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Abstract
This paper explores image modeling from the fre-
quency space and introduces DCTdiff, an end-
to-end diffusion generative paradigm that effi-
ciently models images in the discrete cosine trans-
form (DCT) space. We investigate the design
space of DCTdiff and reveal the key design fac-
tors. Experiments on different frameworks (UViT,
DiT), generation tasks, and various diffusion sam-
plers demonstrate that DCTdiff outperforms pixel-
based diffusion models regarding generative qual-
ity and training efficiency. Remarkably, DCTd-
iff can seamlessly scale up to 512×512 resolu-
tion without using the latent diffusion paradigm
and beats latent diffusion (using SD-VAE) with
only 1/4 training cost. Finally, we illustrate sev-
eral intriguing properties of DCT image model-
ing. For example, we provide a theoretical proof
of why ‘image diffusion can be seen as spectral
autoregression’, bridging the gap between diffu-
sion and autoregressive models. The effective-
ness of DCTdiff and the introduced properties
suggest a promising direction for image model-
ing in the frequency space. The code is https:
//github.com/forever208/DCTdiff.

1. Introduction
Image discriminative and generative modeling in the RGB
space has been the mainstream approach in deep learning
for a long time due to the success of Convolutional Neural
Networks (Krizhevsky et al., 2012; He et al., 2016) and
Vision Transformers (Dosovitskiy et al., 2021). In contrast,
images are often stored in a compressed form. For example,
JPEG (Wallace, 1991) uses Discrete Cosine Transforma-
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Figure 1. Image samples generated by DCTdiff trained on the
dataset AFHQ 512×512 without using any VAE.

tion (DCT) and PNG applies DEFLATE (Deutsch, 1996)
for compression in a lossy and lossless manner, respec-
tively. In this paper, we explore image modeling in the DCT
space with a focus on generative tasks, as they require a
complete understanding of the entire image (Goodfellow,
2016). Recently, diffusion models (Song & Ermon, 2019;
Ho et al., 2020) have demonstrated remarkable generative
performance and been adapted in various tasks, including
text-to-image generation (Ramesh et al., 2022; Esser et al.,
2024), video generation (Blattmann et al., 2023; Polyak
et al., 2024), and 3D synthesis (Poole et al., 2022; Lin et al.,
2023). However, diffusion-based generative modeling in
the pixel space is expensive and difficult to scale directly
to high-resolution generation. Researchers have explored
alternatives such as latent space modeling (Rombach et al.,
2022) and neural network-based upsampling (Dhariwal &
Nichol, 2021) to address these challenges.

We argue that image diffusion modeling in the pixel space
is unnecessary due to its inherent redundancy. Instead, we
advocate using a (near) lossless compression that provides
a compact space for efficient diffusion modeling. JPEG
achieves significant image compression by converting pixels
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to the DCT frequency domain and eliminating the highest-
frequency signals, as they have low energy and are less
perceptible to the human eye. Motivated by JPEG, we pro-
pose DCTdiff which models the image data distribution
entirely in the DCT frequency space. We explore the design
space of DCTdiff and uncover the key factors contributing
to diffusion modeling in the frequency domain. Through
extensive experiments, we demonstrate that DCTdiff sur-
passes pixel-based diffusion in both generative quality and
training efficiency. Crucially, DCT allows for significant
lossless compression with negligible computation, enabling
DCTdiff to seamlessly scale to 512×512 image generation
without relying on an auxiliary Variational Autoencoder
(VAE) (Rombach et al., 2022) which is typically trained
with 9 million images and a compound loss.

We further reveal some unique properties of DCT-based
image modeling. In Section 5.3, we present a theoretical
analysis that frames image diffusion modeling as spectral au-
toregression. Particularly, the coarse-to-fine autoregressive
generation of VAR (Tian et al., 2024) can be summarized
as first generating low-frequency signals and then generat-
ing high-frequency image details. Also, we highlight that
DCT image modeling has the flexibility and advantage of
prioritizing different image frequencies according to the
granularity of the task. Finally, we introduce a new theorem
for image upsampling within the DCT space, offering supe-
rior performance over traditional methods such as bilinear
or bicubic interpolation. In summary, our contributions are:

• We propose DCTdiff to perform image diffusion mod-
eling in the DCT space for the first time.

• We elucidate the design space of DCTdiff and show
that it outperforms the pixel-based and SD-VAE-based
latent diffusion models regarding generation quality
and training speed.

• We reveal several intriguing properties of image model-
ing in the DCT space, suggesting its potential for both
discriminative and generative tasks and its advantages
over conventional pixel-based image modeling.

2. Related Work
2.1. Diffusion Models

Diffusion models were introduced by Sohl-Dickstein et al.
(2015) and improved by Song & Ermon (2019) and Ho
et al. (2020). Furthermore, Song et al. (2021b) unify score-
based models and denoising diffusion models via stochas-
tic differential equations (SDE), and EDM (Karras et al.,
2022) provides a disentangled design space for diffusion
models. Recent advancements in diffusion models have
been achieved across various dimensions, including classi-
fier guidance (Dhariwal & Nichol, 2021) and classifier-free

guidance (Ho & Salimans, 2022), ODE solver (Lu et al.,
2022; Zhou et al., 2024) and SDE solver (Xue et al., 2024),
exposure bias (Ning et al., 2023; Li et al., 2024), training dy-
namics (Karras et al., 2024), model architecture (Peebles &
Xie, 2023), noise schedule (Hoogeboom et al., 2023; Hang
& Gu, 2024) and sampling schedule (Sabour et al., 2022),
sampling variance (Bao et al., 2022), and distillation (Sal-
imans & Ho, 2022; Song et al., 2023). Moreover, Poisson
Flow (Xu et al., 2022), Flow Matching (Lipman et al., 2023)
and Rectified Flow (Liu et al., 2023) are closely related to
the ODE-based diffusion models. Orthogonal to previous
studies, we investigate image diffusion modeling from the
DCT space for the first time.

2.2. Frequency Modeling in Neural Networks

Frequency transformation is often performed as a module
of the neural network to speed up the computation (Mathieu
et al., 2014; Pratt et al., 2017; Zhang et al., 2018; Tamkin
et al., 2020), increase the accuracy of image classification
(Fridovich-Keil et al., 2022), or improve the image genera-
tive performance (Phung et al., 2023). For example, Huang
et al. (2023) applied the Fourier transform to latent repre-
sentations to adaptively select useful frequencies for target
tasks. Yang et al. (2023) incorporate the wavelet-based gat-
ing mechanism into the diffusion network to enable dynamic
frequency feature extraction. Additionally, DCT was uti-
lized by (Kuzina & Tomczak, 2023) as a low-dimensional
latent representation and applied to the VampPrior frame-
work to obtain the flexible prior distribution.

In contrast to treating frequency modeling as a module or
auxiliary component of the whole network, researchers have
investigated image modeling within the frequency space
by transforming image pixels into frequency signals and
feeding them to the neural network. For instance, DCTrans-
former (Nash et al., 2021) proposes generative modeling in
the DCT space in an autoregressive manner. Buchholz & Jug
(2022) perform image super-resolution tasks in the Fourier
domain using an autoregressive model, where low frequen-
cies of an image are conditioned to predict the missing high
frequencies. Likewise, Mattar et al. (2024) apply Wavelets
Transform to images for autoregressive generation. In addi-
tion, Wavelet-Based Image Tokenizer is proposed for image
discriminative tasks (Zhu & Soricut, 2024) and generative
tasks (Esteves et al., 2024). Recently, JPEG-LM (Han et al.,
2024) directly models images and videos as compressed
files saved on computers by outputting file bytes in JPEG
and AVC formats. In this paper, we adopt DCT space for
image generative modeling because DCT concentrates most
of the signal’s energy into a few low-frequency components
(Rao & Yip, 2014), making it very effective for compres-
sion. Also, DCT operates on real numbers, simplifying the
practical implementation.
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3. Background
Diffusion models progressively perturb a random data sam-
ple xxx0, drawn from data distribution Pdata, into a pure noise
xxxT as time t flows. The forward perturbation process is de-
scribed by the Stochastic Differential Equation (SDE) (Song
et al., 2021b)

dxxxt = fff(xxxt, t)dt+ g(t)dwwwt, (1)

where t ∈ [0, T ], T > 0 is a constant, fff(·, ·) and g(·, ·)
are the drift and diffusion coefficients, and wwwt defines the
standard Wiener process. A key property of the forward
SDE is that there exists an associated reverse-time SDE

dxxxt = [fff(xxxt, t)− g2(t)∇xxxt
log pt(xxxt)]dt̄+ g(t)dw̄wwt, (2)

where dt̄ represents an infinitesimal negative time step, in-
dicating that this SDE must be solved from t = T to t = 0.
Moreover, pt(xxxt) denotes the probability distribution of xxxt,
and w̄wwt is now a standard Wiener process in the reverse time.
This reverse-time SDE results in the same solution {xxxt}Tt=0

as the forward SDE (Eq. (1)) (Anderson, 1982), given that
xxxT is sampled from a prior noise distribution. After training
a score model sθsθsθ(xxxt, t) ≈ ∇xxxt

log pt(xxxt) parameterized by
θθθ via denoising score matching (Vincent, 2011; Song et al.,
2021b),one can plug sθsθsθ(xxxt, t) into Eq. (2) to get

dxxxt = [fff(xxxt, t)− g2(t)sθsθsθ(xxxt, t)]dt̄+ g(t)dw̄wwt. (3)

Then, we can sample xxxT from the prior distributionN (000, III)
and solve Eq. (3) backwards in time to obtain the predicted
solution trajectory {x̂xxt}Tt=0 where x̂xx0 is viewed as a gener-
ated sample from the data distribution Pdata. Importantly,
Song et al. (2021b) reveal that the reverse-time SDE shares
the same marginal probability densities {pt(xxxt)}Tt=0 as the
Probability Flow ODE:

dxxxt = [fff(xxxt, t)−
1

2
g2(t)∇xxxt

log pt(xxxt)]dt. (4)

Again, by replacing the score function ∇xxxt
log pt(xxxt) with

the learned score model sθsθsθ(xxxt, t), any numerical ODE
solver, such as Euler (Song et al., 2021b) and Heun solvers
(Karras et al., 2022), can be applied to solve this ODE to
obtain an estimated data sample x̂xx0.

4. Design Space of DCTdiff
The DCTdiff proposed in this paper is inspired by the canon-
ical JPEG image codecs (Wallace, 1991). The main idea
behind JPEG is that we can achieve data compression by
discarding information that is less perceptible to the human
eye, especially subtle color variations and high-frequency
details, while retaining the essential visual quality of the im-
age. In this paper, we utilize the DCT of JPEG codecs and
show that DCT provides a more compact space for image

generative modeling than RGB space in a near-lossless way.
The architecture and pipeline of DCTdiff are illustrated in
Figure 2 and we now elaborate on each component.

4.1. Color Space Transformation and Chroma
Subsampling

We follow the JPEG codec and first convert images from
the RGB space to the YCbCr color space, containing a
brightness component Y (luma) and two color components
Cb and Cr (chroma). Formally, given an image xxx ∈ Rh×w×3

with height h and width w, the color space transformation
function can be written as x′x′x′ =MMMxxx + bbb, where MMM ∈ R3×3

is a fixed transformation matrix and bbb ∈ R3 is the offset
vector, and the output x′x′x′ ∈ Rh×w×3 represents the YCbCr
image. Then we perform 2x chroma subsampling for both
Cb and Cr channels since the human eye is more sensitive
to brightness than color details (Gonzalez, 2009). As a
result, the Y channel of x′x′x′ stays the same (denoted as x′

yx′yx′y ∈
Rh×w), while the Cb and Cr channels become x′

cbx′cbx′cb ∈ Rh
2 ×

w
2

and x′
crx′crx′cr ∈ Rh

2 ×
w
2 , respectively (shown in Figure 2 (b)).

Note that, chroma subsampling in the YCbCr space brings
2x compression, reducing the signal amount from 3hw to
1.5hw. In Appendix B.1, we empirically show that this 2x
compression produced by chroma subsampling significantly
accelerates the diffusion training but at the cost of generation
quality. In contrast, further transforming the subsampled
YCbCr channels to the DCT space improves the quality of
generative modeling (Appendix B.2).

4.2. 2D Block DCT

After the chroma subsampling, Y, Cb and Cr channels are
split into non-overlapping two-dimensional blocks with
block size B, and the results are denoted as three sets:
x′yx′yx′
y ≡

{
xyxyxy

i
}4N

i=1
, x′cbx′

cbx′cb ≡
{

xcbxcbxcbi
}N

i=1
, x′crx′crx′cr ≡

{
xcrxcrxcri

}N

i=1
, where

N is the number of blocks in Cb and Cr channels, and
xyxyxy

i,xcbxcbxcbi,xcrxcrxcri ∈ RB×B . Each block is then transformed by
a two-dimensional DCT. We use the most common type-II
DCT (Ahmed et al., 1974) which converts zero-centered
matrix AAA ∈ RB×B into a DCT block DDD ∈ RB×B using a
series of horizontal and vertical cosine bases:

D(u, v) = α(u)α(v)×
B−1∑
x=0

B−1∑
y=0

A(x, y) cos

[
(2x+ 1)uπ

2B

]
cos

[
(2y + 1)vπ

2B

]
(5)

where α(u) =

{√
1/B, if u = 0√
2/B, if u ̸= 0

The resulting D(u, v) is the DCT coefficient at position
(u, v) in the frequency domain, A(x, y) is the YCbCr value
at position (x, y) in the spatial domain, α(u) and α(v) are
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Figure 2. The architecture and pipeline of DCTdiff.

normalization factors. We represent the DCT blocks as
DyDyDy ≡

{
DyDyDy

i
}4N

i=1
, DcbDcbDcb ≡

{
DcbDcbDcb

i
}N

i=1
, DcrDcrDcr ≡

{
DcrDcrDcr

i
}N

i=1
,

corresponding to the DCT outcomes transformed from the
Y, Cb and Cr blocks, respectively. JPEG codec uses a fixed
block size B = 8 due to the trade-off between efficiency
and visual quality. However, we find that different image
resolutions require different block sizes for optimal diffu-
sion modeling, thus the block size B is set as a variable in
DCTdiff. The effect of B is discussed in Appendix B.6.

4.3. Frequency Tokenization

We notice that the non-overlapping block operation in DCT
resembles the patchfication in Vision Transformer (Doso-
vitskiy et al., 2021), therefore it is natural to use ViT-based
models for DCT diffusion modeling. We propose using
UViT (Bao et al., 2023) and DiT (Peebles & Xie, 2023) to
construct DCTdiff due to their remarkable performance.

To ensure that the Y, Cb, and Cr blocks within each Trans-
former token correspond to the same spatial area, we respace
the Cb and Cr blocks to expand to the same space as Y
blocks (see Figure 2 (d)). Then, four Y blocks, one Cb
block, and one Cr block are packed into a single token.
Note that, the patch size P in ViT-based models and the
block size B in DCTdiff have the relationship P = 2B
which will be used throughout the paper. We also tested
with other tokenization methods, for instance, each DCT
block was considered as a token, but the performance was
inferior to the ‘4Y+1Cb+1Cr’ combination.

A notable property of DCT is that many high-frequency
coefficients are typically near-zero. These coefficients can
be eliminated as they contribute little to the visual qual-
ity. To this end, we first turn the two-dimensional DCT

blocks DyDyDy
i,DcbDcbDcb

i,DcrDcrDcr
i ∈ RB×B into one-dimensional

vectors D̄yD̄yD̄y
i, D̄cbD̄cbD̄cb

i, D̄crD̄crD̄cr
i ∈ RB2

using the zigzag pattern
(shown in Figure 2 (e)), resulting in the coefficients or-
dered from low-to-high frequency. In order to decide the
number of high-frequency coefficients to be chopped off
for D̄yD̄yD̄y

i, D̄cbD̄cbD̄cb
i, D̄crD̄crD̄cr

i, we propose the following criteria for
generative tasks:

m∗ = argmax
m

{m : rFID(Pdata, Pdct data(m)) < γ} (6)

where we compute the reconstruction Fréchet Inception
Distance (rFID) (Heusel et al., 2017) between the data dis-
tribution Pdata and the distribution Pdct data which is derived
from DCT compression by eliminating m high-frequency
coefficients. γ is a constant and we empirically found that
γ = 0.5 yields a good trade-off between generation qual-
ity and compression rate. After removing m∗ coefficients,
the dimension of D̄yD̄yD̄y

i, D̄cbD̄cbD̄cb
i, D̄crD̄crD̄cr

i is reduced from B2 to
B2 − m∗. Since we concatenate ’4Y+1Cb+1Cr’ to a to-
ken, a Transformer token contains 6(B2 −m∗) frequency
coefficients and the number of DCT tokens is N . So far,
we have transformed the RGB image xxx to DCT coefficients,
represented as x̄̄x̄x ∈ RN×6(B2−m∗). Our goal is to model
Pdata given all DCT samples x̄̄x̄x using diffusion models.

4.4. Diffusion Modeling and Coefficients Scaling

Continuous-time (Song et al., 2021b) and discrete-time dif-
fusion models (Ho et al., 2020) can all be applied for DCTd-
iff to model Pdata. For simplicity, we summarize the training
process of continuous-time diffusion models and one can
refer to Ho et al. (2020) for the details of the discrete-time
case. Following Song et al. (2021b), we construct a diffu-
sion process {x̄̄x̄xt}Tt=0 indexed by a continuous time variable
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t ∈ [0, T ] such that x̄̄x̄x0 ∼ Pdata. We use P0t(x̄̄x̄xt |̄x̄x̄x0) to de-
note the perturbation kernel from x̄̄x̄x0 to x̄̄x̄xt. Specifically, we
follow UViT to employ the Variance Preserving (VP) SDE,
so that P0t(x̄̄x̄xt |̄x̄x̄x0) is a Gaussian:

N (x̄̄x̄xt; x̄̄x̄x0e
− 1

2

∫ t
0
β(s)ds, I− Ie−

∫ t
0
β(s)ds) (7)

in which β(.) is the noise scale. Then the score model
sθsθsθ(x̄̄x̄xt, t) is trained by denoising score matching:

L(θθθ) = Etλ(t)Ex̄̄x̄x0 ,̄x̄x̄xt [||sθsθsθ(x̄̄x̄xt, t)−∇x̄̄x̄xt logP0t(x̄̄x̄xt |̄x̄x̄x0)||22]
(8)

where λ(t) is a positive weighting function, t is sampled
from the uniform distribution U(0, T ), x̄̄x̄x0 ∼ Pdata and
x̄̄x̄xt ∼ P0t(x̄̄x̄xt |̄x̄x̄x0). After training the diffusion model, we
synthesize images by converting the generated DCT coeffi-
cients back to RGB pixels via inverse DCT.

A notable pre-processing in diffusion models is that x̄̄x̄x0

should be rescaled into the interval [−1, 1] before perturba-
tion. It is trivial for RGB pixels to be shifted and scaled
from [0, 255] to [−1, 1]. However, we notice that the scal-
ing method affects the diffusion training speed and sample
quality when x̄̄x̄x0 are the DCT coefficients. Different from
RGB, the bound of frequency coefficients varies greatly,
depending on its position on the spectrum and the channels
(Y/Cb/Cr). For instance, the upper bound of the lowest
frequency signal in the Y channel (a.k.a DC component) is
higher than that of the Cb channel by two orders of mag-
nitude. Therefore, we initially considered a Naive Scaling
method: compute the bounds for each frequency and each
channel (Y, Cb, Cr) individually, then apply each bound to
scale the corresponding frequency coefficients into [−1, 1],
respectively. However, we observe that Naive Scaling broad-
ens the distribution of high-frequency coefficients, leading
to slow training and low generated sample quality (see Ap-
pendix A.1). To maintain the shape of the original probabil-
ity density, we thus propose the Entropy-Consistent Scaling
approach in which all frequency signals are scaled by the
bound of the DC component (D(0, 0) of Y blocks) since it
yields the largest bound. To avoid the influence of extreme
values, we compute the bound η ∈ R within τ percentile
and 100− τ percentile:

η = max(|Pτ |, |P100−τ |) (9)

where Pτ denotes the τ th percentile of the DC component
distribution. We empirically find that τ = 98.25 yields the
best performance of DCTdiff among all datasets. Hereafter,
we assume that x̄̄x̄x0 has been scaled by η, namely x̄̄x̄x0 = x̄̄x̄x0/η.

4.5. SNR Scaling

An inherent property of DCT is that most of the signal’s en-
ergy is compacted into a few low-frequency components, so
that high-frequency components are near zero and quickly

destroyed by the noise term during the forward diffusion
process (detailed discussion in Section 5.3). Consequently,
this results in the phenomenon that perturbing an image in
the DCT space is faster than perturbing an image in pixel
space, despite using the same forward SDE (see Figure 7).
Furthermore, the larger the block size B, the more the en-
ergy is concentrated in low frequencies, thus the faster the
forward perturbation is. We can also infer this phenomenon
from the bound η mentioned above. To this end, we in-
troduce a brief corollary concerning η: given a dataset, η
doubles if the block size B is doubled.

Sketch of Proof. Since η is derived from D(0, 0), we in-
vestigate how D(0, 0) changes under block size 2B and B.
Plugging 2B and B into Eq. (5) yields

1

2B

2B−1∑
x=0

2B−1∑
y=0

A(x, y) = 2× 1

B

B−1∑
x=0

B−1∑
y=0

A(x, y)

if we assume that A(x, y) has the same mean within the
2B × 2B block and B × B block. Thus D(0, 0) doubles
when B is doubled, causing η to increase twofold. Recall
that we scale down all frequency coefficients by η before
adding noise, a larger η would result in more coefficients
close to zero and destroyed by the noise in the early stage of
forward diffusion. To counteract the effect of block size, we
propose to scale the SNR (Signal-Noise-Ratio) of the default
noise schedule (inspired by Hoogeboom et al. (2023)). We
leave the derivation and implementation of SNR Scaling
to Appendix A.2. Experiments show that SNR Scaling
improves the sample quality without affecting the training
convergence (Appendix B.5).

5. Intriguing Properties of Image Modeling in
the DCT Space

5.1. Frequency Prioritization

Recall that training the score model is equivalent to predict-
ing the isotropic Gaussian noise added on the clear image
given the noisy image (Dhariwal & Nichol, 2021). Intu-
itively, the task is to reconstruct each frequency coefficient
in x̄̄x̄x0 or reconstruct each pixel in the case of RGB image
xxx0. Since we cannot say which pixel is more important than
another pixel, the training objective (Eq. (8)) treats every
pixel equally. However, an intriguing property of DCT coef-
ficients is that a low-frequency signal typically contributes
more to the image quality than a high-frequency signal.
Meanwhile, we observe that the lower the frequency of the
signal, the larger the entropy of its distribution. Thereby, we
can prioritize the modeling of low-frequency signals of x̄̄x̄x0

by adding Entropy-Based Frequency Reweighting (EBFR)
into eq. (8), leading to LEBFR(θθθ):

Etλ(t)Ex̄̄x̄x0 ,̄x̄x̄xt [HHH(B)||sθsθsθ(x̄̄x̄xt, t)−∇x̄̄x̄xt logP0t(x̄̄x̄xt |̄x̄x̄x0)||22]
(10)
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whereHHH(B) ∈ R3(B2−m∗) is the entropy vector of the valid
3(B2−m∗) frequency distributions. Given a dataset,HHH(B)
only depends on the block size B once m∗ is fixed. We
empirically show that EBFR improves the sample quality
without affecting the training speed (see Appendix B.4).

The frequency prioritization strategy can be easily extended
to discriminative tasks using prior knowledge. Specifi-
cally, we can allocate more network capacity to model high-
frequency inputs on tasks requiring a good understanding of
fine details, for example, text and handwriting recognition,
medical image analysis (Ronneberger et al., 2015), finger-
print recognition, forgery detection (Wu et al., 2019), etc.
In contrast, we can explicitly highlight the low-frequency
signals on tasks focusing on general shapes and overall struc-
tures, for instance, scene recognition (Zhou et al., 2017),
object detection in natural scenes (Redmon, 2016), action
recognition (Simonyan & Zisserman, 2014), and so on.

5.2. Significant Lossless Compression under DCT

Unlike the Fourier transform, DCT operates on real num-
bers using cosine functions, which effectively match the
even symmetric extension of a signal (Rao & Yip, 2014).
This alignment with signal characteristics allows the DCT
to represent an image or other signals using fewer frequency
coefficients (mostly the low-frequency ones). For generative
tasks, we can again use rFID(Pdata, Pdct data(m)) to measure
the information loss when removing m high-frequency co-
efficients. Table 1 presents the results of rFID using 50k im-
ages from the data distribution Pdata. If we consider γ = 0.5
as a lossless compression for image generation, DCT could
achieve 4× compression on 256×256 images and 7.11×
compression on 512×512 images. In Section 6.1, we will
show that the significant compression of DCT enables the
diffusion model to scale smoothly up to high-resolution
generation, while pixel diffusion fails due to its high dimen-
sionality. We also visually compare the image quality of
VAE compression (Rombach et al., 2022) and DCT com-
pression. As a training-free, computationally negligible, and
domain insensitive compression method, DCT retains more
image details than VAE compression (Figure 9).

Table 1. rFID(Pdata, Pdct data(m)) when removing m coefficients
on the dataset FFHQ 256×256 and FFHQ 512×512. The com-
pression ratio is relative to the RGB image having 3*wh signals.

Dataset Block size m rFID Compression ratio

FFHQ
256×256 4

7 0.19 3.56
8 0.49 4.00
9 0.96 4.57

FFHQ
512×512 8

44 0.23 6.40
46 0.48 7.11
48 1.18 8.00

5.3. Image Diffusion Is Spectral Autoregression

Recently, Dieleman (2024) has empirically shown that pixel-
based diffusion models perform approximate autoregression
in the frequency domain. Intuitively, diffusion models de-
stroy an image’s high-frequency signals and then progres-
sively destroy lower-frequency signals as time t flows in
the forward diffusion process (Yang et al., 2023; Kingma &
Gao, 2023; Rissanen et al., 2023). In this paper, we provide
the theoretical proof for this phenomenon.

Theorem 5.1. Consider a diffusion model described by
dxxxt = fff(xxxt, t)dt + g(t)dwwwt. Let ω denote the frequency,
x̂xx0(ω) and x̂xxt(ω) represent the Fourier transform of the
pixel image xxx0 and xxxt, respectively. The averaged power
spectral density of the noisy image xxxt satisfies:

E
[
|x̂xxt(ω)|2

]
= |x̂xx0(ω)|2 +

∫ t

0

|g(s)|2ds (11)

in which |x̂xx0(ω)|2 is the power spectral density of the image
xxx0 and natural images have the power-law: |x̂xx0(ω)|2 =
K|ω|−α (Ruderman, 1997)(K and α are constants). Mean-
while,

∫ t

0
|g(s)|2ds is independent of frequency ω and ap-

pears as a horizontal line in the spectral density graph.

Sketch of Proof. Taking the integral of the forward diffusion
SDE yields xxxt = xxx0 +

∫ t

0
g(s)dwwws (assuming fff(xxxt, t) = 0

for VE-SDE). Since Fourier transform is linear, we have
x̂xxt(ω) = x̂xx0(ω) + ϵ̂ϵϵt(ω) in the frequency domain, where
ϵ̂ϵϵt(ω) is the Fourier transform of the noise term

∫ t

0
g(s)dwwws.

By taking the expectation over the Wiener process wwws, we
can obtain E

[
|x̂xxt(ω)|2

]
= |x̂xx0(ω)|2 + E

[
|̂ϵϵϵt(ω)|2

]
due to

E [|̂ϵϵϵt(ω)|] = 0. According to Itô isometry (Itô, 1944), we
have E[|̂ϵϵϵt(ω)|2] =

∫ t

0
|g(s)|2ds which leads to Eq. (11)

(Please refer to Appendix A.3 for the detailed proof).

In Eq. (11), |x̂xx0(ω)|2 quickly decreases to near-zero as
frequency ω increases. So, the spectral density of the high-
frequency component, E

[
|x̂xxt(ω)|2

]
, is mainly decided by

the noise term
∫ t

0
|g(s)|2ds. Since the noise term is mono-

tonically increasing as t grows from 0→ T , we can see that
the noise term in the forward diffusion SDE first mainly de-
stroys the high-frequency component of image xxx0, and then
gradually diminishes the lower-frequency signals. For every
frequency ω, we can further determine the required time to
reach a specific SNR, see Appendix A.3 for the derivation.
Interestingly, VAR proposed to generate images from coarse
to fine by predicting the next-resolution image (Tian et al.,
2024). We believe the success of VAR stems from the ‘spec-
tral autoregression’ property of images. More recently, Yu
et al. (2025) and Huang et al. (2025) have shown the efficacy
of explicit frequency autoregression for image generative
modeling.

Note that Theorem 5.1 holds if we replace the Fourier trans-
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form with DCT since DCT is also a linear transformation
and is a simplified, real-valued variant of the Fourier trans-
form. Inspired by (Dieleman, 2024), we visualize the aver-
aged power spectral density from the DCT space (detailed
in Appendix A.4). The resulting curves in Figure 6 resem-
ble the case of the Fourier Transform, indicating that pixel
diffusion is also spectral autoregression in the DCT space.

Similar to pixel diffusion, a frequency-based diffusion pro-
cess (e.g. DCTdiff) simultaneously adds isotropic noise to
the whole spectrum in the forward diffusion process, i.e.,
equally perturbing high-frequency and low-frequency sig-
nals at each time step. As high frequencies have low energy,
they are first corrupted by the noise. Thereby, we conclude
that frequency-based image diffusion is also spectral autore-
gression. However, DCT concentrates the image energy
into low frequencies (Rao & Yip, 2014), leaving most high-
frequency components close to zero, so that DCT exhibits
a fast ‘noise-adding’ forward diffusion process (see Figure
7), which motivated the proposal of SNR Scaling method
(discussed in Section 4.5).

5.4. DCT Upsampling Outperforms Pixel Upsampling

In the aspect of image processing, we find that upsampling
in the DCT space produces higher-quality images than up-
sampling in the pixel space (e.g., using bilinear or bicubic
interpolation). Motivated by Dugad & Ahuja (2001), we
introduce the following theorem to relate the frequency be-
tween low-resolution and high-resolution images in the DCT
space given any DCT block size B.

Theorem 5.2. Let AAA ∈ R2B×2B be a matrix representing
an image, and define Ā̄ĀA ∈ RB×B as the matrix obtained by
average pooling of AAA, where each element is computed as:

Ā(i, j) =
1

4

1∑
m=0

1∑
n=0

A(2i+m, 2j + n).

Suppose DDD ∈ R2B×2B represents the DCT of AAA under
block size 2B and D̄̄D̄D ∈ RB×B represents the DCT of Ā̄ĀA
under block size B. Then, for k, l ∈ {0, 1, . . . , B − 1}, the
elements of D̄̄D̄D can be approximated by:

D̄(k, l) ≈ 1

2
cos

(
kπ

4B

)
cos

(
lπ

4B

)
D(k, l), (12)

where (k, l) indexes the elements of the matrices DDD and D̄̄D̄D.
Appendix A.5 provides the full proof.

Based on Theorem 5.2, we propose the DCT Upsampling
algorithm. For each DCT block D̄̄D̄D converted from a low-
resolution image, the algorithm computes D(k, l) from
D̄(k, l) according to Eq. (12), generating the low-frequency
coefficients (purple block in Figure 3) of DDD. For the remain-
ing frequency coefficients in DDD, we fill them up with zeros

since they are near-zero in practice. The resulting DDD can be
converted back to the pixel space to create a high-resolution
image.

Figure 3. Illustration of the DCT Upsampling algorithm.

We evaluate DCT Upsampling both qualitatively and quan-
titatively. We show an example in Figure 10 to illustrate
the difference between Pixel Upsampling by bicubic in-
terpolation (Gonzalez, 2009) and DCT Upsampling. The
latter alleviates the blurry effect and exhibits an improved
image quality. Also, we apply FID to evaluate the dis-
tance between the ground truth data distribution and the
upsampled data distribution. Experimentally, DCT Upsam-
pling achieves FID 9.79, outperforming Pixel Upsampling
(FID 12.53). One application of DCT Upsampling is super-
resolution image generation. Specifically, one can follow
the paradigm of ADM (Dhariwal & Nichol, 2021): first train
a low-resolution image generation model, then replace the
bilinear interpolation with our DCT Upsampling to obtain
a better draft high-resolution image, and another diffusion
model can finally refine this draft image. Our experimental
results and discussion are presented in Appendix A.10.

6. Experiments
To evaluate the performance of DCTdiff, we construct the
models based on UViT and DiT without changing their
Transformer architectures and compare DCTdiff with these
two base models. The metrics used for the comprehensive
comparison are FID (Heusel et al., 2017), training cost,
inference speed, and scalability. Other evaluation metrics
(e.g., recall and precision) are presented in Appendix A.7.
To ensure fairness, we always use the same model size,
patch size, and training parameters for DCTdiff and the
base model (unless otherwise noted). The complete network
parameters and training settings are listed in Appendix A.6,
in which we also elaborate on the choice of DCT parameters
and show that determining these parameters is effortless for
a new dataset. We leave all ablation studies to Appendix B.

6.1. Results on UViT

UViT (Bao et al., 2023) utilizes the continuous-time diffu-
sion framework and different solvers for sampling. We train
both UViT and DCTdiff from scratch using the default train-
ing parameters suggested by UViT. The datasets include
CIFAR-10 (Krizhevsky et al., 2009), CelebA 64 (Liu et al.,

7
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Table 2. FID-50k of UViT and DCTdiff using DDIM sampler and DPM-Solver under different NFEs. We implement class-conditional
generation on ImageNet 64, and unconditional generation on the rest of the datasets.

NFE Model Euler ODE solver (DDIM sampler) DPM-Solver

CIFAR-10 CelebA 64 ImageNet 64 FFHQ 128 CIFAR-10 CelebA 64 ImageNet 64 FFHQ 128

100 UViT 6.23 1.99 10.65 13.87 5.80 1.57 10.07 9.18
DCTdiff 5.02 1.91 8.69 8.22 5.28 1.71 9.73 6.25

50 UViT 7.88 3.50 15.05 26.26 5.82 1.58 10.09 9.20
DCTdiff 5.21 2.24 8.70 9.99 5.30 1.72 9.78 6.28

20 UViT 21.48 31.09 52.10 87.68 6.19 1.73 10.25 9.21
DCTdiff 6.81 3.84 21.88 24.88 5.54 1.84 9.85 7.29

10 UViT 81.67 224.21 166.63 209.69 26.65 4.37 13.27 14.26
DCTdiff 12.45 67.78 129.93 161.05 9.10 5.29 12.38 12.87

2015), ImageNet 64 (Chrabaszcz et al., 2017), FFHQ 128,
FFHQ 256, FFHQ 512 (Karras et al., 2019) and AFHQ 512
(Choi et al., 2020). We perform class-conditional genera-
tion on ImageNet 64 and unconditional generation for the
other datasets. We test the sample quality using FID-50k
under different Number of Function Evaluation (NFE) and
two ODE solvers: DDIM sampler (Song et al., 2021a) and
DPM-Solver (Lu et al., 2022).

Results on Table 2 show that DCTdiff consistently and some-
times dramatically outperforms UViT regardless of NFEs
and solvers (except for the outlier of CelebA 64 using DPM-
Solver), demonstrating the effectiveness of image diffusion
modeling in the DCT space. We believe the outlier can
be attributed to the UViT training parameters being highly
suited to CelebA 64, since the results of CelebA 64 based
on DiT still demonstrate the superiority of DCTdiff.

Note that UViT uses SD-VAE to perform latent diffusion
(Rombach et al., 2022) when the image resolution reaches
256×256 because pixel diffusion modeling in the high-
dimensional space is difficult (we attempted to train the
UViT model directly in the pixel space on FFHQ 256, re-
sulting in FID=120). However, we show that the diffusion
paradigm of DCTdiff can be easily scaled to 512×512 im-
age generation without VAE. We denote the UViT using
SD-VAE as UViT (latent) and compare it with our DCTdiff
on three datasets. Table 3 indicates that DCTdiff achieves
competitive FID to UViT (latent) on FFHQ 256 and outper-
forms UViT (latent) when the resolution rises to 512.

6.2. Results on DiT

DiT (Peebles & Xie, 2023) applies the discrete-time diffu-
sion framework and the Euler SDE solver (DDPM sampler)
for image sampling. To verify the generalization of DCTdiff,
we utilize DiT as the baseline, and train DiT (in the pixel
space) and DCTdiff from scratch with the same training set-
tings on CelebA 64 and FFHQ 128 datasets. The resulting
FIDs in Table 4 show that DCTdiff surpasses DiT under
different sampling steps regarding the generation quality.

Table 3. FID-50k of UViT (latent) and DCTdiff on high-resolution
image datasets for unconditional generation. DPM-Solver is used
for sampling.

NFE Model Dataset

FFHQ 256 FFHQ 512 AFHQ 512

100 UViT (latent) 4.26 10.89 10.86
DCTdiff 5.08 7.07 8.76

50 UViT (latent) 4.29 10.94 10.86
DCTdiff 5.18 7.09 8.87

20 UViT (latent) 4.74 11.31 11.94
DCTdiff 6.35 8.04 10.05

10 UViT (latent) 13.29 23.61 28.31
DCTdiff 12.05 19.67 21.05

Importantly, we find that the parameters (B, τ,m∗, c) of
DCTdiff only depend on the image resolution, and are in-
variant to the base models and dataset types (Appendix A.6),
making the application of DCTdiff convenient in practice.

Table 4. FID-50k of DiT and DCTdiff using DDPM sampler under
different NFEs for unconditional generation.

NFE Model Dataset

CelebA 64 FFHQ 128

100 DiT 5.11 12.81
DCTdiff 3.84 11.16

50 DiT 8.17 18.44
DCTdiff 6.23 15.23

20 DiT 15.64 33.56
DCTdiff 12.96 25.59

10 DiT 24.76 49.64
DCTdiff 20.87 43.14

6.3. Training Cost and Inference Speed

In addition to sample quality, we also compare the training
costs between pixel-based UViT and DCTdiff. Results in
Table 5 demonstrate that the training of DCTdiff is faster
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than that of UViT with the training acceleration up to 2.5×.
When comparing UViT (latent) with DCTdiff, we follow
Peebles & Xie (2023) and leverage GFLOPs (Giga Floating
Point Operations) to indicate the computational complexity
required for a single network-forward-pass. We find that
the GFLOPs of SD-VAE are huge and increase dramatically
when the resolution rises from 256×256 to 512×512. As
a result, the total training cost of DCTdiff on FFHQ 256 is
comparable to that of UViT (latent), but the training cost of
DCTdiff on AFHQ 512 is only one-quarter of that of UViT
(latent). We attribute the efficient training of DCTdiff to the
compact space provided by DCT.

Table 5. Training cost of UViT and DCTdiff. We use the same
batch size for the two models on each dataset. The training cost is
indicated by GFLOPs and Training steps (convergence).

Dataset Model # Parameters GFLOPs Training steps

CelebA 64 UViT 44M 11 400k
DCTdiff 44M 11 250k

FFHQ 128 UViT 44M 11 750k
DCTdiff 44M 11 300k

FFHQ 256 UViT (latent) 131M + 84M 169 200k
DCTdiff 131M 133 300k

AFHQ 512 UViT (latent) 131M + 84M 575 225k
DCTdiff 131M 133 225k

We further evaluate the inference speed by measuring the
wall-clock time for both DCTdiff and UViT. Since DCTdiff
and the pixel-based UViT share the same network param-
eters and GFLOPs, they exhibit the same inference times.
However, differences arise when comparing DCTdiff and
latent UViT at resolutions of 256×256 and 512×512: the
SD-VAE component in latent UViT incurs high computa-
tional cost, whereas DCTdiff consumes more Transformer
tokens. As shown in Table 6, DCTdiff is faster than latent
UViT in low-NFE settings but is slower at high-NFE condi-
tions (without considering the sampling quality). Notably,
DCTdiff demonstrates clear advantages over UViT in terms
of inference time when achieving comparable generation
quality (refer to Appendix A.9).

Table 6. Wall-clock inference time on AFHQ 512×512. We gen-
erate 10k samples using one A100 GPU. Inference GFLOPs is
appended in the brackets.

Model NFE

100 50 20 10

UViT (latent) 20.2 min
(4640)

13.4 min
(2940)

9.3 min
(1920)

7.9 min
(1580)

DCTdiff 47.8 min
(13300)

23.9 min
(6650)

9.6 min
(2660)

4.8 min
(1330)

6.4. Scalability of DCTdiff

A key advantage of diffusion Transformers is their network
scalability (Peebles & Xie, 2023). We empirically demon-
strate that DCTdiff inherits this property and achieves im-
proved sample quality as network capacity increases. Tables
7 and 8 report the scalability results on the datasets CIFAR-
10 and FFHQ 128, respectively, where DCTdiff consistently
outperforms UViT in terms of FID. A similar scaling effect
of DCTdiff is observed on the dataset ImageNet 64 as well
(Appendix A.8).

Table 7. Scalability of UViT and DCTdiff on CIFAR-10 (patch
size=4). FID-50k is reported using DDIM sampler.

Model Dpeth # Para NFE

100 50 20

UViT (small) 12 44M 7.36 8.45 21.18
DCTdiff (small) 6.51 6.62 7.87

UViT (mid) 16 131M 6.23 7.88 21.48
DCTdiff (mid) 5.02 5.21 6.81

UViT (mid, deep) 20 161M 6.05 7.33 20.27
DCTdiff (mid, deep) 4.25 4.54 5.96

Table 8. Scalability of UViT and DCTdiff on FFHQ 128. FID-50k
is reported using DPM-Solver.

Model Dpeth # Para NFE

100 50 20

UViT (small) 12 44M 9.18 9.20 9.21
DCTdiff (small) 6.25 6.28 7.29

UViT (mid) 16 131M 6.96 6.99 7.40
DCTdiff (mid) 5.13 5.20 6.19

UViT (mid, deep) 18 146M 6.05 6.06 6.27
DCTdiff (mid, deep) 4.98 5.05 5.94

7. Conclusion
In this paper, we explore image generative modeling in the
DCT space and propose DCTdiff which shows superior per-
formance over pixel-based and latent diffusion models. In
particular, we reveal several interesting properties of im-
age modeling from the DCT space, suggesting a promising
research direction for image discriminative and generative
tasks. However, the frequency-oriented Transformer archi-
tecture and image generation in 1024×1024 resolution are
not explored in this paper, which encourages future study.
Additionally, considering the inherent high temporal redun-
dancy, video compression and modeling in the frequency
space also hold potential for future exploration.
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Impact Statement
This paper advances the field of image generative model-
ing through the DCT frequency space. Similar to other
diffusion-based and autoregressive models, our work has
applications in text-to-image generation and image editing
over various domains (art, education, social media, and so
on). There are many potential societal consequences of our
work, none of which we feel must be specifically highlighted
here.
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A. Appendix
A.1. Naive Scaling and Entropy-Consistent Scaling

We show the bounds of Naive Scaling and Entropy-Consistent Scaling in Algorithm 1 and Algorithm 2. Given a dataset, we
randomly draw 50,000 images and convert each image into DCT blocks

{
DyDyDy

i
}4N

i=1
,
{
DcbDcbDcb

i
}N

i=1
,
{
DcrDcrDcr

i
}N

i=1
. The total Y

blocks DyDyDy ∈ R200000N×B2

, Cb blocks DcbDcbDcb ∈ R50000N×B2

, and Cr blocks DcrDcrDcr ∈ R50000N×B2

are used for Monte Carlo
estimation of the bounds (η̄) of Naive Scaling. We use only Y blocks DyDyDy ∈ R200000N×B2

to estimate the bound (η) of
Entropy-Consistent Scaling given block size B and percentile τ .

Algorithm 1 Bound of Naive Scaling
1: Given B, τ , DyDyDy,DcbDcbDcb,DcrDcrDcr

2: Initialize η̄ = list()
3: for xxx :=DyDyDy,DcbDcbDcb,DcrDcrDcr do
4: for i := 0, 1, ...B2 − 1 do
5: up = np.percentile(xxx[:, i], τ)
6: low = np.percentile(xxx[:, i], 100− τ)
7: if |low| > |up| then
8: η̄.append(|low|)
9: else

10: η̄.append(|up|)
11: end if
12: end for
13: end for
14: return η̄

Algorithm 2 Bound of Entropy-Consistent Scaling
1: Given B, τ , DyDyDy

2: Initialize η
3: xxx←DyDyDy[:, 0]
4: up = np.percentile(xxx, τ)
5: low = np.percentile(xxx, 100− τ)
6: if |low| > |up| then
7: η ← |low|
8: else
9: η ← |up|

10: end if
11: return η

In Figure 4, we illustrate the difference between applying Naive Scaling and Entropy-Consistent Scaling using B = 2
and τ = 97 on CelebA 64 dataset. The first row of Figure 4 displays the distributions of DCT coefficients
(D(0, 0), D(0, 1), D(1, 0), D(1, 1)) before scaling. It is clear that Naive Scaling increases the entropy of the original
distributions of D(0, 1), D(1, 0) and D(1, 1) while Entropy-Consistent Scaling preserves the entropy.

Figure 4. Histograms of DCT coefficients before scaling and after Naive Scaling and Entropy-Consistent Scaling.

A.2. SNR Scaling in Continuous-time and Discrete-time Diffusion Models

A.2.1. SNR SCALING IN CONTINUOUS-TIME DIFFUSION MODELS

Following UViT (Bao et al., 2023), we use VP-SDE for the continuous-time diffusion model which has the forward
perturbation kernel:
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N (x̄̄x̄xt; x̄̄x̄x0e
− 1

2

∫ t
0
β(s)ds, I− Ie−

∫ t
0
β(s)ds)

The noise schedule β(t) = at+ b and a, b are constants (usually a = 0.1 and b = 19.9), so that
∫ t

0
β(s)ds = at+ 0.5bt2.

The SNR at time t is denoted as:

SNR(t) =
e−

∫ t
0
β(s)ds

1− e−
∫ t
0
β(s)ds

=
e−(at+0.5bt2)

1− e−(at+0.5bt2)
(13)

The goal of SNR Scaling is to have the new SNR′(t) such that

SNR′(t) = c× SNR(t) (14)

where c ∈ R is the introduced factor of SNR Scaling. Given c, we need to derive the new noise schedule β′(t; c) for practical
implementation. Let y =

∫ t

0
β(s)ds = at+ 0.5bt2 and y′ =

∫ t

0
β′(s)ds, Eq. (14) becomes

c
e−y

1− e−y
=

e−y′

1− e−y′ (15)

from which, we derive

e−y′
= c

e−y

1 + (c− 1)e−y
(16)

Taking the logarithm of both sides of Eq. (eq: SNR 4) yields

y′ = y − ln c+ ln[1 + (c− 1)e−y] (17)

= at+ 0.5bt2 − ln c+ ln[1 + (c− 1)e−(at+0.5bt2)] (18)

Take the derivative of Eq. (18) w.r.t t, we obtain the new noise schedule β′(t)

β′(t; c) = a+ bt+
(c− 1)e−(at+0.5bt2)(−a− bt)

1 + (c− 1)e−(at+0.5bt2)
(19)

In the code implementation, we apply Eq. (19) as the noise schedule to replace the original β(t) = a+ bt. When the scaling
factor c = 1, Eq. (19) degrades to β(t).

SNR Scaling for DPM-Solver. In addition to applying β′(t), we need to update the inverse function of λ(t) defined in
DPM-Solver (Lu et al., 2022) if we want to use it for sampling. The original λ(t) is

λ(t) = 0.5 log(SNR(t)) (20)

Now, given the updated SNR′(t), we need to solve t from λ(t) = 0.5 log(SNR′(t)).

λ = 0.5 log(SNR′(t)) (21)

2λ = log[
e−y′

1− e−y′ ] (22)

e2λ =
e−y′

1− e−y′ (23)

e−y′
=

e2λ

1 + e2λ
(24)

y′ = ln[
1 + e2λ

e2λ
] (25)

Plugging Eq. (18) into Eq. (25), we get
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at+ 0.5bt2 − ln c+ ln[1 + (c− 1)e−(at+0.5bt2)] = ln[
1 + e2λ

e2λ
] (26)

eat+0.5bt2 [1 + (c− 1)e−(at+0.5bt2)] =
c(1 + e2λ)

e2λ
(27)

eat+0.5bt2 + (c− 1) =
c(1 + e2λ)

e2λ
(28)

at+ 0.5bt2 = ln[
c(1 + e2λ)

e2λ
+ 1− c] (29)

t =
−a+

√
a2 + 2b ln[ c(1+e2λ)

e2λ
+ 1− c]

b
(30)

In practice, we apply Eq. (30) to update the inverse function of λ(t). When the scaling factor c = 1, Eq. (30) degrades to

the original inverse function t =
−a+

√
a2+2b ln[ 1+e2λ

e2λ
]

b .

A.2.2. SNR SCALING IN DISCRETE-TIME DIFFUSION MODELS

Following DDPM (Ho et al., 2020) and DiT (Peebles & Xie, 2023), the forward perturbation kernel is

N (x̄̄x̄xt;
√
ᾱtx̄̄x̄x0, (1− ᾱt)I) (31)

where ᾱt =
∏t

s=0 αs and αt = 1− βt. So that the original SNR at time t is

SNR(t) =
ᾱt

1− ᾱt
(32)

From which, we obtain ᾱt =
SNR(t)

SNR(t)+1 . Now, scale the SNR by c, we have the updated signal schedule ᾱt
′

ᾱt
′ =

c× SNR(t)

c× SNR(t) + 1
(33)

Given the updated signal schedule ᾱt
′, we could iteratively solve α′

t and β′
t, and use β′

t for the implementation of SNR
Scaling.

A.3. Image Diffusion Is Spectral Autoregression

In this section, we discuss how the data information changes during the diffusion process of a diffusion model with the
initial data being xxx0 and the data evolving into xxxt. For simplicity, we consider the scalar case of the diffusion process, since
the original image diffusion is isotropic. Concretely, the forward diffusion SDE is

dxt = f(xt, t)dt+ g(t)dwt, (34)

where t ∈ [0, T ], T > 0 is a constant, f(·, ·) and g(·, ·) are the drift and diffusion coefficients respectively, and wt defines
the standard Wiener process. We transform the image signal xt into x̂t(ω) using the Fourier transform. Here, ω represents
the frequency. Thus, during the forward diffusion process, the signal xt can be represented in integral form as

xt = x0 +

∫ t

0

g(s)dws (35)

if f(·, ·) = 0. After applying the Fourier transform, Eq. (35) becomes x̂t(ω) = x̂0(ω) + ϵ̂t(ω) where ϵt(ω) is the Fourier
transform of the Gaussian noise term. Obviously, the mean value E [ϵ̂t(ω)] = 0. We now prove that E

[
|ϵ̂t(ω)|2

]
=∫ t

0
|g(s)|2ds. Consider the Fourier transform of ϵt(x):

ϵ̂t(ω) =

∫ ∞

−∞
e−iωxϵt(x)dx (36)

Since ϵt(x) is a random process with zero mean, its Fourier transform ϵ̂t(ω) is also a random variable with zero mean.
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Calculate the variance of ϵ̂t(ω):

E[|ϵ̂t(ω)|2] = E

[∣∣∣∣∫ ∞

−∞
e−iωxϵt(x)dx

∣∣∣∣2
]

(37)

Expand the square of the modulus:

E
[
|ϵ̂t(ω)|2

]
= E

[∫ ∞

−∞
e−iωxϵt(x) dx

∫ ∞

−∞
eiωyϵt(y) dy

]
=

∫ ∞

−∞

∫ ∞

−∞
e−iω(x−y)E [ϵt(x)ϵt(y)] dx dy.

(38)

Since ϵt(x) is spatially uncorrelated, we have

E[ϵt(x)ϵt(y)] =

{∫ t

0
|g(s)|2ds, when x = y

0, when x ̸= y
(39)

This can be expressed as:

E[ϵt(x)ϵt(y)] =
(∫ t

0

|g(s)|2ds
)
δ(x− y). (40)

where δ(.) is the Dirac delta function. Substitute Eq. (40) into Eq. (38):

E[|ϵ̂t(ω)|2] =
(∫ t

0

|g(s)|2ds
)∫ ∞

−∞

∫ ∞

−∞
e−iω(x−y)δ(x− y)dxdy

=

(∫ t

0

|g(s)|2ds
)∫ ∞

−∞
e−iω(x−x)dx

=

(∫ t

0

|g(s)|2ds
)∫ ∞

−∞
dx.

(41)

The integral
∫∞
−∞ dx means the integration region is infinite. In practice, we usually consider a finite spatial range or

normalize the density. For simplicity, we consider a unit-length spatial range so that the integration result is 1, leading to

E[|ϵ̂t(ω)|2] =
∫ t

0

|g(s)|2ds (42)

Then, we calculate the power density of various signals during the diffusion process. The power spectral density of signal xt

is Sxt
(ω) = E

[
|x̂t(ω)|2

]
. After expansion, we obtain

Sxt(ω) = |x̂0(ω)|2 + 2Re (x̂0(ω)E [ϵ̂∗t (ω)]) + E
[
|ϵ̂t(ω)|2

]
= |x̂0(ω)|2 + 2Re (x̂0(ω) · 0) + E

[
|ϵ̂t(ω)|2

]
= |x̂0(ω)|2 + E

[
|ϵ̂t(ω)|2

]
.

(43)

Since E [ϵ̂t(ω)] = 0 and the cross term [2Re (x̂0(ω)E [ϵ̂∗t (ω)]) = 0, we have

Sxt
(ω) = |x̂0(ω)|2 + E

[
|ϵ̂t(ω)|2

]
(44)

where E
[
|ϵ̂t(ω)|2

]
=

∫ t

0
|g(s)|2ds, which completes the proof of Theorem 5.1.

Moreover, we can evaluate how much information is damaged during the forward diffusion process from the SNR perspective.
A higher SNR implies that the signal is relatively purer and the degree of damage it undergoes is lower. On the contrary, a
lower SNR indicates that the noise has a greater impact on the signal and the degree of information damage is also higher.
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Consequently, the SNR ratio can intuitively reflect the noise level contaminating the information during the forward diffusion
SDE. The SNR can be expressed as

SNR(ω) =
|x̂0(ω)|2

E[|ϵ̂t(ω)|2]
=
|x̂0(ω)|2∫ t

0
|g(s)|2ds

(45)

We find that the change of SNR with frequency ω is completely determined by the power spectral density |x0(ω)|2 of the
initial signal, while the noise power is the same at all frequencies.

For natural images, it is generally the case that they possess low-pass characteristics. Moreover, their power spectra typically
conform to a power-law distribution (Turiel & Parga, 2000)), which can be expressed as |x̂0(ω)|2 ∝ |ω|−α, where α > 0
denotes the spectral attenuation degree of the signal. Therefore, as the frequency ω increases, |x̂0(ω)|2 decreases rapidly.
This indicates that SNR(ω) is low at high frequencies. As the diffusion time t increases, the denominator

∫ t

0
|g(s)|2ds

increases, leading to an overall decrease in the SNR.

Given an SNR threshold γ and a frequency ω, the time tγ(ω) when the SNR reaches the threshold γ satisfies:

SNR(ω) =
|ω|−α∫ tγ(ω)

0
|g(s)|2ds

= γ (46)

From this, we can solve tγ(ω) to obtain the exact time required to reach SNR(ω) = γ. The right-side image of Figure 5
provides the illustrations of Eq. (46).

Figure 5. Relationship between frequency ω and SNR

A.4. Averaged Power Spectral Density in DCT space

Dieleman (2024) uses the radially averaged power spectral density (RAPSD) to analyze the frequency of images in
Fourier space. Similarly, given the diffusion perturbation kernel N (xxxt;xxx0e

− 1
2

∫ t
0
β(s)ds, I − Ie−

∫ t
0
β(s)ds), we calculate

the averaged power spectral density (APSD) for a clear image xxx0, the noisy image xxxt and the isotropic Gaussian noise ϵϵϵt

(ϵϵϵt =
√
1− e−

∫ t
0
β(s)ds)ϵϵϵ,where ϵϵϵ ∼ N (000, III)). We use the Monte-Carlo method to estimate the APSD of xxx0, xxxt and ϵϵϵt,

respectively with 50,000 samples from the FFHQ 256×256 dataset. Figure 6 shows the APSD curves at different times.
Similar to the RAPSD figures under the Fourier transform in Dieleman (2024), APSD also shows a pattern of frequency
autoregression.

A.5. Proof of DCT Upsampling Theorem

Consider a high-resolution image (e.g. 256× 256) that consists of pixel blocks and each block is denoted as AAA ∈ R2B×2B ,
then a low-resolution (e.g. 128× 128) image is derived from the average pooling of the 256× 256 image and each pixel
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Figure 6. The averaged power spectral density (APSD) of xxx0, xxxt and the noise ϵϵϵt in the DCT space at time t = t′/1000.

block is denoted as Ā̄ĀA ∈ RB×B . In this case, these two images have the same number of DCT blocks. Let DDD ∈ R2B×2B be
the DCT block converted from AAA ∈ R2B×2B and D̄̄D̄D ∈ RB×B be the DCT block converted from Ā̄ĀA ∈ RB×B . According to
Eq. (5), we have

D(u, v) =

√
2

2B

√
2

2B

2B−1∑
x=0

2B−1∑
y=0

A(x, y) cos

[
(2x+ 1)uπ

4B

]
cos

[
(2y + 1)vπ

4B

]
(47)

D̄(u, v) =

√
2

B

√
2

B

B−1∑
i=0

B−1∑
j=0

Ā(i, j) cos

[
(2i+ 1)uπ

2B

]
cos

[
(2j + 1)vπ

2B

]
(48)

where D(u, v) is an element of DDD and D̄(u, v) is an element of D̄̄D̄D, respectively. Since Ā̄ĀA ∈ RB×B is the average pooling of
AAA ∈ R2B×2B , we have

Ā(i, j) =
1

4

1∑
m=0

1∑
n=0

A(2i+m, 2j + n). (49)

Plug Eq. (49) into Eq. (48), we obtain

D̄(u, v) =

√
2

B

√
2

B

B−1∑
i=0

B−1∑
j=0

1

4

1∑
m=0

1∑
n=0

A(2i+m, 2j + n) cos

[
(2i+ 1)uπ

2B

]
cos

[
(2j + 1)vπ

2B

]
(50)

Apply change of variable x = 2i+m and y = 2j + n, Eq. (50) becomes
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Figure 7. The forward perturbation process of RGB and DCT using the same forward SDE dxxxt = fff(xxxt, t)dt+ g(t)dwwwt.

D̄(u, v) =
1

2B

2B−1∑
x=0

2B−1∑
y=0

A(x, y)

1∑
m=0

cos

[
(x−m+ 1)uπ

2B

] 1∑
n=0

cos

[
(y − n+ 1)vπ

2B

]
(51)

=
1

2B

2B−1∑
x=0

2B−1∑
y=0

A(x, y)

cos

[
(x+ 1)uπ

2B

]
︸ ︷︷ ︸

m=0

+cos
[xuπ
2B

]
︸ ︷︷ ︸

m=1


cos

[
(y + 1)vπ

2B

]
︸ ︷︷ ︸

n=0

+cos
[yvπ
2B

]
︸ ︷︷ ︸

n=1

 (52)

However, since i = x−m
2 is an integer when applying the change of variable, x and m must both be odd or both be even (the

same applies to y and n). Therefore, for any x, y in Eq. (52), only one term exists within each of the two big parentheses.
An approximation can be obtained by taking the average of the two cosine terms within each bracket, which gives

D̄(u, v) ≈ 1

2B

2B−1∑
x=0

2B−1∑
y=0

A(x, y)
1

2

(
cos

[
(x+ 1)uπ

2B

]
+ cos

[xuπ
2B

]) 1

2

(
cos

[
(y + 1)vπ

2B

]
+ cos

[yvπ
2B

])
(53)

=
1

2B

2B−1∑
x=0

2B−1∑
y=0

A(x, y)

(
cos

[
(2x+ 1)uπ

4B

]
cos

[ uπ
4B

])(
cos

[
(2y + 1)vπ

4B

]
+ cos

[ vπ
4B

])
(54)

=
1

2B
cos

[ uπ
4B

]
cos

[ vπ
4B

]2B−1∑
x=0

2B−1∑
y=0

A(x, y) cos

[
(2x+ 1)uπ

4B

]
cos

[
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]
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From Eq. (53) to Eq. (54) we apply the trigonometric formulas

cos(A) + cos(B) = 2 cos(
A+B

2
) cos(

A−B

2
)

Now comparing Eq. (55) with Eq. (47), we obtain

D̄(u, v) ≈ 1

2
cos

[ uπ
4B

]
cos

[ vπ
4B

]
D(u, v) (56)

which completes the proof of Theorem 5.2.
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A.6. Training Parameters of UViT, DiT and DCTdiff

We list the model and training parameters in Table 9 and Table 10 where the former compares UViT and DCTdiff (inherited
from UViT) and the latter compares DiT and DCTdiff (inherited from DiT). We use the default training settings from UViT
and DiT without any change.

Regarding the choice of DCTdiff parameters, we find that the fixed τ = 98 used for Entropy-Consistent Scaling is effective
on all datasets, possibly due to the statistical consistency of image frequency distributions. The block size B and SNR
Scaling factor c only depend on the image resolution, one can refer to Table 9 to determine B and c given a new dataset.
Finally, the frequency elimination parameter m∗ can be calculated from Eq. (6).

Table 9. Training and network parameters of UViT and DCTdiff on different datasets.

Dataset Model Transformer parameters Learning parameters DCTdiff parameters

# parameters patch size # tokens batch size learning rate τ m∗ c

CIFAR-10 UViT 131M 4 64 256 0.0002 - - -
DCTdiff 131M 4 (B = 2) 64 256 0.0002 98.25 0 4

CelebA 64 UViT 44M 4 256 256 0.0002 - - -
DCTdiff 44M 4 (B = 2) 256 256 0.0002 98.25 0 4

ImageNet 64 UViT 44M 4 256 1024 0.0003 - - -
DCTdiff 44M 4 (B = 2) 256 1024 0.0003 98.25 0 4

FFHQ 128 UViT 44M 8 256 256 0.0002 - - -
DCTdiff 44M 8 (B = 4) 256 256 0.0002 98.25 7 4

FFHQ 256 UViT (latent) 131M + 84M 2 256 256 0.0002 - - -
DCTdiff 131M 8 (B = 4) 1024 256 0.0002 98.25 8 4

FFHQ 512 UViT (latent) 131M + 84M 4 256 128 0.0001 - - -
DCTdiff 131M 16 (B = 8) 1024 128 0.0001 98.25 46 12

AFHQ 512 UViT (latent) 131M + 84M 4 256 128 0.0001 - - -
DCTdiff 131M 16 (B = 8) 1024 128 0.0001 98.25 46 12

Table 10. Training and network parameters of DiT and DCTdiff on different datasets.

Dataset Model Transformer parameters Learning parameters DCTdiff parameters

# parameters patch size # tokens batch size learning rate τ m∗ c

CelebA 64 DiT 58M 4 256 256 0.0001 - - -
DCTdiff 58M 4 (B = 2) 256 256 0.0001 98.25 0 4

FFHQ 128 DiT 58M 8 256 256 0.0001 - - -
DCTdiff 58M 7 (B = 4) 256 256 0.0001 98.25 8 4

A.7. Evaluation of IS, Precision, Recall, and CMMD

In addition to the FID reported in the main paper, our evaluation of UViT and DCTdiff also includes Inception Score (IS)
(Salimans et al., 2016), Recall, Precision (Kynkäänniemi et al., 2019), and CLIP Maximum Mean Discrepancy (CMMD)
(Jayasumana et al., 2024). As shown in Table 11, DCTdiff achieves better IS, CMMD, and mostly exhibits higher Precision
and Recall than UViT.

Table 11. Comparison between UViT and DCTdiff on CIFAR-10, FFHQ 128 and AFHQ 512. We use DDIM sampler (NFE=100) for
CIFAR-10 and DPM-Solver (NFE=100) for the other two datasets.

Model CIFAR-10 FFHQ 128 AFHQ 512

CMMD ↓ IS ↑ Precision ↑ Recall ↑ CMMD ↓ IS ↑ Precision ↑ Recall ↑ CMMD ↓ IS ↑ Precision ↑ Recall ↑

UViT 0.052 7.08 0.668 0.589 0.610 3.54 0.648 0.485 0.373 11.00 0.547 0.496
DCTdiff 0.043 7.70 0.660 0.606 0.470 3.67 0.668 0.512 0.335 11.00 0.632 0.496
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A.8. Scalability of DCTdiff on ImageNet 64×64

Similar to the scalability experiments on FFHQ 128, we apply the network scaling strategy ’small, mid, and mid deep’
on ImageNet 64 to further test the scalability of DCTdiff. Using the DDIM sampler and NFE= 100, we summarize the
FID-50k results:

• DCTdiff (small), FID=8.69.

• DCTdiff (mid), FID=4.67.

• DCTdiff (mid, deep), FID=4.30.

• FID comparison: 4.67 (DCTdiff, mid) vs. 5.85 (UViT, mid)

A.9. Inference Time and Generation Quality

In Section 6.3, we report the wall-clock inference time of DCTdiff and UViT without considering their sampling quality.
However, when considering inference time at comparable generation quality, DCTdiff shows clear advantages: latent UViT
requires 20 minutes to achieve FID=10.89, whereas DCTdiff achieves FID=8.04 in just 9 minutes on FFHQ 512.

Table 12. Wall-clock inference time on FFHQ 512×512. FID-50k is reported using DPM-Solver

Model NFE

100 50 20 10

UViT (latent) 20.2 min (FID 10.89) 13.4 min (FID 10.94) 9.3 min (FID 11.31) 7.9 min (FID 23.61)
DCTdiff 47.8 min (FID 7.07) 23.9 min (FID 7.09) 9.6 min (FID 8.04) 4.8 min (FID 19.67)

Table 13. Wall-clock inference time on AFHQ 512×512. FID-50k is reported using DPM-Solver

Model NFE

100 50 20 10

UViT (latent) 20.2 min (FID 10.86) 13.4 min (FID 10.86) 9.3 min (FID 11.94) 7.9 min (FID 28.31)
DCTdiff 47.8 min (FID 8.76) 23.9 min (FID 8.87) 9.6 min (FID 10.05) 4.8 min (FID 21.05)

A.10. Application of DCT Upsampling in Super-resolution Image Generation

ADM (Dhariwal & Nichol, 2021) proposed a neural network-based upsampling method for super-resolution image generation.
In detail, a diffusion model Dl generates a low-resolution (e.g., 64×64) image. This image is then upsampled to the target
resolution (e.g., 256×256) using pixel interpolation. The upsampled image, as a condition, is finally fed into another
diffusion model Dh to learn the data distribution of the high-resolution images. Following this pipeline, we replace the
pixel interpolation with DCT Upsampling to verify its feasibility in super-resolution generation. We evaluate the FID-10K
using DDPM sampler (NFE=50) on ImageNet 256×256. Using the same pretrained model Dh, DCT Upsampling achieves
FID 14.53, which is inferior to the pixel interpolation (FID 10.71). We believe this phenomenon is caused by the training
bias, where Dh was only trained on the pixel interpolation images and had never seen the DCT upsampled images. A fair
comparison is that Dh should be trained on the DCT upsampled images. We leave this to future work.

B. Ablation Study
In this section, we elaborate on the effect of each design factor of DCTdiff using the dataset FFHQ 128×128 and the base
model UViT. We report the FID-10k using DPM-solver throughout the ablation section. Table 14 presents the ablation
results and the first row shows FID-10k achieved by UViT during training. We then progressively added each design element
to the previous base model to examine the design space of DCTdiff:

• UViT (YCbCr) inherits from UViT and replaces the RGB pixel inputs with YCbCr inputs.

• DCTdiff (ECS, m = 0) integrates the DCT transformation and Entropy-Consistent Scaling into UViT (YCbCr).
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• DCTdiff (ECS, m = 7) further eliminates 7 high-frequency coefficients.

• DCTdiff (EBFR) adds Entropy-Based Frequency Reweighting on DCTdiff (ECS, m = 7).

• DCTdiff (SNR) incorporates the SNR Scaling based on DCTdiff (EBFR)

Table 14. Ablation study of DCTdiff design factors: FID-10k of UViT and DCTdiff during training on FFHQ 128×128. The convergence
FID is marked as bold at each row.

Row Model Training steps

100k 150k 200k 250k 300k 350k 400k 450k 500k 550k 600k 650k 700k 750k

1 UViT 70.67 40.64 24.72 17.88 14.73 13.65 12.64 12.10 11.27 11.17 11.02 10.84 10.58 10.60
2 UViT (YCbCr) 17.70 14.79 16.38 - - - - - - - - - - -
3 DCTdiff (ECS, m = 0) 26.59 17.11 16.90 16.29 14.38 13.42 12.63 12.92 - - - - - -
4 DCTdiff (ECS, m = 8) 14.11 12.42 10.81 10.52 10.24 9.74 9.76 - - - - - - -
5 DCTdiff (ECS, m = 7) 36.98 14.79 11.14 10.65 9.50 9.68 - - - - - - - -
6 DCTdiff (EBFR) 15.66 10.61 9.69 9.72 9.09 9.20 - - - - - - - -
7 DCTdiff (SNR, c = 2) 18.32 9.19 8.54 8.32 7.94 9.16 - - - - - - - -
8 DCTdiff (SNR, c = 4) 20.60 18.90 8.49 8.07 7.64 7.73 - - - - - - - -

B.1. Ablation Study: YCbCr Accelerates the Diffusion Training

To evaluate the effect of YCbCr color space transformation in DCTdiff, we substitute the RGB inputs with YCbCr (2x
chroma subsampling) input. The corresponding results are shown in the second row of Table 14, indicating that YCbCr
with chroma subsampling dramatically accelerates the diffusion training but at the cost of generative quality (FID-10k
increases from 10.58 to 14.79). We believe the chroma subsampling provides the training acceleration, but the reduced color
redundancy causes a drop in generation quality.

B.2. Ablation Study: DCT and Entropy-Consistent Scaling

As we mentioned in Section 4.4, Entropy-Consistent Scaling (ECS) is a key factor making the DCT generative modeling
effective. In detail, DCTdiff (ECS) not only enjoys the training acceleration benefit of YCbCr subsampling, but also yields a
better generative quality than UViT (YCbCr) (see Table 14). We attribute the improvement of generation quality to the DCT
space where low-frequency coefficients occupy the majority of image information.

B.3. Ablation Study: Eliminating m High-frequency Coefficients

In Table 14, we show the effect of eliminating m high-frequency coefficients in each DCT block. The block size B is 4 and
m = 0 refers to maintaining all coefficients for diffusion training and sampling. By comparing Row 3, Row 4 and Row 5 of
Table 14, it is clear that ignoring a suitable amount of high-frequency signals increases the generative quality and boosts the
training, too. The optimal m can be decided via Eq. (6).

B.4. Ablation Study: Entropy-Based Frequency Reweighting

In Section 5.1, we highlight the frequency prioritization property of DCT image modeling in which some frequency
coefficients can be modeled preferentially according to the task prior knowledge. We adopt the Entropy-Based Frequency
Reweighting (EBFR) for image generative modeling tasks as low-frequency coefficients have large entropy and contribute
more to the visual quality of images than high-frequency signals. Row 5 and Row 6 of Table 14 demonstrate that EBFR
improves the generation quality of DCTdiff without affecting the training convergence.

B.5. Ablation Study: SNR Scaling c of Noise Schedule

Since the block size B affects the forward perturbation process of DCTdiff (detailed in Section 4.5), we propose SNR Scaling
for DCTdiff to scale the noise schedule of UViT by a constant c. Row 7 and Row 8 of Table 14 show that SNR Scaling
significantly improves the generative quality of DCTdiff and a wide range of parameter c can yield the FID improvement.
We also visualize the effect of c in the perturbation process of DCTdiff in Figure 8 where the image size is 128×128 and the
block size is 4.
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Figure 8. Visualization of the forward SDE process. UViT and DCTdiff (c = 1) share the same noise schedule, while DCTdiff (c = 4)
scales up the noise schedule by a factor of 4.

B.6. Ablation Study: Block Size B

Although we have provided the choice of block size B for image resolutions ranging from 32×32 to 512×512 in Table
9, it is worth discussing its effect and importance to diffusion modeling in detail. Similar to the conclusion of patch size
P mentioned in UViT (Bao et al., 2023) and DiT (Peebles & Xie, 2023), we also confirm that the block size B used in
diffusion Transformers must be relatively small (smaller than the usual P = 16 in image classification). Since we always
have the relationship P = 2B, one can determine B based on the value of P used in UViT and DiT when the resolution is
below 256×256. Additionally, the value of B greatly affects the generative quality and training convergence of DCTdiff: a
larger B leads to faster training but sacrifices the generation quality. In Table 15, we show the FID of DCTdiff on the dataset
FFHQ 256×256 with different B.

Table 15. Ablation study of block size B: FID-10k of DCTdiff during training on FFHQ 256×256 with different block sizes. The
convergence FID is marked as bold in each row.

Model Training steps

50k 100k 150k 200k 250k 300k 350k

DCTdiff (B=4) 125.76 44.67 10.58 8.94 7.07 6.97 7.39
DCTdiff (B=8) 213.14 19.75 18.41 20.37 - - -

C. Qualitative Results
C.1. Qualitative Comparison between VAE Compression and DCT Compression

We randomly sample several images from ImageNet 256×256 dataset, then we perform VAE compression and DCT
compression (4× compression ratio). The reconstructed images after compression are shown in Figure 9. From this, we
clearly see that VAE compression loses image details and local image structure while DCT compression maintains most of
the image information. Also, we find that VAE compression is not good at reconstructing letters, digital numbers, and unseen
images (not trained by VAE). In contrast, DCT compression is training-free, computationally negligible, and insensitive to
image domains.

C.2. Qualitative Results of DCT Upsampling

In Figure 10, we show the visual differences between Pixel Upsampling by bicubic interpolation and DCT Upsampling.

C.3. Qualitative Results of DCTdiff

We show the uncurated samples generated by DCTdiff:

• Figure 11, ImageNet 64×64, FID=4.30, generated by DDIM sampler with NFE=100

• Figure 12, FFHQ 128×128, FID=4.98, generated by DPM-Solver with NFE= 100
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Figure 9. Qualitative comparison between VAE compression and DCT compression. The first row shows the raw images (sampled from
ImageNet 256×256). The second and third rows present the reconstructed images after VAE compression and DCT compression (4×).

• Figure 13, FFHQ 256×256, FID=5.08, generated by DPM-Solver with NFE= 100

• Figure 14, FFHQ 512×512, FID=7.07, generated by DPM-Solver with NFE= 100

• Figure 15, AFHQ 512×512, FID=8.76, generated by DPM-Solver with NFE= 100
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(a) 256×256 (ground truth)

(b) 128×128 (downsampled from 256×256)

(c) 256×256 (Pixel Upsampling) (d) 256×256 (DCT Upsampling)

Figure 10. Comparison between Pixel Upsampling and our proposed DCT Upsampling. 10(c) and 10(d) are upsampled based on 10(b).

Figure 11. Uncurated samples generated by DCTdiff trained on the dataset ImageNet 64×64 (FID= 4.30).
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Figure 12. Uncurated samples generated by DCTdiff trained on the dataset FFHQ 128×128 (FID= 4.98).

Figure 13. Uncurated samples generated by DCTdiff trained on the dataset FFHQ 256×256 (FID= 5.08).

Figure 14. Uncurated samples generated by DCTdiff trained on the dataset FFHQ 512×512 (FID= 7.07).
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Figure 15. Uncurated samples generated by DCTdiff trained on the dataset AFHQ 512×512 (FID= 8.76).
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