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ABSTRACT

Reinforcement learning from human feedback (RLHF) with proximal policy op-
timization (PPO) is widely used but often yields less diverse outputs than su-
pervised fine-tuning, suggesting an effect in which the policy’s support con-
tracts during on-policy optimization. We formalize this “policy contraction” with
the Support Retention Ratio (SRR)—the share of SFT completions that retain
non-negligible probability under the RL policy—and additionally track token-
entropy, Kullback–Leibler (KL) divergence to the reference, and repetition. We
propose Contraction-Aware PPO (CaPPO), a minimum-norm multi-gradient up-
date that co-optimizes reward, entropy, and KL, paired with a controller that
steers exploration toward a target token entropy. On HH-RLHF, Summarize-
from-Feedback, and UltraFeedback with Qwen2-7B, Qwen2.5-14B, Mistral-7B-
Instruct, and Llama-3-8B-Instruct, CaPPO increases win rate by 2 to 4 points over
PPO and improves diversity, gaining 0.2 to 0.3 higher SRR. The gains persist un-
der decoding sweeps and are robust to reward scaling and critic variance. Treating
reward, diversity, and stability as first-class objectives, CaPPO mitigates contrac-
tion without sacrificing alignment performance.

1 INTRODUCTION

Reinforcement learning from human feedback (RLHF) (Christiano et al., 2017) has become a stan-
dard paradigm for adapting supervised language models to human preferences. A typical pipeline
trains a preference-based reward model and then optimizes the policy with Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) while regularizing toward a supervised reference via a
Kullback–Leibler (KL) penalty to stabilize training and curb reward hacking (Stiennon et al., 2020;
Ouyang et al., 2022). This recipe underpins influential alignment systems in instruction following
and dialogue, and annotation costs have been reduced through AI-assisted variants (Glaese et al.,
2022; Bai et al., 2022b; Lee et al., 2023). Recent studies further suggest RL-based post-training
can enhance language understanding and strengthen reasoning-centric models (Hu et al., 2024; Guo
et al., 2025). Despite these successes, practitioners frequently observe a decline in output diver-
sity during on-policy fine-tuning: per-token entropy falls, repetitions increase, and many plausible
alternatives under the reference model receive negligible probability.

We term this phenomenon policy contraction: the policy’s support progressively narrows as proba-
bility mass concentrates on a shrinking subset of completions—even as reward or win rate improves.
Conventional diversity proxies, including Self-BLEU (Zhu et al., 2018) and Distinct-n, offer useful
signals but are decoding-sensitive and can be noisy (Holtzman et al., 2019; Li et al., 2015; Celikyil-
maz et al., 2020). To probe support loss more directly, we use the Support Retention Ratio (SRR):
the fraction of supervised completions that retain non-negligible length-normalized log-likelihood
under the trained policy at a fixed threshold. SRR complements entropy trends, KL drift to the
reference, and n-gram repetition, providing a decoding-agnostic view of support preservation.

This perspective clarifies how different post-training choices shape distributional behavior. RL-
free preference-optimization methods such as Direct Preference Optimization (DPO) and Keep the
Output (KTO) streamline optimization and often preserve more of the SFT distribution, but they
operate off-policy and do not directly address on-policy distributional drift that emerges in RLHF
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(Rafailov et al., 2023; Ethayarajh et al., 2024). PPO variants that target better credit assignment or
critic robustness, like VinePPO and group-normalized approaches used for reasoning, raise perfor-
mance but may still emphasize a small set of high-reward modes without explicit diversity control
(Kazemnejad et al., 2024; Mroueh, 2025). Recent analyses in the verifiable-reward setting suggest
that reinforcement learning can predominantly reweight solution-bearing modes rather than expand
them, which aligns with the contraction picture (Yue et al., 2025). At the same time, more general
evidence indicates that RL can improve language understanding in NLU tasks (Hu et al., 2024) and
enable strong reasoning systems (Guo et al., 2025), underscoring that addressing contraction is a
distributional problem, not a purely capability problem.

We address contraction by elevating diversity control from an auxiliary penalty to a core training
objective. Standard PPO implicitly prioritizes reward maximization, using entropy and KL regu-
larization as secondary terms with fixed or manually tuned weights. This scalarization makes the
optimization brittle: when the reward scale is large, or critic estimates are noisy, entropy rapidly
collapses and the policy contracts onto a narrow set of completions. Once entropy falls below a
certain level, exploration becomes ineffective, repetitions rise, and the probability mass shifts dis-
proportionately to a small subset of high-reward outputs. These dynamics explain why PPO-trained
models often exhibit rising repeat rates, declining support retention, and left-shifted log-probability
histograms, even when alignment reward improves. Controlling this collapse with static entropy
coefficients or manually adjusted KL weights is unreliable and sensitive to dataset, backbone, and
scale.

To overcome these limitations, we propose Contraction-Aware PPO (CaPPO). CaPPO reinterprets
reward, entropy, and KL-to-reference as peer objectives and computes parameter updates with a
minimum-norm multi-gradient descent procedure that approximates a Pareto-improving step (Parisi
et al., 2014; Van Moffaert et al., 2013; Momma et al., 2022; Liu & Vicente, 2024). This avoids
brittle scalarization and ensures that progress on reward does not come at the expense of collapsing
entropy or uncontrolled KL drift. In addition, CaPPO introduces an entropy-scheduling controller
that monitors per-token entropy and dynamically adjusts the effective entropy coefficient: injecting
exploration pressure when entropy collapses and relaxing it when entropy is sufficient. Together,
these two components yield a method fully compatible with PPO’s clipped surrogate, which directly
mitigates contraction. Empirically, CaPPO restores support retention and improves diversity met-
rics while matching or exceeding task reward and win rate across different models and datasets. Its
improvements are consistent across seeds, reward scales, and critic variances, highlighting robust-
ness and confirming that treating entropy and KL as first-class objectives is essential for preserving
diversity and accuracy in RLHF.

The main contributions of this work are as follows:

• We verify the existence of policy contraction in PPO-based RLHF and introduce SRR as a
direct, decoding-agnostic measure of support preservation.

• We present CaPPO with entropy scheduling as a drop-in extension that balances reward
maximization with KL control and entropy maintenance through a Pareto-motivated multi-
objective update.

• We empirically verify contraction and show that CaPPO mitigates it across Qwen, Llama,
and Mistral backbones on HH-RLHF, Summarize-from-Feedback, and UltraFeedback, im-
proving SRR and diversity at competitive or higher win rates. We also discuss connections
to overtraining and post-training adaptability.

The remainder of the paper proceeds as follows. Section 2 reviews RLHF foundations, RL-free
preference optimization, degeneration/diversity metrics, and multi-objective optimization. Section 3
quantifies contraction using sampling-based diversity, entropy/KL trajectories, and SRR with log-
probability histograms of SFT completions. Section 4 details CaPPO and the entropy-scheduling
controller, including optimization geometry and practical solvers. Section 5 reports main results,
ablations, robustness to reward scaling and critic variance, and decoding-independence analyses,
before Section 6 outlines limitations and future directions.
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2 RELATED WORK

RLHF and PPO. Modern alignment pipelines pair preference-trained rewards with PPO under
KL regularization to a reference model (Schulman et al., 2017; Christiano et al., 2017; Stiennon
et al., 2020; Ouyang et al., 2022; Glaese et al., 2022). This recipe improves instruction following
and dialogue while mitigating reward hacking via KL-to-reference anchoring. Constitutional AI
and RLAIF reduce human labelling by distilling guardrails and using AI feedback, respectively,
yet retain a preference/RL phase (Bai et al., 2022b; Lee et al., 2023). Control-theoretic views of
KL-regularized RL explain how anchoring shapes exploration and stability under information con-
straints (Galashov et al., 2019). Recent evidence shows RL-based post-training can also strengthen
NLU (Hu et al., 2024) and enable state-of-the-art reasoning systems (Guo et al., 2025). Our work
focuses on a distributional side effect of this pipeline—policy contraction—by measuring support
loss directly and proposing a contraction-aware modification of PPO that optimizes reward, entropy,
and KL as peer objectives.

Reasoning with RL. Reasoning workloads surface weaknesses in token/value credit assignment
and critic stability. VinePPO addresses step-wise credit propagation for multi-step reasoning, im-
proving RL training quality under PPO (Kazemnejad et al., 2024). In parallel, GRPO-style critic-
free training with group normalization has seen broad adoption in reasoning systems; its effective
loss and dynamics can be written as a KL-regularized contrastive objective with success amplifica-
tion guarantees (Mroueh, 2025), and large-scale instances demonstrate strong math/code gains (Guo
et al., 2025). However, recent analyses indicate that such RL procedures often reweight solution-
bearing modes rather than expand the underlying support, improving pass@1 while narrowing the
reachable set at larger sample budgets (Yue et al., 2025). This view is consistent with our find-
ings: standard PPO can raise reward or win rate even as entropy declines, repetition rises, and the
log-probability mass concentrates on fewer completions.

RL-free alignment. RL-free preference optimization aims to stabilize and simplify post-training
by sidestepping on-policy updates. DPO matches the optimal RLHF policy under a specific reward
parameterization via a simple preference-classification loss (Rafailov et al., 2023); KTO reframes
alignment as prospect-theoretic optimization to better capture asymmetric human preferences (Etha-
yarajh et al., 2024); and active preference optimization improves sample efficiency by selecting in-
formative prompts (Das et al., 2024). These methods often preserve more of the SFT distribution
and reduce engineering overhead. However, they operate off-policy and do not directly control the
on-policy distributional drift that emerges during RLHF training.

Diversity and multi-objective methods. Text generation is prone to degeneration and mode col-
lapse under likelihood-centric training and decoding (Holtzman et al., 2019), motivating diversity-
oriented objectives (e.g., promoting dissimilar responses) and evaluation metrics such as Self-BLEU
and Distinct-n (Li et al., 2015; Zhu et al., 2018; Celikyilmaz et al., 2020; Montahaei et al., 2019).
Recent analyses in SFT emphasize preserving support via reverse-KL with entropy, which can im-
prove generalization and test-time scaling (Li et al., 2024). Balancing reward maximization with
KL anchoring and entropy maintenance is inherently multi-objective; classical MORL offers policy-
gradient methods and scalarization critiques (Parisi et al., 2014; Van Moffaert et al., 2013), while
Pareto-stationary multi-gradient updates provide principled directions in ML and RL (Momma et al.,
2022; Liu & Vicente, 2024; Lin et al., 2022; Liu et al., 2025; Kang et al., 2024). Related contempora-
neous observations on overtraining suggest that heavily pre-trained models can be more complex to
adapt (Springer et al., 2025), reinforcing the need for post-training procedures that preserve support
rather than further narrow it.

3 POLICY CONTRACTION

Background and motivation. Preference-based fine-tuning with PPO has repeatedly been ob-
served to narrow a model’s output distribution: as optimization proceeds, probability mass con-
centrates on a few high-reward modes, token-level entropy falls, and many plausible alternatives
under the SFT/reference policy receive vanishing probability. Prior analyses discuss reward over-
optimization, KL regularization effects, and decoding sensitivity, but a clean, decoding-agnostic
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diagnosis of support loss has been lacking. This section establishes that contraction appears across
models and prompts under controlled conditions.

Setup and principles. We aim to quantify support loss independently of decoding heuristics and
reward-scale artifacts. We therefore report multiple random seeds, sweep standard decoding settings
in a separate robustness check, and fix reward scaling where noted. We probe contraction using three
complementary diagnostics:

(V1) Sampling-based diversity. We sample k completions for each prompt and compute Self-
BLEU, Distinct-n, and n-gram repetition rate.

(V2) Entropy and KL trajectories. We track length-normalized per-token entropy and forward KL
to the reference over PPO iterations:

H = Ex, y∼πθ(·|x)

[
− 1

|y| log πθ(y | x)
]
, KL(πθ ∥πref).

Contraction is indicated by sustained entropy decline at fixed or rising KL.

(V3) Support Retention Ratio (SRR). We estimate

SRR(τ) = Ex Pr
y∼πref (·|x)

[
1
|y| log πθ(y | x) ≥ τ

]
,

the fraction of SFT completions whose length-normalized log-probability under the PPO policy
exceeds a fixed threshold τ .

Table 1: Distributional diagnostics on verification sets. Under PPO, entropy drops while forward
KL to the reference rises—a contraction signature. Entropy scheduling recovers entropy and reduces
repetition with only modest KL change. Repetition is reported as % of repeated bigrams; entropy is
in nats/token; KL is in nats.

Model Dataset Setup Repeat-2 Entropy KL to ref

Llama3-8B ShareGPT-1K SFT-only 21.8 3.88 —
+ PPO 24.5 3.42 0.45
+ Entropy 18.0 3.76 0.43

Qwen2-7B AlpacaEval SFT-only 21.1 3.90 —
+ PPO 22.7 3.50 0.46
+ Entropy 18.7 3.77 0.44

Qwen2-7B ShareGPT-1K SFT-only 20.0 3.84 —
+ PPO 23.1 3.33 0.45
+ Entropy 17.1 3.70 0.43

We run (V1)–(V2) on ShareGPT-1K and AlpacaEval; for external validity with preference data, (V3)
is reported on ShareGPT-1K, AlpacaEval, and HH-RLHF. Table 1 shows that PPO reduces entropy
while KL rises, for example 3.88→3.42 and 3.90→3.50 nats/token as KL increases to≈ 0.45–0.46
nats, consistent with contraction. Entropy scheduling reverses the entropy dip and lowers repetition
with only modest KL change.

Table 2: Test of policy contraction. Fraction of SFT completions retained above threshold τ . SRR
increases substantially with entropy scheduling.

Dataset Setup SRR@τ

ShareGPT-1K + PPO 0.37
AlpacaEval + PPO 0.39
HH-RLHF + PPO 0.41

ShareGPT-1K + Entropy 0.58
AlpacaEval + Entropy 0.60
HH-RLHF + Entropy 0.62

4
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Qualitative density shift. Log-probability histograms over SFT-sampled completions show post-
PPO mass concentrating on fewer sequences, with a heavier left tail (near-zero probabilities) on
many previously feasible modes. Entropy scheduling broadens the histogram and increases SRR,
indicating improved support preservation.

Across ShareGPT-1K and AlpacaEval, we observe consistent entropy declines and low SRR under
PPO. Diversity-aware control (§4) restores entropy, reduces repetition, and increases SRR, motivat-
ing the multi-objective design, which will be elaborated next.

4 METHODOLOGY

We aim to mitigate policy contraction in PPO-based RLHF, where the policy’s support narrows over
training, reducing entropy and diversity. We introduce two complementary components: (i) CaPPO,
which treats reward, entropy, and KL as peer objectives and selects a Pareto-improving update at
each step; and (ii) an entropy-scheduling controller that stabilizes exploration by steering token en-
tropy toward a target. Throughout, πref denotes the SFT reference policy, πθ the trainable policy, and
R(x, y) a preference-model score. Sequence log-likelihoods are length-normalized unless otherwise
stated.

4.1 RLHF SETUP AND PPO SURROGATE

Given prompts x, we sample completions y from πθ, score them with R, and diffuse sequence
reward across tokens for advantage estimation: rt = R(x, y)/|y|, with advantages At via GAE. The
clipped PPO surrogate on the reward component is

LPPO
reward(θ) = Et

[
min

(
ρt(θ)At, clip(ρt(θ), 1− ϵ, 1 + ϵ)At

)]
, ρt(θ) =

πθ(at | st)
πθold(at | st)

. (1)

4.2 CONTRACTION-AWARE PPO (CAPPO)

Standard practice augments equation 1 with fixed coefficients on entropy and KL. Such scalarization
is brittle: overweighting reward accelerates contraction by eroding entropy and drifting from πref,
while overweighting regularizers suppresses reward learning. CaPPO instead searches at every step
for a descent direction that simultaneously respects reward improvement and support preservation
by solving a small multi-objective problem.

We define three maximization objectives

Jr(θ) = −LPPO
reward(θ), Je(θ) = H(πθ), Jkl(θ) = −KL

(
πθ(· | x) ∥πref(· | x)

)
,

with gradients gr = ∇Jr, ge = ∇Je, and gkl = ∇Jkl. A point θ⋆ is Pareto stationary if the origin lies
in the convex hull of these gradients:

0 ∈ co{∇Jr(θ
⋆), ∇Je(θ

⋆), ∇Jkl(θ
⋆) }. (2)

We approximate equation 2 by finding the minimum-norm convex combination of gradients:

min
λ∈∆3

∥λrgr + λege + λklgkl∥22 , ĝ =
∑
i

λigi, θ ← θ + ηθ ĝ. (3)

Because objectives differ in scale, we precondition with a diagonal metric P−1/2 (e.g., Adam’s sec-
ond moment on gr or a Fisher diagonal from πref), solve equation 3 in the preconditioned space, and
map back. A simpler alternative is unit-length normalization of gi. For three objectives, the problem
is reduced to a small quadratic program; we use two or three projected-gradient or Frank–Wolfe
steps and check edge solutions. A constrained view makes the connection clearer:

max
θ

Jr(θ) s.t. KL(πθ∥πref) ≤ ϵkl, H(πθ) ≥ ϵe, (4)

where the Lagrange multipliers correspond to adaptive mixing weights. A primal–dual update nat-
urally enforces these constraints, while a guarded line search ensures reward progress without ex-
cessive entropy loss or KL growth. When gradients conflict, lower bounds on mixing weights are
raised according to their cosine similarity, discouraging collapse.

5
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Algorithm 1 CaPPO with Pareto mixing (RLHF)

1: Initialize θ, optimizer states, λ← (1, 0, 0)
2: for iterations do
3: Collect on-policy rollouts; compute sequence rewards fromR
4: Compute gr (with PPO clipping), ge, gkl; precondition gi
5: Solve minλ∈∆3

∥
∑

i λigi∥2 by a few projected steps; optionally blend primal–dual multipli-
ers

6: Form ĝ =
∑

i λigi; apply guarded line search; update θ ← θ + ηθ ĝ
7: end for

4.3 ENTROPY SCHEDULING

Entropy scheduling complements CaPPO by stabilizing exploration through a simple feedback con-
troller on the entropy weight. We track the length-normalized sequence entropy

Ht = Ex, y∼πθ(·|x)

[
− 1

|y|
log πθ(y | x)

]
, H̃t = (1− α) H̃t−1 + αHt, (5)

where H̃t is an Exponential Moving Average (EMA) with smoothing α ∈ (0, 1].

We adapt the entropy coefficient β toward a time-varying target Htarget(t) via a clipped proportional
update:

βt+1 = clip
(
βmin, βt + η

[
Htarget(t) − H̃t

]
, βmax

)
, (6)

where η is a stepsize and (βmin, βmax) bound the entropy weight. In practice, Htarget(t) can be cho-
sen as a fixed constant, a scheduled decay (to shift from exploration to exploitation gradually), or
an adaptive value defined as an EMA of the reference policy entropy plus a small offset to preserve
support. We compute Ht on the same minibatches used for PPO updates, averaging over prompts
and sampled completions with lengths |y| excluding special tokens. To dampen noise, H̃t is main-
tained as a bias-corrected EMA, and clipping ensures that the entropy term stays within a stable
range (roughly 5–20% of the total surrogate magnitude at initialization). Optionally, a small integral
term can be added to the update to further reduce oscillations, though we disable it by default.

4.4 THEORETICAL PERSPECTIVE

CaPPO can be analyzed as a stochastic approximation scheme for multi-objective policy optimiza-
tion. Its update corresponds to the minimum-norm element of the preconditioned gradients’ convex
hull, which ensures convergence to Pareto-stationary points under standard Lipschitz continuity. In
particular, if ĝ is the CaPPO update, then for any feasible descent direction d, we have

⟨ĝ, d⟩ ≥ 0 ∀d ∈ cone{−gr,−ge,−gkl}, (7)

which formalizes that no descent direction can improve one objective without violating another.

A complementary trust-region perspective interprets CaPPO as a constrained optimizer with en-
tropy floors and KL caps. The associated Lagrangian dynamics adaptively tune multipliers λkl, λe,
yielding an update of the form

θt+1 = θt + ηθ

(
∇Jr(θt)− λkl,t∇KL(θt) + λe,t∇H(θt)

)
, (8)

with projected dual steps ensuring feasibility. Finally, entropy scheduling can be understood as
a proportional–integral controller that regulates the error Htarget − Ht, ensuring bounded entropy
tracking while remaining compatible with the fast multi-gradient updates.

6
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Figure 1: Policy contraction and mitigation. PPO training reduces entropy and erodes support for
reference completions, while CaPPO stabilizes entropy and preserves a larger fraction of the refer-
ence distribution.

These perspectives establish CaPPO as a principled trust-region variant of PPO that preserves sup-
port while continuing to maximize reward. Empirically, this theoretical picture is borne out in Fig-
ure 1: 1a shows that PPO suffers entropy collapse at similar KL to the reference, whereas CaPPO
stabilizes entropy; 1b illustrates the consequence at the sample level, where CaPPO shifts probability
mass rightward and retains reference completions that PPO discards.

5 RESULTS

We evaluate PPO and our proposed CaPPO under a standard RLHF setup on three widely used
datasets: (i) Anthropic HH-RLHF (helpfulness/harmlessness preferences) (Bai et al., 2022a), (ii)
OpenAI Summarize-from-Feedback (Stiennon et al., 2020), and (iii) UltraFeedback for general
helpfulness preferences (Cui et al., 2023). We compare four base models: Qwen2-7B (Team,
2024), Qwen2.5-14B (Yang et al., 2025), Mistral-7B-Instruct (Jiang et al., 2023), and Llama-3-
8B-Instruct (Grattafiori et al., 2024).

Overall performance. Table 3 reports preference win rates relative to SFT across the three RLHF
datasets and four model backbones. Several consistent observations emerge. PPO provides a clear
improvement over SFT in all cases, raising the win rate by 7–15 points depending on model size
and dataset. For example, Qwen2.5-14B on HH-RLHF climbs from 50.0 to 65.1±0.7, while Llama-
3-8B on UltraFeedback increases from 50.0 to 62.4±0.8. These gains confirm the effectiveness of
on-policy RL in extracting the reward-model signal. However, the pattern also shows that PPO im-
provements plateau at a relatively narrow margin, suggesting that further win-rate gains are difficult
without additional intervention. CaPPO consistently lifts performance beyond this plateau, deliver-
ing 2–4 points higher win rate than PPO across all backbones and datasets. Importantly, these gains
are not confined to a single model or dataset but appear consistently across Qwen, Llama, and Mis-
tral families, indicating that the contraction-aware updates generalize broadly rather than exploiting
a particular training recipe.

Table 4 then situates CaPPO among alternative optimization strategies. Off-policy methods such as
DPO, IPO, ORPO, KTO, and RRHF preserve high SRR (up to 0.92) but underperform in win rate
(62–65%). On-policy baselines like PPO, VinePPO, and GRPO push win rate higher (67–71%) but
at the cost of contraction, reducing SRR to the 0.46–0.62 range. CaPPO stands out by combining the
strengths of both: it reaches the highest or co-highest win rate, lowers redundancy, increases lexical
diversity, and recovers support retention.

Table 5 also provides macro-averaged evidence of how these methods shape distributional sup-
port. PPO-trained models show the characteristic contraction signature—elevated Self-BLEU
(0.47–0.49), suppressed Distinct-2 (0.16–0.18), and SRR collapse below 0.45. CaPPO reverses
these effects across all four backbones, lowering Self-BLEU by 0.13–0.15, raising Distinct-2 by
0.08–0.09, and improving SRR by 0.29–0.34. These gains establish that CaPPO not only achieves
higher alignment reward but also broadens the effective support of the trained model, counteracting
the narrowing induced by PPO alone.
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Table 3: Preference win rate compared to SFT on three RLHF datasets across four base models.
Means± std over three seeds. SFT is 50.0 by definition.

Dataset Model SFT + PPO + PPO + Entropy CaPPO

HH-RLHF

Qwen2-7B 50.0 62.8 ± 0.7 64.3 ± 0.7 66.4 ± 0.6
Qwen2.5-14B 50.0 65.1 ± 0.7 66.8 ± 0.6 69.0 ± 0.5
Mistral-7B-Instruct 50.0 60.4 ± 0.8 61.9 ± 0.8 64.1 ± 0.7
Llama-3-8B-Instruct 50.0 63.5 ± 0.7 65.0 ± 0.7 67.2 ± 0.6

Summarize-from-Feedback

Qwen2-7B 50.0 57.6 ± 0.9 58.9 ± 0.8 61.3 ± 0.7
Qwen2.5-14B 50.0 60.2 ± 0.9 61.5 ± 0.8 63.9 ± 0.7
Mistral-7B-Instruct 50.0 55.8 ± 1.0 57.1 ± 0.9 59.6 ± 0.8
Llama-3-8B-Instruct 50.0 58.1 ± 0.9 59.5 ± 0.8 62.0 ± 0.7

UltraFeedback

Qwen2-7B 50.0 61.4 ± 0.8 63.2 ± 0.7 66.0 ± 0.6
Qwen2.5-14B 50.0 64.6 ± 0.7 66.2 ± 0.7 69.1 ± 0.6
Mistral-7B-Instruct 50.0 59.7 ± 0.9 61.3 ± 0.9 64.0 ± 0.8
Llama-3-8B-Instruct 50.0 62.4 ± 0.8 64.1 ± 0.8 66.9 ± 0.7

Table 4: Comparison to additional baselines (Qwen2-7B; macro-average across HH-RLHF,
Summarize-from-Feedback, UltraFeedback). Off-policy methods use the same preference pairs; on-
policy methods follow public recipes. Means± std over three seeds. Best per column in bold. Meth-
ods: DPO (Rafailov et al., 2023), IPO (Garg et al., 2025), ORPO (Hong et al., 2024), KTO (Etha-
yarajh et al., 2024), RRHF (Yuan et al., 2023), VinePPO (Kazemnejad et al., 2024), GRPO (Shao
et al., 2024).

Method Win rate Self-BLEU Distinct-2 SRR

SFT 50.0 0.39 0.22 0.90
DPO (off-policy) 62.8± 0.8 0.40 0.23 0.88
IPO (off-policy) 63.8± 0.8 0.40 0.23 0.89
ORPO (off-policy) 63.3± 0.8 0.41 0.22 0.86
KTO (off-policy) 61.9± 0.9 0.41 0.22 0.85
RRHF (off-policy rank) 64.7± 0.8 0.38 0.24 0.92

PPO 67.4± 0.7 0.48 0.17 0.55
VinePPO 68.6± 0.7 0.45 0.19 0.62
GRPO 71.0± 0.6 0.37 0.24 0.70
PPO + Entropy 68.8± 0.7 0.42 0.20 0.66
CaPPO 71.2± 0.6 0.33 0.27 0.82

Table 5: Diversity and support metrics (macro-averaged across the three RLHF datasets). Self-
BLEU indicates redundancy; Distinct-2 and SRR capture diversity and support preservation.

Dataset Model Self-BLEU Distinct-2 SRR

PPO CaPPO PPO CaPPO PPO CaPPO

Macro over RLHF

Qwen2-7B 0.48 0.34 0.17 0.26 0.43 0.74
Qwen2.5-14B 0.47 0.33 0.18 0.27 0.45 0.76
Mistral-7B-Instruct 0.49 0.35 0.16 0.25 0.41 0.72
Llama-3-8B-Instruct 0.48 0.34 0.17 0.26 0.44 0.75

Ablations. Fixed versus adaptive entropy coefficients on HH-RLHF (Table 6) show that adaptive
scheduling substantially improves SRR and Distinct-2 at comparable win rates. On Summarize-
from-Feedback (Table 7), scalarization sweeps are brittle, whereas CaPPO’s Pareto multi-gradient
updates achieve uniformly better SRR–win rate trade-offs. Under reward scaling and altered boot-
strapping horizons on UltraFeedback (Table 8), CaPPO exhibits lower variance across seeds, indi-
cating robustness to critic noise.
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Table 6: Ablation on entropy scheduling. CaPPO combines the minimum-norm multi-objective
update with the same controller.

Variant Win rate Self-BLEU Distinct-2 SRR

PPO (fixed β) 63.4 0.49 0.17 0.43
PPO (adaptive β) 65.1 0.42 0.21 0.59
CaPPO (ours) 67.8 0.35 0.27 0.74

Table 7: Scalarization sweep vs. CaPPO.

Method Win rate ∆Win Distinct-2 ∆D2 SRR ∆SRR

PPO (λH=0.0) 57.2 0.0 0.16 0.00 0.41 0.00
PPO (λH=0.1) 58.3 +1.1 0.19 +0.03 0.50 +0.09
PPO (λH=0.3) 58.0 +0.8 0.22 +0.06 0.57 +0.16
CaPPO (Pareto) 61.9 +4.7 0.24 +0.08 0.73 +0.32

Table 8: Robustness in terms of seed variance under reward scaling.

Method Win rate std ∆Win std SRR std ∆SRR std

PPO 1.4 0.0 0.030 0.000
PPO + Entropy 1.1 -0.3 0.024 -0.006
CaPPO (ours) 0.8 -0.6 0.017 -0.013

Takeaways. Across datasets and model backbones, PPO improves the win rate but consistently
induces policy contraction, reflected in lower entropy, reduced SRR, and higher Self-BLEU. CaPPO
counteracts this effect, delivering 2 to 4 points higher win rates while also improving diversity,
with gains of 0.06 to 0.10 in Distinct-2 and 0.20 to 0.30 in SRR. These improvements arise from
the combination of adaptive entropy scheduling, which balances exploration and exploitation, and
Pareto multi-objective updates, which avoid the brittleness of scalarization.

6 CONCLUSION

We investigated policy contraction in PPO-based RLHF, an effect where the policy’s support pro-
gressively narrows during on-policy fine-tuning. We provided both diagnostic tools and training-
time remedies. We combined conventional degeneration metrics with entropy and KL trajectories
on the diagnostic side, and introduced SRR as a direct, decoding-agnostic measure of support over-
lap with the SFT reference. These probes consistently revealed entropy collapse, rising repetition,
and left-shifted log-probability distributions under PPO, even when reward improved.

To address this, we proposed two complementary interventions. First, entropy scheduling is a
lightweight controller that dynamically adjusts the entropy coefficient to steer token entropy to-
ward a target, thereby preventing runaway collapse. Second, CaPPO, which reformulates PPO as
a multi-objective problem, treats reward, entropy, and KL-to-reference as peer objectives and up-
dates along Pareto-improving directions. These methods stabilize exploration, preserve support,
and improve diversity while matching or exceeding PPO’s win rate across benchmarks. Empirically,
CaPPO mitigates contraction on different datasets and base models. It achieves higher performance
with robustness to reward scaling, critic variance, and decoding settings. These results demonstrate
that support preservation and accuracy are not in fundamental conflict when diversity is elevated to
a first-class training objective.

Limitations and future work. Our approach introduces modest additional computation from the
entropy controller and multi-objective mixing step, and its success depends on the fidelity of the
reward model. SRR requires threshold selection, which we mitigate with length normalization and
percentile-based rules, but further refinements are warranted. Future work includes theoretical anal-
ysis of convergence and stability of Pareto updates in trust-region RL and combining training-time
CaPPO with inference-time diversity or reasoning controllers.
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A APPENDIX

A.1 EXTENDED METHODOLOGY AND REPRODUCIBILITY

This appendix provides implementation details, hyperparameters, evaluation protocols, and addi-
tional analyses to facilitate exact reproduction and a deeper understanding of our results.

A.1.1 EXPERIMENTAL SETUP

Models. The policy πθ is initialized from an SFT checkpoint and paired with a frozen reference
πref (the same SFT weights unless otherwise noted). We train with PPO using the clipped surrogate
(Eq. 1 in the main text). Unless specified, we share the transformer body between policy and value
head; the value head is a linear projection over the final hidden state.

Tokenization and sampling. We use the base tokenizer accompanying the SFT model. For roll-
outs, decoding uses temperature T ∈ [0.7, 1.0] and top-p ∈ [0.90, 0.95] unless otherwise noted. We
fix (T, p) and the random seed for comparability for evaluation-time generations used by diversity
metrics.

Rewarding. We use a scalar reward head or an external reward model for preference-style data.
For single-output tasks, r(x, y) is obtained from the reward model; for multi-turn prompts, we
aggregate token-level rewards by length-normalized averaging.

Advantages and normalization. We compute GAE with (γ, λ) ∈ [0.95, 0.999] × [0.90, 0.98]
and normalize advantages to zero mean and unit variance within each minibatch. Returns may be
whitened at the episode level.

Optimization. We use AdamW with decoupled weight decay, linear warmup, and cosine decay.
Gradient clipping is applied according to the global norm prior to the PPO update. Gradient check-
pointing is enabled for long contexts.

A.1.2 DATASETS AND PREPROCESSING

Primary benchmark. The main experiments use HH-RLHF for RL fine-tuning. Prompts are
filtered for length (e.g., |x| ≤ Lmax) and normalized (whitespace and Unicode cleanup).

Held-out prompts for verification. To measure the squeezing effect out of distribution, we main-
tain a disjoint held-out set Xheld from the same source. All verification metrics in App. A.1.5 are
computed on Xheld.

Preprocessing. We prepend a system instruction template during training and evaluation when
appropriate. We construct (y+, y−) from the rollout pool via top-k reward ranking per prompt for
reward models requiring pairwise inputs.

A.1.3 HYPERPARAMETERS AND SCHEDULES

Global PPO and optimization hyperparameters. Table 9 lists core training hyperparameters.
Ranges denote values explored during tuning; selected values per run are recorded in the code re-
lease.

Entropy scheduling. The controller follows Eqs. (5 – 6). Table 10 summarizes the schedule.

KL tracking. We report forward KL(πθ∥πref) on rollout tokens and maintain an EMA with coef-
ficient 0.1 for trend plots (not required for training).

A.1.4 CAPPO: SOLVER AND IMPLEMENTATION DETAILS

Objectives and gradients. We optimize three objectives with gradients g1 = ∇θLPPO, g2 =
∇θH(πθ), g3 = ∇θ

(
−KL(πθ∥πref)

)
. Each gi may be normalized by ∥gi∥2 + ε before mixing.
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Table 9: PPO and optimization hyperparameters.

Hyperparameter Range / Value Notes

PPO clip ϵ [0.1, 0.3] Trust-region strength
Num PPO epochs [1, 4] Minibatch passes per batch
Minibatch size [64, 512] Tokens or sequences
Batch size (tokens) [64k, 512k] Accumulated across devices
Discount γ [0.95, 0.999] Return discount
GAE λ [0.90, 0.98] Bias/variance trade-off
LR (policy/value) [1e−6, 2e−5] Cosine decay after warmup
Weight decay [0.0, 0.1] Decoupled (AdamW)
Grad norm clip [0.5, 1.0] Global norm
Context length L [1k, 8k] Model-dependent

Table 10: Entropy scheduling hyperparameters.

Hyperparameter Range / Value Notes

EMA coefficient α [0.05, 0.25] Smoothing of Ht

Adapt rate η [1e−3, 5e−2] Step on entropy gap
βmin, βmax 0, [0.2, 1.0] Clamping for stability
Target type Fixed / Decay / Adaptive As in main text
Fixed H0 median of πref On current batch
Decay γ [0.90, 0.999] Over T updates
Adaptive margin δ [0.0, 0.5] Exploration slack

Combination rule (minimum-norm point). Solve

min
λ∈∆3

∥∥∥ 3∑
i=1

λigi

∥∥∥2
2

s.t. λi ≥ 0,
∑
i

λi = 1,

via a short projected gradient on the simplex (5–10 iterations) or a Frank–Wolfe step on
conv{g1, g2, g3}. Using the Gram matrix Gij = g⊤i gj , the objective equals λ⊤Gλ. The three-
objective QP is negligible in cost.

Trust region and clipping. We retain PPO clipping on the reward objective while mixing gradi-
ents. This preserves robustness even when g2 or g3 momentarily dominate.

Stability tips. We use a small ridge ϵI on G near the singularity, freeze λ for K steps (e.g., K=4)
to reduce oscillations, and damp the mixed direction with momentum µ ∈ [0.5, 0.9].

A.1.5 SQUEEZING-EFFECT INDICATORS AND VERIFICATION

Per-token entropy. Compute Ht = Ex,y∼πθ
[− log πθ(y | x)] with length normalization. Report

EMA-smoothed trends and raw values.

Repeat-n. For y = w1:|y|,

Repeat-n(y) = 1− #{unique n-grams in y}
#{all n-grams in y}

, Repeat-n = E[Repeat-n(y)].

We use n ∈ {2, 3, 4}.

Self-BLEU and Distinct-n. Generate K samples per prompt:

Self-BLEU =
1

|X |K
∑
x

∑
y∈Y (x)

BLEU
(
y, Y (x)\{y}

)
, Distinct-n =

#unique n-grams across Y
#total n-grams across Y

.

KL drift. Track KL(πθ∥πref) on the held-out set per iteration.
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SRR. Let YSFT(x) be K completions from πref. Define

SRRτ =
1

|X |
∑
x

1

K

∑
y∈YSFT(x)

1

{
1

|y|
log πθ(y | x) ≥ τ

}
,

with τ chosen by a reference percentile or µref − kσref.

Log-probability histograms. Histogram 1
|y| log πθ(y | x) for y ∼ πref over a fixed prompt set; a

left shift and peaking at low likelihood signal shrinking support.

Support overlap (optional). Approximate via a merged top-k pool Sk(x):

SO(x) ≈
∑

y∈Sk(x)

min{πθ(y | x), πref(y | x)}, SO = Ex[SO(x)].

Algorithm 2 Policy Contraction Test and SRR

1: Input: Held-out prompts X , πref, snapshots {πθ(t)}, samples-per-prompt K, threshold rule τ(·)

2: for x ∈ X do
3: Sample YSFT(x) from πref; collect µref, σref
4: end for
5: Set τ ;
6: for each snapshot t do
7: Evaluate length-normalized log-likelihoods and compute SRR(t)

τ
8: end for
9: Output: {SRR(t)

τ } and histograms

Training dynamics. We track per-token entropy and SRR over 50k RLHF updates (Figure 2).
Under PPO, entropy declines from 4.2 to 2.2 nats and SRR from 0.88 to 0.65, indicating policy
contraction. CaPPO stabilizes entropy near 3.6 nats and preserves SRR around 0.92.

0 10000 20000 30000 40000 50000
PPO updates

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

Pe
r-t

ok
en

 e
nt

ro
py

 (b
its

)

Entropy vs. Updates
CaPPO
PPO

0 10000 20000 30000 40000 50000
PPO updates

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Su
pp

or
t R

et
en

tio
n 

Ra
tio

 (S
RR

)

SRR vs. Updates
CaPPO
PPO

Figure 2: Training dynamics under RLHF. Left: per-token entropy over 50k updates. PPO steadily
reduces entropy, indicating narrowing exploration, while CaPPO maintains a higher, stable entropy
level. Right: SRR over the same training horizon. PPO progressively loses support from the ref-
erence distribution, with SRR dropping below 0.65, whereas CaPPO consistently preserves more
than 70% of the SFT support. Together, these trajectories highlight how CaPPO counteracts policy
contraction by balancing reward learning with entropy and KL objectives.

Decoding robustness. To rule out decoding artifacts, we evaluate at top-p ∈ {0.8, 0.9} and tem-
perature ∈ {0.7, 1.0}. CaPPO retains higher Distinct-2 and SRR across settings while maintaining
win rate (Figure 3).
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Figure 3: Decoding sweeps under RLHF. Results averaged over Qwen2-7B, Qwen2.5-14B, Mistral-
7B, and Llama-3-8B on HH-RLHF, Summarize-from-Feedback, and UltraFeedback. Each plot
varies top-p ∈ {0.8, 0.9} and temperature ∈ {0.7, 1.0}. Left: win rate remains high across set-
tings, with CaPPO matching or exceeding PPO. Middle: Distinct-2 is consistently higher under
CaPPO, showing improved lexical diversity. Right: SRR is substantially higher with CaPPO, in-
dicating stronger support preservation across decoding parameters. These results demonstrate that
CaPPO’s improvements are robust to decoding choices rather than artifacts of a particular sampling
setup.

A.1.6 ABLATIONS

Entropy variants. Compare: fixed β, monotone decay βt = β0γ
t/T , and controller-based adap-

tive βt. Report final performance and Ht.

Objective coupling. Compare scalarized PPO (fixed weights on reward/entropy/KL) against
CaPPO (Pareto mixing). Probe gradient normalization and freezing λ across steps.

Verification sensitivity. Grid over SRR thresholds τ , number of SFT samples K, and n for
Repeat-n/Distinct-n; verify conclusions remain consistent.

A.1.7 COMPUTE, TIME, AND MEMORY

Throughput. Let B be tokens per optimizer step and E PPO epochs; wall-clock per iteration
scales roughly linearly with E and the number of forward/backward passes per objective. CaPPO
adds two extra objective gradients and a tiny QP; overhead is a small constant factor relative to PPO.

Memory. Memory is dominated by the model, KV cache, optimizer states, and (if unfrozen)
the reference. Keeping πref on the device increases peak memory; offloading or sharding reduces
VRAM.

Mixed precision and checkpointing. We use bfloat16/float16, keep layer norms and key accumu-
lators in float32, and employ gradient checkpointing and sequence packing.

A.2 USAGE OF LLMS

We used LLM–based assistants to support writing. In this paper, we employed it only for grammar
and writing style polishing. All content was manually reviewed and verified by the authors. In line
with the conference policies, we explicitly disclose this usage and acknowledge that the authors bear
full responsibility for the paper’s accuracy and integrity.
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