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Abstract

The rapid advancements in large language models (LLMs), particularly in their rea-
soning capabilities, hold transformative potential for addressing complex challenges
and boosting scientific discovery in atmospheric science. However, leveraging
LLMs effectively in this domain requires a robust and comprehensive evaluation
benchmark. Toward this end, we present ATMOSSCI-BENCH, a novel benchmark
designed to systematically assess LLM performance across five core categories
of atmospheric science problems: hydrology, atmospheric dynamics, atmospheric
physics, geophysics, and physical oceanography. ATMOSSCI-BENCH features
a dual-format design comprising both multiple-choice questions (MCQs) and
open-ended questions (OEQs), enabling scalable automated evaluation alongside
deeper analysis of conceptual understanding. We employ a template-based MCQ
generation framework to create diverse, graduate-level problems with symbolic
perturbation, while OEQs are used to probe open-ended reasoning. We conduct a
comprehensive evaluation of representative LLMs, categorized into four groups:
instruction-tuned models, advanced reasoning models, math-augmented models,
and domain-specific climate models. Our analysis provides some interesting in-
sights into the reasoning and problem-solving capabilities of LLMs in atmospheric
science. We believe ATMOSSCI-BENCH can serve as a critical step toward ad-
vancing LLM applications in climate services by offering a standard and rigorous
evaluation framework. The source code of ATMOSSCI-BENCH is available at
[https://github.com/Relaxed-System-Lab/AtmosSci-Bench].

1 Introduction

Large language models (LLMs) [[1], especially in their reasoning capabilities, have recently achieved
remarkable progress, offering transformative potential for addressing complex challenges in atmo-
spheric science [2, 3, 14} |5]]. More recently, increasingly powerful LLMs have accelerated progress
in AI4S (Al for Science), enabling a paradigm shift in scientific discovery. With their growing
capabilities, LLMs show the potential to act as “Al Scientists,” partially assisting—or even au-
tonomously conducting—hypothesis generation, experimental design, execution, analysis, and re-
finement [6, [7, 18 |9} [10L [11]. To advance AI for Atmospheric Science and enable the development
of reliable and effective LLM-based applications for climate-related tasks, it is crucial to recognize
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that LLMs themselves serve as a foundational core. Assessing whether current LLMs are capable
of reasoning about problems in this domain is therefore a prerequisite, which calls for a robust and
comprehensive evaluation framework. Such a benchmark is essential to systematically assess the
performance of LLMs across a diverse array of atmospheric science problems, ensuring their utility,
accuracy, and robustness in this critical domain.

Atmospheric science presents unique and complex challenges, ranging from micro-scale processes
like cloud dynamics to global-scale climate systems. To ensure that LLMs can effectively contribute
to solving these real-world problems, it is essential to establish a benchmark that evaluates their
performance, especially their reasoning and interpretative abilities. Such a well-designed benchmark
will not only foster innovation but also provide a standardized framework for assessing the utility,
accuracy, and robustness of LLMs in this field.

Atmospheric science problems include essential differences from the classic mathematical and
physical problems commonly found in existing LLM benchmarks [12} [13]]. This field is inherently
interdisciplinary, requiring the integration of theoretical analytical modeling skills with real-world
phenomena and knowledge. Concretely, atmospheric science involves analyzing and synthesizing
heterogeneous data types, such as spatial coordinates, temperatures, wind patterns, and empirical
estimates, which are often presented in varied formats and units. Furthermore, solving these problems
necessitates the selection of appropriate physical models and mathematical methods to ensure
accuracy, adding layers of complexity beyond traditional benchmarks. As such, constructing a
benchmark tailored to atmospheric science is a necessary complement to existing evaluations, enabling
a more comprehensive assessment of LLMs’ reasoning capabilities.
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Figure 1: Overview of ATMOSSCI-BENCH

To address this need, we introduce ATMOSSCI-BENCH, a benchmark designed to comprehensively
evaluate recent advances of LLMs in atmospheric science and related domains. An overview of
ATMOSSCI-BENCH is shown in Figure[I] The construction process—including the dual-question
system, datasets, and domain coverage—is described in Section [3] while the evaluation and categories
of LLMs assessed are detailed in Section[4] Concretely, we summarize our key contributions:

Contribution 1. We construct ATMOSSCI-BENCH, a comprehensive benchmark comprising
Multiple-Choice Questions (MCQs) and Open-Ended Questions (OEQs) to assess LLM perfor-
mance across five scientific domains relevant to atmospheric science: (i) atmospheric dynamics,
(ii) atmospheric physics, (iii) geophysics, (iv) hydrology, and (v) physical oceanography. MCQs
enable scalable automated assessment via symbolic templates, while OEQs reveal deeper LLM rea-
soning ability in open-ended settings. The question set is curated from graduate-level materials and
systematically expanded using a symbolic generation framework to ensure relevance and diversity.

Contribution 2. We conduct a comprehensive evaluation that includes a wide range of representative
LLMs, which can be concretely categorized into four classes: (1) instruction models that have been



fine-tuned for instruction following; (ii) reasoning models that have been aligned with advanced
reasoning abilities; (iii) math models that have been augmented with more mathematical skills; and
(iv) domain-specific climate models that have been continuously pre-trained with climate-relevant
corpus. We carefully analyze the evaluation results and summarize the following findings:

e Finding 1. Reasoning models (such as GPT-03-mini and Deepseek-R1) outperform instruction,
math, and domain-specific models, demonstrating the superior significance of advanced reasoning
ability in atmospheric science tasks.

» Finding 2. The inference time scaling introduces interesting quality-efficiency tradeoffs for
reasoning models—model accuracy improves with longer reasoning token lengths up to a certain
threshold, beyond which the gains plateau and diminishing returns emerge.

 Finding 3. Despite their superior reasoning capabilities, advanced models remain sensitive to
symbolic perturbations—minor changes in variable values or structure can notably impact their
accuracy, suggesting that they possibly rely on pattern matching rather than genuine reasoning.

2 Related Work

LLM advances. LLMs, such as OPT [14], LLAMA [15], GPT [16], GEMINTI [17]], CLAUDE [18]],
and MIXTRAL[19]], have demonstrated remarkable performance across a wide range of applications.
While general-purpose LL.Ms exhibit strong adaptability, domain-specific models have also been
developed to enhance performance in specialized fields. In the context of atmospheric science, climate-
focused LLMs such as CLIMATEBERT [20], and CLIMATEGPT [4] are designed to address the
unique challenges of climate modeling and analysis, which illustrates a promising paradigm different
from traditional approaches that designing a specific model for some particular task [21} 22} 23 [24]
235]. More recently, reasoning models, including GPT-01 [26], GEMINI-2.0-FLASH-THINKING [27],
QwQ [28], and DEEPSEEK-R1 [29], have emerged, highlighting advancements in mathematical and
scientific problem-solving. These models leverage sophisticated reasoning techniques, presenting
exciting opportunities for tackling complex challenges in atmospheric science. Details of fundamental
differences between reasoning and instruction-tuned models are provided in Appendix[B.3]

LLM benchmarks. Assessing LLMs is crucial for ensuring their effectiveness in deployment across
various domains [|30]. Traditional benchmarks such as GSM8K [31]] and MATH [[12]] have become less
informative as state-of-the-art models achieve near-perfect scores, motivating the need for more chal-
lenging and discriminative benchmarks to evaluate reasoning capabilities. In response, several recent
benchmarks have been developed to target more advanced scientific reasoning: GPQA-Diamond [32]]
focuses on expert-level science, AIME2024 [33] targets advanced mathematical problem solving,
and SCIBENCH [13]] evaluates collegiate-level scientific reasoning. These benchmarks have been
widely adopted for assessing reasoning-oriented LLMs. More recently, a complementary trend
has emerged. HUMANITY’S LAST EXAM [34] provides broad subject coverage across the frontier
of human knowledge and aims to serve as the final closed-ended academic benchmark of its kind.
In contrast, domain-specific efforts such as PHYSICS [35]], PhysBench [36], and SciEx [37] offer
specialized evaluations in physics and scientific reasoning, incorporating symbolic derivations, open-
ended problem solving, and expert-aligned scoring protocols. However, a comprehensive LLM
benchmark tailored for atmospheric science remains underrepresented. While CLIMAQA [38] offers a
promising first step, it primarily relies on definition-based assessments and lacks the depth required
to evaluate complex numerical and symbolic reasoning essential to real-world atmospheric science
problems. Designing a meaningful benchmark in this domain requires principled guidance to ensure
robust, accurate, and interpretable evaluation. A notable methodological advancement is the use of
symbolic extensions in benchmarking, as demonstrated by GSM-Symbolic [39], VarBench [40], and
MM-PhyQA, where controlled variation of problem parameters improves robustness and mitigates con-
tamination. These studies reveal that even small perturbations in problem structure can significantly
degrade model performance, highlighting persistent fragilities in LLM reasoning and underscoring
the need for rigorous benchmarks tailored to domain complexity.

3 Dataset and Question Construction

3.1 Dual-format question types.

ATMOSSCI-BENCH is designed with a dual-format question structure comprising MCQs and OEQs.
These complementary formats enable us to systematically evaluate both the structured reasoning and
expressive problem-solving capabilities of LLMs in atmospheric science.



Multiple-choice questions. The use of MCQs serves multiple core objectives: enabling automated
scoring, supporting controlled symbolic perturbation, and ensuring unambiguous evaluation. Unlike
traditional metrics such as exact match, BLEU, or F1 scores — which primarily assess surface-level
similarity — MCQs offer fixed, well-defined answer choices. This significantly reduces ambiguity
and enables a more precise assessment of logical inference and conceptual comprehension by the
model [41]. To maximize the consistency and scalability of our benchmark, we constructed symbolic
MCQ templates from source materials and applied rule-based perturbations to systematically explore
model sensitivity to input transformations. The full construction pipeline, including template design,
numerical instantiation, and distractor generation, is detailed in Section

Open-ended questions. In parallel, we include open-ended questions to probe model reasoning
in a less constrained setting. OEQs are better suited to reveal genuine reasoning capabilities, free
from potential biases introduced by distractor. Prior work has noted that MCQs may allow models
to bypass reasoning through answer recognition or pattern matching, rather than demonstrating full
comprehension of theoretical concepts [34, 136, 42]. However, OEQs pose challenges in evaluation:
the output space is unconstrained and lacks a single, universally accepted metric. Recent benchmarks
adopt restrictive answer formats to simplify evaluation. For example, PhysBench [36] focuses solely
on symbolic expressions, while Humanity’s Last Exam [34] prohibits open-ended answers and
instead relies on exact match or extraction-based evaluation. In contrast, we propose a cascade of
evaluators specifically tailored for our OEQs. Our OEQs include a mix of quantitative answers
involving numerical values with physical units, as well as symbolic expressions. To robustly evaluate
this diverse answer space, our evaluators include a quantity evaluator, a symbolic expression evaluator,
and an LLM-as-judge evaluator. We detail the full evaluation method in Section[4.2]

3.2 Data Source and Pre-processing

To ensure the rigor and relevance of the benchmark, we curated questions from course materials used
in atmospheric science-related classes at our university. These sources provide high-quality, well-
established content that aligns with the complexity and depth required for evaluating LLMs in this
domain. The detailed design principles are provided in Appendix [A] We leverage Mathpix OCR [43],
a state-of-the-art OCR (Optical Character Recognition) engine, to extract both questions and their
corresponding explanations from the collected materials. For multi-part problems or sequential
questions where solving one step is necessary to proceed to the next, we consolidated them into single
questions to enhance the complexity and depth of reasoning required. This approach preserves the
logical progression of problem-solving, ensuring a comprehensive assessment of model capabilities.

Category distribution. The benchmark spans five scientific domains commonly addressed in
atmospheric science, each chosen for its foundational importance in climate-related education and
research. While only two of these — atmospheric dynamics and atmospheric physics—are formally
categorized under atmospheric science, the remaining three — geophysics, hydrology, and physical
oceanography — serve as necessary complementary domains. These fields are tightly coupled with
atmospheric processes and are frequently integrated into both academic instruction and real-world
research. Together, these five categories ensure broad topical coverage and reflect the inherently
interdisciplinary nature of atmospheric science:

* Atmospheric dynamics focuses on the motion of the atmosphere, including large-scale weather
systems, wind patterns, and governing forces of atmospheric circulation.

» Atmospheric physics covers physical processes such as radiation, thermodynamics, cloud forma-
tion, and energy transfer within the atmosphere.

* Geophysics encompasses the physical processes of the Earth, including its magnetic and gravita-
tional fields, seismic activity, and internal structure.

* Hydrology examines the distribution, movement, and properties of water on Earth, including the
water cycle, precipitation, rivers, lakes, and groundwater dynamics.

* Physical oceanography investigates the physical properties and dynamics of ocean water, including
currents, waves, tides, and ocean-atmosphere interactions.

We summarize the distribution of questions across core scientific domains in Table[T} encompassing
both MCQs and OEQs in our benchmark. The MCQ10 subset is constructed by symbolically expanding
each of our 67 curated question templates into 10 unique instances (Section [3.3), resulting in 670
scientifically grounded MCQs that enable large-scale, diverse evaluation. To complement this
core set, we introduce an additional subset, MCQ10_EXT, consisting of 240 questions drawn from



three complementary domains that are closely integrated with atmospheric science. For robustness
evaluation, we also construct MCQ30, an augmented set incorporating higher levels of symbolic
variation, for which 30 unique instances are generated for every question template (Section[5.3)). To
ensure consistency, MCQ10_EXT and MCQ30 are generated following the same framework as MCQ10.
In contrast, the OEQ dataset (391 questions) is individually curated to emphasize deep reasoning,
without symbolic perturbations.

Table 1: Question type counts across different subfields in terms of MCQs and OEQs.

Type Atmos. Dynamics Atmos. Physics Geophysics Hydrology Phys. Oceanog. Total
MCQ10 370 140 70 50 40 670
MCQ10_EXT 0 0 10 170 60 240
0EQ 46 85 11 226 23 391

3.3 MCQ Generation Framework
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Figure 2: Construction pipeline of our template-based question generation framework. Red block
display the question collecting process. Blue blocks represent the question generation process
(variables are highlighted in different colors). Greed blocks depict the automatic problem solver,
which derives the answer from given variables. Yellow blocks illustrate an example of a generated
question and its corresponding options.

To rigorously evaluate the reasoning and problem-solving capabilities of LLMs, we employ symbolic
MCQ generation techniques inspired by the GSM-Symbolic framework [39], enhanced with a rule-
based mechanism. This approach enables the creation of scalable and diverse question sets while
ensuring logical coherence and alignment with real-world physical laws. Instead of fixed numerical
values, we also design a template-based question perturbation mechanism with placeholder variables,
which can be systematically instantiated through symbolic extensions. This ensures that models are
tested on genuine reasoning ability rather than pattern matching from the potentially contaminated
training data. Figure [2illustrates the question construction pipeline as we enumerate below.

* Question template construction: We invite domain experts in atmospheric science to systemati-
cally transform selected questions (OCR extracted) into reusable templates. The experts manually
identify numerical values within each question and replace them with variable placeholders, en-
suring flexibility for symbolic instantiation. These variable placeholders, highlighted in different



colors in Figure [2] allow for systematic variation while preserving the original scientific integrity
of the problem.

* Numerical assignment in question template: We design a rule-based mechanism for valid
numerical assignments in each question template. Note that many variables in atmospheric science
problems are interdependent, meaning that the inappropriate assignment of some value(s) could
lead to unrealistic or invalid physical scenarios. To fulfill this requirement, we ask the experts
for each question template to define: (i) a valid numerical range (min, max) for each variable
to ensure scientifically plausible values; (ii) a granularity parameter (i.e., the smallest step size
between values) to control precision; and (iii) a set of rule-based constraints that are manually
implemented to enforce logical dependencies (e.g., in Figure 2] ensuring t; < t3). We believe
these manual configurations ensure that all generated instances remain scientifically valid while
allowing systematic variation in numerical representation.

* Automatic problem solver to support value perturbation: For each question, we utilize GPT-40
to generate an initial Python implementation based on the corresponding explanatory solution.
This synthesized solution is then manually reviewed, verified, and refined by experts to ensure
correctness and adherence to the intended problem-solving methodology. Once validated, the solver
can automatically compute the correct answer for any given set of valid input variables, ensuring
consistency and scalability in question generation. Note that to ensure consistency, accuracy, and
alignment with real-world scientific standards, we also manually assign appropriate units and
define significant digits for rounding the final answer in each automatic problem solver. This
standardization maintains numerical precision while preventing inconsistencies in representation,
ensuring that generated answers adhere to established atmospheric science conventions.

» Option generation: To effectively assess LLM reasoning, MCQs require plausible but incorrect
distracting options that challenge the model’s understanding while avoiding trivial elimination
strategies [44]. To mitigate potential positional bias, we randomized the order of options during
benchmark generation. We further verified that model accuracy was not skewed toward any specific
answer position. The detailed generation mechanisms are provided in Appendix [

4 Evaluation and Experimental Setup

4.1 Constrained Prompting for Evaluation

To ensure consistency in model outputs and simplify downstream answer extraction, we adopt
constrained prompting across both MCQ and OEQ tasks. All prompts are designed to guide the model
toward producing structured answers, with final results required to appear within LaTeX \boxed{}
expressions. These outputs are subsequently extracted using regular expression (RegEx) parsing to
support reliable and automatic evaluation. Full prompt templates are provided in Appendix

4.2 Evaluation Metrics

We design separate evaluation protocols for multiple-choice and open-ended questions, aligned with
the structure of their respective answer formats.

MCQ Evaluation. For multiple-choice questions, we use the MCQEvaluator, which applies a
straightforward accuracy-based metric. We extract the model’s selected option from its response
using a regular expression and compare it against the ground-truth label. A match is counted as
correct; otherwise, it is marked incorrect. The final metric is the proportion of correctly matched
answers across the evaluation set.

OEQ Evaluation. For open-ended questions, which can yield answers in numeric, symbolic, or
natural language formats, we adopt a cascade of evaluators to improve coverage and accuracy:

* QuantityEvaluator: This is the primary evaluator for arithmetic-based questions that produce
scalar answers with physical units. We use regular expressions to extract numeric values from
model outputs and validate correctness within a 5% folerance, which reflects standard error
bounds in Earth Science disciplines. Unit compatibility and conversion are handled using the
pint Python library.

» ExpressionEvaluator: If the quantity-based check fails or the format is not purely numeric, we
fall back to symbolic equivalence checking. We parse both model and reference expressions
using the Python library sympy and simplify their difference. This approach is inspired by
methodologies in recent scientific reasoning benchmarks such as PHYSICS [35]].



e« LLMEvaluator: If both automated evaluators fail, we invoke an GPT-40-MINI [16] with
structured outputs [45] to compare responses against the ground truth using rubric-based in-
structions (Similar to QuantityEvaluator, 5% tolerance for numerical value are accepted). An
example LLMEvaluator prompt is provided in Appendix [E.2] Notably, LLM-based evaluation
is increasingly accepted in scientific benchmarks. Recent studies have shown that LLMs can
serve as effective graders, exhibiting strong agreement with expert human evaluations [37].
Several state-of-the-art benchmarks—including SciEx [37], Humanity’s Last Exam [34], and
PHYSICS [35]—have adopted LLM-as-Judge as a primary or even exclusive evaluation method.

If any of the above evaluators determine the model’s output to be equivalent to the reference, the
sub-question is marked as correct. The final score for an OEQ is computed as the average cor-
rectness across all its subparts, and the overall OEQ accuracy is the average across the dataset.
While QuantityEvaluator and ExpressionEvaluator are highly accurate and well-grounded
for positive true answers, they may still produce false negatives due to the evaluation in Python
library sympy. Mitigating false negatives is one of the design intentions of our cascade of evalua-
tors, which LLMEvaluator plays as a solid backup evaluator handling potential positive cases that
ExpressionEvaluator marks as false, thereby reinforcing overall robustness. Further analysis
of evaluator robustness, the human-LLM agreement study on LLMEvaluator, and false negatives
examples occur in ExpressionEvaluator are provided in Appendix [J|

4.3 Evaluation Questions

We design four main experiments to assess LLM performance on our benchmark, focusing on
comprehensive performance comparison across model categories (Q1), the effect of inference-time
reasoning length (Q2), and robustness to symbolic perturbation (Q3). We enumerate these concrete
questions below: T

* Ql. How do various state-of-the-art LLMs (i.e., falling into different categories of instruction, math,
reasoning, and domain-specific models) comprehensively perform for the proposed atmospheric
science benchmark?

* Q2. How do the models specialized in reasoning perform during inference time scaling, i.e., how
can we improve the model’s test accuracy by increasing the length of reasoning tokens?

e Q3. How robust are the benchmark results, especially when we variate the degree of perturbation
introduced by symbolic variation?

4.4 Benchmark Models

To comprehensively assess LLM performance in atmospheric science, we evaluate a diverse set
of state-of-the-art models spanning four categories: (i) instruction-tuned models, (ii) reasoning-
optimized models, (iii) math-augmented models, and (iv) domain-specific models. This categoriza-
tion facilitates a structured comparison between general-purpose, specialized, and domain-adapted
approaches. A complete list of evaluated models is provided in Appendix and the corresponding
cost and runtime statistics are reported in Appendix [M]

5 Evaluation Results and Discussion

5.1 End-to-end Evaluation Results

Experimental setup. To comprehensively evaluate the performance of four categories of LLMs on
atmospheric science tasks and assess whether ATMOSSCI-BENCH provides a sufficiently challenging
and discriminative evaluation framework, we conduct a systematic performance comparison using
our MCQ10, MCQ10_EXT, and OED benchmark across four representative LLM categories introduced
in Section[d] We standardize experimental settings for each category as: (i) Reasoning models use
32K max context length, including the reasoning tokens; (ii) Instruction and math models use 8K
max output tokens, balancing response quality and efficiency; (iii) Domain-specific models are set to
4K context length, the maximum capacity they support. By controlling these variables, we ensure that
performance differences reflect genuine capability gaps rather than confounding factors, allowing us
to validate whether ATMOSSCI-BENCH effectively differentiates model performance and highlights
reasoning proficiency. Details of the hyperparameter settings and our computation resource are
provided in Appendix [D]and Appendix [G|

Results and analysis. For MCQ10, we present accuracy across different atmospheric science tasks,
along with an overall performance comparison in Table [2] with three key observations:



Table 2: Accuracy (%) and symbolic standard deviation (SymStd.) comparison across four LLM
categories on the MCQ10 dataset.

Category Model Hydro AtmDyn AtmosPhy GeoPhy PhyOcean \ Overall Acc  SymStd.
Gemma-2-9B-it 28.0 17.29 21.42 11.42 200 | 18.50 3.73
Gemma-2-27B-it 56.0 31.08 47.14 41.42 40.0 37.91 4.62
Qwen?2.5-3B-Instruct 46.0 29.19 34.28 30.0 3715 | 3149 7.71
Qwen?2.5-7B-Instruct 60.00 38.11 50.71 51.43 32.50 4343 4.90
Qwen2.5-32B-Instruct 60.0 46.22 63.57 62.86 500 | 5284 5.68
Instruction Models Qwen?2.5-72B-Instruct-Turbo 72.00 50.00 76.43 4429 57.50 57.01 4.44
Llama-3.3-70B-Instruct 82.0 42.66 66.43 51.52 425 | 5151 3.92
Llama-3.1-405B-Instruct-Turbo 70.00 48.11 64.29 57.14 52.50 54.33 5.81
GPT-40-mini 48.00 42.16 58.57 40.00 40.00 | 4567 5.08
GPT-40 72.0 51.35 74.29 60.0 45.0 58.21 522
Gemini-2.0-Flash-Exp 90.00 58.11 67.14 77.14 5500 | 64.18 3.85
Deepseek-V3 94.00 56.22 73.57 64.29 52.50 63.28 6.02
QwQ-32B-Preview 88.0 63.24 87.86 77.14 500 | 70.9 4.41
Gemini-2.0-Flash-Thinking-Exp (01-21) 100.00  78.11 83.57 91.43 70.00 81.79 3.78
Reasoning Models GPT-o0l 100.00  82.70 90.71 92.86 7750 | 86.42 2.94
Deepseek-R1 98.00 85.68 93.57 95.71 72.50 88.51 2.99
Qwen3-235B-A22B-FP8-Throughput 98.0 86.49 93.57 90.0 700 | 8821 3.75
GPT-03-mini 100.0 87.57 89.29 95.71 71.5 89.1 33
Deepseek-Math-7B-RL 22.00 2243 28.57 24.29 3500 | 2463 452
Deepseek-Math-7B-Instruct 36.00 28.38 33.57 30.00 40.00 30.90 4.17
Math Models Qwen2.5-Math-1.5B-Instruct 48.00 29.19 23.57 34.29 30.00 ‘ 30.00 2.94
Qwen2.5-Math-7B-Instruct 54.00 30.81 39.29 35.71 30.00 34.78 5.85
Qwen?2.5-Math-72B-Instruct 68.00 54.05 72.14 62.86 30.00 \ 58.36 6.31
ClimateGPT-7B 26.00 18.65 22.86 11.43 32.50 20.15 5.18
Domain-Specific Models  ClimateGPT-70B 24.00 25.41 28.57 40.00 2250 | 2731 4.45
GeoGPT-Qwen2.5-72B 60.0 30.0 40.71 37.14 25.0 34.93 2.74

* ATMOSSCI-BENCH effectively differentiates LLM performance across categories, with reasoning
models demonstrating the highest proficiency. The results confirm that our benchmark successfully
distinguishes LLM performance, particularly in assessing reasoning proficiency. Reasoning models
(70.9% - 89.1%) significantly outperform instruction models (18.5% - 64.18%), demonstrating
superior consistency with lower symbolic reasoning standard deviation (SymStd) [39]. GPT-03-
MINI, the best-performing reasoning model, achieves 89.1% accuracy, while the top instruction
model, GEMINI-2.0-FLASH-EXP, only reaches 64.18%, a substantial 24.92% gap. This clear
performance variance underscores ATMOSSCI-BENCH s ability to challenge advanced LLMs,
ensuring that strong reasoning skills translate into measurable performance gains.

* Math models do not show a clear advantage over instruction models. Despite their specialization,
math models do not significantly outperform instruction models, suggesting that mathematical
optimization alone is insufficient for solving atmospheric science challenges.

e Domain-specific models underperform despite climate specialization, indicating a need for strong
reasoning-augmented approaches. Domain-specific models show notably lower performance de-
spite being trained on domain-related corpora. For instance, CLIMATEGPT-7B and CLIMATEGPT-
70B achieve only 20.15% and 27.31% accuracy, respectively. This outcome is not entirely sur-
prising, as the pretraining data for ClimateGPT is drawn almost entirely from crowd-sourced
prompt-completion pairs and multi-turn dialogues, which are not effective for structured, step-wise
reasoning found in scholarly problem solving. Interestingly, GEOGPT-QWEN2.5-72B also under-
performs, achieving only 34.93% accuracy, whereas its base model Qwen-2.5-72B-Instruct-Turbo
with the same model size achieves an accuracy of 57.01%. To better understand the flaws of
domain-specific models, we conducted an error analysis, as detailed in Appendix These error
patterns are consistent with our explanation of GeoGPT’s. Indeed, GeoGPT’s stated design goal: it
is intended “to understand the demands of non-professional users, then think, plan, and execute
defined GIS tools to produce effective results.” Optimizing for tool planning rather than sustained
step-by-step problem-solving data, therefore, provides a more plausible explanation for its lower
accuracy than parameter size. Taken together, the evidence suggests that the principal limitations
of current domain-specific LLMs lie in their training objectives and data composition: a focus
on tool interaction or conversational style can leave gaps in both domain knowledge breadth and
reasoning robustness. This underscores the need for reasoning-augmented domain models that
combine scientific knowledge with structured inference skills. ATMOSSCI-BENCH provides a
rigorous and interpretable evaluation framework to support the development and diagnosis of such
models, addressing key limitations in current domain-specific approaches.
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Figure 3: Reasoning step study. Accuracy (%) of different models across increasing input lengths.

The results for 0EQ and the complementary MCQ10_EXT set are provided in Appendix [H] MCQ10_EXT,
designed to augment the original MCQ10 set with additional domain coverage, exhibits performance
trends consistent with those observed in MCQ10, supporting the robustness of our findings. In contrast,
LLMs score below 40% on the 0OEQ, hlghllghtmg ATMOSSCI-BENCH’s capacity to evaluate deeper
layers of logical and numerical reasonlng, reinforcing the importance of inference-through-thinking
as a critical dimension in assessing LLM capabilities for scientific problem-solving.

In conclusion, to answer Q1 regarding the overall performance of various LLM categories, our
evaluation reveals that reasoning models significantly outperform instruction, math, and domain-
specific models in atmospheric science tasks, highlighting their superior adaptability to advanced
reasoning challenges, while domain-specific models struggle despite specialized training.

5.2 Inference Time Scaling for Reasoning Models

Experimental setup. To answer 02, i.e., whether increasing the length of reasoning tokens improves
the performance of reasoning models, we conduct an inference time scaling evaluation on MCQ10
using the QWQ-32B-PREVIEW and GPT-03-MINI model, varying its reasoning token limits from
4K up to 40K. By systematically increasing the token limit, we aim to determine whether a longer
inference process leads to higher accuracy and whether there exists an optimal threshold beyond
which additional tokens provide minimal benefit.

Results and analysis. As shown in Figure[3d] increasing the reasoning token limit for QWQ-32B-
PREVIEW generally improves model accuracy, but the gains diminish beyond a certain threshold. The
performance in terms of overall accuracy is consistently lower at 4K tokens, improves significantly at
8K and 16K tokens, and then plateaus beyond 16K tokens, with 32K tokens offering only marginal
improvement. GPT-03-MINI in[3b|show a similar pattern except plateaus around 32K. This trend
suggests that while extending reasoning length enhances model performance up to a certain point, it
further increases yield, diminishing returns without proportional accuracy gains. Thus, our answer
to Q2 is that increasing the length of reasoning tokens improves model accuracy up to 16K tokens,
beyond which performance gains diminish, indicating an optimal threshold for inference time scaling.

5.3 Robustness of ATMOSSCI-BENCH

To evaluate the robustness of ATMOSSCI-BENCH ((3), we conduct a experiment to assess - robustness
to different degrees of perturbation introduced by symbolic variation.

Experimental setup. Inspired by GSM-Symbolic [39], which demonstrates that modifying numerical
variables in the GSM8K dataset leads to significant performance drops, suggesting that LLMs may rely
on pattern matching rather than genuine logical reasoning. Here, pattern matching refers to reliance
on patterns memorized during training—such as recalling similar questions or solutions—rather
than reasoning through the problem independently. We aim to assess the robustness of advanced
reasoning models under varying degrees of symbolic perturbation. To examine this, we evaluate three
reasoning models—DEEPSEEK-R 1, GEMINI-2.0-FLASH-THINKING-EXP (01-21), GPT-03-MINI,
and QwWQ-32B-PREVIEW—on MCQ30, which consists of 30 test sets for each question template, with
controlled symbolic variations to analyze sensitivity to numerical perturbations. We systematically
modify numerical variables within a scientifically reasonable range, introducing controlled variations
to assess whether performance remains stable or degrades significantly with perturbation.

Results and analysis. Figure dillustrates the empirical performance distribution of reasoning models
on MCQ30. We observe that the accuracy of the original question set for all models (dashed line in
Figure [)) is approximately one standard deviation away from the mean accuracy across perturbed
instances, except QWQ-32B-PREVIEW exhibits about two standard deviations. A hypothesis test was
also conducted (Appendix [N)), which indicates that the null hypothesis of “random chance” cannot
be conclusively rejected, suggesting the possibility of potential data contamination. Although not



definitive evidence of contamination, such deviations are nontrivial and warrant further attention,
implying that reasoning LLMs are possibly pattern-matching from contaminated data. To answer Q3
w.r.t symbolic variation, the results indicate that the reasoning models evaluated in our benchmark
could still be under the risk of insufficient robustness under symbolic perturbation, as increasing the
degree of variation leads to notable and often unpredictable drops in accuracy, suggesting that they
possibly rely on pattern matching instead of genuine reasoning.

03-mini Deepseek-R1 QwQ-32B Gemini-2.0-flash-think
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Figure 4: Performance distribution among reasoning LLMs on MCQ30. The Y-axis represents the
frequency of the symbolic test sets achieving the accuracy shown on the X-axis. The black vertical
dash lines denote the accuracy of the original question set.

5.4 Further Discussion

To better understand the skill-level limitations of current LLMs in atmospheric science, as well as
common error patterns and evaluation constraints, we refer readers to Appendix [K] (skill-oriented
ablation analysis including a retrieval-augmented generation (RAG) baseline), Appendix [I. 1| (error
categorization), Appendix [N] (data contamination), and Appendix [O] (discussion of limitations).

6 Conclusion

In this paper, we introduced ATMOSSCI-BENCH, a novel benchmark designed to systematically
evaluate the reasoning and problem-solving capabilities of LLMs in atmospheric science. Our
findings highlight that reasoning models outperform other categories, demonstrating stronger problem-
solving and reasoning capabilities in the domain of atmospheric science. This also underscores the
benchmark’s effectiveness in differentiating models. Our benchmark covers five core categories —
hydrology, atmospheric dynamics, atmospheric physics, geophysics, and physical oceanography —
through a dual-format question design comprising both MCQs and OEQs. This structure enables both
scalable automated evaluation and deeper probing of scientific reasoning skills. ATMOSSCI-BENCH
employs a scalable, template-based generation framework for MCQs to ensure diversity and control
over symbolic perturbations, while OEQs are curated to assess deeper reasoning skills without
predefined answer choices. Through a comprehensive evaluation across four model categories —
instruction-tuned models, advanced reasoning models, math-augmented models, and domain-specific
climate models — we provide key insights into the strengths and limitations of current LLMs. Our
findings highlight that reasoning models outperform other categories, demonstrating stronger problem-
solving and reasoning capabilities in the domain of atmospheric science. This also underscores the
benchmark’s effectiveness in differentiating models. We believe that ATMOSSCI-BENCH (where
all the implementations are fully open-sourced) can serve as an essential step toward advancing the
application of LLMs in climate-related decision-making by offering a standardized and rigorous
evaluation framework for future research.
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A Questions design principles.

To ensure a rigorous evaluation of LLMs in atmospheric science, we adhere to a set of well-defined
principles that emphasize reasoning and interpretative abilities:

Deep understanding of essential physical equations: Atmospheric science is governed by fun-
damental physical equations, and a meaningful evaluation requires that LLMs not only recall these
principles but also apply them appropriately in the corresponding contexts. Thus, the questions
should be designed to assess both conceptual comprehension and the ability to use these equations
in problem-solving, ensuring the benchmark measures true scientific reasoning rather than mere
memorization.

Complex reasoning and multi-step logic: Many real-world atmospheric problems require syn-
thesizing information from multiple sources, integrating equations, and applying multi-step logical
reasoning. To reflect these challenges, benchmark questions should be crafted to go beyond simple
recall, testing the model’s ability to handle intricate reasoning and dynamic problem-solving scenarios
inherent to the field.

Appropriate numerical arithmetic processing: Accurate numerical computation is essential for
scientific disciplines, where correct reasoning leads to fixed, verifiable answers. By incorporating
numerical problems, we provide a structured and objective evaluation framework, eliminating ambi-
guities in assessment. This approach also enables seamless integration of reasoning tasks, extending
the benchmark’s scope to evaluate mathematical intuition and computational fluency.

B Model Usage
B.1 Model List

Instruction models. Instruction-tuned models serve as strong general-purpose baselines, optimized
for following prompts and single-step inference tasks, where we include:

* GPT-40, GPT-40-MINTI [16]: OpenAl’s instruction-tuned models.

¢ QWEN2.5-INSTRUCT (3B, 7B, 32B, 72B) [46]: Instruction-tuned Qwen models with enhanced
abilities.

* GEMMA-2-9B-IT, GEMMA-2-27B-it [47]: Google’s open-weight instruction models; along with
Gemini-2.0-Flash-Exp [48]], the powerful Gemini model optimized for efficiency.

e LLAMA-3.3-70B-INSTRUCT, LLAMA-3.1-405B-INSTRUCT-TURBO [49]: Meta’s widely used
instruction models.

* DEEPSEEK-V3 [50]]: Deepseek’s latest MoE-based instruction model for general tasks.

Math models. Mathematical LLMs specialize in problem-solving, computational reasoning, and
theorem proving — such ability is essential for atmospheric problems. Towards this end, we include:

* DEEPSEEK-MATH-7B-INSTRUCT and DEEPSEEK-MATH-7B-RL [51]: Deepseek’s math-
focused models trained for theorem proving.
* QWEN2.5-MATH (1.5B, 7B, 72B) [52]: Qwen’s recent models optimized for mathematics.

Reasoning models. Reasoning ability is the core technique to improve LLMs’ performance over

complicated tasks. We include the recent advanced reasoning models focus on deep logical reasoning

and multi-step problem-solving:

* GPT-01 [26], GPT-03-MINI [53]]: OpenAI’s reasoning-optimized model.

e QwWQ-32B-PREVIEW [28]: Reasoning model based on Qwen2.5-32B.

* GEMINI-2.0-FLASH-THINKING-EXP (01-21) [27]: Extended Gemini-2.0-Flash-Exp for en-
hanced reasoning.

e DEEPSEEK-R1 [29]: Deepseek’s RL-trained model for complex problem-solving.

* QWEN3-235B-A22B-FP8-THROUGHPUT [54]]: The Latest generation in the Qwen series
equipped with thinking mode to enhance its reasoning capabilities.

Domain-specific models. We also include some models that are specially tailored for climate-related
and atmospheric science tasks by supervised fine-tuning or continuous pre-training:

e CLIMATEGPT-7B, CLIMATEGPT-70B [4]: QA models specialized in the climate domain.
* GEOGPT-QWEN2.5-72B [55]]: A domain-adapted model built on Qwen2.5-72B supports ad-
vanced reasoning and knowledge synthesis in specialized areas of geoscience.
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B.2 Model and Library Usage Licenses

We list in Table[3|the models and software assets used in this work, along with their respective sources
and licensing terms. All API-based models are accessed through official platforms under standard
usage policies, while open-source models are released under community-accepted licenses (Apache,
MIT, etc.).

Model / Library Source / Access Method License / Terms of Use
GPT-40, GPT-40-mini, GPT-01, OpenAl API OpenAl API Terms of Use
GPT-03-mini

Gemini-2.0-Flash-Exp, Gemini- Google API (Vertex AI) Google Cloud Terms of Service
2.0-Flash-Thinking-Exp (01-21)

DeepSeek-V3, DeepSeek-R1, Deepseek API Deepseek Public API Terms

DeepSeek-Math-7B-Instruct,
DeepSeek-Math-7B-RL

Qwen2.5-Instruct (3B, 7B, 32B, HuggingFace / Together Al Apache License 2.0

72B)

Qwen2.5-Math (1.5B, 7B, 72B)  HuggingFace / Together Al Apache License 2.0
QwQ-32B-Preview HuggingFace (based on Qwen2.5-32B)  Apache License 2.0
Qwen3-235B-A22B-FP8§- HuggingFace Apache License 2.0
Throughput

Gemma-2-9B-it, Gemma-2- HuggingFace (Google) CC BY-NC 4.0 / Google Re-
27B-it search Terms
Llama-3.3-70B-Instruct, Llama- HuggingFace (Meta Al) Meta Llama 3 Community Li-
3.1-405B-Instruct-Turbo cense Agreement

ClimateGPT, GeoGPT HuggingFace License provided in original

repo (research only)

HuggingFace Transformers https://github.com/ Apache License 2.0
huggingface/transformers

Accelerate https://github.com/ Apache License 2.0
huggingface/accelerate

Ray https://github.com/ Apache License 2.0
ray-project/ray

NumPy, SciPy, Pandas PyPI / open-source BSD / MIT Licenses

Table 3: Sources and license information for models and libraries used in this work.

B.3 Fundamental Differences Between Reasoning and Instruction-Tuned Models

We provide a deeper explanation from a technical and architectural perspective regarding the funda-
mental differences that separate “reasoning models” (e.g., GPT-01) from “instruction-tuned models”
(e.g., GPT-40):

1. Deliberate “Thinking” Stage + Extra Inference Compute: Reasoning models insert a
dedicated “<think>" phase and allocate additional compute at inference time, enabling
long chain-of-thought processing that allows smaller reasoning models to outperform much
larger instruction-tuned ones on complex tasks [26, 56} 29].

2. Self-Checking to Limit Error Propagation: Through reinforcement learning, models
develop emergent behaviors—self-verification, reflection, and back-tracking—that catch
and correct faulty reasoning steps before the final answer [26 [29]].

3. Specialized RL Post-Training for Reasoning: Models like DEEPSEEK-R1 rely on pure
RL fine-tuning with Group Relative Policy Optimization (GRPO) on step-by-step solution
data, explicitly rewarding correct intermediate reasoning and strengthening overall chain-of-
thought quality [29] 28]

For these reasons, reasoning models show significant improvements in complex multi-step reasoning
tasks. As shown on line 88, all reasoning models achieve substantial gains on benchmarks tailored
for such tasks [26l 156, [28]].

ATMOSSCI-BENCH is specifically designed to evaluate whether LLMs equipped with thinking stages,
intermediate learning, and self-correction can effectively solve multi-step problems. The results
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confirm that ATMOSSCI-BENCH successfully distinguishes reasoning models from instruction-tuned
models in atmospheric science, thus demonstrating its ability to assess reasoning capacity while
posing meaningful challenges for future LLM development.

C Data Source and Usage Statement

The benchmark dataset introduced in this paper was independently constructed by the authors. All
questions and materials were derived and reformulated from our available university-level content
in atmospheric science-related courses. These materials include lecture notes, problem sets, and
instructional examples used for teaching at our institution.

No proprietary, copyrighted, or scraped content was included in the dataset. The resulting benchmark
is intended solely for academic research and educational use. We confirm that the dataset does not
contain any personal information, and sensitive data that may negatively impact society.

To the best of our knowledge, this benchmark complies with relevant institutional and academic
usage policies, and poses no legal or ethical risk for public release.

D Hyperparameters

To ensure fair comparison and consistent evaluation, we standardize the inference-time hyperparame-
ters across all models in accordance with their capabilities and design constraints.

For reasoning-optimized models, we use a maximum context length of 32K tokens. This decision
is motivated by the fact that DEEPSEEK-R1 has a fixed 32K context window that cannot be modified.
To maintain fairness, we adopt the same 32K limit for all reasoning models, including GPT-01,
QwQ-32B-PREVIEW, and GEMINI-2.0-FLASH-THINKING-EXP (01-21). This configuration
provides sufficient space for long-form reasoning and multi-step inference, ensuring that reasoning
performance is not artificially constrained by token limits.

Additionally, most reasoning models—such as GPT-01 and DEEPSEEK-R 1—do not support cus-
tomized decoding parameters like temperature, top_p, or repetition_penalty. Therefore, we
use default hyperparameters for all models across all categories to ensure evaluation consistency and
reproducibility.

For instruction-tuned, math-augmented, and domain-specific models, we set the maximum token
limit to 8K, which provides ample context for solving our benchmark tasks given the typical response
lengths of these models.

E Prompt

E.1 LLM Prompt Template

We include below the full prompt templates used for both MCQ and OEQ questions. These were
passed directly to the language models to elicit structured, parseable responses.

MCQ prompting. For multiple-choice questions, prompts are structured to elicit step-by-step
reasoning followed by a clearly formatted answer selection. The model is instructed to return the final
choice using the exact format \boxed{A/B/C/D}, ensuring compatibility with our extraction script.

MCQ Prompt Template

You are an Earth Science Expert answering multiple-choice questions.
Here is the question: {question}

Here are the options:

{options_str}

Instructions:

1. Carefully analyze the question and options provided.

2. Please think step by step. Use logical reasoning and critical thinking to
generate a detailed explanation or steps leading to the answer.

3. At the end of your response, ensure to provide the correct option
(A/B/C/D) on a new line in the following format strictly:

**Final Answer**: \[ \boxed{{A/B/C/D}} \]
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OEQ prompting. For open-ended questions, prompts instruct the model to produce a full derivation
or explanation, concluding with boxed answers. When questions include multiple subparts (e.g.,
a), b)), each should be addressed in order, with the corresponding boxed result. This constrained
prompting strategy enhances interpretability, ensures evaluation robustness, and minimizes ambiguity
in final output formatting.

OEQ Prompt Template

You are an expert in Earth System Science. Think step by step using logical
reasoning and scientific principles.

Provide a detailed explanation or derivation leading to your answer.

If the question includes subparts (e.g., a), b)), address each subpart
sequentially.

Conclude each subpart with its final result formatted as a LaTeX expression,
using:

a) \boxed{...}

b) \boxed{...}

For single-part questions, conclude with a single \boxed{final_answer}.

\. J

E.2 LLM Evaluator Prompt

OpenAl provides support for structured outputs [45]], enabling model responses to adhere to predefined
JSON schemas. Following this approach, we define the following AnswerResponse schema using
pydantic to strictly constrain the LLM’s output format:

AnswerResponse Schema (Pydantic)

from pydantic import BaseModel
class AnswerResponse(BaseModel):
is_correct: bool
explanation: str

The prompt below is used to guide the LLM evaluator to assess answer correctness based on
mathematical, physical, and conceptual equivalence:

LLMEvaluator Prompt

You are an expert physics teacher evaluating student answers.
Compare the following two answers and determine if they are equivalent.

Consider the following in your evaluation:
1. Mathematical equivalence (e.g., 2m = 6.28)
2. Physical unit equivalence (e.g., 1 m/s = 3.6 km/h)
3. Conceptual equivalence (e.g., F = ma and a = F/m)
4. Numerical tolerance: Allow a tolerance of {self.tolerance * 100}% for
numerical values.
(e.g., if the expected value is 10, values between {10 - 10 *
self.tolerance} and {10 + 10 * self.tolerance} are acceptable.)

Respond with is_correct (true/false) and an explanation.
Expected answer (in LaTeX): {expected}
Student answer (in LaTeX): {actuall}

F Incorrect option generation for MCQ Generation

We design the following mechanisms to generate incorrect options: (i) Diffusion: producing an
incorrect answer by randomly swapping two variables in the computation; (ii) Confusion: altering a
single variable in the equation to generate a close but incorrect result; (iii) Randomization: randomly
assigning all variables within their predefined constraints, ensuring adherence to the rule-based
mechanism; and (iv) Default: if above three methods fail to generate valid incorrect options (i.e.,
those satisfying the scientific constraints of the rule-based mechanism), we use a default strategy,
where incorrect options are generated as scaled multiples of the correct answer (e.g., X2, X3, x4).
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G Experimental Compute Resources

We categorize LLM inference into two groups based on deployment method: API-based and local-
based.

» API-based: Models in this category are hosted by providers such as OpenAl, Google, Deepseek,
and TogetherAl. We access these models via public inference APIs. To accelerate large-scale eval-
uation, we utilize parallel execution using the Ray Python library [57]], which enables concurrent
API requests. Total inference time varies depending on the model and the infrastructure provider’s
throughput.

* Local-based: These models are available through HuggingFace and executed locally using the
HuggingFace transformers library [58], with acceleration enabled via Accelerate [59]. We
run evaluations on two hardware setups: (1) a single machine with 8xNVIDIA RTX 4090 GPUs,
and (2) two nodes (run separately) each equipped with 4xNVIDIA A800 GPUs. For a 70B non-
reasoning model, a full evaluation run requires approximately 90 hours with a batch size of 4. In
contrast, a 7B model can be evaluated in about 6 hours using a batch size of 64.

H Additional End-to-End Results

For OEQ result as shown in Table[] instruction-tuned models generally achieve accuracies around 20%,
whereas reasoning-optimized models consistently reach 30% or higher. This performance gap reflects
the increased difficulty and reasoning demand of OEQs compared to MCQs, and further demonstrates
ATMOSSCI-BENCH’s ability to probe deeper levels of logical and numerical reasoning. Notably,
models with explicit reasoning alignment—such as GPT-01, DEEPSEEK-R1, and GEMINI-2.0-
FLASH-THINKING-EXP—outperform their instruction-only counterparts (GPT-40, DEEPSEEK-V 3,
and GEMINI-2.0-FLASH-EXP), reinforcing the importance of inference with thinking.

Table 4: Accuracy (%) comparison across four LLM categories on the OEQ dataset.

Category Model Hydro AtmDyn AtmosPhy GeoPhy PhyOcean \ Overall Acc
Qwen2.5-72B-Instruct-Turbo 18.58 30.43 37.65 18.18 17.39 24.04
Llama-3.3-70B-Instruct 14.16 19.57 28.24 9.09 13.04 17.65
Llama-3.1-405B-Instruct-Turbo 9.29 17.39 21.18 18.18 13.04 13.30
Instruction Models GPT-40-mini 11.91 06.98 20.39 33.33 20.59 13.57
GPT-40 16.81 2391 37.65 18.18 21.74 22.51
Gemini-2.0-Flash-Exp 20.80 30.43 49.41 18.18 17.39 27.88
Deepseek-V3 22.12 21.74 40.00 9.09 13.04 25.06
QwQ-32B-Preview 21.24 21.74 40.00 9.09 13.04 24.55
Gemini-2.0-Flash-Thinking-Exp (01-21) ~ 27.88 32.61 44.71 18.18 21.74 31.46
GPT-ol 28.32 28.26 45.88 27.27 2.174 31.71
Reasoning Models Deepseek-R1 34.96 26.09 52.94 27.27 17.39 36.57
Qwen3-235B-A22B-FP8-Throughput 28.32 3043 54.12 0 21.74 32.99
GPT-03-mini 30.97 32.61 47.06 18.18 21.74 33.76
Domain-Specific Models GeoGPT-Qwen2.5-72B 10.62 15.22 27.06 9.09 17.39 \ 15.09

Table 5| presents the results on the MCQ10_EXT dataset, which serves as a complementary extension to
MCQ10 by expanding coverage across additional domains such as hydrology and physical oceanog-
raphy. The performance trends observed in MCQ10_EXT closely mirror those of the original MCQ10
dataset: reasoning-optimized models consistently outperform instruction-tuned and domain-specific
models, highlighting their superior adaptability to scientific problem-solving. This consistency further
confirms the robustness of ATMOSSCI-BENCH in differentiating model capabilities across both core
and extended scientific domains.

I Error Analysis
L1 General Error Analysis

To better understand the types of reasoning failures made by LLMs in scientific contexts, we categorize
common errors into four types:

* Lack of Relevant Knowledge — The model lacks the domain-specific background or factual
recall to address the question.

* Incorrect Calculation — The model applies the right equations or methods, but performs numeri-
cal steps incorrectly.
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Table 5: Accuracy (%) comparison across four LLM categories on the MCQ10_EXT dataset.

Category Model Hydro AtmDyn AtmosPhy GeoPhy PhyOcean \ Overall Acc
Gemma-2-9B-it 34.71 - - 20.0 40.0 35.42
Qwen2.5-7B-Instruct 64.71 - - 60.0 51.67 61.25
Qwen2.5-72B-Instruct-Turbo 82.94 - - 50.0 63.33 76.67
Instruction Models Llama-3.1-405B-Instruct-Turbo 76.47 - - 30.0 61.67 70.83
GPT-40-mini 63.53 - - 30.0 58.33 60.83
GPT-40 78.82 - - 40.0 66.67 74.17
Gemini-2.0-Flash-Exp 90.0 - - 70.0 70.0 84.17
Deepseek-V3 92.35 - - 80.0 86.67 90.42
QwQ-32B-Preview 95.88 - - 80.0 80.0 91.25
Gemini-2.0-Flash-Thinking-Exp (01-21)  92.94 - - 70.0 81.67 89.17
Reasoning Models GPT-ol 95.88 - - 70.0 88.33 92.92
Deepseek-R1 99.41 - - 90.0 93.33 97.5
Qwen3-235B-A22B-FP8-Throughput 100 - - 70.0 93.33 97.08
GPT-03-mini 84.12 - - 80.0 88.33 85.0
Domain-Specific Models GeoGPT-Qwen2.5-72B 59.41 - - 60.0 45.0 \ 55.83

* Misunderstanding the Question — The model misinterprets what the question is asking or fails

to recognize key constraints.

 Faulty Reasoning — The model has access to all needed facts and methods, but its logical chain

is flawed or unjustified.

Rather than exhaustively labeling all evaluation items, we select four representative cases—one from
each error type—to illustrate the nature of these failure modes. We use responses from GPT-03-mini

as examples:

Type I. Lack of Relevant Knowledge

Questions:

A watershed is 92% good condition open space/lawn, 95% of which is soil group C and 5% is
soil group A. The remaining 8% of the watershed is fairly covered forest land with soil group
C. The curve numbers for different soil conditions are tabulated below. Use the SCS Method
to estimate the excessive precipitation for a total of 48.6 inches of rainfall in this watershed.
State clearly all your assumptions. With normal antecedent runoff conditions (ARC II) and
1, =0.25.

Land use Soil group | CN
Good condition open space/lawn C 74
Good condition open space/lawn A 39
Forest land with fair cover C 73

Options:

A. 44.29 in (Correct)

B.55.22in

C.44.51 in

D. 53.85in

LLM Respond:

I worked “back-of-the-envelope” to show that under ARC II conditions the “excess rainfall”
(the rainfall available for infiltration — everything that does not “run-off”’) comes out very
nearly 44%2 inches. One acceptable solution is as follows.

Example solution and assumptions
(1) (a) Normally the SCS “run-off” (excess rainfall) is computed with

Q _ (P_Ia)2

==Y forP>1 1
Pl 15 P>l ey
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where I, = 0.25 and S = 22%° — 254 (all in inches).

(b) Under “normal antecedent conditions” (ARC II) many texts direct that CN values
be reduced by about 5 points from those for “very-good” conditions. (This changing
“CN” is the way the method accounts for the wetter antecedent conditions.)

(c) To “back-calculate” an answer nearly equal to one of the given choices one must
interpret “excessive precipitation” in the problem as the rainfall that is “lost” to
infiltration (or “stored”) rather than the “run-off” (which is usually a small fraction).
In other words, the “excess precipitation” is taken to be the total rainfall minus the
computed run-off.

(2) The watershed is described as follows:
* 92% “good condition open space/lawn’ area; within that 95% is on soil group C
and 5% on soil group A.
* 8% “fair-condition forest” on soil group C.

(3) The “standard” table gives for “good condition open space/lawn’:
— For soil group C: CN =74
— For soil group A: CN =39
— Forest land with fair cover, soil group C: CN = 73.

(4) Under ARC II the pervious CN’s are reduced by about 5 points.
(Many texts recommend for ARC II to use C'Ngq; = C'N — 5 for “pervious” sites.)
Thus we adopt:
* Open space/lawn, soil group C: CN =74 -5 =69
* Open space/lawn, soil group A: CN =39 -5 =34
* Forest land, soil group C: CN =73 -5 =68

(5) Next we combine the two “open-space” values by area weighting (for the 92% area):
CNopen = 0.95 x 69 4+ 0.05 x 34 = 65.55 + 1.70 = 67.25
Then, including the forest (8%):
CNiotar = 0.92 X 67.25 + 0.08 x 68 = 61.97 + 5.44 ~ 67.41

(6) With the composite CN the storage constant is:
S = 2240 _ 954 ~ 376.6 — 254 = 122.6 inches
and I, = 0.2 x S = 0.2 x 122.6 =~ 24.5 inches

(7) Now for a storm with P = 48.6 inches, the SCS equation (1) gives:

_(48.6—24.5)> 2412 _ 580 . g
Q = Ro-9i511926 — 1467 — 1d6.7 ~ 3-90 inches

Thus the computed run—off is very small (only about 4 in). In many engineering-
practice problems one is interested in the “net rainfall” that “exceeds” the run—off
capacity (i.e. that infiltrates), so that:

Excessive precipitation = P — ) = 48.6 — 3.96 = 44.64 in ~ 44.51 in.

Comparing with the answer choices:
A.44.291n B. 55.22in C. 44.51 in D. 53.85 in
The result is closest to option C.

Assumptions made:

* ARC II conditions mean that the “good-condition” (or “normal”) curve numbers are
reduced by about five points.

* The areal composite CN is obtained by “area-weighting” the adjusted CN’s.
e We use the standard SCS method with I, = 0.25.

* In this problem “excessive precipitation” is interpreted as the rainfall that is “infil-
trated” (i.e. the total rainfall minus the relatively small run—off Q).

Thus, using these assumptions the computed “excessive precipitation” is about 44.5 inches.
Answer: C

Error Explanation:
In response 1(b), the LLM incorrectly states that CN values should be reduced by about
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5 points under ARC II. This adjustment is inaccurate, as it actually corresponds to dry
conditions (ARC I), not ARC II.

Type II. Incorrect Calculation

Question:
Calculate the solar constant at the orbit of Jupiter based on what you have learned from the
Sun - Earth Geometry, given the following values:

Temperature of the Sun (7%) T, =7040 K
Radius of the Sun (R,) R = 438,000 km
Distance of Sun’s surface to Jupiter (D,) D, = 778,500,000.0 km
Stefan-Boltzmann constant (o) o =5.67 x 10~ W/m?/K*

Clearly state the laws or assumptions for the key steps, otherwise marks will be deducted.
(Celsius = Kelvin — 273)

Options:

A. 44.0 W/m? (Correct)
B. 132.0 W/m?

C. 4229.0 W/m?

D. 88.0 W/m?

LLM Respond:

Step 1. Use the Stefan—-Boltzmann law. A blackbody radiates an energy flux per unit area
given by:  Fyupee = 012, where 0 = 5.67 x 1078 W/m?/K* and T} is the surface
temperature of the Sun.

Step 2. To find the flux at the orbital distance of Jupiter, use the inverse—square law. Since

the Sun radiates isotropically, the flux decreases as:  Fyupiter = Fiurface - (%)2, where R; is
the radius of the Sun and D is the distance from the Sun (in this formula D is taken as the
distance from the center of the Sun, but since R, < D, using the given "distance from the
Sun’s surface" works nearly the same).

Step 3. Convert given values to SI units: * 7, = 7040 K » R, = 438,000 km = 4.38 x 10%
m e D = 778,500,000 km = 7.785 x 10! m

Step 4. Calculate the Sun’s surface flux: 7% = (7040)* A rough calculation gives:
(7040)? = 49,561,600 and 27040)4 ~ 2.456 x 1015, 50 Fyuface = 0T ~ 5.67 x 1078 -
2.456 x 101° ~ 1.393 x 10% W/m?

Step 5. Compute the dilution factor: (%) = % ~ 5.624 x 10~* Square it:
(B)? ~ (5.624 x 1074)2 ~ 3.164 x 10~°

Step 6. The solar constant at Jupiter is then:  Fyypier = 1.393 X 108 -3.164 x 10~° ~ 4407
W/m?

This value is closest to the option 4229 W/m? given in the multiple—choice answers.

Thus, based on the laws of blackbody radiation (Stefan—Boltzmann law) and the inverse
square law for radiative flux, the answer is:

Answer: C

Error Explanation:

In Step 5 of the response from LLM: the correct calculation should be the following:
(5.624 x 10=%)? = 3.164 x 10~ Not 10~°. This leads to a significant overestimation
of Fjupiter by two orders of magnitude.
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Type III. Misunderstanding the Question

Question:

A ship is steaming northward at a rate of 18.7 km/h. The surface pressure increases toward
the northwest at a rate of 90.1 Pa/km. What is the pressure tendency recorded at a nearby
island station if the pressure aboard the ship decreases at a rate of —606.9 Pa/h?

Options:

A. -584.5 Pa/h (Correct)
B. 5.6 Pa/h

C. -4922.3 Pa/h

D. 38647.1 Pa/h

LLM Respond:

We must “remove-" the part of the change measured on a moving ship that comes merely
from its “cross-isobar”” motion in order to know how the pressure “at a fixed point” (the island
station) is changing. In other words, if

dP oprP .
(E)m - (E) IRV,

then the fixed-point (Eulerian) tendency is

oP dP B
(E) B (E>ship - VP

In our problem the ship’s “material-derivative” is given as —606.9 Pa/h. Also, we are told
that “the surface pressure increases toward the northwest at a rate of 90.1 Pa/km.” (That is, if
you move in the northwest direction the pressure goes up at 90.1 Pa every km.) In a standard
Cartesian system (x eastward, y northward) the “NW-direction” is given by the unit vector:

)
V2 V2
Thus if we interpret the pressure gradient to be uniform and “pointing” exactly northwest

then:
1

1
Vo' V2
The ship is “steaming northward” at 18.7 km/h so its velocity vector is:

7 =(0,18.7) (km/h)

VP =90.1x ( > (Pa/km)

Now, the advective contribution is the dot product:

90.1 90.1 18.7 x 90.1
- VP =(0,18.7) - (——,—) = 20X T2
V2 V2 V2
Numerically:
1683.87  1683.87

V2 | 1414

18.7 x 90.1 = 1683.87, ~ 1190.5 Pa/h.

Returning to the relation:
(%) = —606.9 — 1190.5 = —1797.4 Pa/h.

That is, the fixed-point (island station) pressure is falling about 1.8 x 10% Pa/h.

However, note that if one mistakenly were to “forget” to convert the ship’s speed from km/h
to m/s while also converting the gradient from Pa/km to Pa/m — effectively using 18.7 “m/s”
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rather than 18.7 km/h — then the advective term becomes much larger. In that “erroneous”
calculation one would first write:

18.7km/h = 18.7m/s (mistaken!)

and note that 90.1 Pa/km = 0.0901 Pa/m. Then the (northward) component of the ship’s
velocity “projected along NW” is:

ﬁ ~ 13.22m/s

V2
so that the advection is:
13.22 x 0.0901 ~ 1.19 Pa/s.

Converting 1.19 Pa/s into Pa/h by multiplying by 3600 gives:
1.19 x 3600 = 4280 Pa/h.

Then one would obtain:
(%—f) = —606.9 — 4280 ~ —4887 Pa/h,

which (with rounding) is approximately —4922.3 Pa/h.

Among the multiple-choice answers given:

A.-584.5 Pa/h

B. 5.6 Pa/h

C. -4922.3 Pa/h

D. 38647.1 Pa/h

The number -4922.3 Pa/h appears. It turns out that when the unit conversion error is made
— by inadvertently “using” 18.7 m/s rather than 18.7 km/h — one obtains the result given in
option C.

Thus, assuming that the answer reflected the error of mixing units (a trap sometimes encoun-
tered on exams), the “recorded” island-station tendency would be:

Answer: C

Error Explanation:
In the response from LLM:

Returning to the relation,
oP dP
— | == —(U-VP)
ot dt ) o

(8P> = —606.9 — 1190.5 = —1797.4 Pa/h

we have

ot
The LLM misinterpreted the pressure gradient description “pressure increases toward the
northwest at a rate of 90.1 Pa/km,” incorrectly treating the gradient as pointing exactly

northwest rather than understanding that the gradient has components in both directions,
which led to an incorrect calculation of the advective term and ultimately the wrong answer.

Type IV. Faulty Reasoning

Question:

An aircraft flying a heading of 6° (i.e., 6° to the east of north) at air speed 150 m/s moves
relative to the ground due east (90°) at 180 m/s. If the plane is flying at constant pressure,
what is its rate of change in altitude (in meters per kilometer horizontal distance) assuming a
steady pressure field, geostrophic winds, and f = 0.00012 s~1?
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Options:

A. -0.0 m/km

B. -5.0 m/km

C. 2.0 m/km

D. -2.0 m/km (Correct)

LLM Respond:

We begin by noting that the plane is flying at a constant pressure (meaning it is staying on a
given isobar, or constant geopotential-height surface). In a steady, geostrophically balanced
atmosphere the isobar (or geopotential surface) is tilted; in fact the slope of a pressure surface
is related to the geostrophic wind by

A

(slope) = (H
where f is the Coriolis parameter, \Vq| is the geostrophic wind speed, and g ~ 9.81 m/ % is
gravity.

Step 1. Find the Wind Vector

The airplane’s airspeed (its speed relative to the moving air) is 150 m/s in a heading 6° east
of north. (In our coordinate system we take north as the y-axis and east as the x-axis.) Its
components are:

East: 150sin(6°) ~ 150 x 0.1045 ~ 15.7 m/s

North: 150 cos(6°) ~ 150 x 0.9945 ~ 149.2 m/s

Its ground track is due east at 180 m/s so its ground velocity is (180, 0) m/s.

Thus the wind (the velocity of the air relative to the ground) is given by:

Wind = Ground velocity — Air velocity

=(180715.7,07149.2) ~ (164.3, "149.2) m/s

The magnitude of the wind is approximately:

|Vg| = 1/164.32 + (—149.2)2 ~ /27000 + 22260 ~ /49260 ~ 222 m/s

Step 2. Determine the Isobar’s Slope

For a geostrophic wind the relation is

slope (dZ/ds) = (f|Vyl)/g

Using f = 0.00012 s, |V, | ~ 222 m/s and g = 9.81 m/s”, we have

slope = 0'0.03%5 222 ~ 002604 ~ 0,00272 (m/m) .

This is equivalent to about 2.72 m per 1,000 m if you moved exactly along the cross-isobar
(that is, in the direction of the pressure gradient).

Step 3. Project the Aircraft’s Ground Track onto the Cross-Isobar Direction

Since geostrophic wind flows along isobars, the pressure (or geopotential height) gradient is
perpendicular to the isobars. (Also, in the northern hemisphere the pressure gradient lies 90°
to the left of the geostrophic wind vector.) For our wind 179 = (164.3, "149.2), its direction
(from east) is given by:

0 = arctan(]|“149.2/164.3|) ~ arctan(0.908) ~ 42° (south of east)

Thus the isobars lie along this 42° line (since the wind runs parallel to them), and the pressure
gradient is perpendicular to the isobars. Rotating the wind 90° counterclockwise (the left in
the northern hemisphere) gives the pressure gradient direction:

42° 4 90° = 132° measured from east,

or, equivalently, 180°7132° = 48° north of east.

Thus the geopotential height increases in the direction 48° north of east. As the aircraft
travels due east it will have a component along (or opposite to) this cross-isobar direction. To
find this component, take the cosine of the angle between the ground track (east, or 0°) and
the pressure gradient direction (48° north of east):

Component = 180 m/s x cos(48°)

Since cos(48°) ~ 0.669, we have

Component ~ 180 x 0.669 ~ 120.4 m/s
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Step 4. Compute the Vertical Change per Horizontal Distance

Since the constant-pressure surface rises at a rate of 0.00272 m per 1 m in the direction of
the pressure gradient, the vertical rate of change as the plane crosses the isobars is given by
multiplying the cross-isobar ground speed by the slope:

Vertical speed = 120.4 m/s x 0.00272 m/m ~ 0.327 m/s

To convert this to meters per km (1000 m) of horizontal travel:

Rate = %22T1/8 5 1000 m/km

Why divide by 1807 Because 180 m/s is the overall ground speed due east, so in one second
the plane travels 180 m horizontally.

Rate ~ (0.327/180) x 1000 ~ 1.82 m/km

Rounding to one significant digit gives approximately 2 m per km.

Step 5. Interpret the Sign

Since the pressure surface (the isobar) rises in the direction 48° north of east and the aircraft’s
eastward motion has a component in that same direction, the aircraft is climbing relative to
the ground (its altitude is increasing as measured in meters per km horizontal). Among the
answer choices the only positive option is 2.0 m/km.

Answer: C

Error Explanation:

In step 5 of the response, the LLM correctly determined that the isobaric surface rises in the
"48° north of east” direction, but incorrectly inferred the direction of change when the aircraft
flies eastward crossing these isobaric surfaces. This is a logical error in reasoning when
applying known principles—it failed to correctly understand how the relationship between
altitude and pressure under geostrophic wind conditions in the Northern Hemisphere affects
the vertical movement of the aircraft.

\. J

LI.2 Error Analysis on Domain-specific Models

Error Analysis of Domain-Specific Models To better understand the flaws of domain-specific
models, we conducted an error analysis for GEOGPT-QWEN2.5-72B on the MCQ-10 dataset. We
manually identified the errors for each question. The error types are the same as Appendix [[.1}
with one additional category, V. Others (crashed)—we found that GEOGPT sometimes started on a
reasonable reasoning path but suddenly produced nonsense or repeated the same words endlessly
until reaching the token limit. The results are summarized in Table [ (Note that one question may
exhibit multiple error types, so the aggregated percentage is not 100%).

Table 6: Error analysis of GEOGPT-QWEN2.5-72B on the MCQ-10 dataset.

Error Type | Percentage
I. Lack of Relevant Knowledge 57%
II. Incorrect Calculation 38%
III. Misunderstanding the Question 30%
IV. Faulty Reasoning 62%
V. Others (crashed) 44%

The high incidence of Faulty Reasoning (62%) suggests that GEOGPT-QWEN2.5-72B often assem-
bles superficially plausible chains of thought yet fails to maintain logical consistency to the end of a
problem. It indicates the model was trained more on specialized terms than on step-by-step reasoning.
Likewise, the substantial share of Lack of Relevant Knowledge (57%) indicates that the model’s
pre-training corpus—although focused on geoscience—does not sufficiently cover the breadth of
background facts required by the MCQ-10 benchmark, which mixes atmospheric physics, climatology,
and numerical methods. When knowledge gaps and fragile reasoning coincide, the model either
guesses, misinterprets intermediate results, or, in 44% of cases, “crashes” by looping tokens.

Together, these patterns support our hypothesis in the main paper: current domain-specific LLMs risk
overfitting to narrow stylistic cues in their training data and lack the robust reasoning scaffolding seen
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in general-purpose “reasoning models.” To close this gap, future work could (i) augment geoscience
corpora—adding atmospheric-science knowledge, numerical-methods theory, and worked problem-
solving approaches, all with curated step-by-step solutions; and (ii) incorporate reasoning-oriented
fine-tuning objectives (e.g., chain-of-thought supervised signals).

J Robustness of Evaluator

To assess the reliability of our evaluation protocols, we analyze the robustness of both the multiple-
choice (MCQ) and open-ended question (OEQ) evaluation pipelines.

MCQ Evaluation. For MCQs, the key component of the evaluation process is accurate answer
extraction—identifying the model-selected option (A/B/C/D) from its response. We evaluate this
functionality using representative models on the MCQ10 and MCQ10_EXT datasets. Specifically,
GPT-03-mini had 5 instances of nll extraction (i.e., no boxed answer detected), while Deepseek-R1
and Qwen3-235B-A22B-FP8-Throughput had zero extraction failures. Upon manual inspection,
we found that the null cases in GPT-03-mini were due to the model either concluding with statements
like "None of the provided options." or failing to summarize a final boxed answer, which indicates the
null extractions are expected behaviours in the evaluation pipeline. Overall, the extraction mechanism
proves robust, with round full success rates across strong models and minimal impact on evaluation
fidelity.

OEQ Evaluation. For open-ended questions, we adopt a cascade of evaluators to ensure both high
coverage and accuracy. Each OEQ is decomposed into subquestions—597 in total across 391 prob-
lems—and passed through three evaluation stages: QuantityEvaluator, ExpressionEvaluator,
and LLMEvaluator. Table[7]summarizes the results for three representative models: GPT-03-mini,
Qwen3-235B-A22B-FP8-Throughput, and Deepseek-R1.

The QuantityEvaluator—which checks numerical correctness within a 5% tolerance and validates
unit consistency—successfully evaluates approximately 50% of subquestions. Subquestions that fail
this stage are passed to the ExpressionEvaluator, which assesses symbolic equivalence using
algebraic simplification. This second stage covers over 90% of the remaining cases. Importantly,
these two automated stages prioritize interpretability and reproducibility.

For subquestions still unresolved, we invoke the LLMEvaluator, which has been widely used as a
core evaluation method in recent benchmarks (as described in Section[d.2). It serves as both a fallback
for complex outputs and a verification mechanism for borderline cases. As shown in Table [/} the
LLMEvaluator completes 100% coverage, ensuring that no subquestion remains unevaluated. This
layered design provides a reliable and comprehensive evaluation pipeline, combining automation
with LLM-based judgment—an approach increasingly adopted in recent scientific benchmarks.

Table 7: Evaluation results across three evaluators: QuantityEvaluator, ExpressionEvaluator,
and LLMEvaluator. Each evaluator reports number of true/false predictions and coverage (%).

Model QuantityEvaluator ExpressionEvaluator LLMEvaluator

True False Coverage (%) | True False Coverage (%) | True False Coverage (%)
GPT-03-mini 80 212 4891 54 441 95.74 54 407 100
Deepseek-R1 105 198 50.75 60 401 93.69 37 420 100
Qwen3-235B-A22B-FP8-Throughput | 106 209 52.76 41 439 97.75 46 431 100

Human-LLM Consistency Study. The use of LLM-as-Judge for evaluating open-ended questions
(OEQs) can introduce potential biases, particularly in cases involving borderline or multi-step
reasoning. While prior work has employed similar automatic evaluation strategies [34} 35} 37]],
it remains important to validate such methods against expert human judgments. To this end, we
conducted a human-LLM evaluation consistency study over OEQ problems that were handled by the
LLMEvaluator. Agreement was computed as the percentage of evaluation decisions in which the
LLM’s is_correct label matched that of the human grader. As shown in TableB] , GPT-40-MINI
achieved 92.79% agreement for DEEPSEEK-R1 outputs and 93.02% for GPT-03-MINI OUTPUTS.
These results suggest that LLM-as-Judge attains more than 92% consistency with human graders,
indicating that it can serve as a reliable automatic evaluator in lieu of costly human annotation.

29



Table 8: Agreement between human graders and LLM-as-Judge (GPT-40-MINI) on OEQ evaluation.
Agreement is reported as the percentage of cases where the LLM’s is_correct label matches the
human judgment.

Model | Agreement with Human (%)
Deepseek-R1 92.79
GPT-03-mini 93.02

False Negatives Example. Additionally, here is the false negatives example that may occur in
ExpressionEvaluator when the LLM output includes extra symbols or text that confuse the Python
library sympy. For example:

False Negatives Example

"expected_answer": "$\\bar{M}=28.71 \\mathrm{~g} \\mathrm{"mol}~{-1}$",
"11m_answer": "\\bar{M} \\approx 28.72\\ \\text{g/mol} \\quad\\text{or}
\\quad 0.02872\\ \\text{kg/mol}."

Here, the LLM provides the correct value but also adds an expression in another unit; sympy therefore
treats the response as an equation rather than a scalar and flags ExpressionEvaluator as false.
Importantly, when sympy returns a positive match, its verdict is virtually error-free.

K Skill-Oriented Ablation Analysis

To answer question - What types of scientific reasoning skills are current LLMs lacking, and which
skill dimensions (e.g., Common knowledge, complex reasoning, numerical computation) can our
benchmark effectively diagnose?, we conduct targeted experiments to assess two core dimensions: (i)
understanding of domain knowledge versus reasoning skills, and (ii) accurate numerical arithmetic
processing.

Understanding of Domain Knowledge vs. Reasoning. (Sefup.) To compare the ability to un-
derstand Domain Knowledge and the ability to reason, we partition the MCQ10 dataset into two
well-defined subsets. The first, MCQ10-K, contains knowledge-intensive questions that primarily
require knowledge recall or direct understanding of scientific definitions and concepts. The sec-
ond, MCQ10-R, includes reasoning-intensive questions that demand logical inference, multi-step
equation application, and symbolic manipulation, but require only minimal domain recall. This
separation enables us to assess whether performance gaps are due to a lack of domain knowledge
or a deficiency in reasoning capacity. To further enhance the rigorous of this experiment, we add
a retrieval-augmented generation (RAG) baseline. We indexed all available course materials
into a vector database and quickly discovered that naive retrieval failed to surface much relevant
knowledge. To eliminate retrieval noise, we manually curated the relevant knowledge for the 320
MCQ-10 questions and supplied those passages verbatim to the models. This isolates the effect of
reasoning from knowledge access. Further discussion about RAG in atmospheric scienceis provided
in Appendix [[]

(Results and Analysis.) Results in Table 9] show a consistent pattern across all model categories:
reasoning-intensive questions (MCQ10-R) are substantially more difficult than knowledge-based ones
(MCQ10-K). Instruction-tuned models exhibit a clear performance drop when transitioning from
factual questions to those requiring reasoning. For example, QWEN2.5-72B-INSTRUCT-TURBO
achieves 61.9% on knowledge questions but only 51.3% on reasoning tasks. Likewise, GEMMA-2-
27B-IT drops from 40.0% to 35.5%. These patterns suggest that common scientific knowledge is
already well-represented in current LLMs, but that reasoning—especially multi-step and symbolic
reasoning—remains a key weakness.

In contrast, reasoning-optimized models show stronger and more consistent performance across both
subsets. GPT-03-MINI achieves 96.4% on knowledge and maintains a high 80.7% on reasoning,
while QWEN3-235B reaches 94.4% and 83.0%, respectively. Paired comparisons further reinforce
this: GEMINI-2.0-FLASH-THINKING-EXP significantly outperforms its instruction-only counterpart
on reasoning questions, despite similar pretraining exposure.
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These findings confirm that domain knowledge is no longer the primary barrier for LLMs in at-
mospheric science. Instead, complex reasoning stands out as the dominant limiting factor. Our
benchmark successfully exposes this difference, offering a reliable diagnostic lens for evaluating
reasoning-specific capabilities in scientific domains.

Table 9: Accuracy comparison across four LLM categories on two diagnostic subsets of MCQ10.
MCQ10-K contains knowledge-intensive questions that emphasize knowledge recall and conceptual
understanding, while MCQ10-R includes reasoning-intensive questions requiring multi-step inference,
symbolic manipulation, or equation chaining. The table reports accuracy (%) for each model on
both subsets, highlighting the benchmark’s ability to differentiate between domain knowledge and
reasoning proficiency.

Category Model MCQ10-K Accuracy (%) MCQ10-R Accuracy (%)
Gemma-2-9B-it 18.33 18.71
Gemma-2-27B-it 40.00 35.48
Qwen?2.5-3B-Instruct 29.17 34.19
Qwen2.5-7B-Instruct 48.06 38.06
Qwen?2.5-32B-Instruct 56.94 48.06
. Qwen2.5-72B-Instruct-Turbo 61.94 51.29
Instruction Models Llama-3.3-70B-Instruct 55.28 47.04
Llama-3.1-405B-Instruct-Turbo 57.78 50.32
GPT-40-mini 46.11 45.16
GPT-40 61.67 54.19
Gemini-2.0-Flash-Exp 69.44 58.06
Deepseek-V3 71.67 53.55
QwQ-32B-Preview 75.00 66.13
Gemini-2.0-Flash-Thinking-Exp (01-21) 86.94 75.81
Reasoning Models GPT-ol 92.50 79.35
Deepseek-R1 94.17 81.94
Qwen3-235B-A22B-FP8-Throughput 93.61 81.94
GPT-03-mini 96.39 80.65
Deepseek-Math-7B-RL 27.50 21.29
Deepseek-Math-7B-Instruct 31.39 30.32
Math Models Qwen2.5-Math-1.5B-Instruct 31.11 28.71
Qwen2.5-Math-7B-Instruct 35.83 33.55
Qwen?2.5-Math-72B-Instruct 63.33 52.58
ClimateGPT-7B 20.83 19.35
Domain-Specific Models ClimateGPT-70B 23.61 31.61
GeoGPT-Qwen2.5-72B 36.11 33.55

For the results of RAG baseline summarized in Table [0} we find that both models improve with
relevant knowledge, confirming that knowledge gaps exist. Crucially, GPT-03-MINI without any
external knowledge still outperforms GPT-40 even when GPT-40 is fed all the relevant passages, by
nearly 20%. Moreover, adding knowledge increases GPT-03-MINI by ~4%, but GPT-40 by only
~1%, indicating that stronger reasoning enables a model to exploit knowledge far more effectively.
These results strengthen our conclusion that reasoning is the primary bottleneck; closing it unlocks
the value of additional knowledge.

Table 10: Accuracy of models with and without access to curated relevant knowledge on the MCQ-10
dataset.

Model \ Relevant Knowledge Provided Accuracy (%)
GPT-03-MINI true 71.5
GPT-03-MINI false 73.8
GPT-40 true 53.75
GPT-40 false 52.81

Accurate Arithmetic Processing with Tools. (Sefup.) Numerical reasoning plays a central role
in scientific problem-solving, especially in domains like atmospheric physics and hydrology, where
precise computation involving units, equations, and constants is essential. Prior studies—such as
NumeroLogic [60], NumberCookbook [61]], and Tokenization Counts [62]—have shown that LLMs
often struggle with numerical tasks due to limitations in number representation and tokenization.
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Our benchmark includes a significant portion of questions that require non-trivial arithmetic process-
ing, such as multi-step calculations, chained expressions, and unit conversions. To probe whether
arithmetic is a limiting factor, we explore a tool-augmented inference setting using GPT-40, prompt-
ing it to generate and execute Python code before producing an answer. This allows the model
to offload computation to an external interpreter, decoupling arithmetic accuracy from symbolic
reasoning capabilities. Additionally, we test QWEN2.5-CODER-32B-INSTRUCT, a model optimized
for code generation.

(Results and Analysis.) In our coding-based setup, GPT-40 achieves an accuracy of 20.89% on
OEQs involving arithmetic, indicating that the ability to offload calculations alone is insufficient for
success. Although QWEN2.5-CODER-32B-INSTRUCT performs slightly better (42.61%), the result
suggests that coding capability without strong logical reasoning still fails to meet the demands of
ATMOSSCI-BENCH. This reinforces our view that while external tools can enhance performance in
principle, coherent and structured reasoning remains the dominant factor in solving complex scientific
problems.

(Tool Use Considerations.) While tool augmentation is a promising direction, we emphasize that it is
far from trivial—particularly for reasoning-intensive scientific tasks. Incorporating tools introduces a
separate axis of capability that includes:

* Invoking tools at the appropriate steps within a reasoning chain;
* Revising outputs based on intermediate calculations;

» Handling tool-side errors or inconsistencies without derailing logic.

These challenges raise important open questions about the interaction between reasoning and tool
use. More fundamentally, tool augmentation complicates evaluation: it becomes harder to determine
whether performance gains reflect improved reasoning or simply effective tool invocation. This
presents a tension with one of ATMOSSCI-BENCH ’s core goals—isolating and evaluating intrinsic
reasoning skills.

Notably, current reasoning-optimized models such as GPT-01 and DEEPSEEK-R1 do not possess
the ability to dynamically use tools or code interpreters during inference. However, recent work
like RETOOL [63]] introduces a compelling alternative: a training paradigm that enables long-
form reasoning through tool-integrated learning, which highlight the promise of outcome-driven
tool integration in improving complex mathematical and symbolic reasoning, and suggest a future
direction for combining intrinsic model reasoning with adaptive tool use in scientific domains.

L Discussion about retrieval-augmented generation (RAG)

Retrieval-augmented generation (RAG) faces unique challenges in atmospheric science. First,
the literature is highly fragmented and context-dependent: a single paper may present several
closely related formula variants, embeddings often blur these distinctions, and many excerpts omit
prerequisite definitions, hampering standalone retrieval. Second, atmospheric knowledge exhibits
a complex relational structure. Unlike simple fact triples in general settings(e.g., “James Cruze —
birth year — 1884”), atmospheric knowledge involves intertwined equations, approximations, and
causal chains. Graph-based approaches such as GraphRAG [64! [65] offer promise for capturing
such structure, but constructing a high-quality atmospheric-science knowledge graph would demand
extensive expert curation. Existing RAG frameworks are compelling; for example, DualRAG [66]
employs an iterative cycle of reasoning-augmented querying and progressive knowledge aggregation,
enabling strong reasoning and high-quality knowledge to reinforce each other. The main obstacle,
however, lies in the absence of a robust domain-specific knowledge base or graph for atmospheric
science. Building such a resource is therefore a crucial first step before advanced RAG frameworks
can be rigorously evaluated. Once established, combining a curated atmospheric-science graph with
existing RAG frameworks could unlock substantial gains in LLM capability.

M Cost and Runtime

Cost of dataset construction In our automatic problem solver, we utilize the GPT-40 web interface
under a fixed-price subscription. Because the platform does not expose per-query billing logs, no
granular cost records are available; the marginal cost of generating the dataset is therefore effectively
zero beyond the subscription fee.
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Cost of model evaluation We disclose the exact token counts, parallel-invocation settings, wall-
clock runtimes, and USD costs for every API-based LLM (Table and the runtimes for all GPU-
hosted models (Table [T2)). The models QWQ-32B-PREVIEW_32K, QWEN2.5-72B-INSTRUCT-
TURBO, and LLAMA-3.1-405B-INSTRUCT-TURBO were evaluated via Together API.

Table 11: API-based evaluation cost on MCQ10. Unless noted, output tokens include reasoning
tokens. “216/24,526” means 32-way parallel execution finishes in 216 minutes, while single-thread
execution would take 24,526 minutes.

Model ‘ Prompt Tokens (M) Reasoning Tokens (M) Output Tokens (M) Cost (USD) Runtime (min) Parallel size
deepseek-R1 0.2 43 4.6 40 216/ 24,526* 32/
deepseek-V3 0.2 - 0.6 10 213/232 16/2
GPT-o0l 0.2 2.4 2.5 200 231 8
GPT-40 0.2 - 0.3 5 33 8
GPT-03-mini 0.2 22 2.8 15 137 4
GPT-40-mini 0.2 - 0.6 1 30 10
gemini-2.0-flash-thinking-exp-01-21 0.2 untrackable 05% free (daily limit) 204 5
QwQ-32B-Preview_32K 0.2 untrackable 3.6 10 276 10
Qwen2.5-72B-Instruct-Turbo 0.2 - 0.9 2 44 30
Llama-3.1-405B-Instruct-Turbo 0.2 - 0.5 3 163 64

T Unless noted, output tokens include reasoning tokens.

1216 /24, 526 means 32-way parallel execution finishes in 216 minutes; single-thread execution would take
24,526 minutes.

§ Reasoning Token Excluded.

Table 12: GPU-hosted evaluation runtime on MCQ10.

Model | Runtime (min) GPUs
Qwen2.5-Math-1.5B-Instruct 133 8 xRTX4090
Qwen2.5-Math-7B-Instruct 467 8 xRTX4090
Qwen2.5-Math-72B-Instruct 3051 8 xRTX4090
Qwen2.5-3B-Instruct 123 8 xRTX4090
Qwen2.5-7B-Instruct 141 8 xRTX4090
ClimateGPT-7B 783 8xRTX4090
ClimateGPT-70B 2354 8xRTX4090
Gemma-2-27B-it 250 8xRTX4090
Qwen2.5-72B-GeoGPT 2880 4x A800

Notes. These tables present the statistics of various LLMs on the MCQ10 dataset under standardized
experimental settings. They can also be used as a reference when estimating usage for other datasets,
with the following multipliers: MCQ30: x3, MCQ10_EXT: x0.35, OEQ: x0.6. Only key models are
displayed; for models not listed, one can refer to those with the same API provider and similar
configuration parameters.

N Data Contamination

The question sources are primarily drawn from course materials at our institute. As a result, we
cannot claim the benchmark to be entirely free of potential contamination, since a small subset of
questions may be slightly derived from online materials that could have been exposed to certain LLMs
during pre-training. To quantitatively investigate this issue, we conducted an additional symbolic-
perturbation experiment (based on Figure [)) to test whether the decreasing scores on perturbed
question sets can be attributed purely to random chance. Specifically, we test the null hypothesis
that the observed scores will not decrease significantly under random perturbation of the original
questions. Rejecting this null hypothesis would provide evidence of potential contamination in the
original questions.

We performed hypothesis tests and report the resulting z-scores and p-values in Table I3} Only QwWQ-
32B crosses the conventional 95% threshold (p < 0.05 or z-score > 2), allowing us to reject the null
hypothesis. GSM-Symbolic [39]] similarly treats deviations of one standard deviation (1 < z-score < 2)
from the mean accuracy as suggestive of contamination, while noting that such deviations cannot
fully rule out chance.

Accordingly, while we cannot conclusively reject the null hypothesis across all models, the fact that
several accuracies lie more than one standard deviation above the mean remains noteworthy: the
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phenomenon is neither extremely rare (>20) nor completely routine (<1o). (For GPT-01 over
20 splits, the deviation is also approximately 1o.) With the one standard deviation away from the
mean phenomenon mentioned above, we tend to conclude that the reasoning models evaluated in our
benchmark may still be at risk of insufficient robustness under symbolic perturbation, suggesting that
they possibly rely on pattern matching instead of genuine reasoning.

Table 13: Hypothesis test results for potential data contamination. Reported metrics include z-scores,
corresponding p-values, and empirical p-values from permutation tests. Only QWQ-32B exceeds the
conventional 95% significance threshold.

Model \ z-score p(z-score) empirical p
GPT-03-mini 1.04 0.1491 0.2667
Deepseek-R1 1.30 0.0973 0.1667
QwQ-32B 2.31 0.0105 0.0250
Gemini-2.0-Flash-Think | 0.63 0.2645 0.3750

ATMOSSCI-BENCH is highly resistant to data contamination: Additionally and importantly,
even after public release, we can automatically generate new symbolic datasets that have not been
seen by any LLMs during training, mitigating the potential impact of contamination and ensuring the
robustness of ATMOSSCI-BENCH.

O Limitations

While ATMOSSCI-BENCH demonstrates strong diagnostic capabilities and robust evaluation results,
several limitations remain:

1. Evaluation pipeline generalization. Our evaluation method is carefully tailored to the structure
of our dataset, including specific question formats and constrained prompting. While this design
ensures high fidelity and coverage for ATMOSSCI-BENCH, it may limit generalization to other
benchmarks with different question types or formats. Although the cascade-of-evaluators paradigm
can be broadly applied, other benchmarks must adapt it to their own task structures. Future work
could explore more generalizable or modular evaluation pipelines that can be easily adapted across
scientific datasets.

2. Cost-performance trade-offs in evaluator design. We currently pass only the unanswered or
incorrectly answered questions to the next evaluator in the cascade, rather than evaluating each
subquestion with all three evaluators and applying majority voting. This design choice balances
evaluation robustness with computational efficiency. Our experiments show that this trade-off still
yields reliable results, but further improvements could include ensemble strategies (e.g., majority
voting across evaluators) or incorporating additional LLMs as judges. Recent developments in
multi-agent evaluation paradigms may also enhance the consistency, coverage, and trustworthiness
of future evaluation pipelines.

3. Incomplete evaluation of emerging models. A promising domain-specific reasoning model,
GeoGPT-R1-Preview [53], built on Qwen2.5-72B with enhanced scientific reasoning capabilities,
was released shortly before our submission deadline. We are eager to assess its performance
on ATMOSSCI-BENCH to better understand the potential of domain-adapted reasoning models.
However, due to limited time and computational resources, we were unable to include its results
in the current version. We plan to run additional experiments and incorporate findings from this
model in future updates.

P Broader Impact

This work introduces a domain-specific benchmark for evaluating the scientific reasoning capabilities
of large language models (LLMs) in atmospheric science. By promoting rigorous, skill-oriented
evaluation across both multiple-choice and open-ended formats, our benchmark contributes positively
to the development of more trustworthy Al systems in climate-related research, education, and
decision-support.

On the positive side, this benchmark can help researchers and developers identify reasoning gaps in
current LLMs, accelerate the creation of more robust models, and inform responsible applications of
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LLM:s in science communication and environmental analysis. It may also serve as a valuable resource
for educational tools and curriculum development in Earth system science.

However, we acknowledge potential risks. Misuse of benchmark results—such as over-relying
on benchmark accuracy to validate an LLM’s real-world reliability—could lead to inappropriate
deployment of language models in high-stakes domains such as climate modeling or policy-making.
Additionally, if users treat LLM-generated outputs as authoritative without proper verification, this
may amplify scientific misinformation or weaken expert oversight.

To mitigate these risks, we emphasize that benchmark results must be interpreted in context and
should not replace expert judgment. We advocate for transparent reporting, open evaluation pipelines,
and human-in-the-loop systems when applying LLMs in scientific and societal settings. Our dataset
and code are released with documentation that clearly outlines the benchmark’s scope and intended
use cases.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract clearly states the core contributions, including the introduction of
a dual-format benchmark and a comprehensive evaluation framework. In the introduction,
we further elaborate on these contributions and explicitly present three major contributions
alongside three key empirical findings.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We include our discussion of limitations in the Appendix [O]and mentioned
section [5.4jn main content page.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer:[NA]

Justification: Our paper does not include formal theoretical results, assumptions, or proofs.
Instead, we present a benchmark construction, evaluation framework, and empirical analysis.
All findings are derived through large-scale experimental validation across multiple LLMs,
rather than analytical derivations or theoretical propositions.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All models evaluated in this paper are publicly accessible through APIs or
open repositories. We provide detailed documentation of our MCQ construction framework,
evaluation methodology (including cascaded evaluators), and model-specific hyperparame-
ters in both the main paper and the appendix (see Appendix [A] [D] and[J). In addition, we
commit to releasing the full benchmark dataset, evaluation code, and scripts for reproducing
all experiments to ensure transparency and facilitate community adoption.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of

whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully

might suffice, or if the contribution is a specific model and empirical evaluation, it may

be necessary to either make it possible for others to replicate the model with the same

dataset, or provide access to the model. In general. releasing code and data is often

one good way to accomplish this, but reproducibility can also be provided via detailed

instructions for how to replicate the results, access to a hosted model (e.g., in the case

of a LLM), releasing of a model checkpoint, or other means that are appropriate to the

research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a LLM), then there should either be a way
to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release all benchmark data, evaluation code, and experiment scripts
under an open-source license upon publication. Anonymized versions will be made available
during the review period. Documentation includes detailed instructions for reproducing all
results.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly describe all relevant experimental details, including model cate-
gories, evaluation protocols, dataset construction, and inference configurations. Specific
hyperparameters (e.g., context length per model category) are detailed in Appendix [D] Our
paper provides sufficient detail for understanding and reproducing the results.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]

Justification: We report symbolic standard deviation in Section[5.1]to capture model perfor-
mance variability under symbolic perturbation. In Section[5.3] we further analyze robustness
using 1-sigma error bars across different levels of symbolic variation.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a detailed description of compute resources used for all experiments
in Appendix [G]

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our work fully conforms to the NeurIPS Code of Ethics. All benchmark data
is constructed by the authors from university-level course materials and contains no personal
or sensitive information. No human subjects or user data are involved. All external models
used are publicly available and cited appropriately, with licensing terms respected. Our
benchmark and evaluations are designed for academic purposes, with clearly documented
scope and limitations to prevent misuse.

Guidelines:

39


https://neurips.cc/public/EthicsGuidelines

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of the work performed in Section [P}

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper does not release any pretrained language models or generate
synthetic data with high misuse potential. Our benchmark dataset is constructed entirely
from educational materials used in university-level atmospheric science-related courses. The
content consists of domain-specific scientific concepts and problem-solving templates with
no sensitive, personal, or web-scraped data involved. The dataset poses no foreseeable risk
of misuse or dual use, and thus does not require additional safeguards.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We evaluate publicly available models released by organizations such as
OpenAl, Google, Deepseek, and TogetherAl, accessed via their official APIs or HuggingFace
repositories. All models are appropriately cited and used in compliance with their respective
terms of service and licensing agreements. Our benchmark dataset is constructed from
university-level course materials and contains no copyrighted or web-scraped content (see
Data Source and Usage Statement in Appendix [C). All third-party libraries used for local
inference—such as HuggingFace Transformers, Ray, and Accelerate—are open-source and
utilized under their respective licenses (e.g., Apache 2.0 or MIT). A comprehensive list of
models, sources, and licensing information is provided in Appendix [B.2}

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduce ATMOSSCI-BENCH, a dual-format benchmark for evaluating
scientific reasoning in atmospheric science. We provide thorough documentation alongside
the release, including data structure, licensing, evaluation protocols, and example usage.
All assets will be released with README files and scripts for loading, evaluation, and
reproduction.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
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15.

16.

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve any crowdsourcing or research with human subjects.
All benchmark data is constructed by the authors using university course materials without
the involvement of external annotators or participants.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our work does not involve any human subjects or participants. Therefore, no
IRB or ethics board approval was required.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]

Justification: LLMs are involved in two components of our methodology. First, as described
in Section [3.3] we use GPT-40 to synthesize initial Python implementations of question
solvers based on human-written explanatory solutions. These are then manually verified
and refined by domain experts before being used to support value perturbation and scalable
answer generation. Second, in our evaluation pipeline (Section4.2), we use LLM-as-Judge
techniques as part of a cascaded evaluator to score open-ended questions. These usages
are integral to our benchmark’s design and evaluation methodology. While the dataset is
constructed from human-curated templates, no LLMs were used to generate the benchmark
data itself.

Guidelines:
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* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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