfcheetah-backflip-running 2.879±0.427 3.044±0.752 2.171±0.454 0.44±0.10 0.46±0.18 0.58±0.11
halfcheetah-frontflip 1.544±0.127 1.695±0.147 1.295±0.094 0.77±0.09 0.79±0.12 1.00±0.00
halfcheetah-frontflip-running 2.086±0.133 2.083±0.104 1.955±0.057 0.70±0.08 0.81±0.07 0.85±0.03
halfcheetah-hop-backward 0.806±0.110 0.950±0.075 0.589±0.107 0.96±0.03 0.90±0.02 0.96±0.03
halfcheetah-hop-forward 1.580±0.069 1.392±0.206 1.101±0.152 0.51±0.07 0.62±0.14 0.58±0.12
halfcheetah-run-backward 0.897±0.092 0.679±0.035 0.489±0.167 0.96±0.04 1.00±0.00 0.99±0.01
halfcheetah-run-forward 0.857±0.044 0.822±0.206 0.376±0.019 1.00±0.01 0.94±0.08 1.00±0.00
halfcheetah-all 1.717±0.101 1.868±0.079 1.325±0.123 0.70±0.05 0.71±0.02 0.82±0.02
pointmaze medium-circle-dense 0.243±0.038 0.221±0.021 0.156±0.010 1.00±0.00 1.00±0.00 1.00±0.00
pointmaze medium-circle-sparse 0.385±0.015 0.404±0.025 0.466±0.024 1.00±0.00 1.00±0.00 0.81±0.11
pointmaze medium-path-dense 0.275±0.063 0.235±0.023 0.199±0.013 1.00±0.00 1.00±0.00 1.00±0.00
pointmaze medium-path-sparse 0.555±0.080 0.511±0.035 0.459±0.015 1.00±0.00 1.00±0.00 0.97±0.03
pointmaze medium-all 0.365±0.021 0.343±0.023 0.320±0.009 1.00±0.00 1.00±0.00 0.94±0.04

mainly attribute this to the fact that, in the considered environments, any action directly changes
the state occupancy, but the same cannot be said for the goal occupancy. Since h only allows for
the comparison of goal occupancies, the optimization landscape can be very flat in situations where
most actions do not change the future state trajectory under goal abstraction, such as the start of
fetch tasks as visible in its achieved trajectories in the figures in appendix D. Furthermore, while h
is locally accurate, it ignores the global geometry of MDPs, as shown by its poor performance in
strongly asymmetric environments (i.e., halfcheetah).
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Figure 5: Ablation of design choices in ZILOT, including coupling constraints (OT+unbalanced),
partial trajectory matching (OT+Cls), and the approximation of h by d (OT+h). For more detailed
results, please refer to table 2.
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6 RELATED WORK

Zero-shot IL When a substantial amount of compute is allowed at inference time, several methods
have been proposed to leverage pretrained models to infer actions, and retrieve an imitator policy via
behavior cloning (Pan et al., 2020; Zhang et al., 2023; Torabi et al., 2018). As already discussed in
section 3, most (truly) zero-shot methods cast the problem of imitating an expert demonstration as fol-
lowing the sequence of its observations (Pathak et al., 2018; Hao et al., 2023). Expert demonstrations
are then imitated by going from one goal to the next using a goal-conditioned policy. In contrast, our
work proposes a holistic approach to imitation, which considers all goals within the planning horizon.

Zero-Shot RL Vast amounts of effort have been dedicated to learning generalist agents without
supervision, both on the theoretical (Touati & Ollivier, 2021; Touati et al., 2023) and practical side
(Laskin et al., 2021; Mendonca et al., 2021). Among others, (Sancaktar et al., 2022; P. et al., 2021;
Bagatella & Martius, 2023) learn a dynamics model through curious exploration and show how it
can be leveraged to optimize additive objectives. More recently, Frans et al. (2024) use Functional
Reward Encodings to encode arbitrary additive reward functions in a latent that is used to condition
a policy. While these approaches are effective in a standard RL setting, they are not suitable to
solve instances of global RL problems (Santi et al., 2024) (i.e., distribution matching). One notable
exception is the forward-backward framework (Touati & Ollivier, 2021; Pirotta et al., 2024), which
we discuss in detail in appendix B.

Imitation Learning A range of recent work has been focused on training agents that imitate experts
from their trajectories by matching state, state-action, or state-next-state occupancies depending on
what is available. These methods either directly optimize various distribution matching objectives
(Liu et al., 2023; Ma et al., 2022) or recover a reward using Generative Adversarial Networks (GAN)
(Ho & Ermon, 2016; Li et al., 2023) or in one instance OT (Luo et al., 2023). Another line of work
has shown impressive real-world results by matching the action distributions (Shafiullah et al., 2022;
Florence et al., 2021; Chi et al., 2023) directly. All these approaches do not operate in a zero-shot
fashion, or need ad-hoc data collection.

OT in RL Various previous work has used Optimal Transport in RL as a reward signal. One
application is online fine-tuning where a policy’s rollouts are rewarded in proportion to how closely
they match expert trajectories or the rollouts of experts (Dadashi et al., 2021; Haldar et al., 2022). Luo
et al. (2023) instead use a similar trajectory matching strategy to recover reward labels for unlabelled
mixed-quality offline datasets. Most of the works mentioned above do not have any special metric or
cost-function they use for their OT problems. The most common choices are Cosine Similarities and
Euclidean distances for their general applicability.

7 DISCUSSION

In this work, we point out a failure-mode of current zero-shot IL methods that cast imitating an
expert demonstration as following a sequence of goals with myopic GC-RL policies. We address this
issue by framing the problem as occupancy matching. By introducing discretizations and minimal
approximations, we derive an Optimal Transportation problem that can be directly optimized at
inference time using a learned dynamics model, goal-conditioned value functions, and zero-order
optimizer. Our experimental results across various environments and tasks show that our approach
outperforms state-of-the-art zero-shot IL methods, particularly in scenarios where non-myopic
planning is crucial. We additionally validate our design choices through a series of ablations.

Limitations Our method is limited in practice by relying on a learned world model and to a lesser
extent also by limited compute. The inaccuracy and computational cost of predictions from learned
dynamics models increases with the prediction horizon. This forces the optimization of a fixed-
horizon objective, which reintroduces a slight degree of myopia, as the agent may fail to consider
goals beyond the planning horizon. However, we found the degree of myopia to be acceptable in
our experimental settings, and expect our framework to become more and more applicable as the
accuracy of learned world models improves. The fact that ZILOT is non-markovian, even when
expert demonstrations are markovian can be viewed as a further limitation as it requires that all past
states of the current episode are stored during execution.
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Reproducibility Statement Our code will be uploaded to our anonymous website5. The imple-
mentation details are provided in the appendix C.
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A ADDITIONAL RESULTS

A.1 MAIN RESULT DETAILS

In table 2 we provide detailed results for all ablations. We also provide a summarized version of the
results in figure 6.

0.0
0.1
0.2
0.3

W
m

in
 

fetch_pick_and_place

0.0
0.1
0.2
0.3

fetch_push

0.0
0.1
0.2
0.3
fetch_slide_large_2D

0

2
halfcheetah

0

1

pointmaze_medium

0.0

0.5

1.0

Go
al

Fr
ac

tio
n 

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Pi+Cls MPC+Cls ZILOT+h ZILOT+Cls ZILOT+Unbalanced ZILOT (ours)

0.0

0.5

1.0

Figure 6: Summarized performance of all discussed Planners. See table 1 and table 2 for detailed
results.

Table 2: Performance of our method and its ablations in all environments and tasks. Each metric is
the mean over 20 trials, we then report the mean and standard deviation of those metrics across 5
seeds. We perform a Welch t-test with p = 0.05 do distinguish the best values and mark them bold.
Values are rounded to 3 and 2 digits respectively.

Task Wmin ↓ GoalFraction ↑
ZILOT+h ZILOT+Cls ZILOT+Unbalanced ZILOT (ours) ZILOT+h ZILOT+Cls ZILOT+Unbalanced ZILOT (ours)

fetch pick and place-L-dense 0.214±0.033 0.091±0.011 0.052±0.018 0.049±0.019 0.26±0.10 0.68±0.04 0.84±0.07 0.88±0.07
fetch pick and place-L-sparse 0.188±0.014 0.158±0.004 0.095±0.016 0.092±0.015 0.40±0.01 0.35±0.02 0.65±0.08 0.65±0.05
fetch pick and place-S-dense 0.198±0.042 0.089±0.019 0.045±0.006 0.049±0.014 0.36±0.15 0.71±0.07 0.86±0.03 0.85±0.08
fetch pick and place-S-sparse 0.174±0.029 0.115±0.009 0.056±0.008 0.067±0.006 0.42±0.08 0.57±0.02 0.76±0.08 0.70±0.06
fetch pick and place-U-dense 0.237±0.043 0.071±0.006 0.060±0.008 0.068±0.005 0.17±0.10 0.74±0.04 0.75±0.04 0.70±0.02
fetch pick and place-U-sparse 0.229±0.034 0.167±0.004 0.101±0.008 0.098±0.003 0.34±0.04 0.33±0.05 0.54±0.05 0.55±0.05
fetch pick and place-all 0.207±0.026 0.115±0.007 0.068±0.008 0.070±0.009 0.32±0.06 0.56±0.02 0.73±0.05 0.72±0.04
fetch push-L-dense 0.211±0.020 0.071±0.006 0.040±0.004 0.041±0.015 0.27±0.06 0.73±0.02 0.91±0.03 0.91±0.06
fetch push-L-sparse 0.200±0.022 0.150±0.005 0.101±0.014 0.082±0.004 0.39±0.06 0.36±0.03 0.65±0.07 0.69±0.06
fetch push-S-dense 0.203±0.046 0.077±0.008 0.049±0.010 0.049±0.010 0.32±0.14 0.72±0.05 0.86±0.05 0.87±0.08
fetch push-S-sparse 0.197±0.055 0.097±0.006 0.060±0.009 0.064±0.006 0.40±0.17 0.56±0.02 0.78±0.06 0.72±0.06
fetch push-U-dense 0.228±0.045 0.068±0.007 0.058±0.009 0.065±0.004 0.20±0.10 0.78±0.04 0.81±0.03 0.77±0.02
fetch push-U-sparse 0.224±0.047 0.136±0.017 0.100±0.007 0.109±0.007 0.36±0.07 0.39±0.05 0.61±0.05 0.53±0.03

fetch push-all 0.211±0.033 0.100±0.006 0.068±0.005 0.068±0.005 0.32±0.08 0.59±0.02 0.77±0.03 0.75±0.03
fetch slide large 2D-L-dense 0.255±0.022 0.098±0.027 0.060±0.009 0.074±0.011 0.26±0.08 0.69±0.08 0.81±0.07 0.76±0.03
fetch slide large 2D-L-sparse 0.236±0.020 0.181±0.039 0.112±0.016 0.120±0.011 0.41±0.04 0.45±0.08 0.83±0.08 0.73±0.04
fetch slide large 2D-S-dense 0.256±0.035 0.105±0.011 0.091±0.009 0.111±0.010 0.23±0.10 0.63±0.03 0.59±0.10 0.51±0.07
fetch slide large 2D-S-sparse 0.272±0.045 0.132±0.033 0.084±0.010 0.086±0.015 0.28±0.07 0.52±0.08 0.79±0.04 0.74±0.04
fetch slide large 2D-U-dense 0.315±0.051 0.087±0.009 0.074±0.011 0.076±0.009 0.12±0.08 0.75±0.07 0.75±0.04 0.76±0.04
fetch slide large 2D-U-sparse 0.288±0.058 0.147±0.009 0.117±0.008 0.120±0.005 0.30±0.04 0.41±0.04 0.68±0.07 0.70±0.06
fetch slide large 2D-all 0.270±0.025 0.125±0.011 0.090±0.005 0.098±0.007 0.27±0.04 0.57±0.04 0.74±0.02 0.70±0.02

halfcheetah-backflip 1.947±0.312 3.170±0.730 2.710±0.742 2.625±0.780 0.50±0.18 0.43±0.14 0.55±0.20 0.57±0.17
halfcheetah-backflip-running 2.537±0.810 2.479±0.284 2.297±0.525 2.171±0.454 0.47±0.27 0.50±0.11 0.58±0.16 0.58±0.11
halfcheetah-frontflip 1.172±0.091 1.796±0.173 1.330±0.168 1.295±0.094 0.96±0.03 0.52±0.03 0.98±0.03 1.00±0.00
halfcheetah-frontflip-running 2.526±0.110 2.091±0.210 1.969±0.075 1.955±0.057 0.13±0.07 0.60±0.06 0.88±0.09 0.85±0.03
halfcheetah-hop-backward 0.739±0.736 0.889±0.103 0.548±0.056 0.589±0.107 0.84±0.33 0.82±0.07 0.96±0.04 0.96±0.03
halfcheetah-hop-forward 0.682±0.120 1.070±0.086 1.007±0.094 1.101±0.152 0.78±0.12 0.63±0.08 0.67±0.07 0.58±0.12
halfcheetah-run-backward 0.555±0.415 0.838±0.139 0.473±0.162 0.489±0.167 0.92±0.11 0.68±0.03 0.99±0.01 0.99±0.01
halfcheetah-run-forward 0.372±0.156 0.742±0.044 0.381±0.026 0.376±0.019 0.93±0.09 0.72±0.05 1.00±0.01 1.00±0.00
halfcheetah-all 1.316±0.181 1.634±0.089 1.339±0.090 1.325±0.123 0.69±0.06 0.61±0.02 0.83±0.02 0.82±0.02
pointmaze medium-circle-dense 0.252±0.032 0.651±0.377 0.168±0.015 0.156±0.010 0.91±0.04 0.62±0.25 1.00±0.00 1.00±0.00
pointmaze medium-circle-sparse 0.465±0.056 1.074±0.115 0.465±0.028 0.466±0.024 0.87±0.03 0.41±0.10 0.83±0.10 0.81±0.11
pointmaze medium-path-dense 0.495±0.130 1.835±1.064 0.192±0.008 0.199±0.013 0.95±0.03 0.45±0.29 1.00±0.00 1.00±0.00
pointmaze medium-path-sparse 0.716±0.119 1.416±0.828 0.444±0.010 0.459±0.015 0.89±0.10 0.61±0.24 0.99±0.01 0.97±0.03
pointmaze medium-all 0.482±0.055 1.244±0.463 0.317±0.008 0.320±0.009 0.91±0.02 0.52±0.15 0.95±0.03 0.94±0.04

A.2 FINITE HORIZON ABLATIONS

As discussed in section 4, we are forced to optimize the objective over a finite horizon H due to the
imperfections in the learned dynamics model and computational constraints. The hyperparameter H
should thus be as large as possible, as long as the model remains accurate. We visualize this trade-off
in figure 7 for environment fetch slide large 2D. It is clearly visible that if the horizon is
smaller than 16, the value we chose for our experiments, then performance rapidly deteriorates towards
the one of the myopic planners. However, when increasing the horizon beyond 16, performance does
not improve, suggesting that the model is not accurate enough to plan beyond this horizon.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

4 8 16 32 64
Horizon

0.08

0.12

0.16

0.20

W
m

in
 

MPC+Cls
ZILOT (ours)

4 8 16 32 64
Horizon

0.40

0.48

0.56

0.64

0.72

Go
al

Fr
ac

tio
n 

MPC+Cls
ZILOT (ours)

Figure 7: Mean performance across five seeds in fetch slide large 2D for different planning
horizons.
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Figure 8: Single Goal Success Rate in the standard single goal tasks of the environments. We report
the mean performance across 20 trials and standard deviation across 5 seeds.

A.3 SINGLE GOAL PERFORMANCE

When the expert trajectory consists of only a single goal, myopic planning is of course sufficient to
imitate the expert. To verify this we evaluate the performance of all planners in the standard single
goal task of the environments. Figure 8 shows the success rate of all planners in this task verifying
that non-myopic planning neither hinders nor helps in this case.

B FORWARD-BACKWARD REPRESENTATIONS AND IMITATION LEARNING

In a foundational paper in zero-shot, model-free RL, Pirotta et al. (2024) propose several different
methods based on the forward-backward (FB) framework (Touati & Ollivier, 2021). FB trains two
functions F and B, which recover a low-rank approximation of the successor measure, as well as a
parameterized policy (πz)z∈Rd . These functions can be trained offline, without supervision, so that
for each reward r, an optimal policy πzr can be recovered. This property gives rise to a range of
reward-based and occupancy-matching based methods for zero-shot IL. In the following we will go
over each method, and discuss how it differs from ZILOT in terms of objective. We will highlight
how several methods do not directly apply to our setting, which involves actionless and rough expert
demonstrations. We will evaluate those that are suitable for our setting. We refer the reader to
section C.10 for implementation details of the baselines based on FB.

B.1 FB IMITATION LEARNING APPROACHES

Behavioral Cloning The first approach in Pirotta et al. (2024) is is based on a gradient descent on
the latent z to find πz that maximizes the likelihood of a given expert dataset. Since this approach
requires expert actions it does not apply in our case.

Reward-Based Imitation Learning Pirotta et al. (2024) derive two reward-based zero-shot IL
methods maximizing the reward r(·) = ρE(·)/ρDβ (·) (ERFB) (Ma et al., 2022; Kim et al., 2022)and
its regularized counterpart r(·) = ρE(·)/(ρE(·) + ρDβ (·)) (RERFB) (Reddy et al., 2020; Zolna et al.,
2020). While ZILOT’s objective is based on a Wasserstein distance, these rewards are derived from
regularized f -divergence objectives. These objectives are fortunately tractable, and can be minimized
by solving an RL problem with additive rewards. In practice, this corresponds to assigning a scalar
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Figure 9: Summarized performance of reward-based FB methods, myopic methods, and our method.
See table 3 for details.

reward to each state visited by the expert, without considering the order of the states in the expert
trajectory. However, as stated in Section 4.2 of Pirotta et al. (2024), this regularization comes at a
cost, particularly if the state does not contain dynamical information, or in ergodic MDPs. In this
case, a policy can optimize the reward by remaining in the most likely expert state, and the objective
might be optimized by degenerate solution. On the other hand, such solution would be discarded by
ZILOT, which uses an unregularized objective.

Nonetheless, these two instantiations are fully compatible with partial and rough demonstrations.
Thus, we provide an empirical comparison in Section B.2.

Distribution Matching A further approach in Pirotta et al. (2024) finds the policy πz whose
occupancy matches the expert occupancy w.r.t. different distances on the space of measures. ZILOT
also performs occupancy matching, but with respect to Wasserstein distances. However, ZILOT is de-
signed to handle state abstraction. To the best of our understanding, distribution- and feature-matching
flavors of FB-IL require the demonstration to contain full states, unless further FB representations are
trained to approximate successor measures over abstract states. While the standard implementation
of distribution-matching FB-IL cannot imitate rough demonstrations, we believe that an extension in
this direction may be interesting for future work.

Goal-Based Imitation Pirotta et al. (2024) also instantiate a hierarchical, goal-based imitation
method, in which the FB framework is only used for goal-reaching. This idea is closely related with
one of our baselines (Pi+Cls). However, their framework assumes that trajectories to imitate are not
partial and, instead of using a classifier, the goal can slide by one step at each time-step. In any case,
their approach remains myopic as per Proposition 1. Empirically, Pirotta et al. (2024) observe that
this instantiation of FB-IL does not outperform an equivalent method relying on TD3+HER instead.
As the latter method is very similar to our Pi+Cls baseline, we do not investigate this approach further
in this work.

B.2 FB EXPERIMENTS

As described in the last section, we implement the reward-based zero-shot IL approach based on FB
for our standard setting, in which expert demonstrations are rough and partial. We compare results to
ZILOT, and our baselines in figure 9. While ERFB and RERFB perform well in the settings evaluated
in Pirotta et al. (2024), we find that they do not match ZILOT’s performance in our setting. In the
considered environments, abstract goals do not include dynamical information, which is an issue
expressed in Pirotta et al. (2024). Furthermore, as the expert demonstration is rough (i.e., might not
contain all timesteps), the solution of training successor measures over transitions is not directly
applicable. Furthermore, FB-IL are trained on around one order of magnitude more data in most
environments compared to our experiments (see table 6) which may further contribute to the gap in
performance.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 3: Performance of reward-based FB methods, myopic methods, and our method in all envi-
ronments and tasks. Each metric is the mean over 20 trials, we then report the mean and standard
deviation of those metrics across 5 seeds. We perform a Welch t-test with p = 0.05 do distinguish
the best values and mark them bold. Values are rounded to 3 and 2 digits respectively.

Task Wmin ↓ GoalFraction ↑
ERFB RERFB Pi+Cls MPC+Cls ZILOT (ours) ERFB RERFB Pi+Cls MPC+Cls ZILOT (ours)

fetch pick and place-L-dense 0.224±0.022 0.116±0.016 0.089±0.027 0.109±0.024 0.049±0.019 0.17±0.02 0.35±0.02 0.65±0.11 0.58±0.07 0.88±0.07
fetch pick and place-L-sparse 0.183±0.010 0.179±0.017 0.112±0.014 0.127±0.022 0.092±0.015 0.42±0.08 0.42±0.06 0.62±0.05 0.43±0.04 0.65±0.05
fetch pick and place-S-dense 0.172±0.022 0.134±0.016 0.113±0.022 0.101±0.022 0.049±0.014 0.24±0.03 0.23±0.03 0.41±0.07 0.62±0.08 0.85±0.08
fetch pick and place-S-sparse 0.115±0.024 0.135±0.018 0.081±0.017 0.091±0.007 0.067±0.006 0.42±0.08 0.36±0.07 0.57±0.06 0.50±0.04 0.70±0.06
fetch pick and place-U-dense 0.148±0.057 0.144±0.005 0.127±0.007 0.116±0.015 0.068±0.005 0.26±0.12 0.17±0.04 0.47±0.10 0.60±0.03 0.70±0.02
fetch pick and place-U-sparse 0.180±0.037 0.215±0.017 0.142±0.005 0.160±0.008 0.098±0.003 0.35±0.11 0.32±0.05 0.51±0.02 0.38±0.03 0.55±0.05
fetch pick and place-all 0.170±0.015 0.154±0.006 0.111±0.007 0.117±0.012 0.070±0.009 0.31±0.03 0.31±0.01 0.54±0.02 0.52±0.02 0.72±0.04
fetch push-L-dense 0.243±0.005 0.124±0.029 0.056±0.001 0.085±0.018 0.041±0.015 0.16±0.02 0.35±0.05 0.96±0.03 0.72±0.09 0.91±0.06
fetch push-L-sparse 0.202±0.013 0.196±0.024 0.101±0.011 0.103±0.010 0.082±0.004 0.33±0.00 0.40±0.04 0.65±0.09 0.44±0.04 0.69±0.06
fetch push-S-dense 0.184±0.034 0.150±0.023 0.077±0.024 0.104±0.026 0.049±0.010 0.26±0.07 0.26±0.02 0.83±0.09 0.70±0.08 0.87±0.08
fetch push-S-sparse 0.106±0.025 0.160±0.031 0.062±0.004 0.077±0.004 0.064±0.006 0.38±0.09 0.31±0.05 0.90±0.07 0.65±0.04 0.72±0.06
fetch push-U-dense 0.149±0.040 0.161±0.015 0.102±0.044 0.091±0.009 0.065±0.004 0.25±0.07 0.16±0.01 0.72±0.18 0.67±0.08 0.77±0.02
fetch push-U-sparse 0.181±0.029 0.212±0.058 0.106±0.014 0.131±0.012 0.109±0.007 0.34±0.03 0.31±0.06 0.70±0.12 0.45±0.05 0.53±0.03

fetch push-all 0.178±0.019 0.167±0.020 0.084±0.007 0.098±0.010 0.068±0.005 0.29±0.04 0.30±0.03 0.79±0.05 0.61±0.03 0.75±0.03
fetch slide large 2D-L-dense 0.264±0.007 0.237±0.039 0.258±0.022 0.217±0.034 0.074±0.011 0.21±0.03 0.19±0.03 0.26±0.06 0.40±0.11 0.76±0.03
fetch slide large 2D-L-sparse 0.252±0.014 0.252±0.009 0.223±0.014 0.185±0.027 0.120±0.011 0.35±0.04 0.37±0.05 0.47±0.10 0.70±0.05 0.73±0.04
fetch slide large 2D-S-dense 0.222±0.009 0.283±0.015 0.299±0.006 0.254±0.022 0.111±0.010 0.17±0.04 0.11±0.01 0.21±0.10 0.31±0.06 0.51±0.07
fetch slide large 2D-S-sparse 0.183±0.045 0.190±0.043 0.266±0.006 0.230±0.021 0.086±0.015 0.32±0.10 0.29±0.04 0.31±0.02 0.43±0.02 0.74±0.04
fetch slide large 2D-U-dense 0.244±0.064 0.295±0.028 0.214±0.029 0.191±0.045 0.076±0.009 0.14±0.06 0.08±0.01 0.30±0.07 0.35±0.10 0.76±0.04
fetch slide large 2D-U-sparse 0.313±0.047 0.321±0.033 0.169±0.043 0.150±0.012 0.120±0.005 0.28±0.03 0.25±0.00 0.36±0.09 0.53±0.04 0.70±0.06
fetch slide large 2D-all 0.246±0.026 0.263±0.020 0.238±0.008 0.205±0.020 0.098±0.007 0.24±0.02 0.22±0.01 0.32±0.04 0.45±0.04 0.70±0.02
halfcheetah-backflip 2.951±1.195 2.495±1.229 3.089±0.588 4.281±0.371 2.625±0.780 0.15±0.27 0.25±0.31 0.28±0.13 0.12±0.12 0.57±0.17
halfcheetah-backflip-running 3.708±1.302 3.847±0.955 2.879±0.427 3.044±0.752 2.171±0.454 0.13±0.13 0.17±0.13 0.44±0.10 0.46±0.18 0.58±0.11
halfcheetah-frontflip 2.726±1.904 3.410±1.363 1.544±0.127 1.695±0.147 1.295±0.094 0.38±0.37 0.26±0.25 0.77±0.09 0.79±0.12 1.00±0.00
halfcheetah-frontflip-running 2.829±1.731 3.887±1.499 2.086±0.133 2.083±0.104 1.955±0.057 0.27±0.16 0.25±0.14 0.70±0.08 0.81±0.07 0.85±0.03
halfcheetah-hop-backward 2.133±1.063 1.826±0.806 0.806±0.110 0.950±0.075 0.589±0.107 0.11±0.22 0.17±0.21 0.96±0.03 0.90±0.02 0.96±0.03
halfcheetah-hop-forward 1.352±0.523 1.473±0.472 1.580±0.069 1.392±0.206 1.101±0.152 0.39±0.29 0.40±0.28 0.51±0.07 0.62±0.14 0.58±0.12
halfcheetah-run-backward 0.982±0.478 0.922±0.508 0.897±0.092 0.679±0.035 0.489±0.167 0.83±0.26 0.78±0.28 0.96±0.04 1.00±0.00 0.99±0.01
halfcheetah-run-forward 2.018±0.678 1.995±0.963 0.857±0.044 0.822±0.206 0.376±0.019 0.29±0.29 0.28±0.26 1.00±0.01 0.94±0.08 1.00±0.00
halfcheetah-all 2.337±0.339 2.482±0.283 1.717±0.101 1.868±0.079 1.325±0.123 0.32±0.06 0.32±0.06 0.70±0.05 0.71±0.02 0.82±0.02
pointmaze medium-circle-dense 1.041±0.215 0.995±0.261 0.243±0.038 0.221±0.021 0.156±0.010 0.19±0.03 0.24±0.10 1.00±0.00 1.00±0.00 1.00±0.00
pointmaze medium-circle-sparse 1.126±0.125 1.126±0.130 0.385±0.015 0.404±0.025 0.466±0.024 0.24±0.05 0.24±0.05 1.00±0.00 1.00±0.00 0.81±0.11
pointmaze medium-path-dense 3.047±1.293 3.508±1.045 0.275±0.063 0.235±0.023 0.199±0.013 0.17±0.19 0.10±0.14 1.00±0.00 1.00±0.00 1.00±0.00
pointmaze medium-path-sparse 2.501±0.964 2.310±1.084 0.555±0.080 0.511±0.035 0.459±0.015 0.28±0.16 0.22±0.10 1.00±0.00 1.00±0.00 0.97±0.03
pointmaze medium-all 1.929±0.552 1.985±0.432 0.365±0.021 0.343±0.023 0.320±0.009 0.22±0.09 0.20±0.06 1.00±0.00 1.00±0.00 0.94±0.04

C IMPLEMENTATION DETAILS

C.1 ZILOT

The proposed method is motivated and explained in section 4. We now present additional details.

Sinkhorn First, we rescale the matrix C by Tmax and clamp it to the range [0, 1] before running
Sinkhorns algorithm. The precise operation performed is

C ← min (1,max(0,C/Tmax)) . (14)

This is done so that the same entropy regularization ϵ can be used across all environments, and to
ensure there are no outliers that hinder the convergence of the Sinkhorn algorithm. For the algorithm
itself, we use a custom implementation for batched OT computation, heavily inspired by Flamary
et al. (2021) and Cuturi et al. (2022). We run our Sinkhorn algorithm for r = 500 iterations with a
regularization factor of ϵ = 0.02.

Truncation When the agent gets close to the end of the expert trajectory, then we might have that
tK < k +H , i.e. the horizon is larger than needed. We thus truncate the planning horizon to the
estimated remaining number of steps (and at least 1), i.e. we set

Hactual ← max (1,min(tK − k,H)) . (15)

Unbalanced OT As mentioned in the main text in section 5.3, we can use unbalanced OT (Liero
et al., 2018; Séjourné et al., 2019) to address that fact that the uniform marginal for the goal
occupancy approximation may not be feasible. Unbalanced OT replaces this hard constraint of
T⊤ · 1N = 1M into the term ξbKL(T⊤ · 1N ,1M ) in the objective function. For our experiments
we have chosen ξb = 1.

C.2 TD-MPC2 MODIFICATIONS

As TD-MPC2 (Hansen et al., 2024) is already a multi-task algorithm that is conditioned on a learned
task embedding t from a task id i, we only have to switch out this conditioning to a goal latent zg
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to arrive at a goal-conditioned algorithm as detailed in table 4. We remove the conditioning on the
encoders and the dynamics model f completely as the goal conditioning of GC-RL only changes the
reward but not the underlying Markov Decision ProcessM (assuming truncation after goal reaching,
see section 2.3). For training we adopt all TD-MPC2 hyperparameters directly (see table 9). As
mentioned in the main text, we also train a small MLP to predict W that regresses on V .

Table 4: Our modifications to TD-MPC2 to making it goal- instead of task-conditioned.

TD-MPC2 (Hansen et al., 2024) “GC”-TD-MPC2 (our changes)

Task/Goal Embedding t = E(i) zg = hg(g)
Encoder z = h(s, t) z = h(s)
Dynamics z′ = f(z, a, t) z′ = f(z, a)
Reward Prediction r = R(z, a, t) r = R(z, a, zg)
Q-function q = Q(z, a, t) q = Q(z, a, zg)
Policy a ∼ π(z, t) a ∼ π(z, zg)

We have found the computation of pair-wise distances d to be the major computational bottleneck
in our method, as TD-MPC2 computes them as d = −V π(s, g) = −Q(z, π(z, zg), zg) where
z = h(s), zg = hg(g). To speed-up computation, we train a separate network that estimates the value
function directly. It employs a two-stream architecture (Schaul et al., 2015; Eysenbach et al., 2022)
of the form V π(z, zg) = ϕ(z)⊤ψ(zg) where ϕ and ψ are small MLPs for fast inference of pair-wise
distances.

C.3 RUNTIME

ZILOT runs at 0.5 to 3Hz on an Nvidia GTX 2080ti GPU, depending on the size of H and the size of
the OT problem. Given that the MPC+Cls method runs at around 12 to 35Hz with the same networks
and on the same hardware, it is clear that most computation is spent on preparing the cost-matrix
C and running the Sinkhorn solver. Several further steps could be taken to speed-up the Sinkhorn
algorithm itself, including η-schedules and/or Anderson acceleration (Cuturi et al., 2022) as well
as warm-starting it with potentials, e.g. from previous (optimizer) steps or from a trained network
(Amos et al., 2023).

C.4 GOAL SAMPLING

Table 5: Goal
Sampling

Name Value

pfuture 0.6
pnext 0.2
prand 0.2

As mentioned in the main text, we follow prior work (Andrychowicz et al., 2017;
Bagatella & Martius, 2023; Tian et al., 2021) and sample goals from the future part
of trajectories in Dβ in order to synthesize rewards without supervision. The exact
procedure is as follows:

• With probability pfuture we sample a goal from the future part of the trajec-
tory with time offset t∆ ∼ Geom(1− γ).

• With probability pnext we sample the next goal in the trajectory.
• With probability prand we sample a random goal from the dataset.

See table 5 for the hyperparameters used.

C.5 TRAINING

We train our version of TD-MPC2 offline with the datasets detailed in table 6 for 600k steps. Training
took about 8 to 9 hours on a single Nvidia A100 GPU. Note that as TD-MPC2 samples batches of
3 transitions per element, we effectively sample 3 · 256 = 768 transitions per batch. The resulting
models are then used for all planners and experiments.

C.6 ENVIRONMENTS

We provide environment details in table 7. Note that while we consider an undiscounted setting, we
specify γ for the goal sampling procedure above.
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Table 6: Environment description. We detail the datasets used for training.

Environment Dataset #Transitions

fetch push WGCSL Yang et al. (2022) (expert+random) 400k + 400k
fetch pick and place WGCSL Yang et al. (2022) (expert+random) 400k + 400k
fetch slide large 2D custom (curious exploration (Pathak et al., 2019)) 500k
halfcheetah custom (curious exploration (Pathak et al., 2019)) 500k
pointmaze medium D4RL (Fu et al., 2021) (expert) 1M

Table 7: Environment details. We detail the goal abstraction ϕ, metric h, threshold ϵ, horizon H ,
maximum episode length Tmax, and discount factor γ used for each environment.

Environment Goal Abstraction ϕ Metric h Threshold ϵ Horizon H Tmax γ

fetch push (x, y, z)cube ∥ · ∥2 0.05 16 50 0.975
fetch pick and place (x, y, z)cube ∥ · ∥2 0.05 16 50 0.975
fetch slide large 2D (x, y, z)cube ∥ · ∥2 0.05 16 50 0.975
halfcheetah (x, θy) ∥ · ∥2 0.50 32 200 0.990
pointmaze medium (x, y) ∥ · ∥2 0.45 64 600 0.995

The environments fetch push and fetch pick and place and pointmaze medium are
used as is. As halfcheetah is not goal-conditioned by default, we define our own goal range to
be (x, θy) ∈ [−5, 5]× [−4π, 4π]6. fetch slide large 2D is a variation of the fetch slide
environment where the table size exceeds the arm’s range and the arm is restricted to two-dimensional
movement touching the table.

C.7 TASKS

The tasks for the fetch and pointmaze environments are specified in the environments nor-
mal goal-space. Their shapes can be seen in the figures in appendix D. To make the tasks for
halfcheetah more clear, we visualize some executions of our method in the figures 10, 11, 12,
13, 14, and 15.

Figure 10: Example trajectory of ZILOT (ours) in halfcheetah-backflip-running.

6Note that the halfcheetah environment does not reduce θ with any kind of modular operation, i.e. states
with θ = 0 and θ = 2π are distinct.
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Figure 11: Example trajectory of ZILOT (ours) in halfcheetah-backflip.

Figure 12: Example trajectory of ZILOT (ours) in halfcheetah-frontflip-running.

Figure 13: Example trajectory of ZILOT (ours) in halfcheetah-frontflip.

Figure 14: Example trajectory of ZILOT (ours) in halfcheetah-hop-backward.

C.8 TASK DIFFICULTY

This section investigates the ability of ZILOT to imitate trajectories that do not appear in the offline
dataset it is trained on. As ZILOT uses a learned dynamics model and an off-policy value function,
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Figure 15: Example trajectory of ZILOT (ours) in halfcheetah-hop-forward.

it should in theory be able to stitch together any number of trajectories in the dataset. To get some
qualitative intuition we overlay the following: first, a kernel density estimate of the data distribution
in the offline datasets, second, an expert trajectory to imitate, and finally the five trajectories that are
closest to the expert w.r.t. the Wasserstein distance under the goal-metric h. We present a few tasks
for each environment in Figures 16, 18, 19, 17, and 20.

Comparing the density estimates and the expert trajectories, we can see that essentially all expert
trajectories are within distribution. Although, especially in halfcheetah, there are some tasks,
such as hop-forward and backflip-running with very little coverage which might explain
the bad performance of all planners in these tasks (see table 1). Comparing the selected trajectories
with the expert trajectory, it is also evident that the expert demonstrations are not directly present
in the datasets. Thus, ZILOT is capable of imitating unseen sequences of states, as long as each
individual state is within the support of the training data. In other words, ZILOT is capable of
off-policy learning, or trajectory stitching.

(a) hop-forward (b) hop-backward (c) backflip

(d) frontflip (e) frontflip-running (f) backflip-running

Figure 16: The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different
halfcheetah tasks (orange) overlayed over a kernel density estimate of the goal occupancy in the
full training dataset.
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(a) L-dense (b) U-dense (c) S-dense

Figure 17: The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in
different fetch slide large 2D tasks (orange) overlayed over a kernel density estimate of the
goal occupancy in the full training dataset.

(a) L-dense (b) U-dense (c) S-dense

Figure 18: The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different
fetch push tasks (orange) overlayed over a kernel density estimate of the goal occupancy in the
full training dataset.

(a) L-dense (b) U-dense (c) S-dense

Figure 19: The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in
different fetch pick and place tasks (orange) overlayed over a kernel density estimate of the
goal occupancy in the full training dataset.
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(a) circle-dense (b) path-dense

Figure 20: The 5 trajectories (blue) from the dataset that are closest to the expert trajectory in different
pointmaze medium tasks (orange) overlayed over a kernel density estimate of the goal occupancy
in the full training dataset.

C.9 HYPERPARAMETERS

Table 8: Hyperparameters used for iCEM (Pinneri et al., 2020). We use the implementation from
Pineda et al. (2021).

(a) ICEM hyperparameters for all MPC planners.

Name Value

num iterations 4
population size 512
elite ratio 0.01
population decay factor 1.0
colored noise exponent 2.0
keep elite frac 1.0
alpha 0.1

(b) ICEM hyperparameters for curious exploration.

Name Value

num iterations 3
population size 512
elite ratio 0.02
population decay factor 0.5
colored noise exponent 2.0
keep elite frac 1.0
alpha 0.1
horizon 20
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Table 9: TD-MPC2 Hyperparameters. We have adopted these unchanged from Hansen et al. (2024)

Name Value

lr 3e-4
batch size 256
n steps (“horizon”) 3
rho 0.5
grad clip norm 20
enc lr scale 0.3
value coef 0.1
reward coef 0.1
consistency coef 20
tau 0.01
log std min -10
log std max 2
entropy coef 1e-4

Name Value

num bins 101
vmin -10
vmax 10
num enc layers 2
enc dim 256
num channels 32
mlp dim 512
latent dim 512
bin dim 12
num q 5
dropout 0.01
simnorm dim 8

C.10 FB IMPLEMENTATION DETAILS

Since there is no code available for FB-IL directly, we have adopted the code for FB (Touati &
Ollivier, 2021) according to the architectural details in appendix D.3 and he hyperparameters in
appendix D.4 of FB-IL (Pirotta et al., 2024). The main architectural changes consisted of changing
the state input of the B networks to only a goal input, as suggested in Touati & Ollivier (2021) as well
as adding a last layer in the B networks for L2 projection, batch normalization, or nothing, depending
on the environment.

We follow the specifications of Pirotta et al. (2024) whenever possible. As halfcheetah and
maze are also used in their evaluations we have adopted their hyperparameters for these environments
as well as the extra layers in all networks for maze. For our fetch environments, we used the
hyperparameter most common in the environments except for the discount γ which we adjusted to
0.95 to account for the shorter episode length and the normalization in B which varied widely across
environments so we did a quick hyperparameter search for this value across one seed. Finally, we
have found that some policy noise is desirable during evaluation similar to Touati & Ollivier (2021).
We provide the full set of hyperparameters in table 10.

Table 10: Hyperparameters used for FB-IL training. Closely follows table 1 in appendix D.4 of
Pirotta et al. (2024) for halfcheetah and maze.

Environment fetch halfcheetah maze

Representation dimension 50 50 100
Batch size 2048 2048 1024
Discount factor γ 0.95 0.98 0.99
Optimizer Adam Adam Adam
learning rate of F 10−4 10−4 10−4

learning rate of B 10−4 10−4 10−6

learning rate of π 10−4 10−4 10−6

Normalization of B L2 None Batchnorm
Momentum for target networks 0.99 0.99 0.99
Stddev for policy smoothing 0.2 0.2 0.2
Truncation level for policy smoothing 0.3 0.3 0.3
Regularization weight for orthonormality 1 1 1
Numer of training steps 2 · 106 2 · 106 2 · 106
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D ADDITIONAL QUALITATIVE RESULTS

In the following, we present all goal-space trajectories across all planners, tasks, and seeds presented
in this work. Note that since the tasks of the fetch environments display some natural symmetries,
we decided to split evaluations between all four symmetrical versions of them. Further, we quickly
want to stress that these trajectories are shown in goal-space. This means that if the cube in fetch
is not touched, as is the case in some cases for ZILOT+h, then the trajectory essentially becomes a
single dot at the starting position. Also note that Pi+Cls is completely deterministic, which is why its
visualization appears to have less trajectories.

(a) U-dense (b) U-sparse

Figure 21: fetch pick and place
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(a) L-sparse (b) L-dense

Figure 22: fetch pick and place

(a) S-dense (b) S-sparse

Figure 23: fetch pick and place
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(a) U-dense (b) U-sparse

Figure 24: fetch slide large 2D

(a) L-sparse (b) L-dense

Figure 25: fetch slide large 2D
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(a) S-dense (b) S-sparse

Figure 26: fetch slide large 2D

(a) U-dense (b) U-sparse

Figure 27: fetch push
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(a) L-sparse (b) L-dense

Figure 28: fetch push

(a) S-dense (b) S-sparse

Figure 29: fetch push

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

(a) circle-sparse

(b) path-sparse

(c) path-dense

(d) circle-dense

Figure 30: pointmaze medium
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(a) run-forward

(b) run-backward

(c) backflip

(d) hop-forward

(e) hop-backward

(f) frontflip-running

(g) backflip-running

(h) frontflip

Figure 31: halfcheetah
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E GOAL CLASSIFIER HYPERPARAMETER SEARCH

As mentioned in the main text, we perform an extensive hyperparameter search for the threshold value
of the goal classifier (Cls) for the myopic methods Pi+Cls and MPC+Cls as well as for the ablation
of our method ZILOT+Cls. In figures 33 and 32 we show the performance of the three respective
planners in all five environments and denote the threshold values that yield the best performance
per environment. Interestingly, in some of the fetch environments not all tasks attain maximum
performance with the same threshold value showing that this hyperparameter is rather hard to tune.
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(a) fetch pick and place
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(c) fetch slide large 2D
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(d) pointmaze medium
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Figure 32: ZILOT+Cls hyperparameter search for Cls threshold.
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(a) Pi+Cls for fetch pick and place
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(b) MPC+Cls for fetch pick and place
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(c) Pi+Cls for fetch push
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(d) fetch push
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(e) Pi+Cls for fetch slide large 2D
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(f) MPC+Cls for fetch slide large 2D
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(g) Pi+Cls for halfcheetah
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(h) MPC+Cls for halfcheetah

1 2 3 4 5
Threshold

1

2

3

W
m

in
 

Best Wmin
Best GoalFraction

path-dense
path-sparse

circle-dense
circle-sparse

1 2 3 4 5
Threshold

0.2

0.4

0.6

0.8

1.0

Go
al

Fr
ac

tio
n 

(i) Pi+Cls for pointmaze medium
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(j) MPC+Cls for pointmaze medium

Figure 33: Pi+Cls and MPC+Cls hyperparameter searches for Cls threshold in each environment.
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